{"$update": {"344": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "345": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"745": {"$update": {"dna_sequence": {"$update": {"sequence": "TTGAGCACAATTATTAAAACGACGGATCTCACGAAAATGTACGGGTCGCAAAAGTCTGTAGACCATCTCAATATCAATGTAAAACAAGGAGATATATACGGCTTTTTGGGACGGAACGGCGCCGGCAAAACGACGACGATCAGAATGCTGCTGGGTCTGATCAAACCGACCAGTGGGCAGATAGAAATTTTCGGAGAAAATTTTTTCAAGAATAAAAAAGAAATTTTAAGAAGAATCGGATCTATCGTGGAAGTGCCCGGCTTTTACGCGAACTTGACGGCGAGGGAAAACCTGCTGATCAATGCGAAAATCATAGGTATCCATAAAAAAAATGCGATCGATGAAGTATTGGAGATCGTGGGCCTGCAGCATGAAACGAAAAAGCTCGTCGGCAAGTTTTCCTTGGGCATGAAACAAAGGCTGGGAATTGCAAGAGCCTTGCTTCACTATCCGGAGCTGTTGATACTGGACGAGCCGACAAACGGCTTGGACCCGATCGGGATCAAAGAAATGAGAAGACTCATTCATTCTCTCGCCAAAGAAAGAAACATCACCATCTTTATATCAAGCCACATTTTGTCTGAAATCGAACAGCTCGTCGATCATGTCGGGATCATTCATGAAGGAAAACTGCTTGAAGAAATTCCGTTTGACCATCTTAAAAAAAGAAACCGCAAATATCTGGAATTTCAATTATCCGATCAAAATAAAGCGGTCGTTCTGATGGAACAGCATTTTGATATTCATGACTACGAAGTTCACCAGGACGGGATCATCCGGGTATACTCCCATTTGGGCCAGCAGGGAAAGCTCAATAAATTGTTTGTCGAAAACGGAATAGACGTATTGAAGATTACGATGAGCGAAGACAGTCTTGAAGACTACTTCGTGAAGTTGATAGGGGGCGGGACGATTGGCTAA"}}}}}}}}}}, "346": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "347": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "340": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"904": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGCATGGCCGTGGCAATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGTTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAACGACCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTACACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATGACGTTACGGATAAAGCCGCATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGCGGTGCAACCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAATTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACAGGTGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATAGTGATGCTGGCAAACAAAAGCTATCCTAACCCGGCTCGCGTAGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA"}}}}}}}}}}, "341": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1594": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGCAAGTTATCTGTATTCTTTATATTTTTGTTTTGCAGCATTGCTACCGCAGCAGAGTCTTTGCCAGATTTAAAAATTGAAAAGCTTGATGAAGGCGTTTATGTTCATACTTCGTTTGAAGAAGTTAACGGGTGGGGCGTTGTTCCTAAACATGGTTTGGTGGTTCTTGTAAATGCTGAGGCTTACCTAATTGACACTCCATTTACGGCTAAAGATACTGAAAAGTTAGTCACTTGGTTTGTGGAGCGTGGCTATAAAATAAAAGGCAGCATTTCCTCTCATTTTCATAGCGACAGCACGGGCGGAATAGAGTGGCTTAATTCTCGATCTATCCCCACGTATGCATCTGAATTAACAAATGAACTGCTTAAAAAAGACGGTAAGGTTCAAGCCACAAATTCATTTAGCGGAGTTAACTATTGGCTAGTTAAAAATAAAATTGAAGTTTTTTATCCAGGCCCGGGACACACTCCAGATAACGTAGTGGTTTGGTTGCCTGAAAGGAAAATATTATTCGGTGGTTGTTTTATTAAACCGTACGGTTTAGGCAATTTGGGTGACGCAAATATAGAAGCTTGGCCAAAGTCCGCCAAATTATTAAAGTCCAAATATGGTAAGGCAAAACTGGTTGTTCCAAGTCACAGTGAAGTTGGAGACGCATCACTCTTGAAACTTACATTAGAGCAGGCGGTTAAAGGGTTAAACGAAAGTAAAAAACCATCAAAACCAAGCAACTAA"}}}}}}}}}}, "342": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4492": {"dna_sequence": {"fmax": "2441", "fmin": "1037", "accession": "AF173226", "strand": "-", "sequence": "ATGGCCTTCGCGATGGCGAAGTTCCAACTCAAATTCGGCCTGACCGCGAAGACCTTCCTCGCGATCTTCACCGCCTGCCTGCTGGTGCTGGCAGTGAACGGTATTGCCAGCCGCGTGGCCTTCCAGACCGGCTTCCTGGACTACCTCAACGACCAGGGCGACCTGCGCATGCAGCGGCTGATGCCACACCTGCAGCGCGAGTACCGCGAGCACGGTGGCTGGGAGCATCTGCACGGTGATGGCGACCGCTGGGCGCGGCTGCTGCGCCCGGACCTGGCCCATGGGCACGAAGGACCGGTGCCGTCGCTGTCCGACCAGACCGGCGTGCCGTCGCGCCTGGGCCTGTTCGACGCGCAGCACCGTTTCGTGGCCGGCAACCCCGACGCCACCAGCGATGACGAGCCGCATGCGGTGCAGGTGGACGGGCAGACCGTCGGTTGGCTGGGCATGGTGCCGTTCCAGACCGTCATCGCCACCAACGACCTGAATTTCTACAACACCCAGGTGCGCGCCTGGTGGGTGATCGGCATCGCGCTACTGCTGGTGACGGTACTGCTGGCCTGGCTGGTATCGCGTGCGCTGCGCCAGCGCCTTGCCAAGCTGGCCGCTGCCACCCACCGGTTGGCCGCCGGTGACTACGCCACCCGCATCGAGCGCACCAGTGACGATGAGCTGGACGCGCTGGTCAACGACTTCAACCGGATGGCGCAGGCGCTGGACGATACCGAACGCAACCGCCGCGCCTTCATTGCCGACATCTCGCATGAGCTGCGCACGCCATTGGCCGTGGTGCGGGCCGAGCTGGAGGCGATCGAAGATGGCATCCGTCCGCTGGACCGGGCCAACCTGGTGGGCCTGCAGGGCGAGATCCGCCAGCTGGGCAAGCTGATCGACGACCTGCACGACCTGTCGATGACCCAGTCCGGCGGCCTGGCGTACCGCTTCGCGCCACTGGACCTGGTGGCGCTGCTGCGCAGCGAACTCAATGGCATGCGCGTGCGCTTCGCCAATGCAGGCCTGGCGTTGGAAGAAGACCTGCCCGCCACGCCGTTGCAGGTGTCCGGTGACGAGCGGCGCCTGCAGCAGGTGCTGGCCAACCTGCTGGAAAACGCACTGCGCTACACCCATGCCGGTGGCCGCGTACGCGTGCAGGCGGCGCGCGTGCCTGCCGGCGTGCAGCTGGTCGTGGAAGACACCGCGCCGGGCGTTCCGCCCGACAAGTGTGCACTGGTGTTCGAACGCTTCTACCGCGTGGAAAGTTCGCGCAACCGCGCCAGTGGCGGCAGCGGGCTGGGCCTGGCCATCAGCCACAACATCATCCTCGCCCACCACGGCGTCATCCACGCCGCGCCCTCGCCGCTGGGCGGGCTGCGCGTGGTCATCACCCTGCCGGAGCCTGCATGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Stenotrophomonas maltophilia", "NCBI_taxonomy_id": "40324", "NCBI_taxonomy_cvterm_id": "37076"}, "protein_sequence": {"accession": "AAD51347.1", "sequence": "MAFAMAKFQLKFGLTAKTFLAIFTACLLVLAVNGIASRVAFQTGFLDYLNDQGDLRMQRLMPHLQREYREHGGWEHLHGDGDRWARLLRPDLAHGHEGPVPSLSDQTGVPSRLGLFDAQHRFVAGNPDATSDDEPHAVQVDGQTVGWLGMVPFQTVIATNDLNFYNTQVRAWWVIGIALLLVTVLLAWLVSRALRQRLAKLAAATHRLAAGDYATRIERTSDDELDALVNDFNRMAQALDDTERNRRAFIADISHELRTPLAVVRAELEAIEDGIRPLDRANLVGLQGEIRQLGKLIDDLHDLSMTQSGGLAYRFAPLDLVALLRSELNGMRVRFANAGLALEEDLPATPLQVSGDERRLQQVLANLLENALRYTHAGGRVRVQAARVPAGVQLVVEDTAPGVPPDKCALVFERFYRVESSRNRASGGSGLGLAISHNIILAHHGVIHAAPSPLGGLRVVITLPEPA"}}}}}}}, "343": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1211": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAAACACAATACATATCAACTTCGCTATTTTTTTAATAATTGCAAATATTATCTACAGCAGCGCCAGTGCATCAACAGATATCTCTACTGTTGCATCTCCATTATTTGAAGGAACTGAAGGTTGTTTTTTACTTTACGATGTATCCACAAACGCTGAAATTGCTCAATTCAATAAAGCAAAGTGTGCAACGCAAATGCCACCAGATTCAACTTTCAAGATCGCATTATCACTTATGGCATTTGATGCGGAAATAATAGATCAGAAAACCATATTCAAATGGGATAAAACCCCCAAAGGAATGGAGATCTGGAACAGCAATCATACACCAAAGACGTGGATGCAATTTTCTGTTGTTTGGGTTTCGCAAGAAATAACCCAAAAAATTGGATTAAATAAAATCAAGAATTATCTCAAAGATTTTGATTATGGAAATCAAGACTTCTCTGGAGATAAAGAAAGAAACAACGGATTAACAGAAGCATGGCTCGAAAGTAGCTTAAAAATTTCACCAGAAGAACAAATTCAATTCCTGCGTAAAATTATTAATCACAATCTCCCAGTTAAAAACTCAGCCATAGAAAACACCATAGAGAACATGTATCTACAAGATCTGGAGAATAGTACAAAACTGTATGGGAAAACTGGTGCAGGATTCACAGCAAATAGAACCTTACAAAACGGATGGTTTGAAGGGTTTATTATAAGCAAATCAGGACATAAATATGTTTTTGTGTCCGCACTTACAGGAAACTTGGGGTCGAATTTAACATCAAGCATAAAAGCCAAGAAAAATGCGATCACCATTCTAAACACACTAAATTTATAA"}}}}}}}}}}, "348": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1848": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATTAAAACTTCGTGGCGTAAAAGCGCCCTGATTGCCGCCGCCCTGCCTTTATTGCTCTGTAGCAGTTCATTATGGGCCAATGCTATTCAGCAGAAGCTGGCCGATTTGGAAAAAAGTACCGGCGGGCGACTGGGCGTCGCGCTGATTGACACCACAGATAACTCTCAAATTCTATATCGCGGTGACGAGCGTTTTGCTATGTGCAGTACCGGTAAAGTGATGGCTGCCGCCGCGGTGTTAAAACAGAGCGAAAGCAATAAAGATGTGGTGAATAAAAGGCTGGAGATTAAAGCATCGGATCTGGTGGTCTGGAGCCCGGTGACTGAAAAACATCTGCAGAGCGGAATGACGTTGGCGGAATTAAGCGCCGCCGCGCTGCAATATAGCGACAATACCGCGATGAATAAGATGATTGGTTATCTTGGCGGACCGGAAAAAGTGACCGCCTTCGCCCGCAGTATCGGCGATGTCACTTTTCGTCTCGATCGTACGGAGCCTGCACTAAACACCGCGATCCCGGGTGACGAACGCGATACCACCACGCCGCTGGCGATGGCCGAAAGCCTGCACAAGCTGACGCTGGGTAATGCGCTGGGTGAACAACAGCGCGCACAGTTAGTGACATGGTTGAAAGGCAACACCACCGGCGGGCAGAGTATTCGTGCGGGGCTGCCTGCAAGCTGGGTCGTGGGAGATAAAACCGGAGCTGGTGATTACGGCACCACCAATGATATCGCCGTTATCTGGCCGGAAAATCATGCTCCGCTGGTATTAGTCACTTATTTCACCCAACCGCTGCAGGATGCGAAAAGCCGCAAAGATGTGCTAGCCGCAGCGGCAAAAATCGTGACCGAAGGGCTTTAA"}}}}}}}}}}, "349": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"612": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAATTGAAAAAGATAGCCATAATATTCGGAGGTCAATCTTCGGAATATGAAGTCTCACTTAAATCAACAGTAAGTGTACTAGAAACTCTATCAACTTGTAATTTTGAAATTATAAAAATAGGAATTGATTTAGGCGGAAAGTGGTATCTCACCACAAGCAACAACAAAGATATTGAATATGATGTTTGGCAAACTGATCCTTCATTACAAGAAATAATCCCATGTTTCAATAATCGAGGCTTTTATAACAAAACTACAAATAAATATTTCAGACCAGATGTACTCTTTCCAATTCTTCATGGGGGGACTGGAGAAGATGGAACCCTCCAAGGTGTATTTGAATTAATGAATATTCCTTACGTTGGATGTGGGGTGACGCCTTCGGCTATTTGTATGGACAAATACTTATTGCATGAGTTTGCTCAGAGTGTGGGTGTAAAAAGTGCCCCTACGCTCATAATTCGCACTAGAAACTGCAAAGATGAAATTGACAAGTTCATAGAAAAAAATGACTTCCCTATTTTTGTAAAGCCTAACGAAGCGGGCTCATCAAAAGGAATAAACAAAGTAAATGAGCCAGATAAGCTAGAGGATGCTTTAACAGAAGCGTTTAAGTATAGTAAAAGTGTTATCATTCAGAAAGCTATAATTGGAAGAGAAATTGGCTGTGCTGTCTTAGGTAATGAAAAACTCCTAGTAGGAGAATGTGATGAAGTTTCCCTTAATAGCGATTTTTTTGATTATACCGAGAAATACCAAATGATCTCAGCAAAGGTAAATATACCTGCTTCTATATCTGTAGAATTTTCTAATGAAATGAAGAAACAAGCTCAGCTGTTATATAGGTTACTAGGCTGTTCAGGACTAGCACGAATTGATTTCTTCTTATCAGATAATAACGAAATACTATTAAACGAAATTAATACTTTGCCTGGTTTTACTGAGCATTCCAGATATCCCAAAATGATGGAAGCTGTAGGTGTTACCTATAAAGAGATTATCACGAAGTTAATCAATTTAGCGGAGGAAAAATATTATGGATAA"}}}}}}}}}}, "1653": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2314": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"4623": {"dna_sequence": {"fmax": "2992755", "fmin": "2990040", "accession": "CP010781.1", "strand": "-", "sequence": "ATGAGCGTATCGGAAATCCGACCGATTGCCATTGAGGACGAACTCAAGCATTCATATTTAGATTACGCGATGAGTGTAATTGTATCTCGTGCATTGCCGGATGTGAGAGACGGTCTTAAACCTGTTCACCGTCGTGTGCTTTATGCCATGCACGAATTGGGCAATGACTATAACAAAGCCTACAAGAAATCTGCTCGTGTCGTTGGGGACGTAATCGGTAAATATCACCCGCATGGTGACTCAGCTGTTTATGAAACCATTGTTCGTATGGCTCAAGACTTTAGCTTACGTTATTTATTGGTTGATGGTCAGGGTAACTTCGGTTCGATCGATGGTGATAGCGCTGCGGCAATGCGTTATACCGAAGTCCGTATGACTAAGCTGGCACATGAGCTTCTTGCAGATTTAGAAAAAGACACAGTTGACTGGGAAGATAACTACGACGGTTCGGAACGTATCCCTGAAGTACTTCCGACACGTGTTCCAAACTTATTAATTAACGGTGCTGCTGGTATTGCTGTAGGTATGGCAACTAACATGGCACCACACAACATGACAGAAGTTGTGAATGCTTGTTTGGCTTATGCTGACAATCCGAATATCTCGATTGAAGGATTGATGGAATACATTACTGGTCCTGACTTCCCTACAGGCGGTATTATTTACGGTAAATCAGGTATTGTTGATGCCTACCGTACCGGTAAAGGTCGTTTACACATTCGTGGTAAATACCATTTCGAAGAAGATGAAAAGACAGGTCGTACAACCATCGTCTTTACTGAAATTCCATATCAAGTAAACAAAGCAAGAGTTATTGAACGTATTGCCGAGTTAGTAAAAGAGAAAAAGCTTGAAGGTATTTCAGAACTTCGTGATGAGTCTGATAAAGAAGGTATGCGTATTGCAATTGACTTGAAACGCGGTGAAAACGCAGAAGTCGTTGTAAATAACTTATTCTTAAATACCCAGCTTGAAAACTCATTCAGCATCAACATGGTTTGTCTAGACAATGGACAACCAAAATTGATGAATCTAAAAGATATTATTGCGGCATTTATTCGTCACCGCCAAGAAGTTGTGACACGCCGTACCATGTTCGAATTACGTAAAGCACGTGAACGTGGTCATATCTTGGAAGGCTTGACAGTTGCCTTAGCCAATATTGATGAAATTATTGAAACCATCAAAACTTCTGCAAACCCTGCTGAAGCGCGTGAGCGTTTACTTGCGGGTGAGTGGGCAGGTGGTGGCGTTGTTGCACTACTTGAAAAAGCTGGTGCAATTTCTGTTCGCCCAGATGAAATTGAAGGTGAAGATCCAAATCGTCCATTTGGTTTAAGTGATTCAATTTATCGTCTGTCACCAACACAAGTAGGCGCAATTTTAGAATTACGTTTACACCGTTTAACTGGTCTTGAACAAGACAAGTTACATGCGGAATATACTGAAATTTTAGGTCAAATTGCTGAACTTACTGCAATTTTAAATGACTTTAACTTGTTAATGGGTGTTATTCGCGAAGAGTTGGCACAAGTTTTACAACAATATGGCGATGCACGTCGTACCGAAATTGTTGAATCTCGTGTGGATTTCTGCCGTGAAGATTTAATTCCTGAAGAGCAAGTGGTATTAACGGTTTCGCAAACGGGTTATGCAAAAACTCAACCTCTTTCAGACTATCAGGCACAGCGCCGTGGTGGACGTGGTAAGTCTGCAACCTCAATGAAAGATGATGACTTTATTCAACATCTGATTGTGGCATCGAACCATGCGACCGTACTTTGCTTTACCAATGTGGGTAAAGTGTACCGTCTGAAAGTATTTGAAGTTCCTCAAGCATCACGTGGGGCAAAAGGCCGTCCAATCGTGAACTTGTTACCTCTAGATGCAACAGAAACCGTAACCGCAATCTTGCCGTTAACCGAGTTCCCGGAAAACCACTATGTGTTTATGGCGACAGCTTCTGGTACGGTTAAGCGTGTTGAGTTAGAGCAATTTGCAAACATTCGTTCAAATGGTCTACGTGCTATTGAACTTAATGAAGAAGATACTTTAATTGGTGTTGCGATTACTGATGGTAATCAGCAAATCATGTTGTTCTCTAACGAAGGTAAGGCAATTCGTTTTGCTGAAACTGACGTACGTGCAATGGGTCGTACAGCGAAAGGTGTACGCGGTATGCGCGTGAGTTTTGCAAGCAGCACCTTAAGTGAAGAAGATGCAGATGTTGAAAATGATGATTCAGATGATAATGATGATTCAACAGATTCAAGTCTAGTAAGTCGCATCGTATCGCTTGTTGTTGTACCTGAGACAGGCGAAGTACTGTGTGCGAGTGCCAACGGTTATGGTAAACGTACTCCAGTAAATGACTTCCCGACCAAGAAACGTGGTGGTAAGGGTGTTATTGCGATCAAGACAAGTGAACGTAACGGTGAGCTAGTTGGTGCAGTTTCTATTGATGAAACCAAAGAGTTATTATTAATTTCTGATGGTGGTACGCTTGTTCGTACGCGTGCTGCAGAAGTTGCAATGACAGGCCGTAATGCTCAAGGTGTTCGTCTGATCCGTTTAAGCGAAGAAGAAACGCTCGTTGGCGTAGTTTCAATTGAAGCTGTAGAAGACGAAGAAGAACTTCTTGAAGGTGAAGTAGATACGACTGAAACTGATAGCGAAGAAGCTGTATCTAATAATGAAGATACTTCTGAAGAGTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "AJF82744.1", "sequence": "MSVSEIRPIAIEDELKHSYLDYAMSVIVSRALPDVRDGLKPVHRRVLYAMHELGNDYNKAYKKSARVVGDVIGKYHPHGDSAVYETIVRMAQDFSLRYLLVDGQGNFGSIDGDSAAAMRYTEVRMTKLAHELLADLEKDTVDWEDNYDGSERIPEVLPTRVPNLLINGAAGIAVGMATNMAPHNMTEVVNACLAYADNPNISIEGLMEYITGPDFPTGGIIYGKSGIVDAYRTGKGRLHIRGKYHFEEDEKTGRTTIVFTEIPYQVNKARVIERIAELVKEKKLEGISELRDESDKEGMRIAIDLKRGENAEVVVNNLFLNTQLENSFSINMVCLDNGQPKLMNLKDIIAAFIRHRQEVVTRRTMFELRKARERGHILEGLTVALANIDEIIETIKTSANPAEARERLLAGEWAGGGVVALLEKAGAISVRPDEIEGEDPNRPFGLSDSIYRLSPTQVGAILELRLHRLTGLEQDKLHAEYTEILGQIAELTAILNDFNLLMGVIREELAQVLQQYGDARRTEIVESRVDFCREDLIPEEQVVLTVSQTGYAKTQPLSDYQAQRRGGRGKSATSMKDDDFIQHLIVASNHATVLCFTNVGKVYRLKVFEVPQASRGAKGRPIVNLLPLDATETVTAILPLTEFPENHYVFMATASGTVKRVELEQFANIRSNGLRAIELNEEDTLIGVAITDGNQQIMLFSNEGKAIRFAETDVRAMGRTAKGVRGMRVSFASSTLSEEDADVENDDSDDNDDSTDSSLVSRIVSLVVVPETGEVLCASANGYGKRTPVNDFPTKKRGGKGVIAIKTSERNGELVGAVSIDETKELLLISDGGTLVRTRAAEVAMTGRNAQGVRLIRLSEEETLVGVVSIEAVEDEEELLEGEVDTTETDSEEAVSNNEDTSEE"}}}}}}}, "2315": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"4622": {"dna_sequence": {"fmax": "3863522", "fmin": "3861302", "accession": "CP012952.1", "strand": "-", "sequence": "ATGACCAGCCTTGCGCATCATGCGACAGAAAACCGCTCTGTAGCCGAATTTACTGAACAGGCTTACTTGAATTATGCCATGTACGTCATTATGGACCGTGCATTACCGCATATCAGTGATGGCTTAAAGCCCGTACAGCGCCGTATTGTCTATGCCATGAGCGAGCTAGGCTTAAAAAGCAGTGGCAAGCCAAAAAAATCAGCGCGTACAGTGGGTGATGTACTTGGTAAATACCACCCACATGGTGACTTGGCATGTTATGAAGCCATGGTACTCATGGCTCAGCCATTTAGTTACCGCTATCCTTTAATCGAAGGTCAGGGGAACTGGGGCTCACCTGATGATCCTAAGTCTTTTGCTGCGATGCGTTATACCGAAGCAAAACTCTCGGCTTATAGTGAATTATTGCTGAGCGAATTAGGTCAGGGCACTAGCGAATGGCAAGATAACTTTGATGGTTCTTTAAAAGAACCGATCACTTTACCTGCGCGTGTACCTAATATTCTTCTTAATGGTACGACAGGTATTGCTGTTGGGATGGCAACTGATATCCCGCCACATAATTTGCGTGAAGTTGTAAAAGGCACAATTGCTTTAATCCGTAATCCGCAAACCTCGGACGAAAAATTAGCTGAATATATTCCGGCTCCGGATTTACCAACCAAAGCTGAAATTATTACCCCGCCAGAAGAATTACTCAAAATCCAGACCACTGGTCGTGGTAGTTATCGTATGCGAGCGGTATATACCATTGAGAAAAATGAAATTGTAATTACTGAGCTGCCATATCAAGTCTCTGGTTCTAAGGTAATTACTCAAATTGCTGACCAGATGCAGGCTAAAAAGCTGCCATTAGTTGTCGACGTGCGTGATGAATCGGATCATGAAAACCCGACACGACTCGTGATTGTACTGCGCTCTAACCGTATTGATGCGGAAGCAGTGATGAGCCACTTATTTGCGACCACCGATTTAGAATCAAGCTATCGTGTCAATTTGAACATGATTGGCGAAGATGGCCGTCCTCAGGTGAAATCAATTCGTCGTATTTTGCTTGAATGGATCGAGATCCGTAAAAAAACGGTAACTCGTCGTTTGCAGTACCATTTAAACCGTATTGAAAAGCGCCTGCATATTTTGGCAGGTCTTTTAATTGCTTATCTCGATATTGATACAGTCATTCGTATTATTCGTGAAGAAGACCAGCCTAAGCCAGTCTTGATGGAACACTTTAATATTGATGAGATACAGGCCGAGGCGATTTTAGAGCTTAAATTACGTCATTTGGCAAAGCTTGAAGAGATGGAAATCCGTCATGAACAAGATGAACTTTCTGCGAAAGCTGCCATTATTCGTGAACAACTCGAAAATCCTGAATCTTTAAAAAACCTAATTATCAGTGAATTAAAAGAAGATGCGAAAAAGTTCGGTGATGAGCGCCGTTCTCCAATTGTTGCACGTGCTGAAGCAGTTCAAATTAAAGAACAGGATTTAATGCCAGCTGAAACGGTAACGGTGGTTTTGTCTGAAGCAGGCTGGGTTCGTGCGGCAAAAGGTGCGGATGTGGATGCCGAAAATCTCAACTACCGTGCTGGGGACCAATATTTAAGTCATGCTGTCGGGAAAACCAATCAGCGAGTTTACTTCCTTGATGAAACAGGGCGCAGCTATGCCTTGCCAATTAGTAACTTACCTTCAGCGAGAGGCTTGGGGGATCCATTAAGTTCTAAATTATCACCAGCAAGTGGCGTATCGTTTATTCAGGTTTATTTAGATGATGATGAGTCTGAATTGATTGCTGCAAGTTCGGCAGGTTATGGTTTTAAAACGCAAACCAAGCAATTAGATACCAATGCGAAAGCCGGTAAGACATTCTTAACGGTTCCGGATAAGGCAAAGGCTTTACCACTCATTTCTGCCCAAAACATGACGCATTTGGCTGTACTGAGCTCAGCAGGGCGTTTGTTAATTTTAGATTTGGCAGAACTACCAAATTTAAATAAAGGTAAAGGTAATAAGTTGATACAACTTGAAGGCAAAGAGCAAATTTTATCCATGACAACCCTGAACTTAGATGAAATAATTCAGGTGGTTGCAGGTCAACAACATCTCAAATTAAAAGGTGATGATCTACAAAAATACATGGGTAAACGTGCTTCGAAAGGTCAGCTCTTACCACGTGGATATCAAAAAGCAAATAAACTGTTGATTCAGAGATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "ALJ89624.1", "sequence": "MTSLAHHATENRSVAEFTEQAYLNYAMYVIMDRALPHISDGLKPVQRRIVYAMSELGLKSSGKPKKSARTVGDVLGKYHPHGDLACYEAMVLMAQPFSYRYPLIEGQGNWGSPDDPKSFAAMRYTEAKLSAYSELLLSELGQGTSEWQDNFDGSLKEPITLPARVPNILLNGTTGIAVGMATDIPPHNLREVVKGTIALIRNPQTSDEKLAEYIPAPDLPTKAEIITPPEELLKIQTTGRGSYRMRAVYTIEKNEIVITELPYQVSGSKVITQIADQMQAKKLPLVVDVRDESDHENPTRLVIVLRSNRIDAEAVMSHLFATTDLESSYRVNLNMIGEDGRPQVKSIRRILLEWIEIRKKTVTRRLQYHLNRIEKRLHILAGLLIAYLDIDTVIRIIREEDQPKPVLMEHFNIDEIQAEAILELKLRHLAKLEEMEIRHEQDELSAKAAIIREQLENPESLKNLIISELKEDAKKFGDERRSPIVARAEAVQIKEQDLMPAETVTVVLSEAGWVRAAKGADVDAENLNYRAGDQYLSHAVGKTNQRVYFLDETGRSYALPISNLPSARGLGDPLSSKLSPASGVSFIQVYLDDDESELIAASSAGYGFKTQTKQLDTNAKAGKTFLTVPDKAKALPLISAQNMTHLAVLSSAGRLLILDLAELPNLNKGKGNKLIQLEGKEQILSMTTLNLDEIIQVVAGQQHLKLKGDDLQKYMGKRASKGQLLPRGYQKANKLLIQR"}}}}}}}, "2310": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model."}}, "298": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"416": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAACCATATGAATATGAAACACAGACGCAGAAAACGCAGACGTAACCAATCTTTTTTGTTCACAGGAATTTTACTCTTAGTTGTAGTATCTGCAAGCAGTTTTTTATGGTACGGTTTTGGCAATGCGGCAAAAAAAGACAGTGTTATTGAAGAAATGCCATTTACCATTACACAGGACGGAATGCAGGCAAAGGAAGAAATAAAGAAAACGGTACTGGAAACTTCCTATGGCGGCAAACAGCAGGTAGCGGAAGAAAATCACGGCAATACACAAAATGCAGGGACAGACGAAGCGTGGAATTTAATGCTTGTCAACAGAGATAATGCGATTCCAGACAATTACGAAGTAAATCTGGTCGAAGTAGAGGGCGGGGAGCGTGTAGATGAGCGTATCTATGAACCTCTTATGGAAATGCTTAATGCGGCAAGGGAGGAAAACTGGGGCGAATTGCCGATGGTAGTATCTGGCTATCGGACGCAGGAAAAACAGCAGAGCCTTTATGATGAAAAGATTGCAAAGTTCAAAAAAGAGGGGTATTCAGACAGTGAAGCCGTAAGGCAGGCAGAACAATGGGTTGCAGTGCCAGGTCACAGTGAGCATCAGCTCGGTTTTGCAGTGGATATTAACGGGGCAACTTATGATGTTTATCTATGGTTGCAGGAAAACAGCTATAAATACGGCTTTATCTTCAGATATCCCGGCAGTAAAACGGATATTACCGGGACTGCTGAAGAAGTATGGCATTACCGTTATGTTGGAGTGGAAGCGGCAACTGAAATGTATGAAAATGGATTATGTCTTGAGGAATATCTTGAGAAAAAGCAATCAGAAAACTAA"}}}}}}}}}}, "299": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "296": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1729": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGTTCAAACTTTTGAGTAAGTTATTGGTCTATTTGACCGCGTCTATCATGGCTATTGCGAGTCCGCTCGCTTTTTCCGTAGATTCTAGCGGTGAGTATCCGACAGTCAGCGAAATTCCGGTCGGGGAGGTCCGGCTTTACCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTTTGATGGCGCAGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAGAAGCAAATTGGACTTCCTGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCCGAGGTAGAGGGGAACGAGATTCCCACGCACTCTCTAGAAGGACTCTCATCGAGCGGGGACGCAGTGCGCTTCGGTCCAGTAGAACTCTTCTATCCTGGTGCTGCGCATTCGACCGACAACTTAGTTGTGTACGTCCCGTCTGCGAGTGTGCTCTATGGTGGTTGTGCGATTTATGAGTTGTCAAGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCATTGAGCGGATTCAACAACACTACCCGGAAGCACAGTTCGTCATTCCGGGGCACGGCCTGCCGGGCGGTCTAGACTTGCTCAAGCACACAACGAATGTTGTAAAAGCGCACACAAATCGCTCAGTCGTTGAGTAG"}}}}}}}}}}, "297": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "294": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1592": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGAAAAAAACAGAAAAAAACAAATCGTAGTTTTGAGTATAGCTTTAGTTTGCATTTTCATCTTGGTATTTTCATTGTTCCATAAATCAGCGACAAAAGATAGCGCAAATCCTCCTTTAACAAATGTTTTGACTGATAGCATTTCTCAAATTGTCTCAGCTTGTCCTGGCGAAATTGGTGTGGCGGTTATTGTTAATAACAGAGATACGGTTAAGGTCAATAATAAGAGTGTTTATCCTATGATGAGTGTGTTTAAGGTTCATCAGGCATTAGCTCTTTGTAATGACTTTGACAATAAAGGAATTTCACTTGATACCTTAGTAAATATAAATAGGGATAAACTTGACCCAAAGACTTGGAGTCCTATGCTGAAAGATTATTCAGGGCCAGTCATATCATTGACAGTGAGAGATTTGCTGCGTTATACTCTTACTCAGAGTGACAACAATGCAAGCAACCTTATGTTTAAGGATATGGTTAATGTCGCTCAAACAGATAGTTTTATAGCCACACTCATTCCTCGTTCAAGTTTTCAGATAGCTTATACGGAAGAGGAAATGTCGGCTGACCATAACAAGGCTTACTCTAACTATACATCTCCTCTTGGTGCTGCAATGTTGATGAATCGTTTGTTTACTGAAGGTCTTATCGATGATGAGAAACAAAGTTTCATTAAGAATACGTTAAAAGAATGCAAAACAGGTGTAGATAGGATAGCAGCTCCACTTCTTGATAAAGAAGGGGTTGTTATAGCGCATAAGACAGGTTCAGGTAATGTTAATGAAAATGGTGTTCTTGCAGCTCACAATGATGTTGCCTATATATGTCTGCCTAATAATATCAGTTATACCTTAGCGGTATTTGTTAAGGATTTCAAGGGAAATGAATCACAAGCGTCACAATATGTTGCGCATATATCAGCTGTAGTATATTCTTTATTAATGCAAACTTCAGTAAAATCTTAA"}}}}}}}}}}, "295": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1451": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAACATTTGCCGCATATGTAATTACTGCGTGTCTTTCAAGTACGGCATTAGCTAGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTTTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATAACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAACGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAACAATGGGAAAGAGACTTGAGCTTAAGAGGGGCAATACAAGTTTCAGCGGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATACCTTAAAAAATTTTCATATGGCAACCAGAATATCAGTGGTGGCATTGACAAATTCTGGGAGGGTCAGCTAAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATTTTTAAATAAATTGTCAGCATCAAAAGAAAATCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCTGCGCCTGAATATCTTGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGTTGGGTTGAGAAGGGAACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAATAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGCAAGTGAGGGCATCATTGGTGGCTAA"}}}}}}}}}}, "292": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "293": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "290": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"462": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAATGTATCCTATAGAAGGAAACAAATCAGTACAATTTATCAAACCTATTTTAGAAAAATTAGAAAATGTTGAGGTTGGAGAATACTCATATTATGATTCTAAGAATGGAGAAACTTTTGATAAGCAAATTTTATATCATTATCCAATCTTAAACGATAAGTTAAAAATAGGTAAATTTTGCTCAATAGGACCAGGTGTAACTATTATTATGAATGGAGCAAATCATAGAATGGATGGCTCAACATATCCATTTAATTTATTTGGTAATGGATGGGAGAAACATATGCCAAAATTAGATCAACTACCTATTAAGGGGGATACAATAATAGGTAATGATGTATGGATAGGAAAAGATGTTGTAATTATGCCAGGAGTAAAAATCGGGGATGGTGCAATAGTAGCTGCTAATTCTGTTGTTGTAAAAGATATAGCGCCATACATGTTAGCTGGAGGAAATCCTGCTAACGAAATAAAACAAAGATTTGATCAAGATACAATAAATCAGCTGCTTGATATAAAATGGTGGAATTGGCCAATAGACATTATTAATGAGAATATAGATAAAATTCTTGATAATAGCATCATTAGAGAAGTCATATGGAAAAAATGA"}}}}}}}}}}, "291": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4475": {"dna_sequence": {"fmax": "103833", "fmin": "103017", "accession": "BX664015.1", "strand": "-", "sequence": "ATGAGCCATATTCAACGGGAAACGTCTTGCTCGAGGCCGCGATTAAATTCCAACCTGGATGCTGATTTATATGGGTATAGATGGGCTCGCGATAATGTCGGGCAATCAGGTGCGACAATCTATCGATTGTATGGGAAGCCCAATGCGCCAGAGTTGTTTCTGAAACATGGCAAAGGTAGCGTTGCCAATGATGTTACAGATGAGATGGTCAGACTAAACTGGCTGACGGCATTTATGCCTCTTCCGACCATCAAGCATTTTATCCGTACTCCTGATGATGCATGGTTACTCACCACTGCGATCCCCGGGAAAACAGCATTCCAGGTATTAGAAGAATATCCTGATTCAGGTGAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGCATTCGATTCCTGTTTGTAATTGTCCTTTTAACAGCGATCGCGTATTTCGTCTCGCTCAGGCGCAATCACGAATGAATAACGGTTTGGTTGATGCTAGTGATTTTGATGACGAGCGTAATGGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCATAAGCTTTTGCCATTCTCACCGGATTCAGTCGTCACTCATGGTGATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATGTTGGACGAGTCGGAATCGCAGACCGATACCAGGATCTTGCCATCCTATGGAACTGCCTCGGTGAGTTTTCTCCTTCATTACAGAAACGGCTTTTTCAAAAATATGGTATTGATAATCCTGATATGAATAAATTGCAGTTTCATTTGATGCTCGATGAGTTTTTCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Serratia marcescens", "NCBI_taxonomy_id": "615", "NCBI_taxonomy_cvterm_id": "36783"}, "protein_sequence": {"accession": "CAE51638.1", "sequence": "MSHIQRETSCSRPRLNSNLDADLYGYRWARDNVGQSGATIYRLYGKPNAPELFLKHGKGSVANDVTDEMVRLNWLTAFMPLPTIKHFIRTPDDAWLLTTAIPGKTAFQVLEEYPDSGENIVDALAVFLRRLHSIPVCNCPFNSDRVFRLAQAQSRMNNGLVDASDFDDERNGWPVEQVWKEMHKLLPFSPDSVVTHGDFSLDNLIFDEGKLIGCIDVGRVGIADRYQDLAILWNCLGEFSPSLQKRLFQKYGIDNPDMNKLQFHLMLDEFF"}}}}}}}, "270": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "271": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "272": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "273": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "274": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "275": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "276": {"$update": {"model_sequences": {"$update": {"sequence": {"$update": {"2090": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGTCTAGATTAGATAAAAGTAAAGTGATTAACAGCGCATTAGAGCTGCTTAATGAGGTCGGAATCGAAGGTTTAACAACCCGTAAACTCGCCCAGAAGCTAGGTGTAGAGCAGCCTACATTGTATTGGCATGTAAAAAATAAGCGGGCTTTGCTCGACGCCTTAGCCATTGAGATGTTAGATAGGCACCATACTCACTTTTGCCCTTTAGAAGGGGAAAGCTGGCAAGATTTTTTACGTAATAACGCTAAAAGTTTTAGATGTGCTTTACTAAGTCATCGCGATGGAGCAAAAGTACATTTAGGTACACGGCCTACAGAAAAACAGTATGAAACTCTCGAAAATCAATTAGCCTTTTTATGCCAACAAGGTTTTTCACTAGAGAATGCATTATATGCACTCAGCGCTGTGGGGCATTTTACTTTAGGTTGCGTATTGGAAGATCAAGAGCATCAAGTCGCTAAAGAAGAAAGGGAAACACCTACTACTGATAGTATGCCGCCATTATTACGACAAGCTATCGAATTATTTGATCACCAAGGTGCAGAGCCAGCCTTCTTATTCGGCCTTGAATTGATCATATGCGGATTAGAAAAACAACTTAAATGTGAAAGTGGGTCTTAA"}}}}}}}}}}, "277": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "278": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1892": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAGGGTTGGATAAAGTGCGGGCTGGCCGGGGCCGTGGTGCTGATGGCGAGTTTTTGGGGGGGCAGCGTGCGGGCGGCGGGGATGTCGCTGACGCAGCAGGTGAGCGGCCCTGTTTACGTCGTAGAGGACAACTACTACGTGCAGGAAAATTCCATGGTCTATTTCGGGGCCAAGGGAGTGACTGTGGTGGGGGCGACCTGGACGCCGGATACCGCCCGCGAGCTGCACAAGCTGATCAAACGGGTCAGCCGCAAGCCGGTGCTGGAGGTGATCAACACCAACTACCACACCGACCGGGCAGGCGGTAACGCCTACTGGAAGTCCATCGGTGCCAAGGTGATATCGACCCGCCAGACCCGGGATCTGATGAAGAGCGACTGGGCCGAGATTGTCGCCTTTACCCGCAAGGGGCTGCCGGAGTACCCGGACTTGCCGCTGGTGCTGCCCAACGTGGTGCACGAAGGCGACTTCACGCTGCAAGAAGGCAAGCTGCGCGCCTTCTACCTGGGCCCGGCTCACAGCCCGGACGGCATCTTTGTTTACTTCCCCGACCAGCAGGTGCTTTATGGCAACTGCATCCTCAAGGAGAAGCTGGGCAACCTGAGCTTTGCCGATGTGAAGGCTTATCCGCAGACACTTGAGCGGCTGAAAGCGATGAAGCTGCCGATCAAGACGGTGGTGGGCGGTCACGACTCACCGCTGCACGGCCCGGAGCTTATCGATCACTACGAAGCGCTGATCAAGGCGGCTTCACAATCATAA"}}}}}}}}}}, "279": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2268": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_category": {"$delete": ["36001", "36002", "36298"], "$insert": {"41687": {"category_aro_name": "ABC-F ATP-binding cassette ribosomal protection protein", "category_aro_cvterm_id": "41687", "category_aro_accession": "3004469", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}}}}}, "2262": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4640": {"dna_sequence": {"fmax": "145536", "fmin": "144312", "accession": "AB571865.1", "strand": "-", "sequence": "ATGGAAAACCGTAAATGGTTTAAGACCTATATGTTTATATGGGCTGGACAGTTTGCTTCAATGCTTACAAGTTATGCTGTTCAGTTTGCTATTGTTATATGGCTTAGTCTGGAGTACAAGTCAGCCGAAGTTTTAGCCTACGCAGGAATAGCAGCTATGTTGCCTCAAGCATTGATAGGCTTAATAGCAGGTGTATATGTTGACCGTCTCAATCGTAAATATGTAATGATTTTTTCGGATGCTTTTATAGCTCTCTGTGCCCTTTTGTTACTCGTCATTTTACAAAATGAAAATGTTAATCTTATATGGATATACATTTTATTGGGTTTACGCTCTGTTGGTAATGCTTTTCACGCTCCGGCACTACAGGCAATTGCTCCGCTGATTGTACCCCAAAATGAATTGATAAAGGTAGCAGGAATTAATCAGGTGTTACATTCGGTTTGCAGGATTGGTGGTCCTGCCATTGGCACATTAGCCATTGCTTATCTTCCTATTTCAAAAGTATTGTACTTGGATTTGATTGGAGCATTGCTGGCTATTCTTTCACTCGTGATGGTGAAAATTCCCAATGTGGTTGCGAAGTCAAAATCGTCTGCACATTCTATTGCTACAGAATTTTCGGAAGGGTTTCAGACTGTTTCAAAAAACAAAGGTTTGCGTTATCTTTTTCTTTATGCAATGGCGATAACCTTTGTTATAATGCCAGCTGCCATTATGTTTCCGTTGCTCACAACAGGGCATTTTGCAGGAGGAAAATGGGAGATAGGAATTGTAGAAGTGGTTTGGGGCGGAGGTATGCTTATTGGCGGTGTCATCCTGAGTATTTTCAAATTGAAAGGCTCAAAAGTAGTCGCAGTCAATGTTATGTATGTATTATTGGGACTTACATTTATTTTGAGTGGTGTATTACCTGCAAGTTGGTTTGTAGGATTTGTGATGGTAACAGCCATTGGCGGTATCAGCCTGTCTGTTTTCAATGGCTGTTTTACAGCAATTGTACAAACAGAGGTAAGTCCTGAAAAATTAGGACGTGTATTTTCACTTTATTATAGTTTGGCAGTTTTGCCAAGTGTAATCGGTTTATTATTCACAGGCCTGATTGCAGAAGTTATTGGTGTAAACATTACGTTTATCATAAGCGGTTGTTTGGCAATCCTTGTGGGTATTCTTTCGTTTAGCACTCGCAACTTAATGCAATTAGGTAAAATCAAAAATATTTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Photobacterium damselae subsp. damselae", "NCBI_taxonomy_id": "85581", "NCBI_taxonomy_cvterm_id": "40398"}, "protein_sequence": {"accession": "BAL43360.1", "sequence": "MENRKWFKTYMFIWAGQFASMLTSYAVQFAIVIWLSLEYKSAEVLAYAGIAAMLPQALIGLIAGVYVDRLNRKYVMIFSDAFIALCALLLLVILQNENVNLIWIYILLGLRSVGNAFHAPALQAIAPLIVPQNELIKVAGINQVLHSVCRIGGPAIGTLAIAYLPISKVLYLDLIGALLAILSLVMVKIPNVVAKSKSSAHSIATEFSEGFQTVSKNKGLRYLFLYAMAITFVIMPAAIMFPLLTTGHFAGGKWEIGIVEVVWGGGMLIGGVILSIFKLKGSKVVAVNVMYVLLGLTFILSGVLPASWFVGFVMVTAIGGISLSVFNGCFTAIVQTEVSPEKLGRVFSLYYSLAVLPSVIGLLFTGLIAEVIGVNITFIISGCLAILVGILSFSTRNLMQLGKIKNI"}}}}}}}, "2263": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_category": {"$delete": ["36001", "36002", "36298"], "$insert": {"41687": {"category_aro_name": "ABC-F ATP-binding cassette ribosomal protection protein", "category_aro_cvterm_id": "41687", "category_aro_accession": "3004469", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}}}}}, "2260": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2261": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2267": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model."}}, "2264": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2265": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_category": {"$delete": ["36001", "36002", "36298"], "$insert": {"41687": {"category_aro_name": "ABC-F ATP-binding cassette ribosomal protection protein", "category_aro_cvterm_id": "41687", "category_aro_accession": "3004469", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}}}}}, "2445": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "108": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "109": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"384": {"$update": {"dna_sequence": {"$update": {"sequence": "GTGAGCAGTTCGGACGAGCAGCCGCGCCCGCGTCGCCGCAACCAGGATCGGCAGCACCCCAACCAGAACCGGCCGGTGCTGGGCCGTACCGAGCGGGACCGCAACCGGCGCCAGTTCGGGCAGAACTTCCTCCGCGACCGCAAGACCATCGCGCGCATCGCCGAGACAGCCGAGCTGCGGCCCGATCTGCCGGTGCTGGAAGCCGGCCCCGGCGAAGGGCTGCTCACCAGGGAACTCGCCGACCGCGCGCGTCAGGTGACGTCGTACGAGATCGACCCCCGGCTGGCGAAGTCGTTGCGGGAGAAGCTTTCCGGCCACCCGAACATCGAAGTCGTCAACGCCGACTTCCTCACCGCCGAACCGCCGCCCGAGCCGTTCGCCTTCGTCGGCGCGATCCCCTACGGCATCACCTCGGCGATCGTGGACTGGTGCCTGGAGGCGCCGACGATCGAGACGGCGACGATGGTCACGCAGCTGGAGTTCGCCCGGAAGCGGACCGGCGATTACGGCCGCTGGAGCCGCCTCACGGTGATGACCTGGCCGCTGTTCGAGTGGGAGTTCGTCGAGAAGGTCGACCGCCGGCTGTTCAAGCCGGTGCCCAAGGTCGACTCGGCGATCATGCGGCTGCGCAGGCGCGCCGAACCGCTGCTGGAAGGCGCGGCGCTCGAACGCTACGAGTCGATGGTCGAGCTGTGCTTCACCGGCGTCGGCGGCAACATCCAGGCGTCGCTTCTGCGCAAGTACCCGAGGCGCCGCGTCGAGGCGGCGCTCGACCACGCGGGGGTCGGGGGCGGCGCCGTGGTCGCCTACGTCCGGCCGGAGCAGTGGCTCCGGCTGTTCGAGCGGCTGGATCAGAAGAACGAACCGAGGGGTGGGCAGCCCCAGCGGGGCAGGCGAACCGGCGGACGGGACCACGGGGACCGGCGAACCGGCGGGCAGGATCGCGGCGATCGGCGAACCGGCGGCCGCGACCACAGGGACCGGCAAGCCAGCGGCCACGGCGATCGTCGCAGCAGCGGACGCAATCGCGACGACGGACGAACCGGCGAGCGCGAGCAGGGGGACCAAGGCGGGCGGCGGGGGCCGTCCGGGGGTGGACGGACCGGCGGACGTCCAGGGCGACGCGGCGGACCCGGGCAGCGGTAG"}}}}}}}}, "ARO_category": {"$insert": {"37021": {"category_aro_name": "virginiamycin S2", "category_aro_cvterm_id": "37021", "category_aro_accession": "3000677", "category_aro_class_name": "Antibiotic", "category_aro_description": "Virginiamycin S2 is a streptogramin B antibiotic."}, "37023": {"category_aro_name": "vernamycin C", "category_aro_cvterm_id": "37023", "category_aro_accession": "3000679", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin C is a streptogramin B antibiotic."}, "37026": {"category_aro_name": "ostreogrycin B3", "category_aro_cvterm_id": "37026", "category_aro_accession": "3000682", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid."}}}}}, "102": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4456": {"dna_sequence": {"fmax": "15417", "fmin": "14502", "accession": "AJ698325.1", "strand": "-", "sequence": "ATGAATATAAAATATTTTAAATTTGCAGAAAAATTCATTTTATTAGTTCTTATAATGTCTTTTTCTTCTTTAGCTTTCTGCAAGTCTGATGATTCTCTCGAACAGCGCATCAATTCAATCATATCAGGAAAAAAAGCATCAGTCGGTGTTGCTGTTGCGGGCATAGAAGATAATTTTTCGCTGAGCATAAACGGAAAGAAAAATTTTCCGATGATGAGCGTTTATAAATTGCATATCGTGCTTGCTGTTTTGAACAAAGTTGACGGCGGCAGTTTGAAGCTTGATGAAAAAATTCCGCTTAATAAAAAAGATCTTCATCCCGGAACTTGGAGTCCTCTGCGCGACAAATATCCGAATGGCGGAGTGAGCATTCCGCTTTCAGAAATTATAGAATATACAATCACTCAAAGCGACAACAACGGCTGTGATATTTTGATTGCTCTTGCGGGCGGAACTGAAGCTGTTAAGAGATATATTATATCAAAAGGAATTTCTGATTTTGATATCAGAGCAACAGAGAAAGAATGCCACGAGTCATGGAATGTTCAGTATTCGAACTGGTCAACGCCGGTTTCTGCGGTGGCTCTTCTAAAGAAGTTTAATGACAGAAAAATCCTTTCTTCTGTATCAACTGAATATCTGATGAATGTAATGATTCATACTTCAACCGGCAATAAAAGAATAAAGGGTCTGATTCCGCCAAGTGCTGATGTTGCGCATAAAACCGGAACATCTGGAATTCGAAACGGAATTACTCCAGGAACTAATGATATCGGAATAGTCACGCTGCCGAACGGGAAGCATTTTGCGATTGCAGTTTTTGTGTCGGATTCCCGCGAGAACAATGCGGCAAATGAAAGAATAATTGCTGAAATATCAAAGGCTGCTTGGGATTATTTTGTTAAAATGAATTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "uncultured bacterium", "NCBI_taxonomy_id": "77133", "NCBI_taxonomy_cvterm_id": "36791"}, "protein_sequence": {"accession": "CAG27800.1", "sequence": "MNIKYFKFAEKFILLVLIMSFSSLAFCKSDDSLEQRINSIISGKKASVGVAVAGIEDNFSLSINGKKNFPMMSVYKLHIVLAVLNKVDGGSLKLDEKIPLNKKDLHPGTWSPLRDKYPNGGVSIPLSEIIEYTITQSDNNGCDILIALAGGTEAVKRYIISKGISDFDIRATEKECHESWNVQYSNWSTPVSAVALLKKFNDRKILSSVSTEYLMNVMIHTSTGNKRIKGLIPPSADVAHKTGTSGIRNGITPGTNDIGIVTLPNGKHFAIAVFVSDSRENNAANERIIAEISKAAWDYFVKMN"}}}}}}}, "103": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "100": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"4455": {"dna_sequence": {"fmax": "4319797", "fmin": "4318327", "accession": "AE000516.2", "strand": "-", "sequence": "ATGACCGAGCACCTCGACGTTGTCATCGTGGGCGCTGGAATCTCCGGTGTCAGCGCGGCCTGGCACCTGCAGGACCGTTGCCCGACCAAGAGCTACGCCATCCTGGAAAAGCGGGAATCCATGGGCGGCACCTGGGATTTGTTCCGTTATCCCGGAATTCGCTCCGACTCCGACATGTACACGCTAGGTTTCCGATTCCGTCCCTGGACCGGACGGCAGGCGATCGCCGACGGCAAGCCCATCCTCGAGTACGTCAAGAGCACCGCGGCCATGTATGGAATCGACAGGCATATCCGGTTCCACCACAAGGTGATCAGTGCCGATTGGTCGACCGCGGAAAACCGCTGGACCGTTCACATCCAAAGCCACGGCACGCTCAGCGCCCTCACCTGCGAATTCCTCTTTCTGTGCAGCGGCTACTACAACTACGACGAGGGCTACTCGCCGAGATTCGCCGGCTCGGAGGATTTCGTCGGGCCGATCATCCATCCGCAGCACTGGCCCGAGGACCTCGACTACGACGCTAAGAACATCGTCGTGATCGGCAGTGGCGCAACGGCGGTCACGCTCGTGCCGGCGCTGGCGGACTCGGGCGCCAAGCACGTCACGATGCTGCAGCGCTCACCCACCTACATCGTGTCGCAGCCAGACCGGGACGGCATCGCCGAGAAGCTCAACCGCTGGCTGCCGGAGACCATGGCCTACACCGCGGTACGGTGGAAGAACGTGCTGCGCCAGGCGGCCGTGTACAGCGCCTGCCAGAAGTGGCCACGGCGCATGCGGAAGATGTTCCTGAGCCTGATCCAGCGCCAGCTACCCGAGGGGTACGACGTGCGAAAGCACTTCGGCCCGCACTACAACCCCTGGGACCAGCGATTGTGCTTGGTGCCCAACGGCGACCTGTTCCGGGCCATTCGTCACGGGAAGGTCGAGGTGGTGACCGACACCATTGAACGGTTCACCGCGACCGGAATCCGGCTGAACTCAGGTCGCGAACTGCCGGCTGACATCATCATTACCGCAACGGGGTTGAACCTGCAGCTTTTTGGTGGGGCGACGGCGACTATCGACGGACAACAAGTGGACATCACCACGACGATGGCCTACAAGGGCATGATGCTTTCCGGCATCCCCAACATGGCCTACACGGTTGGCTACACCAATGCCTCCTGGACGCTGAAGGCCGACCTGGTGTCGGAGTTTGTCTGTCGCTTGTTGAATTACATGGACGACAACGGTTTTGACACCGTGGTCGTCGAGCGACCGGGCTCAGATGTCGAAGAGCGGCCCTTCATGGAGTTCACCCCAGGTTACGTGCTGCGCTCGCTGGACGAGCTGCCCAAGCAGGGTTCGCGTACACCGTGGCGCCTGAATCAGAACTACCTACGTGACATCCGGCTCATCCGGCGCGGCAAGATCGACGACGAGGGTCTGCGGTTCGCCAAAAGGCCTGCCCCGGTGGGGGTTTAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Mycobacterium tuberculosis CDC1551", "NCBI_taxonomy_id": "83331", "NCBI_taxonomy_cvterm_id": "37081"}, "protein_sequence": {"accession": "AAK48336.1", "sequence": "MTEHLDVVIVGAGISGVSAAWHLQDRCPTKSYAILEKRESMGGTWDLFRYPGIRSDSDMYTLGFRFRPWTGRQAIADGKPILEYVKSTAAMYGIDRHIRFHHKVISADWSTAENRWTVHIQSHGTLSALTCEFLFLCSGYYNYDEGYSPRFAGSEDFVGPIIHPQHWPEDLDYDAKNIVVIGSGATAVTLVPALADSGAKHVTMLQRSPTYIVSQPDRDGIAEKLNRWLPETMAYTAVRWKNVLRQAAVYSACQKWPRRMRKMFLSLIQRQLPEGYDVRKHFGPHYNPWDQRLCLVPNGDLFRAIRHGKVEVVTDTIERFTATGIRLNSGRELPADIIITATGLNLQLFGGATATIDGQQVDITTTMAYKGMMLSGIPNMAYTVGYTNASWTLKADLVSEFVCRLLNYMDDNGFDTVVVERPGSDVEERPFMEFTPGYVLRSLDELPKQGSRTPWRLNQNYLRDIRLIRRGKIDDEGLRFAKRPAPVGV"}}}}}, "model_param": {"$update": {"snp": {"$update": {"param_value": {"$delete": ["4146"], "$insert": {"8346": "Y84D"}}, "clinical": {"$delete": ["4146"], "$insert": {"8346": "Y84D"}}}}}}}}, "101": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "106": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"386": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAACTTCTTTACGTCTCCATTTTCTGGGATTCCCTTAGATCAGCAAGTAACAAATCCGAACATTATTGTGGGAAAACACAGTTATTATTCTGGTTATTATCACGGGCACAGTTTCGATGATTGTGTGCGATATTTACATCCAGAAAGAGATGACGTTGATAAGTTAGTCATAGGGAGTTTTTGTTCTATAGGCTCTGGTGCTGTATTTATGATGGCCGGTAATCAAGGGCATCGCAGTGATTGGATAAGTACATTCCCATTTTTCTATCAGGATAATGATAATTTTGCAGATGCACGCGATGGTTTTACGCGTTCAGGAGACACAATTATTGGTCATGATGTGTGGATTGGCACTGAGGCTATGATAATGCCTGGGGTTAAAATTGGACATGGAGCGATAATCGCCAGTCGTTCAGTAGTGACTAAGGATGTTGCACCTTATGAAGTGGTCGGTTCAAATCCTGCTAAACATATCAAGTTTAGATTTTCTGATGTGGAAATAGCGATGTTACTTGAAATGGCATGGTGGAATTGGCCAGAATCGTGGTTGAAAGAGAGTATGCAGTCTCTGTGTTCATCAGACATTGAAGGGCTTTATCTCAATTGGCAGTCAAAAGCACGCACATAA"}}}}}}}}}}, "107": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "104": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "105": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1585": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAGCTTTTACTGGTATTTTCGCTTTTAATACCGTCTATGGTGTTTGCAAATAGTTCAAAGTTTCAACAGGTTGAACAAGATGCTAAGGTAATTGAAGCATCTCTTTCTGCGCATATAGGGATTTCTGTTCTTGATACTCAAACTGGAGAGTATTGGGATTACAATGGCAATCAGCGTTTTCCTTTGACAAGTACTTTTAAAACAATAGCTTGTGCTAAATTATTATATGATGCTGAGCAAGGGGAAATAAACCCTAAGAGTACAATTGAGATCAAAAAAGCAGATCTTGTGACCTATTCTCCCGTAATAGAAAAGCAAGTAGGACAAGCAATAACGCTCGATGATGCGTGTTTTGCAACTATGACGACAAGTGATAATGCAGCAGCAAATATCATCCTAAATGCCCTAGGAGGTCCTGAAAGCGTGACGGATTTTCTAAGACAAATCGGAGATAAAGAAACCCGTCTAGACCGTATTGAACCTGAATTAAATGAAGGCAAGCTTGGTGATTTGAGGGATACGACAACTCCTAATGCAATAGTGAATACTTTAAATGAATTATTATTTGGTTCCACATTGTCTCAAGATGGCCAGAAAAAATTAGAGTATTGGATGGTGAATAATCAAGTCACTGGTAATTTATTGCGGTCAGTATTGCCAGAGGGATGGAATATTGCGGATCGTTCAGGTGCTGGCGGATTTGGTGCTCGGAGTATTACAGCCGTTGTTTGGAGTGAAGCTCAATCCCCAATCATAGTTAGTATCTATCTAGCGCAAACAGAGGCTTCAATAGCAGATCGAAATGATGCAATTGTTAAAATTGGTCGTTCAATTTTTGAAGTTTATTCATCACAATCGCGTTGA"}}}}}}}}}}, "2046": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2047": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2044": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2045": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1307": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATAAAAAGTTCGTGGCGTAAAATTGCAATGCTAGCCGCCGTTCCGCTGCTGCTGGCGAGCGGCGCACTGTGGGCCAGTACCGATGCTATCCATCAGAAGCTGACAGATCTCGAGAAGCGTTCAGGCGGCAGGTTGGGCGTGGCGCTAATCAACACGGCAGATAATTCTCAAATCTTATATCGCGGCGACGAGCGTTTTGCCATGTGCAGCACCAGTAAAGTGATGGCCGCCGCCGCGGTATTAAAACAGAGCGAAAGCAATAAAGAGGTGGTAAATAAAAGGCTGGAGATTAACGCAGCCGATTTGGTGGTCTGGAGTCCGATTACCGAAAAACATCTCCAGAGCGGAATGACGCTGGCTGAGCTAAGCGCGGCGACGCTGCAATATAGCGACAATACGGCGATGAATCTGATCATCGGCTACCTTGGCGGGCCGGAAAAAGTCACCGCCTTCGCCCGCAGTATCGGCGATGCCACCTTTCGTCTCGATCGTACGGAGCCCACGCTGAATACCGCCATCCCGGGCGATGAGCGTGATACCAGCACGCCGCTGGCGATGGCTGAAAGCCTACGCAAGCTGACGCTTGGCGATGCGCTGGGCGAACAGCAACGCGCCCAGTTAGTCACCTGGCTGAAAGGCAATACCACCGGCGGGCAAAGCATTCGCGCGGGCCTGCCTGAAAGCTGGGTGGTCGGCGATAAAACCGGCGGCGGAGATTACGGCACCACCAATGATATTGCGGTTATCTGGCCGGAAGATCACGCTCCGCTGGTATTAGTCACCTACTTTACCCAGCCGCAGCAGGATGCGAAAAACCGCAAAGAGGTGTTAGCCGCAGCGGCAAAAATCGTGACCGAAGGGCTTTAA"}}}}}}}}}}, "2042": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1340": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAAAAAGCATTCAATTTTTTATTGTTTCCATGTTGTTGAGCCCTTTTGCCAATTCACAGGTAAAAGATTTTGTAATTGAGCCACCTATTAAATCCAATCTATATATTTACAAGACTTTTGGAGTATTCGGAGGTAAAGAATATTCTGCCAATGCAGCCTATCTTAAGACTAAAAAAGGTGTAATTCTGTTTGATGTACCCTGGGAAAAAGTACAGTATCAAAGCCTGATGGATACCATCAAAAAACGTCATAACTTACCGGTAATTGCCGTATTTGCTACGCATTCCCATGATGACCGTGCAGGAGACTTAAGCTTTTTCAATAATAAAGGCATTAAGACGTATGCTACCCTGAAAACCAATGAGTTTCTGAAGAAAGATGGAAAAGCAACATCCACAGAGATCATCCAAACCGGAAAACCTTATCACATTGGCGGAGAAGAATTTGTGGTCGATTTTCTTGGTGAAGGACATACTGCTGATAATGTAGTGGTATGGTTTCCAAAATATAATGTTTTGGATGGCGGATGTCTTGTAAAAAGTAATTCTGCTACTGACTTAGGATACATTAAAGAAGCCAATGTAGAACAATGGCCCAAGACGATGAATAAATTAAAAACCAAATATTCAAAAGCCACATTAATTATTCCCGGGCATGATGAATGGAAAGGGGGTGGACATGTTGAACACACTTTAGAGCTTTTGAACAAAAAATAA"}}}}}}}}}}, "2043": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"558": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGGGTAGCGGTGACCATCGAAATTTCGAACCAACTATCAGAGGTGCTAAGCGTCATTGAGCGCCATCTGGAATCAACGTTGCTGGCCGTGCATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCATACAGCGATATTGATTTGTTGGTTACTGTGGCCGTAAAGCTTGATGAAACGACGCGGCGAGCATTGCTCAATGACCTTATGGAGGCTTCGGCTTTCCCTGGCGAGAGCGAGACGCTCCGCGCTATAGAAGTCACCCTTGTCGTGCATGACGACATCATCCCGTGGCGTTATCCGGCTAAGCGCGAGCTGCAATTTGGAGAATGGCAGCGCAATGACATTCTTGCGGGTATCTTCGAGCCAGCCATGATCGACATTGATCTGGCTATCCTGCTTACAAAAGCAAGAGAACATAGCGTTGCCTTGGTAGGTCCGGCAGCGGAGGAATTCTTTGACCCGGTTCCTGAACAGGATCTATTCGAGGCGCTGAGGGAAACCTTGAAGCTATGGAACTCGCAGCCCGACTGGGCCGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAATAACCGGCAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATGGAGCGCCTGCCGGCCCAGTATCAGCCCGTCATACTTGAAGCTAGACAGGCTTATCTTGGACAAGAAGAAGATCGCTTGGCCTCGCGCGCAGATCAGTTGGAAGAATTTGTTCACTACGTGAAAGGCGAGATCACCAAGGTAGTCGGCAAATAA"}}}}}}}}}}, "2040": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1079": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATAAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCCTAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTAAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATAGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGCGAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTGCGCCCTTCCGGCTGGCTGGTTAATTGCTGATAAATCTGGAGCCGGTGAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA"}}}}}}}}}}, "2041": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2048": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2049": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1213": {"$update": {"model_sequences": {"$update": {"sequence": {"$update": {"232": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCGACGCACAAAGGAAGATTCTGAAAAAACCCGTACGGCCATCCTCCTGGCCGCCGAGGAACTGTTCCTGGAAAAGGGCGTGTCCCATACCAGCCTGGAACAGATCGCCAGGGCCGCCGGGGTGACCCGTGGCGCCGTCTACTGGCACTTCCAGAACAAGGCCCACCTGTTCAACGAGATGCTCAACCAGGTACGCCTGCCGCCGGAGCAACTCACCGAGCGCCTGTCCGGCTGCGATGGCAGCGACCCGCTGCGCTCGCTCTACGACCTCTGCCTGGAGGCCGTGCAATCGTTGCTGACGCAGGAGAAGAAGCGCCGCATCCTGACCATCCTGATGCAACGTTGCGAATTCACCGAGGAACTGCGCGAGGCGCAGGAACGCAACAACGCCTTCGTGCAGATGTTCATCGAACTCTGCGAGCAGTTGTTCGCCCGCGACGAATGCCGTGTGCGGCTGCATCCGGGCATGACCCCGAGGATCGCCTCGCGCGCCTTGCACGCGCTGATCCTGGGCCTGTTCAACGACTGGTTGCGCGACCCGCGCCTGTTCGATCCGGATACGGACGCGGAACACCTGCTGGAGCCGATGTTCCGTGGCCTGGTGCGCGACTGGGGTCAGGCCAGCTCGGCGCCGTAG"}}}}}}}}}}, "2038": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1210": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"344": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAGTCCGCACTCTCGACCTGGAAGCCCTCGGACCGGCCGCCGGATCCGACACTGCCCGAGCCGCCGGCCCAGCTGCGCCGCATCTTCCGGCTCTTCCGCCCGTACCGCGGCAGGCTCGCCGTCGTCGGCCTGCTCGTCGGCGCCTCGTCGCTGGTGGCCGTCGCCTCGCCGTTCATGCTGCGCGAGATCCTCGACACCGCGATCCCGCAGGGCCGCACCGGGCTGCTCAGCCTGCTCGCCCTCGGCATGATCCTGACCGCCGTCCTCAGCAGCGTCTTCGGCGTCGTCCAGACCCTCATCTCCACGACGGTCGGCCAGCGCGTCATGCACGACCTGCGCACCGCCGTCTACGCGCAGCTCCAGCGCATGCCCCTCGCGTTCTTCACCCGCACCCGCACCGGTGAGGTCCAGTCCCGGATAGCCAACGACATCGGCGGCATGCAGGCGACCGTCACCTCAACCGCCACGTCGCTGGTCTCCAACCTCACCGCCGTCATCGCCACCGTCGTCGCGATGCTCGCGCTGGACTGGCGGCTGACCGTCGTCTCGCTGCTCCTGCTGCCGGTGTTCGTCTGGATCAGCCGCCGCGTCGGCCGTGAGCGCAAACGGATCACCCTGCAACGGCAGAAGCAGATGGCCACGATGGCCGCCACGGTCACGGAGTCGCTGTCGGTCAGCGGCATCCTCCTCGGCCGCACGATGGGGCGCGCCGACTCGCTCACCAGATCCTTCGCCGAGGAGTCCGAGCGACTCGTCGACCTGGAGGTCCGCTCCAACATGGCCGGGCGGTGGCGGATGTCCGTCATCGGCATCGTCATGGCCGCCATGCCCGCCGTCATCTACTGGGCGGCCGGCTTCGTCCTCCAGTCCGGCGGCACGGTCGTCTCCATCGGCACACTCGTCGCCTTCGTCTCCCTCCAGCAGGGCCTCTTCCGCCCGGCCGTGAGCCTGCTCGCCACCGGCGTGCAGATGCAGACGTCCCTCGCGCTCTTCCAGCGCATCTTCGAATATCTCGACCTGCCCGTCGACATCACCGAACCCGAGCGTCCGGTGGCCCTCGACAAGGTCCGGGGCGAAGTGCGCTTCGACGGCGTCGACTTCAGTTACGAGGAGAAGGACGGCAACACCCTCCACGGCCTGGATCTGACCGTCCCGGCCGGCGGCAGCCTCGCCGTCGTCGGTCCCACCGGATCGGGCAAGTCGACCCTGAGCTATCTCGTGCCGCGTCTGTACGACGTGACGGGCGGCCGGGTCCTGCTCGACGGCGTCGACGTACGCGACCTGGCCTTCGACACCCTCGCCCGCGCGGTGGGCGTCGTGTCGCAGGAGACGTATCTCTTCCACGCCTCCGTCGCCGACAACCTCCGCTTCGCCAAACCGGACGCGACGGACGAGGAGATCGAGAAGGCGGCCAGGGCCGCCCAGATCCACGAGCACATCGTCACCCTGCCCGACGGGTACGACACACTGGTCGGCGAGCGCGGATACCGGTTCTCCGGCGGCGAGAAACAGCGCCTCGCGATCGCCCGCACCATCCTGCGCGACCCGCCCGTCCTCGTGCTGGACGAGGCGACGAGCGCGCTCGACACCCGTACCGAACACGCGGTCCAGCAGGCCATCGACTCCCTCTCCGAGGGCCGTACGACCATCACCATCGCCCACCGGCTCTCCACGGTGCGCGACGCCGACCAGATCGTCGTCCTCGACGCCGGTCGCATAGCCGAGCGCGGCACGCACGAGGAGCTGATCGACCGGGACGGCAGGTACGCGGCGCTCGTCCGCCGGGACGGCGCGCCGGCGCCCGCGCCCGTGCCCGCCCGGGACGAGCGCGTGGGCGCCGCCTGA"}}}}}}}}}}, "2688": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4525": {"dna_sequence": {"fmax": "4165880", "fmin": "4165718", "accession": "NC_002516.2", "strand": "-", "sequence": "ATGTCCCTGAACACTCCGCGCAACAAACCGTCCCGCACCGAGACCGAAGCTGTCGCTGCCAGCTCGGGACGATCCGCCGTCGGCCGGCGGGATTACACCGAGCAGCTGCGCCGGGCAGCCCGGCGCAATGCCTGGGACCTCTACGGCGAGCACTTCTACTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa PAO1", "NCBI_taxonomy_id": "208964", "NCBI_taxonomy_cvterm_id": "36804"}, "protein_sequence": {"accession": "NP_252408.1", "sequence": "MSLNTPRNKPSRTETEAVAASSGRSAVGRRDYTEQLRRAARRNAWDLYGEHFY"}}}}}}}, "2689": {"$update": {"ARO_category": {"$insert": {"37021": {"category_aro_name": "virginiamycin S2", "category_aro_cvterm_id": "37021", "category_aro_accession": "3000677", "category_aro_class_name": "Antibiotic", "category_aro_description": "Virginiamycin S2 is a streptogramin B antibiotic."}, "37023": {"category_aro_name": "vernamycin C", "category_aro_cvterm_id": "37023", "category_aro_accession": "3000679", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin C is a streptogramin B antibiotic."}, "37026": {"category_aro_name": "ostreogrycin B3", "category_aro_cvterm_id": "37026", "category_aro_accession": "3000682", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid."}}}}}, "2685": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4526": {"dna_sequence": {"fmax": "1885022", "fmin": "1884344", "accession": "LT673656.1", "strand": "-", "sequence": "ATGAGCGAACTGCTGTTGATCGACGATGACCGGGAGCTCTGCGAGCTGCTCGGTACCTGGCTGGTCCAGGAAGGTTTCTCCGTGCGTGCCAGCCACGACGGCGCCCAGGCCCGTCGCGCCCTCGCCGAGCAGACACCGGATGCCGTGGTGCTCGACGTGATGCTGCCGGACGGTAGCGGCCTGGAACTGCTCAAGCAACTGCGCGGCGACCATCCCGACCTGCCGGTGCTGATGCTGTCCGCCCGCGGCGAGCCGCTGGACCGCATCCTCGGTCTGGAACTGGGCGCCGACGACTACCTGGCCAAGCCCTGCGACCCGCGCGAACTCACCGCACGGCTGCGCGCCGTGCTGCGGCGAACCCACCCGGCGCAACCCAGCGCGCAGATGCAACTGGGCGACCTGTCGCTGAACCTGACGCGCGGCGTGGCGCAGATCGACGGCCAGGAGATCAGCCTGACCCTTTCCGAAAGCCGCATCCTCGAAGCGCTCCTGCGCCAGCCCGGCGAGCCGCTGGACAAGCAGGCCCTGGCGCAACTGGCGCTGGGCCGCAAGCTGACCCTCTACGACCGCAGCCTGGACATGCACGTCAGCAACCTGCGCAAGAAGCTCGGCAGCCACCCCGACGGCAGCCCGCGCATCCTCGCCCTGCGCGGCCGCGGCTACTACTACAGCCACTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "SIP52035.1", "sequence": "MSELLLIDDDRELCELLGTWLVQEGFSVRASHDGAQARRALAEQTPDAVVLDVMLPDGSGLELLKQLRGDHPDLPVLMLSARGEPLDRILGLELGADDYLAKPCDPRELTARLRAVLRRTHPAQPSAQMQLGDLSLNLTRGVAQIDGQEISLTLSESRILEALLRQPGEPLDKQALAQLALGRKLTLYDRSLDMHVSNLRKKLGSHPDGSPRILALRGRGYYYSH"}}}}}}}, "2681": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model."}}, "99": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"715": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGCTCTGGCATTAATTGGCGAAAAAATTGACAGAAACCGCTTCACCGGTGAAAAAGTTGAAAATAGCACTTTTTTTAACTGTGATTTTTCGGGTGCCGACCTTAGCGGTACTGAATTTATCGGCTGTCAGTTCTATGATCGAGAAAGCCAGAAAGGGTGCAATTTCAGTCGCGCAATACTGAAAGATGCCATTTTTAAAAGCTGTGATTTATCCATGGCGGATTTTCGCAACGTCAGTGCGTTGGGCATAGAAATTCGCCACTGCCGCGCACAGGGTGCAGATTTTCGCGGCGCAAGTTTCATGAATATGATCACCACGCGCACCTGGTTTTGCAGCGCATATATCACTAATACCAATCTAAGCTACGCCAACTTTTCGAAGGCCGTGCTTGAAAAGTGCGAATTGTGGGAAAATCGCTGGATGGGAACTCAGGTACTGGGTGCGACGTTGAGTGGTTCCGATCTCTCCGGTGGCGAGTTTTCGTCGTTCGACTGGCGGACGGCAAATTTCACGCACTGTGATTTGACCAATTCAGAACTGGGTGATTTAGATATTCGGGGCGTCGATTTACAAGGTGTCAAATTGGACAGCTATCAGGCCGCATTGCTCATGGAACGTCTTGGCATCGCTGTCATTGGCTAA"}}}}}}}}}}, "98": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1896": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTGGCGATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATGACGTTACGGATAAAGCCGCATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGCGGTGAAACCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAATTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGTTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACAGGTGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATAGTGATGCTGGCAAACAAAAGCTATCCTAACCCGGCTCGCGTAGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA"}}}}}}}}}}, "91": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"615": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCAATCACTACATGGGAATTGTCTAATTGCGTATGCAAGACATAAATATATTCTCACCATGGTTAATGGTGAATATCGCTATTTTAATGGCGGTGACCTGGTTTTTGCGGATGCAAGCCAAATTCGAGTAGATAAGTGTGTTGAAAATTTTGTATTCGTGTCAAGGGACACGCTTTCATTATTTCTCCCGATGCTCAAGGAGGAGGCATTAAATCTTCATGCACATAAAAAAGTTTCTTCATTACTCGTTCATCACTGTAGTAGAGATATTCCTGTTTTTCAGGAAGTTGCGCAACTATCGCAGAATAAGAATCTTCGCTATGCAGAAATGCTACGTAAAAGAGCATTAATCTTTGCGTTGTTATCTGTTTTTCTTGAGGATGAGCACTTTATACCGCTGCTTCTGAACGTTTTACAACCGAACATGCGAACACGAGTTTGTACGGTTATCAATAATAATATCGCCCATGAGTGGACACTAGCCCGAATCGCCAGCGAGCTGTTGATGAGTCCAAGTCTGTTAAAGAAAAAATTGCGCGAAGAAGAGACATCATATTCACAGTTGCTTACTGAGTGTAGAATGCAACGTGCTTTGCAACTTATTGTTATACATGGTTTTTCAATTAAGCGAGTTGCAGTATCCTGTGGATATCACAGCGTGTCGTATTTCATTTACGTCTTTCGAAATTATTATGGGATGACGCCCACAGAGTATCAGGAGCGATCGGCGCAGAGATTGTCGAACCGTGACTCGGCGGCAAGTATTGTTGCGCAAGGGAATTTTTACGGCACTGACCGTTCTGCGGAAGGAATAAGATTATAG"}}}}}}}}}}, "90": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"$update": {"2113": {"$update": {"dna_sequence": {"$update": {"sequence": "TTGGCAGGTCAAGTTGTCCAATATGGAAGACATCGTAAACGTAGAAACTACGCGAGAATTTCAGAAGTATTAGAATTACCAAACTTAATAGAAATTCAAACTAAATCTTACGAGTGGTTCCTAAGAGAAGGTTTAATCGAAATGTTTAGAGACATTTCTCCAATTGAAGATTTTACTGGTAATTTGTCATTAGAGTTTGTGGATTACCGTTTAGGAGAACCAAAATATGATTTAGAAGAATCTAAAAACCGTGACGCTACTTATGCTGCACCTCTTCGTGTAAAAGTGCGTCTAATCATTAAAGAAACAGGAGAAGTTAAAGAACAAGAAGTCTTTATGGGTGATTTCCCATTAATGACTGATACAGGTACGTTCGTTATCAATGGTGCAGAACGTGTAATCGTATCTCAATTAGTTCGTTCACCATCCGTTTATTTCAATGAAAAAATCGACAAAAATGGTCGTGAAAACTATGATGCAACAATTATTCCAAACCGAGGTGCATGGTTAGAATATGAAACAGATGCTAAAGATGTTGTATACGTGCGTATTGATAGAACACGTAAACTACCATTAACAGTATTGTTACGTGCATTAGGTTTCTCAAGTGACCAAGAAATTGTTGACCTTTTAGGTGACAATGAATATTTACGTAATACTTTAGAGAAAGACGGCACTGAAAACACTGAACAAGCGTTATTAGAAATCTATGAACGTTTACGTCCAGGTGAACCACCAACTGTTGAAAATGCTAAAAGTCTATTGTATTCACGTTTCTTTGATCCAAAACGCTATGACTTAGCAAGCGTGGGTCGTTATAAAACAAACAAAAAATTACATTTAAAACATCGTTTATTCAATCAAAAATTAGCTGAGCCAATTGTGAATACTGAAACTGGTGAAATTGTAGTTGAAGAAGGTACAGTGCTTGATCGTCGTAAAATCGACGAAATCATGGATGTACTTGAATCAAACGCAAACAGCGAAGTGTTTGAATTGCATGGTAGCGTTATAGACGAGCCAGTAGAAATTCAATCAATTAAAGTATATGTTCCTAACGATGATGAAGGTCGTACGACAACTGTAATTGGTAATGCTTTCCCTGACTCAGAAGTTAAATGTATTACACCGGCAGATATCATCGCTTCAATGAGTTACTTCTTTAACTTATTAAGTGGTATTGGATATACAGATGATATTGACCATTTAGGTAACCGTCGTTTACGTTCTGTAGGTGAATTACTACAAAACCAATTCCGTATCGGTTTATCAAGAATGGAAAGAGTTGTACGTGAAAGAATGTCAATTCAAGATACTGAGTCTATCACACCTCAACAATTAATTAATATTCGACCTGTTATTGCATCTATTAAAGAATTCTTTGGTAGCTCTCAATTATCACAATTCATGGACCAAGCAAATCCATTAGCTGAGTTAACGCATAAACGTCGTCTATCAGCATTAGGACCTGGTGGTTTAACACGTGAACGTGCTCAAATGGAAGTGCGTGACGTTCACTACTCTCACTATGGCCGTATGTGTCCAATTGAAACGCCTGAGGGACCAAACATTGGATTGATTAACTCATTATCAAGTTATGCACGTGTAAATGAATTCGGCTTTATTGAAACACCATATCGTAAAGTTGATTTAGATACACATGCTATCACTGATCAAATTGACTATTTAACAGCTGACGAAGAAGATAGCTATGTTGTAGCACAAGCAAACTCTAAATTAGATGAAAATGGTCGTTTCATGGATGATGAAGTTGTATGTCGTTTCCGTGGTAACAATACAGTTATGGCTAAAGAAAAAATGGATTATATGGATGTATCGCCGAAGCAAGTTGTTTCAGCAGCGACAGCATGTATTCCATTCTTAGAAAATGATGACTCAAACCGTGCATTGATGGGTGCGAACATGCAACGTCAAGCAGTGCCTTTGATGAATCCAGAAGCACCATTTGTTGGTACAGGTATGGAACACGTTGCAGCACGTGATTCTGGTGCAGCTATTACAGCTAAGCACAGAGGTCGTGTTGAACATGTTGAATCTAATGAAATTCTTGTACGTCGTCTAGTTGAAGAGAACGGCGTTGAGCATGAAGGTGAATTAGATCGCTATCCATTAGCTAAATTTAAACGTTCAAACTCAGGTACATGTTACAACCAACGTCCAATCGTTGCAGTTGGAGATGTTGTTGAGTTTAACGAGATTTTAGCAGATGGACCATCTATGGAATTAGGAGAAATGGCATTAGGTAGAAACGTAGTAGTTGGTTTCATGACTTGGGACGGTTACAACTATGAGGATGCCGTTATCATGAGTGAAAGACTTGTGAAAGATGACGTGTATACTTCTATTCATATTGAAGAGTATGAATCAGAAGCACGTGATACTAAGTTAGGACCTGAAGAAATCACAAGAGATATTCCTAATGTTTCTGAAAGTGCACTTAAGAACTTAGACGATCGTGGTATCGTTTATATTGGTGCAGAAGTAAAAGATGGAGATATTTTAGTTGGTAAAGTAACGCCTAAAGGTGTAACTGAGTTAACTGCCGAAGAAAGATTGTTACATGCAATCTTTGGTGAAAAAGCACGTGAAGTTAGAGATACTTCATTACGTGTACCTCACGGCGCTGGCGGTATCGTTCTTGATGTAAAAGTATTCAATCGTGAAGAAGGCGACGACACATTATCACCTGGTGTAAACCAATTAGTACGTGTATATATCGTTCAAAAACGTAAAATTCATGTTGGTGATAAGATGTGTGGTCGACATGGTAACAAAGGTGTCATTTCTAAGATTGTTCCTGAAGAAGATATGCCTTACTTACCAGATGGACGTCCGATTGATATCATGTTAAATCCTCTTGGTGTACCATCTCGTATGAACATCGGACAAGTATTAGAGCTACACTTAGGTATGGCTGCTAAAAATCTTGGTATTCACGTTGCATCACCAGTATTTGACGGTGCAAACGATGACGATGTATGGTCAACAATTGAAGAAGCTGGTATGGCTCGTGATGGTAAAACTGTACTTTATGATGGACGTACAGGTGAACCATTCGATAACCGTATTTCAGTAGGTGTAATGTACATGTTGAAACTTGCGCACATGGTTGATGATAAATTACATGCGCGTTCAACAGGACCATATTCACTTGTTACACAACAACCACTTGGCGGTAAAGCGCAATTCGGTGGACAACGTTTCGGTGAGATGGAGGTATGGGCACTTGAAGCATATGGTGCTGCATACACATTACAAGAAATCTTAACTTACAAATCCGATGATACAGTAGGACGTGTGAAAACATACGAGGCTATTGTTAAAGGTGAAAACATCTCTAGACCAAGTGTTCCAGAATCATTCCGAGTATTGATGAAAGAATTACAAAGTTTAGGTTTAGATGTAAAAGTTATGGATGAGCAAGATAATGAAATCGAAATGACAGACGTTGATGACGATGATGTTGTAGAACGCAAAGTAGATTTACAACAAAATGATGCTCCTGAAACACAAAAAGAAGTTACTGATTAA"}}}}}}}}}}, "93": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1941": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCGTTATTTTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCAGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGTGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGACGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTAGCAAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGGATTGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA"}}}}}}}}}}, "92": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1742": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGACGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGACTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA"}}}}}}}}}}, "95": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "94": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1897": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAAAATCGATATGCTGCGCACTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTGGCGATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATGACATTACGGATAAAGCCGCATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGCGGTGAAACCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAACTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTGCACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGATAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGTACCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACAGGTGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATAGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGCGTCGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA"}}}}}}}}}}, "97": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"39": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAACACATTACAATTGATCAATAAAAACCATCCATTGAAAAAAAATCAAGAGCCCCCGCACTTAGTGCTAGCTCCTTTTAGCGATCACGATGTTTACCTGCAGCCAGAAGTGGCAAAACAATGGGAACGACTCGTACGAGCAACCGGACTAGAAAAGGACATTCGTCTGGTAGATGGGTATCGTACGGAAAAAGAACAGCGACGCTTGTGGGAGTATTCTCTAAAAGAAAACGGGTTAGCTTATACCAAACAATTCGTTGCTTTGCCAGGTTGCAGTGAACATCAAATCGGTCTGGCCATTGATGTAGGACTAAAGAAACAAGAAGATGATGATCTTATCTGCCCTCATTTTCGAGATAGTGCTGCTGCTGATTTATTTATGCAGCAGATGATGAATTATGGCTTTATTCTACGCTATCCGGAAGATAAACAAGAGATCACCGGTATCAGTTATGAACCTTGGCATTTTCGTTATGTCGGGCTTCCCCATAGCCAAGTCATCACTGCCCAAAAATGGACTCTGGAAGAATACCATGATTACTTGGCTCAGACAGTGAGGCAGTTCGCATGA"}}}}}}}}}}, "96": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1623": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"2106": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAAATGTATTAGTGTTTTTAATATTACTTGTAGCGTTGCCAGCTTTAGCTCAGGGTCATAAACCGCTAGAAGTTATAAAAATTGAAGATGGAGTATATCTTCATACCTCCTTTAAGAATATTGAAGGCTATGGGTTAGTTGATTCGAATGGGTTGGTAGTTCTGGATAATAATCAAGCCTATATTATCGACACACCTTGGTCTGAAGAAGACACGAAGTTGTTATTATCCTGGGCGACTGACAGGGGATACCAGGTTATGGCTAGCATCTCAACTCATTCTCATGGAGATCGCACTGCTGGTATCAAGTTGCTAAATTCAAAGTCAATTCCTACATACACATCAGAGTTAACTAAAAAGCTTCTTGCCCGTGAAGGAAAGCCGGTTCCTACCCACTACTTTAAAGACGACGAATTCACACTGGGAAATGGGCTTATAGAGCTCTACTATCCAGGTGCTGGGCATACAGAGGATAATATTGTTGCTTGGTTACCCAAAAGCAAAATACTATTTGGTGGCTGCCTCGTGAGGAGTCATGAGTGGGAAGGCTTAGGTTACGTAGGCGACGCCTCAATTAGCTCTTGGGCTGACTCAATTAAAAATATTGTATCGAAAAAATATCCCATTCAAATGGTCGTTCCGGGGCATGGCAAAGTTGGAAGTTCAGATATATTAGATCACACCATTGATCTTGCTGAATCAGCTTCTAACAAATTAATGCAACCGACCGCTGAAGCGTCGGCTGATTAA"}}}}}}}}}}, "1622": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"535": {"$update": {"dna_sequence": {"$update": {"sequence": "GTGATTGAGGTGTATAAATTAACACAAAGAAAAAGACTAACGCAGTTGTTTCCTTTTTTGCTACCTCTCCGCAAATGGCAAAGAAAAAAATATTTTTATTTCAAAATGAAATTTGACGGCAATAGATACGCAAAAAAGACATCTGAGAAATTGTTACCAAACACAGTATTTGAAACATCATCACTTATGCTAAATGAAAATAGTGGATTTGATATGAAGTACCAAATCAATAAGGTACACAACCTAAAACTTGCCGCAAAAACAATCAATAAAGTGATTATTGAGCCGAAAGAAACATTTTCATTTTGGCAGCTTGTACGATGGGCAGACCGTCACGAGAAATATAAGGACGGATTAAATCTTGTTAATGGAAAGATTGTAGGCTCTTATGGCGGAGGTTTGTGTCAATTGAGTAATATGCTATTTTGGCTTTTTTTACACACGCCGCTTGTTATTGTCGAGCGACACGGACACGCAGTTGAGTCTTTCCCATCAACAACCGAAGATTTGCCCTGCGGTACTGATGCTACGATTAACGAAGGTTGGTTAGACCTAAAACTCCGTAACGACACGGACAATACTTTCCAGATTGAGATTAGTTTTGATGACAACTTTATGTATGGTCGAATTTTGTCGCAAAGCTCCGTAAATATTGAATATACGGTTTTTAATTCGTCTGTTTCCTATTTCAAGCGAGAGGAAAAAGTATATCAAATAGCTTCTGTTTGTCGTACAGAAAAAGACAAAATGACTGGTAGTCAGACGGAAAAAGAATTGTATGTCAACCAATGTGAAATAGCCTATAAGCTACCCGATGATGTAAAAATTGAAGAAAGAGGTGTGTAA"}}}}}}}}}}, "1621": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1620": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1627": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1626": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"562": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGTTATTATTTGAAGGTACATCATTGAAAAAACACATACAAGACAGATTATTATTTGATATAGATTTAATACAAGTACATGAACATCAGCGAATAGGATTAGTAGGTAGGAATGGAACGGGGAAAACAAGTCTATTAAAAATTATTACAGGTGAAGAACTAGTTGATGGAGGGAATGTTAATCATTTTACCTCTGTAAAATTAGTACCACAATTTAAAGAAACAAGATCGGAGAAAAGTGGTGGAGAAATAACGCAACAATATTTGCAATTAGCATTTAATGAAAAGCCAGGATTATTAATTTTAGATGAACCAACGACTCATTTAGATACACAAAGAATTGATTGGTTAGAAAAGAAATTAGCAAACTATCAAGGAGCATTTGTTGTCGTATCACATGATCGGACATTTCTAAATAATGTGTGTACTGAAATATGGGAAATAGAAGATGGTAGTCTAAACGCGTTTAAAGGGGATTATAATGCTTATGCGGAACAAAAGGAATTAATAAAAACACAGCAGCAGATTGCATTTGAAAAGTACGAACGAGAGAAAAAGCAATTAGAAAAAGCAATACGACAAAAAGAGGAAAGAGCACAGCGAGCAACAAAGAAACCTAAAAATCTGAGTTCTTCAGAGGCAAGAATAACAGGAGCTAAAACCCATTATGCCAATATACAGAAAAAGTTGAGGGGTTCTGCAAAAGCATTAGAAACAAGGTTGGAACAACTGGATAGGATTGACAAGGTGAAAGAACTACCTGAAATTAAGATGGATATATTAAATAAAGAAAGTCTAACAAACCAGTCTGTGTTACGCGCTGAAAACATTAAGGGAGAGGTTGACGGACGTAAGCTTTGGAATCCCTTTAGTTTATATTTATATGGCGGCGATAAAGTTGCTATCATTGGGAAAAATGGCACGGGTAAAACAACCTTACTTAAAAAAATAGTTGAGCGAGATGAAAGAATAGCAATCCCAGAAAAGGTGAGGATAGGTTATTTTTCCCAACACCTCACAATTCTCGATGATGATAAAACAATCATAGAAAATATACAATTGACCTCTAGTCAGGATGAAACATTAATTAGAACAGTTTTAGCAAGAATGCATTTTTGGGATGAAGATGTCTATAAAAAGGTCGGCATATTAAGTGGTGGTGAAAAAGTAAAAGTAGCACTAGCTAAACTATTCTTAAGTGACGTGAATATGCTGGTGTTAGATGAACCTACAAATTTTTTAGATATTGAATCTTTAGAAGCGCTAGAAACATTAATGAAAAGTTATCATGGAACGATTCTATTTGTTACTCACGACCGAACGTTAGTAACAAATATAGCTACAAAAATAATTGATATAAAAGATGGTAAGATAACAGTATTCGATGGATCATACGAAGCATATGAAGAGTGGTTAGAGAATCAAACAAAGTCCAACAATGATGATCAACTTTTACTAATCGAAACTAAAATATCTGACGTTCTGGGTAGGTTGAGTTTGGAGCCTTCACGAGAGTTAGAAGATGAATTTCAAAGATTATTGAAAGAAAAGAAAGAACTGACTAAAAAACTATAA"}}}}}}}}, "ARO_category": {"$delete": ["36001", "36002", "36298"], "$insert": {"41687": {"category_aro_name": "ABC-F ATP-binding cassette ribosomal protection protein", "category_aro_cvterm_id": "41687", "category_aro_accession": "3004469", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}}}}}, "1625": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1624": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"718": {"$update": {"dna_sequence": {"$update": {"sequence": "GAAAATACCAAATCAACAAGAAAAATGTCTGACACCACACGTGCCATCCGATTTTTTTACCTCTATCTGAAAAGATATAAACTCCAATTTGCTGTAATTATGATTTTCATCATTTTAGCAACTTGGTTACAGGTTGTTTCTCCATCACTTTTGGGGGACGCCATCACTAATTTGACTAAATATGTGACTGACTTCTTTACACATCAACATGCTGGTCAATCCCAAGATGCACTACAACAAATTGCTCAACAATTAAGCCAACAAATGCACCAAACAGTAGATTGGCACAATGTTCCTGAAGTTGTGAAATCTTTGCCACAAGCAGCACAAGACCAAATCACTGCTAATCTTCCTAAAGGAACAACTTTAGAAACACTTAAAACAGTGGCAACTTCACATGCAGCCAGCACTTCTACATTCATGAAAGGAATGTGGCAATTGCTTGCAGTCTATGTAGCAACAGGTGTATCAATGTTGATTTATACCTTGCTCTTTAGTCGTATCGTTGCTCATTCAACAAATCGCATGCGTAAAGGTTTGTTTGGTAAACTTGAACGTTTGACAATTTCATATTTTGACCGTCATCAAGATGGTGATATCCTTGCTCGTTTCACATCTGACTTGGATAACATTCAAAATACTTTAAACCAAGCACTCGTTTCGGTTATTTCAAATGCTGCGGTCTTTGTGGGTGTCATTATCCAGATTTTCAATAAAGATGTGACATTTGCTTGGTTGACAGTTGCTGCTTCTCCAGTTGCCATTTTATCTGCTGTGATTATCATTCGTCAATCGAAAAAAGCAACAGACAAACAACAAGAAGAAGTTTCACAACTTAATGCCTATATGGATGAAAAAATCTCTGGGCAAAAAGCAATTATCGTTGAAGGTTTACAAGAAGATTCTATTAATGGATTCTTGGAACACAATGAAAATGTTAAAAAACGTACCTTTGCTGCTCAAGCATGGTCTGGTATGATTTTCCCATTGATGAATGGTTTCCAACTTTTATCAATTGCCATTGTTATCTTTGGTGGAACGGCCTATGTTCTTAACGATGATAGCATGTCAATTGCCACAGGTTTAGGGCTTTTGGTTGCCTTTGTTCAATACGTTCAAAGTTACTACAACCCAATCATGCAAATTTCATCAAACTTTGGTCAACTTCAACTTGCCATCACAGGGGCAACTCGTCTGAATGTCATGTTTGATGAACCAGAAGAAGTTCGTCCTGAAAATGGTAAGAAATTTGATACGATTAAAGACGGAATTCAAATCGAAAATCTTGATTTTGAATATCTTCCAGGAAAACCAGTCCTCAAAAAAGTTAATATTGATGTTAAAAAAGGACAAATGGTTGCCCTCGTTGGTCCAACTGGTTCAGGTAAAACAACAGTTATGAACTTGATGAACCGTTTCTACGATGTTAATGGTGGAGCAATTAAATTTGATGGAACTGATATTCGTGAATTTGATTTAGATAGCTTGCGTTCAAATGTCGGAATTGTTTTGCAAGAGTCTGTTCTCTTTGATGGAACGATTGCTGATAATATCAAGTTTGGTAAACCAAATGCTACTCAAGAAGAAATTGAAACAGTGGCTAAGACAACTCACATTCATGATTTCATTGATAGCTTACCTGACAAGTACGAAACACATGTTTCAGATGATGAATCAGTCTTCTCAGTTGGTCAAAAACAACAAATTTCTATCGCACGTACCATTTTGACAAATCCAGAACTTTTGATTTTGGATGAAGCAACTTCAAATGTGGATACAGTAACTGAACAACAAATTCAATGGGCGATGGAAGCTGCTATTGCTGGTCGTACTTCATTCGTTATTGCTCACCGTTTGAAAACAATTCTTAATGCAGATAAGATTGTTGTTCTTAAAGATGGTGAAGTTATCGAAGAAGGAAATCACCATGAACTTGTTGCTCAAGGTGGCTTCTACTCTGAACTTTATCACAATCAATTTGTTTTT"}}}}}}}}}}, "1999": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1998": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1629": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1628": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2860": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2861": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2862": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2863": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "559": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"106": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAAAAAATTATCTACGATTGATTAATGAAAACAATGAAATAAAAGACTCTGAGAGACCAAGTCACCTTGTTCAGGCTCCGTTTGCACAAACAAATATACTAGTTGATCCTATGGTAGCGATACAGCTAGAAAAACTAATAAAGACAACAGGTCTTGATAGCCAAATTATTACCATTGATGGCTATCGTTCAAAGGAGACACAGCAAGCACTTTGGGATGAGACGATTCAAGAAAAAGGGCTTGAATTTGCGCACAAATATGTGGCAAAGCCTGGATGTAGTGAACATGAAATTGGTTTAGCAGTGGATTTGGGGTTAGCTACGAAAGAAAATGATTTTATTCGCCCAAGTTTCACTGATAGTCCGATTGTTGATAAATTTTTAAAGCATATGACAGATTTCGGCTTTATCTTAAGATATCAAAAAGGAAAAGAATCTATTACCAATATAAACTATGAACCATGGCATTTCAGGTATGTAGGGACACCCCATAGTTCGATTATGGTACAGCAAAACTGGGTATTAGAAGAATACATTGAATTCATTGAGTCAATAAGAGGAACTGCTTATGAAGCATAG"}}}}}}}}}}, "558": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"307": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATTTCATTTTTTACAAAAACTACTGATATGATGACATCAAAAAAAAGATGGGCTGCACTAGTAGTATTAGCTGTTAGTTTGTTTGTTGTTACAATGGATATGACAATATTAATTATGGCTTTACCGGAATTAGTAAGAGAGTTAGAGCCTTCTGGTACCCAACAGTTATGGATAGTTGATATATACTCTCTTGTTTTAGCTGGCTTTATAATTCCATTGAGTGCCTTTGCTGATAAATGGGGAAGAAAAAAAGCATTATTAACTGGATTTGCTTTATTTGGCCTCGTTTCATTAGCTATATTTTTCGCAGAAAGTGCAGAGTTCGTAATAGCTATTCGATTTTTACTTGGTATTGCAGGTGCTTTAATAATGCCAACTACCCTTTCAATGATAAGAGTAATTTTTGAAAACCCTAAAGAAAGGGCCACTGCATTAGCTGTATGGTCAATCGTTTCATCGATAGGTGCTGTTTTTGGACCAATTATCGGAGGAGCTTTACTTGAGCAATTTTCATGGCACTCGGCATTTTTAATTAATGTACCGTTTGCGATAATAGCAGTTGTAGCAGGTTTATTTTTATTACCAGAGTCTAAGTTATCAAAAGAAAAGTCTCACTCGTGGGATATTCCTTCTACAATTTTATCAATTGCAGGCATGATTGGACTGGTATGGAGTATCAAAGAATTTTCAAAAGAAGGACTAGCAGATATTATTCCATGGGTTGTAATAGTATTAGCAATTACCATGATAGTGATATTTGTTAAACGTAATTTATCAAGTTCTGATCCAATGTTAGACGTAAGACTTTTTAAAAAGAGATCATTTTCAGCTGGTACAATTGCTGCATTTATGACAATGTTTGCAATGACATCTGTTTTGTTATTAGCTTCACAATGGTTACAGGTTGTGGAAGAACTTTCTCCTTTTAAAGCTGGCTTATACCTATTACCTATGGCAATAGGAGCTATGGTGTTTGCACCAATTGCACCCGGATTAGCGGCGCGATTTGGACCGAAAATAGTGTTACCTTCCGGAATTGGAATTGCAGCCATTGGCATGTTTATTATGTATTTCTTTGGTCATCCATTATCATATTCTACAATGGCTTTAGCATTAATTTTAGTTGAAGCTGGTACGGCTTCACTAGCAGTTGCATCTGCTCTAATAATGTTAGAAACACCTACATCAAAAGCAGGTAATGCAGCTGCTGTTGAAGAGTCTATGTATGACCTTGGAAATGTTTTTGGTGTAGCAGTACTTGGTAGCCTATCTTCTATGCTTTATCGTGTATTTTTAGATATTTCATCTTTTTCATCAAAAGGTATAGTTGGAGATTTAGCTCATGTAGCTGAAGAATCTGTAGTGGGCGCTGTCGAAGTAGCTAAAGCTACGGGGATAAAACAGCTTGCAAACGAGGCTGTAACATCATTTAATGATGCTTTTGTAGCAACTGCTTTAGTAGGTGGGATTATCATGATTATCATTTCAATAGTTGTCTATTTGTTAATTCCCAAATCACTTGATATAACTAAACAAAAATAG"}}}}}}}}}}, "2866": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2867": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "555": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1833": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAATAAATATTTTACTTGCTATGTGGTTGCTTCTCTTTTTTTTTCTGGTTGTACGGTTCAGCATAATTTAATAAATGAAACCCAGAGTCAGATTGTTCAAGGACATAATCAGGTGATTCATCAATACTTTGATGAAAAAAACACCTCAGGTGTGCTGGTTATTCAAACAGATAAAAAAATTAATTTGTATGGTAATGCTCTAAGCCGCGCAAATACAGAATATGTGCCAGCCTCTACATTTAAAATGTTGAATGCCCTGATCGGATTGGAGAACCAGAAAACGGATATTAATGAAATATTTAAATGGAAGGGCGAGAAAAGGTCATTTACCACTTGGGAAAAAGACATGACACTAGGAGAAGCCATGAAGCTTTCTGCAGTCCCAGTCTATCAGGAACTTGCAAGACGTATCGGTCTTGATCTCATGCAAAAAGAAGTAGAACGTATTGATTTCGGTAATGCTGAAATTGGACAGCAGGTTGACAATTTCTGGTTGATAGGCCCATTAAAGGTCACGCCTATTCAAGAGGTAGAGTTTGTTTCTCAATTGGCACATACACAGCTTCCATTTAGTGAAAAAGTGCAGGCTAATGTAAAAAATATGCTACTTCTAGAAGAGAATAATGGCTACAAGATTTTTGGAAAGACTGGTTGGGCAATGGATATAAAACCACAAGTGGGCTGGTTGACCGGCTGGGTTGAGCAGCCAGATGGAAAAATTGTCGCTTTTGCATTAAATATGGAAATGCGGTCAGAAATGCCTGCATCTATACGTAATGAATTATTGATGAAATCATTAAAACAGCTGAATATTATTTAA"}}}}}}}}}}, "554": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "557": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1717": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTACTCCGGACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAACGTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTAGCAAGCGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATACCCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA"}}}}}}}}}}, "556": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "551": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"906": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCAGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGGCTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA"}}}}}}}}}}, "550": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1267": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAAAATCGTTATGCTGCGCTCTGCTGCTGACAGCCCCTTTCTCCACGTTTGCCGCAGCCAAAACAGAACAACAGATTGCCGATACCGTTAATCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCCGTTATCTACCAGGGAAAACCCTATTATTTCACCTGGGGTAAAGCCGATATCACCAATAACCACCCAGTCACGCAGCAAACTCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCAGGGTATCAGCCTGCTGCACTTAGCCACCTACACGGCAGGCGGCCTGCCGCTGCAGATCCCCGATGACGTTACGGATAAAGCCGCATTACTGCGTTTTTATCAAAACTGGCAGCCGCAATGGGCCCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGCGCGCTGGCGGTGAAACCCTCAGGAATGAGTTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACAGTTCCGCAGAACGAACAAAAAGATTATGCCTGGGGCTATCGCGAAGGGAAGGCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATTGATATGGCCCGCTGGGTTCAGGTCAACATGGACGCCAGCCGCGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGCGATATGTACCAGGGATTAGGGTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGTAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCCGCCCCCGCAGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACTGGAGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAAACTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGCGGCCTGGCGCATTCTTGAAAAGCTGCAATAA"}}}}}}}}}}, "553": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "552": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1502": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4700": {"dna_sequence": {"fmax": "6232", "fmin": "5407", "accession": "JF268688.1", "strand": "-", "sequence": "ATGAAAAAAACATTTATACTTCTGAATCTAATTTTATTAGTAAATCTTAATGGATATTGTCAAACTAAAAGTTTAAAATCAAATGAAATTGTAAAACCTGAATTTAGAAATATATTAGATAGTTTAAAGGTAAAAGGAGCAATTTTAATTTATGATGTAAAAAACAAAACTTATTATTCAAATGATTTTTCTTGGACAAAAACTGGAATAATTCCTGCATCGACTTTCAAAATACCAAATTCAATTATTGCGTTAGAAACAGGAATAATCAAAAATGACTCTACAATTTTTAAATGGAATGGTGAAAAACGCAAATTTAAAAATTGGGAAGAAGATTTGACTTTTAAAAAAGCATTTCAAGTTTCTTGTGTTCCTTGTTATCAAGAAATTGCCAGAAAAATTGGTGTGAAAAGGATGAAAAGATATTTGAAAAAATTAAATTACAGAGGAATGGTTTTCGATACTTTGACGATTGATCAATTTTGGTTAGAAGGAGAATCTAAAATTACTCAAATGCAACAAATAGATTTTTTAGAACGATTATACTTTTCAAAATTTCCAATTTCTGATAGGACAATAAAGATTGTCAAAAATATTATGGAAATTGAGCGAACTGAAAATTACATTTTAAGCGGTAAGACTGGATTAAGTTCGATAGAAGAAAAATATAATGGTTGGTTTGTTGGTTATGTTGAAACAAAATCTAATGTTTATTTTTTTGCAACAAATGTAATTCCGACAGACGGATTGAATGTTGATGATTTTATTTCATCGAGAATTAATGTAACAAAAAATGCGTTAAAGCAAATGAATATAATGAAATGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Riemerella anatipestifer", "NCBI_taxonomy_id": "34085", "NCBI_taxonomy_cvterm_id": "36951"}, "protein_sequence": {"accession": "AEM66528.1", "sequence": "MKKTFILLNLILLVNLNGYCQTKSLKSNEIVKPEFRNILDSLKVKGAILIYDVKNKTYYSNDFSWTKTGIIPASTFKIPNSIIALETGIIKNDSTIFKWNGEKRKFKNWEEDLTFKKAFQVSCVPCYQEIARKIGVKRMKRYLKKLNYRGMVFDTLTIDQFWLEGESKITQMQQIDFLERLYFSKFPISDRTIKIVKNIMEIERTENYILSGKTGLSSIEEKYNGWFVGYVETKSNVYFFATNVIPTDGLNVDDFISSRINVTKNALKQMNIMK"}}}}}}}, "1439": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1199": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1198": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4728": {"dna_sequence": {"fmax": "12313", "fmin": "11083", "accession": "FJ196385.1", "strand": "-", "sequence": "ATGAACAGAATAAAAAATTGGAAGAAACAATTTGCTGTAATATACACAGGGCAGGCTTTTTCAATCTTGGGTTCTGCCGCAGTGCAGTTCGCTGTTATCTGGTGGCTGACCATCCAGACTGAATCCGCAATCACCTTGACGATTGCATCCTTAGTTGCCTTTCTCCCCAATATGTTAATCGGACCCTTTGCCGGTGTGTGGATCGACCGATACAACCGCCGAACAGTAATGATTTTAGCTGACGGTCTGGTAGCTGTATCCAGCATCATCCTTGGGGCAGCATTTTTACTTGTGGAAACACCCCCTATTTGGTTTATCTACATTGTTTTATTTTTGCGTGGATTGGGGAATACCTTTCACGGTCCAGCTATGCAAGCGGCGATACCCATGTTTGTGCCAGCAGATATGTTGACCAAAGCAGGGGGCTGGGGAAATATGATCCAATCAATATCCAACATGATGGGGCCTGTGCTGGGTGCTGCGCTTATGTCATTTCTACCTATTTCCTCCATTATGATTGTGGATATACTGGGAGCCGCTTTTGCGATAGTTTGCCTCCTATTTGTTATAATTCCAGACATTACGCAAACCAATGAGAAGATGAGTGTATTGTCTGACATGAAGCAGGGCTTTATCGCAATGAAAGCAAATAAACCTTTAATGGCTGTGTTTTCCCCCATGCTGCTGATGACCATACTTTATATGCCATTAGGTTCTCTGTTCCCTCTACTGGCACGCAGCCACTTTATGGGTGAAGCCTGGCACAATAGCATTGTGGAATTTGTCTTTGCAGGTGGATTGCTTCTTTCATCTTTGGTTATCGGTGTATGGGGCGGCATGAAAAGAAGGTTTTTCATGGCATCCTTAGCTATTGGCTTAATGGGTCTGGCTACACTGATTAGCGGAGCGCTACCGACAAGCGGTTTTTGGATATTTGTTATATGCTGCTTCTTCTTGGGCGCCTCTGGCACATTTATGAATGTTCCTGTTATGGCTTATGTTCAAGAAAGCATTGCCCCTGAAATGATGGGCAAGGTGTTTTCCCTTTTGATGACCGCCATGACTCTTTCTATGCCGATAGGCTTACTTGTTGCAGGTCCGGTTGTTGAGGTTATAGGTGTTAATACATGGTTTTTCTGGTCTGGTGTTGCGTTGATAGTAAACGCTGTTCTCTGCCGCATTCTGACACGACGCTATGACAAAGTAACAATGAAACCGCAAGTGGACTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli", "NCBI_taxonomy_id": "562", "NCBI_taxonomy_cvterm_id": "35914"}, "protein_sequence": {"accession": "ACJ63262.1", "sequence": "MNRIKNWKKQFAVIYTGQAFSILGSAAVQFAVIWWLTIQTESAITLTIASLVAFLPNMLIGPFAGVWIDRYNRRTVMILADGLVAVSSIILGAAFLLVETPPIWFIYIVLFLRGLGNTFHGPAMQAAIPMFVPADMLTKAGGWGNMIQSISNMMGPVLGAALMSFLPISSIMIVDILGAAFAIVCLLFVIIPDITQTNEKMSVLSDMKQGFIAMKANKPLMAVFSPMLLMTILYMPLGSLFPLLARSHFMGEAWHNSIVEFVFAGGLLLSSLVIGVWGGMKRRFFMASLAIGLMGLATLISGALPTSGFWIFVICCFFLGASGTFMNVPVMAYVQESIAPEMMGKVFSLLMTAMTLSMPIGLLVAGPVVEVIGVNTWFFWSGVALIVNAVLCRILTRRYDKVTMKPQVD"}}}}}}}, "1191": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4730": {"dna_sequence": {"fmax": "4568519", "fmin": "4567286", "accession": "U00096.3", "strand": "-", "sequence": "ATGCCACGTTTTTTTACCCGCCATGCCGCCACGCTGTTTTTCCCGATGGCGTTGATTTTGTATGACTTTGCTGCGTATCTGTCGACGGATCTGATCCAGCCTGGGATCATTAATGTGGTACGTGATTTTAATGCCGATGTCAGTCTGGCCCCTGCTGCCGTCAGTCTCTATCTTGCTGGCGGTATGGCGTTACAGTGGCTGCTGGGGCCGCTTTCCGACAGAATTGGCCGCAGGCCGGTGCTGATTACCGGGGCGCTAATTTTTACCCTTGCCTGCGCCGCGACAATGTTCACAACGTCTATGACACAGTTTCTTATCGCGCGTGCAATTCAGGGCACCAGTATCTGTTTTATTGCCACCGTTGGTTATGTCACGGTGCAGGAGGCGTTCGGACAGACAAAAGGGATCAAGTTGATGGCGATTATCACCTCCATCGTACTGATTGCGCCGATTATCGGCCCGCTTTCCGGCGCAGCTCTGATGCACTTTATGCACTGGAAAGTCCTTTTTGCCATCATTGCGGTTATGGGTTTTATCTCATTTGTTGGCTTACTGTTGGCGATGCCAGAGACGGTGAAGCGCGGCGCGGTTCCGTTTAGCGCCAAAAGCGTCTTGCGCGATTTTCGTAATGTCTTTTGCAATCGGCTGTTCCTCTTTGGCGCAGCAACCATCTCTTTAAGCTATATCCCGATGATGAGCTGGGTGGCTGTCTCGCCGGTGATCCTTATCGATGCAGGCAGCTTAACAACTTCGCAGTTCGCCTGGACACAGGTTCCGGTGTTCGGCGCGGTGATTGTTGCGAATGCCATCGTGGCGCGTTTTGTTAAAGATCCGACCGAACCGCGGTTTATCTGGCGTGCCGTACCCATTCAACTGGTCGGCCTCTCGCTGTTGATTGTCGGCAATCTGCTGTCGCCGCACGTCTGGCTGTGGTCGGTGCTGGGCACCAGTCTGTATGCTTTCGGGATTGGTTTGATTTTCCCGACCTTATTCCGCTTTACGCTGTTTTCCAATAAGTTACCGAAAGGGACCGTCTCCGCATCGCTAAATATGGTGATCCTGATGGTGATGTCGGTCTCGGTCGAAATCGGCCGCTGGCTATGGTTTAACGGCGGTCGCTTGCCGTTTCATCTGTTAGCCGTTGTGGCGGGCGTTATCGTCGTTTTCACCCTGGCGGGATTGCTCAATCGCGTGCGCCAGCATCAGGCAGCCGAGCTAGTGGAGGAGCAGTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli str. K-12 substr. MG1655", "NCBI_taxonomy_id": "511145", "NCBI_taxonomy_cvterm_id": "36849"}, "protein_sequence": {"accession": "AAC77293.1", "sequence": "MPRFFTRHAATLFFPMALILYDFAAYLSTDLIQPGIINVVRDFNADVSLAPAAVSLYLAGGMALQWLLGPLSDRIGRRPVLITGALIFTLACAATMFTTSMTQFLIARAIQGTSICFIATVGYVTVQEAFGQTKGIKLMAIITSIVLIAPIIGPLSGAALMHFMHWKVLFAIIAVMGFISFVGLLLAMPETVKRGAVPFSAKSVLRDFRNVFCNRLFLFGAATISLSYIPMMSWVAVSPVILIDAGSLTTSQFAWTQVPVFGAVIVANAIVARFVKDPTEPRFIWRAVPIQLVGLSLLIVGNLLSPHVWLWSVLGTSLYAFGIGLIFPTLFRFTLFSNKLPKGTVSASLNMVILMVMSVSVEIGRWLWFNGGRLPFHLLAVVAGVIVVFTLAGLLNRVRQHQAAELVEEQ"}}}}}}}, "1190": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1193": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"63": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGCTGCGCTCCTGAAGCGCATACTTAGGAGACGCATGGCTGAAAAGAGGTCAGGACGCGGGCGCATGGCCGCAGCGCGTACAACCGGAGCTCAGTCGCGTAAAACGGCACAGCGGTCGGGCCGGAGTGAGGCTGACCGTAGAAGAAGAGTCCACGGGCAGAATTTCCTCGTCGACCGGGAAACAGTACAACGGTTTGTGCGTTTCGCCGATCCGGACCCCGGGGAGGTCGTTCTCGAGGTCGGTGCCGGTAATGGTGCGATCACGCGCGAGCTGGCGCGATTATGCCGACGAGTGGTGGCGTATGAGATCGACCGGCACTTCGCGGACCGATTACGTGAGGCGACCGCCGAGGATCCGCGGATCGAGGTCGTCGCCGGCGACTTCCTGAAGACCTCGCAGCCCAAGGTCCCGTTCTCCGTGGTCGGCAACATCCCGTTCGGCAACACCGCGGACATAGTGGACTGGTGCCTGAACGCGCGGCGGCTGCGTACGACCACCCTGGTCACCCAGCTCGAATACGCCCGCAAGCGCACCGGCGGCTATCGGCGCTGGTCACGGCTCACCGTGGCCACCTGGCCCGAGGTGGAGTGGCGGATGGGCGAGCGGATCAGCCGCCGCTGGTTCCGGCCCGTCCCCGCCGTCGACTCCGCGGTACTGCGACTGGAACGGCGACCGGTGCCGCTGATCCCACCCGGTCTGATGCACGACTTCCGGGACCTGGTGGAGACCGGGTTCACGGGAAAGGGCGGTTCGCTGGACGCCTCGCTGCGCCGGCGCTTCCCGGCCCGGCGGGTGGCCGCCGGGTTCCGCAGGGCCCGCCTGGAGCAGGGCGTGGTCGTCGCCTACGTCACCCCGGGCCAATGGATCACACTCTTCGAGGAACTCCACGGGCGCTGA"}}}}}}}}}}, "1192": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4729": {"dna_sequence": {"fmax": "3661636", "fmin": "3660736", "accession": "NC_010410.1", "strand": "-", "sequence": "ATGAAAATCGTAAAAAGGATATTATTAGTATTGTTAAGTTTATTTTTTACAATTGTGTATTCAAATGCTCAAACTGACAACTTAACTTTGAAAATTGAGAATGTTTTAAAGGCAAAAAATGCCAGAATAGGAGTAGCAATATTCAACAGCAATGAGAAGGATACTTTGAAGATTAATAACGACTTCCATTTCCCGATGCAAAGCGTTATGAAATTTCCGATTGCTTTAGCCGTTTTGTCTGAGATAGATAAAGGGAATCTTTCTTTTGAACAAAAAATAGAGATTACCCCTCAAGACCTTTTGCCTAAAACGTGGAGTCCGATTAAAGAGGAATTCCCTAATGGAACAACTTTGACGATTGAACAAATACTAAATTATACAGTATCAGAGAGCGACAATATTGGTTGTGATATTTTGCTAAAATTAATCGGAGGAACTGATTCTGTTCAAAAATTCTTGAATGCTAATCATTTCACTGATATTTCAATCAAAGCAAACGAAGAACAAATGCACAAGGATTGGAATACCCAATATCAAAATTGGGCAACCCCAACAGCGATGAACAAACTGTTAATAGATACTTATAATAATAAGAACCAATTACTTTCTAAAAAAAGTTATGATTTTATTTGGAAAATTATGAGAGAAACAACAACAGGAAGTAACCGATTAAAAGGACAATTACCAAAGAATACAATTGTTGCTCATAAAACAGGGACTTCCGGAATAAATAATGGAATTGCAGCAGCCACTAATGATGTTGGGGTAATTACTTTACCGAATGGACAATTAATTTTTATAAGCGTATTTGTTGCAGAGTCCAAAGAAACTTCGGAAATTAATGAAAAGATTATTTCAGACATTGCAAAAATAACGTGGAATTACTATTTGAATAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Gammaproteobacteria", "NCBI_taxonomy_id": "1236", "NCBI_taxonomy_cvterm_id": "40536"}, "protein_sequence": {"accession": "WP_000706731.1", "sequence": "MKIVKRILLVLLSLFFTIVYSNAQTDNLTLKIENVLKAKNARIGVAIFNSNEKDTLKINNDFHFPMQSVMKFPIALAVLSEIDKGNLSFEQKIEITPQDLLPKTWSPIKEEFPNGTTLTIEQILNYTVSESDNIGCDILLKLIGGTDSVQKFLNANHFTDISIKANEEQMHKDWNTQYQNWATPTAMNKLLIDTYNNKNQLLSKKSYDFIWKIMRETTTGSNRLKGQLPKNTIVAHKTGTSGINNGIAAATNDVGVITLPNGQLIFISVFVAESKETSEINEKIISDIAKITWNYYLNK"}}}}}}}, "1195": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1194": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"2001": {"$update": {"dna_sequence": {"$update": {"sequence": "TATCGCGTGTCTTTCGAGTACGGCATTAGCTGGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTCTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATGACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAACGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAGCAATGGGAAAGAGACTTGACCTTAAGAGGGGCAATACAAGTTTCAGCTGTTCCCGTATTTCAACAAATCACCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATACCTTAAAAAATTTTCCTATGGCAACCAGAATATCAGTGGTGGCATTGACAAATTCTGGTTGGAAGACCAGCTTAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATATTTAAATAAATTGTCAGCATCTAAAGAAAACCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCGGCACCTGAATATCTAGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGGTGGGTTGAGAAGGAGACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAGTAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGAAAGTGAGGGCATCATTGGTGGCTA"}}}}}}}}}}, "1197": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"$update": {"2087": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCCAACCATCCAGCAGCTGGTCCGCAAGGGTCGTCGGGACAAGATCAGTAAGGTCAAGACCGCGGCTCTGAAGGGCAGCCCGCAGCGTCGTGGTGTATGCACCCGCGTGTACACCACCACTCCGAAGAAGCCGAACTCGGCGCTTCGGAAGGTTGCCCGCGTGAAGTTGACGAGTCAGGTCGAGGTCACGGCGTACATTCCCGGCGAGGGCCACAACCTGCAGGAGCACTCGATGGTGCTGGTGCGCGGCGGCCGGGTGAAGGACCTGCCTGGTGTGCGCTACAAGATCATCCGCGGTTCGCTGGATACGCAGGGTGTCAAGAACCGCAAACAGGCACGCAGCCGTTACGGCGCTAAGAAGGAGAAGGGCTGA"}}}}}}}}}}, "1196": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1759": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"258": {"$update": {"dna_sequence": {"$update": {"sequence": "TTGAATAGATTAAAAATAGCCATCCTGTTTGGGGGCTGTTCAGAGGAACACGATGTGTCGGTAAAATCGGCGAAAGAGATTGCCAATAACATTGACACGGAAAAATATGAGCCGATATACATCGGAATCACCCGATCCGGCGTCTGGAAAATGTGCGAAAAGCCATGCATGGATTGGGACAACGAAAACTGCCGTTCGGCAGTGCTTTCTCCGGACAAAAAAATGCACGGGCTGCTTGTTATGCGGAATAAAGGATATCAAATCCAACGTATAGACGCGGTATTTTCGGTTTTGCACGGCAAATCGGGTGAAGACGGCGCCATACAAGGTTTATTTGAATTGTCCAGCATCCCCTATGTAGGCTGTGATGTTCAAAGTTCGGCGGTGTGTATGGACAAATCCCTGACATACATTGTGGCCCAAAATGCTGGTTTTGGCACTCCTGAATTTTTGATTTTGAATCATGGCGATATACCGGATTCAAATACCTTAACATATCCTGTTTTTGTTAAACCGGCGCGTTCCGGCTCATCTTTCGGCGTGAATAAAGTCAATAACGAGGACGAATTAGACGCCGCCATTGAAACAGCAAGGCAGTATGACAGTAAAGTCCTGATTGAACAAGCTGTTCCAGGCCTTGAAGTTGGCTGTGCCGTGTTGGGAAACGGTACCGACTTAATCGTTGGCGAAGTGGACCAAATTTCACTTTCGCATGGTATCTTTCGTATTCATCAAGAAGATCAACCAGAAAAAGGCTCCGAAAACGCAGTTGTTTTGGTTCCCGCAAACCTGTCGGCAGAGAAACGCATAAAGATACAAGAGACGGCGAAAGCAATTTATAAGGCGCTCGGCTGTAAAGGTCTTTCTCGTGTTGATATGTTTTTGCAGGAAAACGGACGTATTATACTGAATGAAGTCAATACGTTGCCGGGATTCACGGCATACAGCCGTTATCCCCGTATGATGGCTGCCGCGGGGATGACACTGTCCGGGTTAATTGATCATTGCATCACACTGGCACTCAAAGGATGA"}}}}}}}}}}, "1758": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1757": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"411": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGCGCAAATGCGGAGACTCAAACCCCGCAGCAACCGGTAAAGAAGAGCGGCAAACGTAAGCGTCTGCTCCTCCTTCTCACCTTGCTCTTTATAATTATTGCCGTAGCGATAGGGATTTATTGGTTTTTGGTACTGCGTCACTTCGAAGAAACCGATGACGCATACGTGGCAGGGAATCAAATTCAAATTATGTCTCAGGTGTCTGGCAGCGTGACGAAAGTCTGGGCCGATAACACCGATTTTGTAAAAGAAGGCGACGTGCTGGTCACTCTCGACCCGACAGATGCTCGCCAGGCGTTTGAAAAAGCCAAAACTGCACTGGCTTCCAGCGTTCGCCAAACCCACCAGCTGATGATTAACAGCAAGCAGTTGCAGGCGAATATTGAGGTGCAGAAAATCGCCCTCGCGAAAGCACAAAGCGACTACAACCGCCGTGTGCCGCTGGGCAATGCCAACCTGATTGGTCGCGAAGAGCTGCAACACGCCCGCGACGCCGTCACCAGTGCCCAGGCGCAACTGGACGTCGCGATTCAACAATACAATGCCAATCAGGCGATGATTCTGGGGACTAAACTGGAAGATCAGCCAGCCGTGCAACAGGCTGCCACCGAAGTACGTAACGCCTGGCTGGCGCTGGAGCGTACTCGTATTATCAGTCCGATGACCGGTTATGTCTCCCGCCGCGCGGTACAGCCTGGGGCGCAAATTAGCCCAACGACGCCGCTGATGGCGGTCGTTCCAGCCACCAATATGTGGGTGGATGCCAACTTTAAAGAGACGCAGATTGCCAATATGCGTATCGGTCAGCCGGTCACTATCACCACGGATATTTACGGCGATGATGTGAAATACACCGGTAAAGTGGTTGGTCTGGATATGGGCACAGGTAGCGCGTTCTCACTGCTTCCAGCGCAAAATGCGACCGGTAACTGGATCAAAGTCGTTCAGCGTCTGCCTGTGCGTATCGAACTGGACCAGAAACAGCTGGAGCAATATCCGCTGCGTATCGGTTTGTCCACGCTGGTGAGCGTCAATACCACTAACCGTGACGGTCAGGTACTGGCAAATAAAGTACGTTCCACTCCGGTAGCGGTAAGCACCGCGCGTGAAATCAGCCTGGCACCTGTCAATAAACTGATCGACGATATCGTAAAAGCTAACGCTGGCTAA"}}}}}}}}}}, "1756": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1549": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCTTCGTTCTCCACGTTTGCCGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCGCTGATGCAGGAGCAGGCAATTCCGGGCATGGCCGTTGCGATTATCTATCAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCGTCCAGTCACTCAACAAACGCTGTTTGAACTCGGATCGGTCAGTAAAACGTTCAACGGTGTGCTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGTTCAGCGATCCGGTCACGCATTACTGGCCTGAACTGACTGGTAAGCAGTGGCAGGGTATCAGCCTGCTGCACTTAGCCACCTACACGGCAGGCGGCCTGCCGCTTCAGGTTCCGGACGACGTTACGGATAAAGCCGCGTTACTACGCTTTTATCAAAACTGGCAGCCGCAATGGGCCCCAGGCGCTAAACGTCTTTATGCTAACTCCAGCATTGGTCTGTTTGGTGCCCTGGCGGTCAAACCCTCAGGCATGAGCTACGAAGAGGCGATGACCAAACGCGTCCTGCGCCCCTTAAAACTGGCGCATACCTGGATTACGGTTCCGCAGAGCGAACAAAAAGATTATGCCTGGGGTTATCGCGAAGGAAAGCCAGTGCATGTATCCCCTGGCCAACTTGATGCCGAAGCCTACGGGGTGAAATCGAGCGTTATCGATATGACCCGTTGGGTTCAGGCCAACATGGACGCCAGCCAGGTTCAGGAGAAAACGCTCCAGCAGGGCATCGAGCTTGCGCAGTCACGTTACTGGCGTGTTGGCGATATGTACCAGGGCCTGGGCTGGGAGATGCTGAACTGGCCGGTGAAAGCCGACTCGATAATTAGCGGTAGCGACAGCAAAGTGGCACTGGCAGCGCTTCCTGCCGTTGAGGTAAACCCGCCCGCGCCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGCTCCACTGGCGGATTCGGCAGCTACGTTGCTTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAGAGCTACCCAAACCCTGTTCGCGTCGAGGCCGCCTGGCGCATTCTTGAAAAACTGCAGTAA"}}}}}}}}}}, "1755": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1411": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGTTAAAAAATCACTGCGTCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGACGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGTGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACTTGGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGACGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGGGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGACTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCAACGGTTTGTAA"}}}}}}}}}}, "1754": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"675": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGCAGATTGAAGGTCGGGGTCATCTTCGGAGGGGCTTCCGAAGAACATCCCGTCTCCATCAAGTCGGCGCGAGAGGTGGCAAGAAGTCTCGACACGGAGAAGTACGAACCGTTCTGGATCGGCATCACGACCGGCGGCGAGTGGAAGCTCTGTGACGGCCCCGACGCGGATTGGGAGAATCGCAGCGCCCGTCCCGCCGTGCTGTCACCCGATCGAAGTGTGCACGGCCTGCTGGTCATGGAGCAGGGGGGCTACGAAACCGTGCGCCTCGACCTCGTCTTCCCCGTACTTCACGGCAAGCTCGGCGAAGACGGCGCGATCCAAGGCCTGTTGGAGCTCGCCGGCATCCCCTACGTCGGCTGCGACATCCAGGGCTCGGCTGTGTGCATGGACAAGGCCCTGGCCTACATCGTGGCCAAGAGCGCGGGAATCGCCACGCCGAGCTTTTGGGTTGTCGCGGAGAACGAGAAGGTCGACGCCGATCACCTTCGCTATCCGGTCTTCGTGAAGCCGGCCCGTTCGGGTTCATCTTTCGGCGTCAGCAAGGTCACCCGAGAAGACGAGCTGCCGAACGCGCTGAGCGCGGCGCGACAGTACGACTCGAAGGTCCTGATCGAAGAAGCCGTGGCCGGCAGCGAGATCGGCTGCGCGGTCATGGGTGAACTATTCGGCCTGATCACTGGGGAGGTGGACCGCGTCGACCTCTCGCACGGATTCTTCAGGATCCACCAGGAGGACTCACCCGAAACCGGATCGGAGAACTCGACGTTCATCGTTCCCGCCGACATCTCCGACGAATCGCGCCGGCTCGTCCAAGAGACCGCCAAGGCCATCTACCGCACCCTGGGCTGCAAGGGACTTGCCCGCGTTGACATGTTCCTCACCGACGACGGACGGGTGGTCCTCAACGAGGTCAACACCATGCCCGGCATGACGTCGTACAGCCGGTACCCGCGGATGATGGCCGCCGCGGGACTGCCGATCTCCGACATGATCGACCGGCTCATCTCGATGACAATGCACGGGAAGAAGCGATGA"}}}}}}}}}}, "1753": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1752": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4682": {"dna_sequence": {"fmax": "2162750", "fmin": "2161325", "accession": "CP014358.1", "strand": "-", "sequence": "TTGAACGTCTCCACTGCCTTACGCCAGGCTGTCGTCCGTACGCCCTGGTATGCCAAACGCAAGAGCTACAAAGTGTTGTTCTGGCGTGAAATCACCCCACTTGCTATCCCTATTTTTCTGGAAAATACCTGTGTTTTGCTAATGGGCGTGCTCAGTACTTTTCTCGTCAGTTGGCTGGGCAAGGAAGCAATGGCGGGCGTGGGGCTTGCCGACAGTTTTAATATGGTAATTATGGCTTTTTTTGCGGCTATCGATCTTGGTACTACGGTGGTGGTCGCCTTTAGCCTCGGCAAGCGCGACAGGCGACGCGCAAGGGCGGCGGCGCGCCAGTCGCTGGTGATTATGACGCTATTTGCCGTTGTGCTGGCAGTGGTCATTCATTATTTCGGCAGTGAAATTATTAATATTGTCGCAGGCGAGGCGACGCCAGAAGTAAAGGGGCTGGCGTTAACGTACCTTGAACTGACGGTGCTGAGTTATCCGGCTGCGGCAATTGCGCTAATCGGTAGCGGCGCGCTGCGTGGGGCAGGGAATACGAAAATCCCGTTGATGATTAACGGCGGGATGAACATTCTCAATATTATTATCAGCAGCATCCTGATTTACGGGGCTTTCTCCTGGCAAGGGCTGGGTTTTGCCGGCGCGGGGCTGGGATTAACCATTTCGCGCTACATCGGCGCGGTAGCGATTATTTGGGTGCTGATGATTGGTTTTAATCCGGCGCTGCGCATTCCGCTGAAAAGCTATCTGAAGCCGCTGAATTTCGGCATTATCTGGGAAGTGATGGGTATCGGTATTCCGGCGAGCATTGAATCAGTGCTGTTCAACGGTAGCAAGCTACTGACGCAAATGTTTGTCGCCGGAATGGGCACTAACGTTATTGCGGGTAACTTTATTGCCTTTTCCGTGGCGGCGCTTATCAACCTGCCGGGTAACGCCCTTGGTTCGGCGTCGACTATTATCACCGGTAAGCGTCTTGGTACCGGGCAAATTGGTCAGGCAGAGCGTCAACTGCGCCATGTATTCTGGATGTCGACTATCGTACTTACGGCAATTGCCTGGGGGACGGCGCCGTTTGCGGGTCTGTTTGCCTCATTTTATACCCAGGAGCAGGACGTAAAAGAGGTAGTGAAAGTTCTGCTCTGGCTTAATGCTGCCTTTATGCCAATTTGGGCGGCCGCGTGGGTGTTGCCGTCGGGTTTTAAAGGCGCGCGCGATGTGCGATTTGCGATGTGGGTATCGATGCTGGGGATGTGGGGCTGTCGCGTTGTGGCAGGGTATACGCTTGGTATTGTGCTGGGTATGGGGGTTGTAGGGGTTTGGCTGGGGATGTTTCTTGACTGGGCCGTGCGTGGCGCACTGTTTTACTGGCGTCTGATAAGCGGGCGCTGGCTGTGGAGATACCCGCGCGTAAAGAGGGAGTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Salmonella enterica subsp. enterica serovar Typhimurium", "NCBI_taxonomy_id": "90371", "NCBI_taxonomy_cvterm_id": "35732"}, "protein_sequence": {"accession": "AML99881.1", "sequence": "MNVSTALRQAVVRTPWYAKRKSYKVLFWREITPLAIPIFLENTCVLLMGVLSTFLVSWLGKEAMAGVGLADSFNMVIMAFFAAIDLGTTVVVAFSLGKRDRRRARAAARQSLVIMTLFAVVLAVVIHYFGSEIINIVAGEATPEVKGLALTYLELTVLSYPAAAIALIGSGALRGAGNTKIPLMINGGMNILNIIISSILIYGAFSWQGLGFAGAGLGLTISRYIGAVAIIWVLMIGFNPALRIPLKSYLKPLNFGIIWEVMGIGIPASIESVLFNGSKLLTQMFVAGMGTNVIAGNFIAFSVAALINLPGNALGSASTIITGKRLGTGQIGQAERQLRHVFWMSTIVLTAIAWGTAPFAGLFASFYTQEQDVKEVVKVLLWLNAAFMPIWAAAWVLPSGFKGARDVRFAMWVSMLGMWGCRVVAGYTLGIVLGMGVVGVWLGMFLDWAVRGALFYWRLISGRWLWRYPRVKRE"}}}}}}}, "1751": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"511": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAACAAAAAAAATATAAAAGACAGTCAAAACTTTATTACTTCGAAACGTAATATAGATAAAATAATGACAAATATAAGCTTAAATGAACATGATAATATCTTTGAAATTGGCTCAGGAAAAGGGCATTTTACCCTTGAATTAGTACAAAGGTGTAATTTCGTAACTGCTATTGAAATAGACCATAAATTATGCAAGACTACAGAAAATAAACTTGTTGATCACGATAATTTTCAAGTTTTAAACAAGGATATATTGCAGTTTAAATTTCCTAAAAACCAATCCTATAATATATTTGGTAATATTCCTTATAACATCAGTACGGATATTGTCAAAAGAATTACCTTTGAAAGTCAGGCTAAATATAGCTATCTTATCGTTGAGAAGGGATTTGCGAAAAGATTGCAAAATCTGCAACGAGCTTTGGGTTTACTATTAATGGTGGAGATGGATATAAAAATGCTCAAAAAAGTACCACCACTATATTTTCATCCTAAGCCAAGTGTAGACTCTGTATTGATTGTTCTTGAACGACATCAACCATTGATTTCAAAGAAGGACTACAAAAAGTATCGATCTTTTGTTTATAAGTGGGTAAACCGTGAATATCGTGTTCTTTTCACTAAAAACCAATTCCGACAGGCTTTGAAGCATGCAAATGTCACTAATATTAATAAACTATCGAAGGAACAATTTCTTTCTATTTTCAATAGTTACAAATTGTTTCACTAA"}}}}}}}}, "ARO_category": {"$insert": {"37021": {"category_aro_name": "virginiamycin S2", "category_aro_cvterm_id": "37021", "category_aro_accession": "3000677", "category_aro_class_name": "Antibiotic", "category_aro_description": "Virginiamycin S2 is a streptogramin B antibiotic."}, "37023": {"category_aro_name": "vernamycin C", "category_aro_cvterm_id": "37023", "category_aro_accession": "3000679", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin C is a streptogramin B antibiotic."}, "37026": {"category_aro_name": "ostreogrycin B3", "category_aro_cvterm_id": "37026", "category_aro_accession": "3000682", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid."}}}}}, "1750": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1177": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1176": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"4732": {"dna_sequence": {"fmax": "2156111", "fmin": "2153888", "accession": "NC_000962.3", "strand": "-", "sequence": "GTGCCCGAGCAACACCCACCCATTACAGAAACCACCACCGGAGCCGCTAGCAACGGCTGTCCCGTCGTGGGTCATATGAAATACCCCGTCGAGGGCGGCGGAAACCAGGACTGGTGGCCCAACCGGCTCAATCTGAAGGTACTGCACCAAAACCCGGCCGTCGCTGACCCGATGGGTGCGGCGTTCGACTATGCCGCGGAGGTCGCGACCATCGACGTTGACGCCCTGACGCGGGACATCGAGGAAGTGATGACCACCTCGCAGCCGTGGTGGCCCGCCGACTACGGCCACTACGGGCCGCTGTTTATCCGGATGGCGTGGCACGCTGCCGGCACCTACCGCATCCACGACGGCCGCGGCGGCGCCGGGGGCGGCATGCAGCGGTTCGCGCCGCTTAACAGCTGGCCCGACAACGCCAGCTTGGACAAGGCGCGCCGGCTGCTGTGGCCGGTCAAGAAGAAGTACGGCAAGAAGCTCTCATGGGCGGACCTGATTGTTTTCGCCGGCAACTGCGCGCTGGAATCGATGGGCTTCAAGACGTTCGGGTTCGGCTTCGGCCGGGTCGACCAGTGGGAGCCCGATGAGGTCTATTGGGGCAAGGAAGCCACCTGGCTCGGCGATGAGCGTTACAGCGGTAAGCGGGATCTGGAGAACCCGCTGGCCGCGGTGCAGATGGGGCTGATCTACGTGAACCCGGAGGGGCCGAACGGCAACCCGGACCCCATGGCCGCGGCGGTCGACATTCGCGAGACGTTTCGGCGCATGGCCATGAACGACGTCGAAACAGCGGCGCTGATCGTCGGCGGTCACACTTTCGGTAAGACCCATGGCGCCGGCCCGGCCGATCTGGTCGGCCCCGAACCCGAGGCTGCTCCGCTGGAGCAGATGGGCTTGGGCTGGAAGAGCTCGTATGGCACCGGAACCGGTAAGGACGCGATCACCAGCGGCATCGAGGTCGTATGGACGAACACCCCGACGAAATGGGACAACAGTTTCCTCGAGATCCTGTACGGCTACGAGTGGGAGCTGACGAAGAGCCCTGCTGGCGCTTGGCAATACACCGCCAAGGACGGCGCCGGTGCCGGCACCATCCCGGACCCGTTCGGCGGGCCAGGGCGCTCCCCGACGATGCTGGCCACTGACCTCTCGCTGCGGGTGGATCCGATCTATGAGCGGATCACGCGTCGCTGGCTGGAACACCCCGAGGAATTGGCCGACGAGTTCGCCAAGGCCTGGTACAAGCTGATCCACCGAGACATGGGTCCCGTTGCGAGATACCTTGGGCCGCTGGTCCCCAAGCAGACCCTGCTGTGGCAGGATCCGGTCCCTGCGGTCAGCCACGACCTCGTCGGCGAAGCCGAGATTGCCAGCCTTAAGAGCCAGATCCGGGCATCGGGATTGACTGTCTCACAGCTAGTTTCGACCGCATGGGCGGCGGCGTCGTCGTTCCGTGGTAGCGACAAGCGCGGCGGCGCCAACGGTGGTCGCATCCGCCTGCAGCCACAAGTCGGGTGGGAGGTCAACGACCCCGACGGGGATCTGCGCAAGGTCATTCGCACCCTGGAAGAGATCCAGGAGTCATTCAACTCCGCGGCGCCGGGGAACATCAAAGTGTCCTTCGCCGACCTCGTCGTGCTCGGTGGCTGTGCCGCCATAGAGAAAGCAGCAAAGGCGGCTGGCCACAACATCACGGTGCCCTTCACCCCGGGCCGCACGGATGCGTCGCAGGAACAAACCGACGTGGAATCCTTTGCCGTGCTGGAGCCCAAGGCAGATGGCTTCCGAAACTACCTCGGAAAGGGCAACCCGTTGCCGGCCGAGTACATGCTGCTCGACAAGGCGAACCTGCTTACGCTCAGTGCCCCTGAGATGACGGTGCTGGTAGGTGGCCTGCGCGTCCTCGGCGCAAACTACAAGCGCTTACCGCTGGGCGTGTTCACCGAGGCCTCCGAGTCACTGACCAACGACTTCTTCGTGAACCTGCTCGACATGGGTATCACCTGGGAGCCCTCGCCAGCAGATGACGGGACCTACCAGGGCAAGGATGGCAGTGGCAAGGTGAAGTGGACCGGCAGCCGCGTGGACCTGGTCTTCGGGTCCAACTCGGAGTTGCGGGCGCTTGTCGAGGTCTATGGCGCCGATGACGCGCAGCCGAAGTTCGTGCAGGACTTCGTCGCTGCCTGGGACAAGGTGATGAACCTCGACAGGTTCGACGTGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Mycobacterium tuberculosis H37Rv", "NCBI_taxonomy_id": "83332", "NCBI_taxonomy_cvterm_id": "39507"}, "protein_sequence": {"accession": "NP_216424.1", "sequence": "MPEQHPPITETTTGAASNGCPVVGHMKYPVEGGGNQDWWPNRLNLKVLHQNPAVADPMGAAFDYAAEVATIDVDALTRDIEEVMTTSQPWWPADYGHYGPLFIRMAWHAAGTYRIHDGRGGAGGGMQRFAPLNSWPDNASLDKARRLLWPVKKKYGKKLSWADLIVFAGNCALESMGFKTFGFGFGRVDQWEPDEVYWGKEATWLGDERYSGKRDLENPLAAVQMGLIYVNPEGPNGNPDPMAAAVDIRETFRRMAMNDVETAALIVGGHTFGKTHGAGPADLVGPEPEAAPLEQMGLGWKSSYGTGTGKDAITSGIEVVWTNTPTKWDNSFLEILYGYEWELTKSPAGAWQYTAKDGAGAGTIPDPFGGPGRSPTMLATDLSLRVDPIYERITRRWLEHPEELADEFAKAWYKLIHRDMGPVARYLGPLVPKQTLLWQDPVPAVSHDLVGEAEIASLKSQIRASGLTVSQLVSTAWAAASSFRGSDKRGGANGGRIRLQPQVGWEVNDPDGDLRKVIRTLEEIQESFNSAAPGNIKVSFADLVVLGGCAAIEKAAKAAGHNITVPFTPGRTDASQEQTDVESFAVLEPKADGFRNYLGKGNPLPAEYMLLDKANLLTLSAPEMTVLVGGLRVLGANYKRLPLGVFTEASESLTNDFFVNLLDMGITWEPSPADDGTYQGKDGSGKVKWTGSRVDLVFGSNSELRALVEVYGADDAQPKFVQDFVAAWDKVMNLDRFDVR"}}}}}}}, "1175": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"4733": {"dna_sequence": {"fmax": "1010292", "fmin": "1008840", "accession": "CP013009.1", "strand": "-", "sequence": "GTGGTATCTAGTATTATAACCGCCCTTTATCTATTAAATGCACTTATTGCTTTGGTGGCTATTTTGATCAAACCCCGAGATGTAGCAGCCATTTGGGCATGGCTCTTAGTATTATTTGCCCTTCCTGGGGTGGGCTTTGTATTATATTTATTTTTCGGACGTGGATTAACGGATAAGAAAAAATTCTATCTCCGACAAAGTGACTTGAAAGAATTAGAAAACTTTCAGTCTTTTAGAGGAGATACCATTGAACATTACGATCCTGACATGGGCGATAAAGACAAACAGCAATTTGTTGACTTCTTCTCTTCATTAAATCGTATGCCGCTGACAAGAATGAATTCTGTCACTCTTCTCACAGACGGACAAGAGAAATTGGATTCACTGCTTCAAGATCTAAAAAAAGCCAAACATTCGATCCATATCGAATATTACGCATTTGTGACAGATAATATCGGCCAGCAAGTCTTACATGTTTTAGAAGAAAAAGCCGCAGAAGGCGTGGAAGTTCGAATATTATATGATGCATTTGGCTCTCATGGCACAAAAGCAAAAGATTTCAATCGTCTAATCAAAAATGGTGGACATGTCCATACATTTGTTACCTCACAAAGGGCATTACTTCGTTTCCGATTGAATTACCATGATCACCGAAAAATCGTTGTGATCGATGGAAAGATTAGTTATACCGGTGGTTTCAATATTGCCAATCAATATGTAAATACAACAAAAAAATTCGGCTATTGGCGCGATACGCATATACGGATTTTCGGTGCCGCTTCTTCTTTGCTCCAGCTTCGCTTCTTAACAGACTGGAACGTCTCGGTACCTGAAGAAAAAAAGGTCGGCTATCATTTGAATTATTTCTTTAAAAAAGCAGATCGAGATGAATCTAAGCTTGCTGATACATCCATCCAGCTTGTTTCAAGCGGACCGAATAACGAAAGGGAACAAATCAAGCTTTCATTTATCAAATTGATTACTTCTGCTAAAAAACGTGTTTGGATACAGACACCTTACCTTGTTCCTGATGAAAGTGTCATTGCTGCTTTAAAAATCGCAACTGCCTCTGGTGTAGATGTGAAAATCATGATTCCCAACAAACCGGATCATCCTTTTATTTATCGAGCAACACAATATTATGCTCGGCAGCTGATCAAGGAAAATGTACAAATCCTTGTCTATGAGAACGGCTTCCTCCATGCAAAAACATTGATAATGGATGATGAAATCTGCATGGTAGGTTCAGCAAATCAAGATATTCGTAGCTACCGATTGAATTTTGAAACAAGTGCTGTCATTTACGATCCTGAGTTTTTAGAAGAACTTGCTACTCAGTTCAAAGAAGATGAGACACATTGTTCATCCATGACAACTGAAACAGTCAAGGAAATGTCTAACTGGCTATTATTCAAGCAACAAATTTCTCGATTATTTTCTCCAATCCTATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Enterococcus faecium", "NCBI_taxonomy_id": "1352", "NCBI_taxonomy_cvterm_id": "36779"}, "protein_sequence": {"accession": "ALL09868.1", "sequence": "MVSSIITALYLLNALIALVAILIKPRDVAAIWAWLLVLFALPGVGFVLYLFFGRGLTDKKKFYLRQSDLKELENFQSFRGDTIEHYDPDMGDKDKQQFVDFFSSLNRMPLTRMNSVTLLTDGQEKLDSLLQDLKKAKHSIHIEYYAFVTDNIGQQVLHVLEEKAAEGVEVRILYDAFGSHGTKAKDFNRLIKNGGHVHTFVTSQRALLRFRLNYHDHRKIVVIDGKISYTGGFNIANQYVNTTKKFGYWRDTHIRIFGAASSLLQLRFLTDWNVSVPEEKKVGYHLNYFFKKADRDESKLADTSIQLVSSGPNNEREQIKLSFIKLITSAKKRVWIQTPYLVPDESVIAALKIATASGVDVKIMIPNKPDHPFIYRATQYYARQLIKENVQILVYENGFLHAKTLIMDDEICMVGSANQDIRSYRLNFETSAVIYDPEFLEELATQFKEDETHCSSMTTETVKEMSNWLLFKQQISRLFSPIL"}}}}}}}, "1174": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1173": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1172": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1171": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"410": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAATAATCAACATTGGTATTCTTGCTCATGTAGATGCAGGAAAGACGACCTTAACGGAAAGTCTGCTTTATACAAGTGGAGCAATTTTAGAATTAGGCAGTGTAGATAAGGGAACAACAAGGACAGATACTATGTTTTTAGAACGTCAGCGTGGAATCACAATTCAGGCAGCAGTTACTTCTTTTAATTGGAATGACTACAAAATCAATATTGTAGATACTCCTGGACATACAGATTTTATAACAGAAGTGTATCGTTCCTTATCTGTTCTTGATGGAGCAATTTTAGTAATTTCTGCTAAAGATGGTGTACAAGCACAAACCCGAATACTATTCCATGCACTTCAAAAAATGAATATACCAACAATTATTTTTATAAATAAAATAGATCAGGATGGAATTAACTTAAATAATATTTATCAAAATATCAAAGAAAAACTTTCAAATGATATTATTGTTATGCAAAATGTAACATTAACTCCAGAAATATCAATTAAAAATATCATTGATTTAGATGATTGGGATCCTGTAATTTCCAAAAATGATAAACTTTTAGAAAAATATATTGTAGGAGAAAAATTGACTATACAAGAATTAATGTATGAAGAATATAGGTGTGTTAAAAAAGGTTCGTTGTTTCCTATATACCATGGAAGTGCTAGAAATAATATAGGGACTCAACAACTTATCGAAGCTATTTCAAATCTTTTTTGTTCTGAAATGAATGAGAATGATTCAGAACTATGTGGAAGAGTTTTTAAAATTGAATATACAGACCATAAGCAAAGATTAGTTTATTTGCGTCTTTATAGTGGAACATTACACTTACGAGATACAATTATATTGCCAGAAAAAAAGAAAGTGAAACTTACAGAAATATATATTCCTTCAAATGGAGAAATGATACAGACAAAAACAGTTTGTTCTGGAGATATTTTTATTATACCTAACAATACATTAAGATTGAACGATATTATAGGAAATGAAAAGCTTTTGCCATGCAATGTATGGAATGACAAGACTGTACCAATACTACGAACAAGAATTGAACCGATAAAAATAGAAGAGAGAGAAAAATTATTGGATGCTCTTACAGAAATTGCAGATACTGATCCTCTTTTACGTTATTATGTTGATACGATAACACATGAAATCATCATTTCTTTTTTAGGAACAGTGCAGTTAGAAGTTATCTGTTCTCTGTTGATTGAAAAATATCACATAAACATAAGAATCGAAGATCCAACCGTAATTTATTTGGAAAAACCATTACAAAAGGCAGATTATACTATTCATATTGAAGTACCACCAAATCCATTTTGGGCATCGATTGGATTATCAATAACTCCACTTCCAATTGGCAGTGGAATACAGTACGAAAGCAAAGTTTCACTCGGTTATTTAAATCAAAGTTTCCAAAATGCAGTAAGAGAAGGTATTAATTATGGACTGGAGCAAGGTTTGTATGGTTGGGAAGTAACAGATTGTAAAATATGTTTTGAATATGGTGTTTATTATAGCCCTGTTAGTACTCCCTCGGATTTTCGCTTTCTTGCCCCAATTGTACTTGAACAAACATTGAAAAAAGCGGGAACGCAATTATTAGAGCCATATCTTTCGTTTATACTTTTTACGCCACAGGGATACTTTTCTCGTGCATATAAAGATGCACAAAAACATTGTGCAATAATTGAAACAAGTCAATCAAAAAATGATGAAGTTATTTTTACAGGACATATTCCTGTACGTTGTATTAATGAATATCGTAATACTTTAACTCTATATACAAATGGGCAAGCAGTTTTTTTGACAGAATTAAAAGATTATCAAATTGCTACTTGTGAACCAGTTATTCAATCACGTAGACCAAATAATCGAATAGATAAAGTACGCCATATGTTTAATAAAAAAGAAAATTAA"}}}}}}}}}}, "1170": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1179": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1178": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"823": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTGGCGATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGTCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATTACGTTACGGATAAAGCCGAATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGTGGTAAAACCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAATTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACAGGATCCACAGGCGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTAATGTTGGCAAACAAAAGCTACCCCAACCCGGCTCGCGTCGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA"}}}}}}}}}}, "511": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "510": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1706": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAGCTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCACAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGCAGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA"}}}}}}}}}}, "1005": {"$update": {"model_sequences": {"$update": {"sequence": {"$update": {"2074": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGAAAAGAAATTACCCCGCATTAAAGCGCTGCTAACCCCCGGCGAAGTGGCGAAACGCAGCGGTGTGGCGGTATCGGCGCTGCATTTCTATGAAAGTAAAGGGTTGATTACCAGTATCCGTAACAGCGGCAATCAGCGGCGATATAAACGTGATGTGTTGCGATATGTTGCAATTATCAAAATTGCTCAGCGTATTGGCATTCCGCTGGCGACCATTGGTGAAGCGTTTGGCGTGTTGCCCGAAGGGCATACGTTAAGTGCGAAAGAGTGGAAACAGCTTTCGTCCCAATGGCGAGAAGAGTTGGATCGGCGCATTCATACCTTAGTGGCGCTGCGTGACGAACTGGACGGATGTATTGGTTGTGGCTGCCTTTCGCGCAGTGATTGCCCGTTGCGTAACCCGGGCGACCGCTTAGGAGAAGAAGGTACCGGCGCACGCTTGCTGGAAGATGAACAAAACTAA"}}}}}}}}}}, "1285": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1284": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1987": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAAAAAGTATTCAGCTTTTGATGATGTCAATGTTTTTAAGCCCATTGATCAATGCCCAGGTTAAAGATTTTGTAATTGAGCCGCCTGTTAAACCCAACCTGTATCTTTATAAAAGTTTCGGAGTTTTCGGGGGTAAAGAATATTCTGCCAATGCTGTATATCTTACCACTAAGAAAGGAGTGGTCTTATTTGATGTCCCATGGCAAAAGGAACAATATCAAACCCTTATGGACACTATACAAAAGCGTCATCACCTTCCTGTAATTGCTGTATTTGCCACCCACTCTCATGATGACAGAGCGGGCGATCTAAGCTTTTACAATCAAAAAGGAATTAAAACATATGCGACCGCCAAGACCAATGAACTGTTGAAAAAAGACGGAAAAGCAACCTCAACCGAAATTATAAAAACAGGAAAACCTTACAAAATTGGTGGTGAAGAATTTATGGTAGACTTTCTTGGAGAAGGACATACAGTTGATAATGTTGTTGTACGGTTCCCCAAATATAAAGTACTGGACGGAGGATGTCTTGTAAAAAGCAGGACAGCCACTGACCTGGGATATACCGGTGAAGCAAACGTAAAACAATGGCCGGAAACCATGCGAAAACTAAAAATGAAATATGCTCAGGCTACTCTGGTAATCCCGGGACACGACGAATGGAAAGGCGGTGGTCATGTACAGCATACTCTGGATCTTCTGGATAAGAATAAAAAGCCGGAATAA"}}}}}}}}}}, "1287": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1665": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAGAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGAATCTC"}}}}}}}}}}, "512": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1088": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTCCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGGCTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA"}}}}}}}}}}, "1281": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1280": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"176": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGACTCTGGCATTAGTTGGCGAAAAAATTGACAGAAACAGATTCACTGGTGCGAAAGTTGAAAATAGCACATTTTTCAACTGTGATTTTTCGGGTGCCGACCTCAGCGGCACTGAGTTTATTGGCTGTCAGTTCTATGATCGAGAGAGCCAGAAAGGGTGTAATTTTAGTCGCGCTATCCTGAAAGATGCCATTTTCAAAAGTTGTGATCTCTCCATGGCGGATTTCAGGAATGTGAGCGCGCTGGGAATCGAAATTCGCCACTGCCGCGCACAAGGTTCAGATTTTCGCGGCGCAAGCTTTATGAATATGATTACCACACGCACCTGGTTTTGTAGCGCCTATATCACCAATACCAACTTAAGCTACGCCAACTTTTCAAAAGTCGTACTGGAAAAGTGCGAGCTGTGGGAAAACCGTTGGATGGGTACTCAGGTACTGGGGGCGACGTTCAGTGGTTCAGATCTTTCCGGCGGTGAGTTTTCGTCGTTCGACTGGCGGGCCGCAAACTTTACGCACTGTGATTTGACCAATTCAGAACTGGGCGATCTCGATGTCCGGGGTGTTGATTTGCAAGGCGTCAAACTGGACAGCTACCAGGCATCGTTGATCCTGGAACGTCTTGGCATCGCTGTCATTGGTTAA"}}}}}}}}}}, "1283": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1282": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "515": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1289": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1288": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "514": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1579": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1578": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "689": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1254": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGTGGCTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA"}}}}}}}}}}, "688": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1039": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCAACAACGACAATCCATCCTGTGGGGCGCTCTGGCCACCCTGATGTGGGCCGGTCTGGCCCATGCAGGTGAGACTTCACCGGTCGATCCCCTGCGCCCCGTGGTGGATGCCAGCATCCGGCCGCTGCTCAAGGAGCACAGGATCCCGGGCATGGCGGTGGCCGTGCTCAAGGATGGCAAGGCCCACTATTTCAACTACGGTGTGGCCGATCGGGAGCGCGCAGTCGGTGTCAGCGAGCAGACCCTGTTCGAGATAGGCTCCGTGAGCAAGCCCCTGACCGCGACCCTAGGAGCCTATGCGGTGGTCAAGGGAGCGATGCAACTGGATGACAAGGCGAGCCGGCACGCCCCCTGGCTCAAGGGATCCGCCTTTGACAGCATCACCATGGGGGAGCTGGCTACCTACAGCGCGGGCGGCTTGCCGCTGCAATTCCCCGAGGAGGTGGATTCGCTCGAGAAGATGCAGGCCTACTACCGCCAGTGGACCCCAGCCTACTCGCCGGGTTCCCATCGCCAGTACTCTAACCCCAGCATAGGGCTGTTCGGCCACCTGGCGGCGAGCAGCATGAAGCAGCCGTTTGCCCAGTTGATGGAGCAGACGCTCCTGCCGGGGCTTGGCCTGCACCACACCTATGTCAATGTGCCGAAGCAGGCCATGGCGAGTTATGCCTATGGCTATTCGAAAGAGGACAAGCCCATCAGGGTCAGCCCCGGCATGCTGGCGGACGAGGCCTACGGCATCAAGACCAGCTCGGCGGATCTGCTGCGCTTTGTGAAGGCCAACATCAGCGGGGTTCATGACAAGGCGTTGCAGCAGGCCATCTCCCTGACCCACAAAGGGCACTACTCGGTAGGCGGGATGACCCAGGGACTGGGTTGGGAGAGTTACGCCTATCCCGTCAGCGAGCAGACATTGCTGGCGGGCAATTCGGCCAAGGTGATCCTCGAAGCCAATCCGACGGCGGCGCCCCGGGAGTCGGGGAGCCAGATGCTCTTCAACAAGACCGGCTCGACCAGCGGCTTCGGCGCCTATGTGGCCTTCGTGCCGGCCAAAGGGATCGGCATCGTCATGCTGGCCAACCGCAACTATCCTATCCCGGCCAGGGTGAAAGCGGCCCACGCCATCCTGACGCAACTGGCCAGGTAA"}}}}}}}}}}, "685": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "684": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "687": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"470": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGTACGCCATGTTGCGCCGGAAATACCAGCACTACGAATGGACCTCCGTGAACGAAGGAGATTCGGGCGCCTCCGTTTACCGCCTCGCCGGACAGCAGCCCGAGCTCTATGTGAAATTCGCTCCGCGCGAACCGGAAAATTCCGCGTTCGACCTGGCGGGCGAGGCCGACCGGCTCACCTGGCTCACCCGCCACGGCATCCCGGTTCCGTGCATTGTCGAGTGCGGCGGCGACGACACCTCGGTTTTCCTCGTCACCGAGGCCGTCACCGGCGTATCGGCCGCCGAGGAGTGGCCGGAGCACCAGCGCTTCGCCGTCGTCGAGGCGATGGCCGACCTCGCCCGCACCCTGCACGAACTGCCCGTTGGTGGCTGCCCCTTCGATCGCAGCCTGGCGGTGACGGTTGCCGAAGCCCGCCACAACCTACGCGAGGGCCTCGTGGACCTGGACGACCTCCAAGAGGAGCACGCCAACTGGTCCGGTGACCAGCTTCTCGCCGAGCTCGACCGAACGCGGCCCGAGAAAGAGGATCTGGTCCTCTGCCACGGGGACCTGTGCCCCAACAACGTGCTGCTCGATCCCGAGACATGCCGAGTCACCGGAATGATCGATGTGGGCCGCCTCGGCCGCGCCGATCGCCACGCCGACCTGGCCCTCGCCGCCCGCGAGCTGGAGATCGACGAGGATCCCTGGTTTGGCCCCGAGTACGCCCAGCGGTTCCTCGAACGCTACGGCGCGCACCACGTCGACGAGAACAAGATGGCCTTTTACCAGCTGCTCGACGAGTTTTTCTAG"}}}}}}}}}}, "686": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"967": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCGTGTATTAGCCTTATCGGCTGTGTTTTTGGTGGCATCGATTATCGGAATGCCTGCGGTAGCAAAGGAATGGCAAGAAAACAAAAGTTGGAATGCTCACTTTACTGAACATAAATCACAGGGCGTAGTTGTGCTCTGGAATGAGAATAAGCAGCAAGGATTTACCAATAATCTTAAACGGGCGAACCAAGCATTTTTACCCGCATCTACCTTTAAAATTCCCAATAGCTTGATCGCCCTCGATTTGGGCGTGGTTAAGGATGAACACCAAGTCTTTAAGTGGGATGGACAGACGCGCGATATCGCCACTTGGAATCGCGATCATAATCTAATCACCGCGATGAAATATTCAGTTGTGCCTGTTTATCAAGAATTTGCCCGCCAAATTGGCGAGGCACGTATGAGCAAGATGCTACATGCTTTCGATTATGGTAATGAGGACATTTCGGGCAATGTAGACAGTTTCTGGCTCGACGGTGGTATTCGAATTTCGGCCACGGAGCAAATCAGCTTTTTAAGAAAGCTGTATCACAATAAGTTACACGTATCGGAGCGCAGCCAGCGTATTGTCAAACAAGCCATGCTGACCGAAGCCAATGGTGACTATATTATTCGGGCTAAAACTGGATACTCGGCTAGAATCGAACCTAAGATTGGCTGGTGGGTCGGTTGGGTTGAACTTGATGATAATGTGTGGTTTTTTGCGATGAATATGGATATGCCCACATCGGATGGTTTAGGGCTGCGCCAAGCCATCACAAAAGAAGTGCTCAAACAGGAAAAAATTATTCCCTAG"}}}}}}}}}}, "681": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "680": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "683": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1587": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGCATGGCCGTGGCAATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAATTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATGACGTTACGGATAAAGCCGAATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTATGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGTGGTAAAACCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAATTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACAGGTGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATAGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGCGTCGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA"}}}}}}}}}}, "682": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1227": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1226": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1240": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4721": {"dna_sequence": {"fmax": "72986", "fmin": "72074", "accession": "ACMJ01000036.1", "strand": "-", "sequence": "TTGGAGGAAATAAAAATGAACACACTTAAAATTAAACAATTAGCAACTAAGGAAGGCCTAAATATCTTAGAAGATTCAATAAAAATCAATGAATCTGGTGTTGACTTTCAAGTAGCACACGCTAAAGAACAAAACGGAGATAAATGGATACTAAGAATTCCTCGTAGACCAGAATCTATGAGACATGTCCTACAAGAAAAAAAGGCATTGGAAATCATAAAAAACCATGCAGGATTCCAAGTTCCTGATTGGTCTATATTCACTGAAGACTTAATTGCCTATAAGCAACTAAGTGGCGTTCCTGCCGCCACTATTGATATAGAACAACAAGGATATATATGGAGCTTTAATGAAAAAAACGCACCATCTGAATACCATATTTCATTAGGAAAAGTTCTAGCGAATTTACACTCATTACCTCAACAAGAATTTAATAATATCGGTATTGAAATTCTTACTGCTAATGAATTAAGAGCTTCTATGGAACAAAGGATGAATCGAGTGAAGGAACAATACTATGTCAATCAAAAATTATGGGATCGTTGGCAAGCATGGCTAACTGAAGATTCTTTTTGGCCATCTCATGTAGGAGTAACGCATGGGGATATACATCCAGGTCATATCCTGATTGATAAGAAAAATAATGTAACTGGCTTAATCGATTGGACAGAAGTAGGGATAGCTGATGTTTCTATAGATTTCACATCACATTATCTGCTCTTTGGGAAAGATGGACTAACAAAGTTAATTAGCTCTTATGACAATGCTGGTGGTAAAACTTGGTCAAGAATGGATGAACATATTATCGAACTTCTAACAACAAGTAGTATCACTGTTGCTGAATATGCTCAAGTGTCAGGTTTGAAAGAGATGCATGAAGCAGCTGTACACATGCTAGCAACTGAAAGTTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Bacillus cereus Rock3-29", "NCBI_taxonomy_id": "526984", "NCBI_taxonomy_cvterm_id": "39617"}, "protein_sequence": {"accession": "EEL41021.1", "sequence": "MEEIKMNTLKIKQLATKEGLNILEDSIKINESGVDFQVAHAKEQNGDKWILRIPRRPESMRHVLQEKKALEIIKNHAGFQVPDWSIFTEDLIAYKQLSGVPAATIDIEQQGYIWSFNEKNAPSEYHISLGKVLANLHSLPQQEFNNIGIEILTANELRASMEQRMNRVKEQYYVNQKLWDRWQAWLTEDSFWPSHVGVTHGDIHPGHILIDKKNNVTGLIDWTEVGIADVSIDFTSHYLLFGKDGLTKLISSYDNAGGKTWSRMDEHIIELLTTSSITVAEYAQVSGLKEMHEAAVHMLATES"}}}}}}}, "621": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_category": {"$insert": {"37021": {"category_aro_name": "virginiamycin S2", "category_aro_cvterm_id": "37021", "category_aro_accession": "3000677", "category_aro_class_name": "Antibiotic", "category_aro_description": "Virginiamycin S2 is a streptogramin B antibiotic."}, "37023": {"category_aro_name": "vernamycin C", "category_aro_cvterm_id": "37023", "category_aro_accession": "3000679", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin C is a streptogramin B antibiotic."}, "37026": {"category_aro_name": "ostreogrycin B3", "category_aro_cvterm_id": "37026", "category_aro_accession": "3000682", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid."}}}}}, "873": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1224": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4725": {"dna_sequence": {"fmax": "2293", "fmin": "1282", "accession": "AF079138.1", "strand": "-", "sequence": "ATGGCAATGCGCGACTCCATACCGAGGCGAGCGGACCGCGACACCCTTCGCCGCGAATTAGGCCAGAACTTCCTTCAGGACGACAGAGCCGTGCGCAATCTCGTCACGCATGTCGAGGGGGACGGTAGGAACGTTCTCGAAATCGGCCCCGGAAAGGGCGCGATAACCGAGGAGTTGGTGCGCTCCTTCGACACCGTGACGGTCGTGGAGATGGACCCGCACTGGGCCGCGCATGTGCGGCGGAAATTCGAAGGGGAGAGGGTCACCGTATTCCAGGGTGATTTCCTCGACTTCCGCATTCCGCGCGATATCGACACCGTCGTCGGAAACGTTCCCTTCGGCATCACGACCCAGATTCTCCGGAGTCTCCTGGAATCGACGAACTGGCAGTCGGCGGCCCTGATAGTGCAGTGGGAGGTCGCCCGCAAACGCGCCGGTCGCAGCGGCGGATCGCTCCTCACGACCTCCTGGGCCCCCTGGTACGAGTTCGCGGTCCACGACCGCGTCCGCGCCTCGTCGTTCCGTCCGATGCCCCGCGTCGACGGCGGCGTCCTGACGATCAGGCGACGCCCCCAGCCCCTGCTGCCCGAGAGCGCGAGCCGCGCCTTCCAGAACTTCGCCGAAGCCGTCTTCACCGGCCCCGGACGGGGCCTCGCGGAGATCCTCCGGCGCCACATCCCCAAGCGGACCTACCGTTCCCTCGCCGACCGCCACGGAATTCCGGACGGCGGACTGCCGAAGGACCTCACGCTCACCCAATGGATCGCCCTTTTCCAGGCCTCCCAGCCGAGTTACGCGCCGGGGGCGCCCGGCACGCGCATGCCGGGCCAGGGCGGTGGCGCCGGCGGCAGGGACTATGACTCGGAGACGAGCAGGGCCGCCGTGCCCGGGAGCCGCAGATACGGCCCCACGCGCGGCGGCGAACCCTGCGCACCCCGCGCACAGGTCCGGCAGACCAAGGGCCGCCAGGGCGCGCGAGGCTCGTCGTACGGACGCCGCACGGGCCGTTAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Streptomyces venezuelae", "NCBI_taxonomy_id": "54571", "NCBI_taxonomy_cvterm_id": "36873"}, "protein_sequence": {"accession": "AAC69328.1", "sequence": "MAMRDSIPRRADRDTLRRELGQNFLQDDRAVRNLVTHVEGDGRNVLEIGPGKGAITEELVRSFDTVTVVEMDPHWAAHVRRKFEGERVTVFQGDFLDFRIPRDIDTVVGNVPFGITTQILRSLLESTNWQSAALIVQWEVARKRAGRSGGSLLTTSWAPWYEFAVHDRVRASSFRPMPRVDGGVLTIRRRPQPLLPESASRAFQNFAEAVFTGPGRGLAEILRRHIPKRTYRSLADRHGIPDGGLPKDLTLTQWIALFQASQPSYAPGAPGTRMPGQGGGAGGRDYDSETSRAAVPGSRRYGPTRGGEPCAPRAQVRQTKGRQGARGSSYGRRTGR"}}}}}}}, "627": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"$update": {"2096": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGTTTACTCCTATACCGAGAAAAAACGTATTCGTAAGGATTTTGGTAAACGTCCACAAGTTCTGGATGTACCTTATCTCCTTTCTATCCAGCTTGACTCGTTTCAGAAATTTATCGAGCAAGATCCTGAAGGGCAGTATGGTCTGGAAGCTGCTTTCCGTTCCGTATTCCCGATTCAGAGCTACAGCGGTAATTCCGAGCTGCAATACGTCAGCTACCGCCTTGGCGAACCGGTGTTTGACGTCCAGGAATGTCAAATCCGTGGCGTGACCTATTCCGCACCGCTGCGCGTTAAACTGCGTCTGGTGATCTATGAGCGCGAAGCGCCGGAAGGCACCGTAAAAGACATTAAAGAACAAGAAGTCTACATGGGCGAAATTCCGCTCATGACAGACAACGGTACCTTTGTTATCAACGGTACTGAGCGTGTTATCGTTTCCCAGCTGCACCGTAGTCCGGGCGTCTTCTTTGACTCCGACAAAGGTAAAACCCACTCTTCGGGTAAAGTGCTGTATAACGCGCGCATCATCCCTTACCGTGGTTCCTGGCTGGACTTCGAATTCGATCCGAAGGACAACCTGTTCGTACGTATCGACCGTCGCCGTAAACTGCCTGCGACCATCATTCTGCGTGCCCTGAACTACACCACAGAGCAGATCCTCGACCTGTTCTTTGAAAAAGTTATCTTTGAAATCCGTGATAACAAGCTGCAGATGGAACTGGTGCCGGAACGCCTGCGTGGTGAAACCGCATCCTTTGACATCGAAGCTAACGGTAAAGTGTACGTAGAAAAAGGCCGCCGTATCACTGCGCGCCACATTCGCCAGCTGGAAAAAGACGACGTCAAACTGATCGAAGTCCCGGTTGAGTACATCGCAGGTAAAGTGGTTGCTAAAGACTATATTGATGAGTCTACCGGCGAGCTGATCTGCGCAGCGAACATGGAGCTGAGCCTGGATCTGCTGGCTAAGCTGAGCCAGTCTGGTCACAAGCGTATCGAAACGCTGTTCACCAATGATCTGGATCACGGCCCGTATATCTCTGAAACCTTACGTGTCGACCCAACTAACGACCGTCTGAGCGCACTGGTAGAAATCTACCGCATGATGCGCCCTGGCGAGCCGCCGACTCGTGAAGCAGCGGAAAGCCTGTTCGAGAACCTGTTCTTCTCCGAAGACCGTTATGACCTGTCTGCGGTTGGTCGTATGAAGTTCAACCGTTCTCTGCTGCGCGAAGAAATCGAAGGTTCTGGTATCCTGAGCAAAGACGACATCATTGATGTTATGAAAAAGCTCATCGATATCCGTAACGGTAAAGGCGAAGTCGATGATATCGACCACCTCGGCAACCGTCGTATCCGTTCCGTTGGCGAAATGGCGGAAAACCAGTTCCGCGTTGGCCTGGTACGTGTAGAGCGTGCGGTGAAAGAGCGTCTGTCTCTGGGCGATCTGGATACCCTGATGCCTCAGGATATGATCAACGCCAAGCCGATTTCCGCAGCAGTGAAAGAGTTCTTCGGTTCCAGCCAGCTGTCTCAGTTTATGGACCAGAACAACCCGCTGTCTGAGATTACGCACAAACGTCGTATCTCCGCACTCGGCCCAGGCGGTCTGACCCGTGAACGTGCAGGCTTCGAAGTTCGAGACGTACACCCGACTCACTACGGTCGCGTATGTCCAATCGAAACCCCTGAAGGTCCGAACATCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGACTAACGAATACGGCTTCCTTGAGACTCCGTATCGTAAAGTGACTGACGGTGTTGTAACTGACGAAATTCACTACCTGTCTGCTATCGAAGAAGGCAACTACGTTATCGCCCAGGCGAACTCCAACCTGGATGAAGAAGGCCACTTCGTAGAAGACCTGGTAACCTGCCGTAGCAAAGGCGAATCCAGCTTGTTCAGCCGTGACCAGGTTGACTACATGGACGTATCCACCCAGCAGGTGGTATCCGTCGGTGCGTCCCTGATCCCGTTCCTGGAACACGATGACGCCAACCGTGCATTGATGGGTGCGAACATGCAACGTCAGGCCGTTCCGACTCTGCGTGCTGATAAGCCGCTGGTTGGTACTGGTATGGAACGTGCTGTTGCCGTTGACTCCGGTGTAACTGCGGTTGCTAAACGTGGTGGTGTCGTTCAGTACGTGGATGCTTCCCGTATCGTTATCAAAGTTAACGAAGACGAGATGTATCCGGGTGAAGCAGGTATCGACATCTACAACCTGACCAAATACACCCGTTCTAACCAGAACACCTGTATTAACCAGATGCCGTGTGTGTCTCTGGGTGAACCGGTTGAACGTGGCGACGTGCTGGCAGACGGTCCGTCCACCGACCTCGGTGAACTGGCGCTTGGTCAGAACATGCGCGTAGCGTTCATGCCGTGGAATGGTTACAACTTCGAAGACTCCATCCTCGTATCCGAGCGTGTTGTTCAGGAAGACCGTTTCACCACCATCCACATTCAGGAACTGGCGTGTGTGTCCCGTGACACCAAGCTGGGGCCAGAAGAGATCACCGCTGACATCCCGAACGTGGGTGAAGCTGCGCTCTCCAAACTGGATGAATCCGGTATCGTTTATATTGGTGCGGAAGTGACCGGTGGCGACATTCTGGTTGGTAAGGTTACGCCGAAAGGTGAAACTCAGCTGACCCCAGAAGAAAAACTGCTGCGTGCGATCTTCGGTGAGAAAGCGTCTGACGTTAAAGACTCTTCTCTGCGCGTACCAAACGGTGTATCCGGTACGGTTATCGACGTTCAGGTCTTTACTCGCGATGGCGTAGAAAAAGACAAACGTGCGCTGGAAATCGAAGAAATGCAGCTCAAACAGGCGAAGAAAGACCTGTCTGAAGAACTGCAGATCCTCGAAGCGGGTCTGTTCAGCCGTATCCGTGCTGTGCTGGTAGCCGGTGGCGTTGAAGCTGAGAAGCTCGACAAATTGCCGCGCGATCGCTGGCTGGAGCTGGGCCTGACCGACGAAGAGAAACAAAATCAGCTGGAACAGCTGGCTGAGCAGTATGACGAACTGAAACACGAGTTCGAGAAGAAACTCGAAGCGAAACGCCGCAAAATCACCCAGGGCGACGATCTGGCACCGGGCGTGCTGAAGATTGTTAAGGTATATCTGGCGGTTAAACGCCGTATCCAGCCTGGTGACAAGATGGCAGGTCGTCACGGTAACAAGGGTGTAATTTCTAAGATCAACCCGATCGAAGATATGCCTTACGATGAAAACGGTACGCCGGTAGACATCGTACTGAACCCGCTGGGCGTACCGTCTCGTATGAACATCGGTCAGATCCTCGAAACCCACTTGGGTATGGCTGCGAAAGGTATCGGCGACAAGATCAACGCCATGCTGAAACAGCAGCAGGAAGTCGCGAAACTGCGTGAATTCATCCAGCGTGCGTACGATCTGGGCGCTGACGTTCGTCAGAAAGTTGACCTGAGTACCTTCAGCGATGAAGAAGTTATGCGTCTGGCTGAAAACCTGCGCAAAGGTATGCCAATCGCAACGCCGGTGTTCGACGGTGCGAAAGAAGCAGAAATTAAAGAGCTGCTGAAACTTGGCGACCTGCCGACTTCTGGTCAGATCCGCCTGTACGACGGCCGCACTGGTGAACAGTTCGAACGTCCGGTAACCGTTGGTTACATGTACATGCTGAAACTGAACCACCTGGTCGACGACAAGATGCACGCGCGTTCCACCGGTTCTTACAGCCTGGTTACTCAGCAGCCGCTGGGTGGTAAGGCACAGTTCGGTGGTCAGCGTTTCGGGGAGATGGAAGTGTGGGCGCTGGAAGCATACGGCGCAGCATACACCCTGCAGGAAATGCTCACCGTTAAGTCTGATGACGTGAACGGTCGTACTAAGATGTATAAAAACATCGTGGACGGCAACCATCAGATGGAGCCGGGCATGCCAGAATCCTTCAACGTATTGTTGAAAGAGATTCGTTCGCTGGGTATCAACATCGAACTGGAAGACGAGTAA"}}}}}}}}}}, "1222": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1221": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1049": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAAAATTTATACTTCCTATTCTCAGCATTTCTACTCTACTTTCTGTCAGTGCATGCTCATCTATTCAAACTAAATTTGAAGACACTTTTCATACTTCTAATCAGCAACATGAAAAAGCCATTAAAAGCTATTTTGATGAAGCTCAAACACAGGGTGTAATCATTATTAAAAAGGGAAAAAATATTAGTACCTATGGTAATAACCTGACACGAGCACATACAGAATATGTCCCTGCATCAACATTTAAGATGCTAAATGCCTTAATTGGACTAGAAAATCATAAAGCTACAACAACTGAGATTTTCAAATGGGACGGTAAAAAGAGATCTTATCCCATGTGGGAAAAAGATATGACTTTAGGTGATGCCATGGCACTTTCAGCAGTTCCTGTATATCAAGAACTTGCAAGACGGACTGGCTTAGACCTAATGCAAAAAGAAGTTAAACGGGTTGGTTTTGGTAATATGAACATTGGAACACAAGTTGATAACTTCTGGTTGGTTGGCCCCCTCAAGATTACACCAATACAAGAGGTTAATTTTGCCGATGATTTTGCAAATAATCGATTACCCTTTAAATTAGAGACTCAAGAAGAAGTTAAAAAAATGCTTCTGATTAAAGAATTCAATGGTAGTAAAATTTATGCAAAAAGCGGCTGGGGAATGGCTGTAACCCCTCAAGTAGGTTGGTTAACAGGTTGGGTAGAAAAATCTAATGGAGAAAAAGTTGCCTTTTCTCTAAACATAGAAATGAAGCAAGGAATGCCTGGTTCTATTCGTAATGAAATTACTTATAAATCATTAGAGAATTTAGGGATTATATAA"}}}}}}}}}}, "624": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"4581": {"dna_sequence": {"fmax": "2276805", "fmin": "2273268", "accession": "AL450380", "strand": "-", "sequence": "GTGCTGGAAGGATGCATCTTGCCAGATTTCGGCCAGAGCAAGACAGACGTTAGTCCTAGCCAGAGTCGCCCCCAAAGTTCGCCCAACAACTCCGTGCCCGGCGCGCCCAACCGAATTTCATTTGCCAAGCTCCGCGAACCGCTTGAGGTTCCGGGGCTACTTGATGTGCAGACTGATTCATTTGAGTGGTTGATCGGATCGCCGTGCTGGCGTGCAGCGGCCGCAAGCCGCGGCGATCTCAAGCCGGTGGGTGGTCTCGAAGAGGTGCTCTACGAGCTGTCGCCGATCGAGGATTTCTCCGGCTCAATGTCATTGTCTTTCTCCGATCCCCGTTTTGACGAAGTCAAGGCGCCCGTCGAAGAGTGCAAAGACAAGGACATGACGTACGCGGCCCCGCTGTTCGTCACGGCCGAGTTCATCAACAACAACACCGGGGAGATCAAGAGCCAGACGGTGTTTATGGGCGACTTCCCTATGATGACTGAGAAGGGAACCTTCATCATCAACGGGACCGAGCGTGTCGTCGTTAGCCAGCTGGTGCGCTCCCCTGGAGTATACTTCGACGAGACGATCGACAAGTCCACAGAAAAGACGCTGCATAGTGTCAAGGTGATTCCCAGCCGCGGTGCCTGGTTGGAATTCGATGTCGATAAACGCGACACCGTCGGTGTCCGCATTGACCGGAAGCGCCGGCAACCCGTCACGGTGCTTCTCAAAGCGCTAGGTTGGACCAGTGAGCAGATCACCGAGCGTTTCGGTTTCTCCGAGATCATGCGCTCGACGCTGGAGAAGGACAACACAGTTGGCACCGACGAGGCGCTGCTAGACATCTATCGTAAGTTGCGCCCAGGTGAGCCGCCGACTAAGGAGTCCGCGCAGACGCTGTTGGAGAACCTGTTCTTCAAGGAGAAACGCTACGACCTGGCCAGGGTTGGTCGTTACAAGGTCAACAAGAAGCTCGGGTTGCACGCCGGTGAGTTGATCACGTCGTCCACGCTGACCGAAGAGGATGTCGTCGCCACCATAGAGTACCTGGTTCGTCTGCATGAGGGTCAGTCGACAATGACTGTCCCAGGTGGGGTAGAAGTGCCAGTGGAAACTGACGATATCGACCACTTCGGCAACCGCCGGCTGCGCACGGTCGGCGAATTGATCCAGAACCAGATCCGGGTCGGTATGTCGCGGATGGAGCGGGTGGTCCGGGAGCGGATGACCACCCAGGACGTCGAGGCGATCACGCCGCAGACGCTGATCAATATCCGTCCGGTGGTCGCCGCTATCAAGGAATTCTTCGGCACCAGCCAGCTGTCGCAGTTCATGGATCAGAACAACCCTCTGTCGGGCCTGACCCACAAGCGCCGGCTGTCGGCGCTGGGCCCGGGTGGTTTGTCGCGTGAGCGTGCCGGGCTAGAGGTCCGTGACGTGCACCCTTCGCACTACGGCCGGATGTGCCCGATCGAGACTCCGGAGGGCCCGAACATAGGTCTGATCGGTTCATTGTCGGTGTACGCGCGGGTCAACCCCTTCGGGTTCATCGAAACACCGTACCGCAAAGTGGTTGACGGTGTGGTCAGCGACGAGATCGAATACTTGACCGCTGACGAGGAAGACCGCCATGTCGTGGCGCAGGCCAACTCGCCGATCGACGAGGCCGGCCGCTTCCTCGAGCCGCGCGTGTTGGTGCGCCGCAAGGCGGGCGAGGTGGAGTACGTGGCCTCGTCCGAGGTGGATTACATGGATGTCTCGCCACGCCAGATGGTGTCGGTGGCCACAGCGATGATTCCGTTCCTTGAGCACGACGACGCCAACCGTGCCCTGATGGGCGCTAACATGCAGCGCCAAGCGGTTCCGTTGGTGCGCAGCGAAGCACCGTTGGTGGGTACCGGTATGGAGTTGCGCGCGGCCATCGACGCTGGCCACGTCGTCGTTGCGGAGAAGTCCGGGGTGATCGAGGAGGTTTCCGCCGACTACATCACCGTGATGGCCGATGACGGCACCCGGCGGACTTATCGGATGCGTAAGTTCGCGCGCTCCAACCACGGCACCTGCGCCAACCAGTCCCCGATCGTGGATGCGGGGGATCGGGTCGAGGCCGGCCAAGTGATTGCTGACGGTCCGTGCACTGAGAACGGCGAGATGGCGTTGGGCAAGAACTTGCTGGTGGCGATCATGCCGTGGGAGGGTCACAACTACGAGGATGCGATCATCCTGTCTAACCGACTGGTCGAAGAGGACGTGCTTACTTCGATTCACATTGAGGAGCATGAGATCGACGCCCGTGACACCAAGCTGGGTGCTGAGGAGATCACCCGGGACATTCCCAACGTCTCCGATGAGGTGCTAGCCGACTTGGACGAGCGGGGCATCGTGCGGATTGGCGCGGAGGTTCGTGACGGTGATATCCTGGTTGGCAAGGTCACCCCGAAGGGGGAAACTGAGCTGACACCGGAAGAGCGGTTGCTGCGGGCGATCTTCGGCGAAAAGGCCCGCGAGGTCCGTGACACGTCGCTGAAGGTGCCACACGGCGAATCCGGCAAGGTGATCGGCATTCGGGTGTTCTCCCATGAGGATGACGACGAGCTGCCCGCCGGCGTCAACGAGCTGGTCCGTGTCTACGTAGCCCAGAAGCGCAAGATCTCTGACGGTGACAAGCTGGCTGGGCGGCACGGCAACAAGGGCGTGATCGGCAAGATCCTGCCTGCCGAGGATATGCCGTTTCTGCCAGACGGCACCCCGGTGGACATCATCCTCAACACTCACGGGGTGCCGCGGCGGATGAACGTCGGTCAGATCTTGGAAACCCACCTTGGGTGGGTAGCCAAGTCCGGCTGGAAGATCGACGTGGCCGGCGGTATACCGGATTGGGCGGTCAACTTGCCTGAGGAGTTGTTGCACGCTGCGCCCAACCAGATCGTGTCGACCCCGGTGTTCGACGGCGCCAAGGAAGAGGAACTACAGGGCCTGTTGTCCTCCACGTTGCCCAACCGCGACGGCGATGTGATGGTGGGCGGCGACGGCAAGGCGGTGCTCTTCGATGGGCGCAGCGGTGAGCCGTTCCCTTATCCGGTGACGGTTGGCTACATGTACATCATGAAGCTGCACCACTTGGTGGACGACAAGATCCACGCCCGCTCCACCGGCCCGTACTCGATGATTACCCAGCAGCCGTTGGGTGGTAAGGCACAGTTCGGTGGCCAGCGATTCGGTGAGATGGAGTGCTGGGCCATGCAGGCCTACGGTGCGGCCTACACGCTGCAGGAGCTGTTGACCATCAAGTCCGACGACACCGTCGGTCGGGTCAAGGTTTACGAGGCTATCGTTAAGGGTGAGAACATCCCCGAGCCGGGCATCCCCGAGTCGTTCAAGGTGCTGCTCAAGGAGTTACAGTCGCTGTGTCTCAACGTCGAGGTGCTGTCGTCCGACGGTGCGGCGATCGAGTTGCGCGAAGGTGAGGATGAGGACCTCGAGCGGGCTGCGGCCAACCTCGGTATCAACTTGTCCCGCAACGAATCGGCGTCCATAGAAGATCTGGCTTAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Mycobacterium leprae", "NCBI_taxonomy_id": "1769", "NCBI_taxonomy_cvterm_id": "40074"}, "protein_sequence": {"accession": "CAC30845.1", "sequence": "MLEGCILPDFGQSKTDVSPSQSRPQSSPNNSVPGAPNRISFAKLREPLEVPGLLDVQTDSFEWLIGSPCWRAAAASRGDLKPVGGLEEVLYELSPIEDFSGSMSLSFSDPRFDEVKAPVEECKDKDMTYAAPLFVTAEFINNNTGEIKSQTVFMGDFPMMTEKGTFIINGTERVVVSQLVRSPGVYFDETIDKSTEKTLHSVKVIPSRGAWLEFDVDKRDTVGVRIDRKRRQPVTVLLKALGWTSEQITERFGFSEIMRSTLEKDNTVGTDEALLDIYRKLRPGEPPTKESAQTLLENLFFKEKRYDLARVGRYKVNKKLGLHAGELITSSTLTEEDVVATIEYLVRLHEGQSTMTVPGGVEVPVETDDIDHFGNRRLRTVGELIQNQIRVGMSRMERVVRERMTTQDVEAITPQTLINIRPVVAAIKEFFGTSQLSQFMDQNNPLSGLTHKRRLSALGPGGLSRERAGLEVRDVHPSHYGRMCPIETPEGPNIGLIGSLSVYARVNPFGFIETPYRKVVDGVVSDEIEYLTADEEDRHVVAQANSPIDEAGRFLEPRVLVRRKAGEVEYVASSEVDYMDVSPRQMVSVATAMIPFLEHDDANRALMGANMQRQAVPLVRSEAPLVGTGMELRAAIDAGHVVVAEKSGVIEEVSADYITVMADDGTRRTYRMRKFARSNHGTCANQSPIVDAGDRVEAGQVIADGPCTENGEMALGKNLLVAIMPWEGHNYEDAIILSNRLVEEDVLTSIHIEEHEIDARDTKLGAEEITRDIPNVSDEVLADLDERGIVRIGAEVRDGDILVGKVTPKGETELTPEERLLRAIFGEKAREVRDTSLKVPHGESGKVIGIRVFSHEDDDELPAGVNELVRVYVAQKRKISDGDKLAGRHGNKGVIGKILPAEDMPFLPDGTPVDIILNTHGVPRRMNVGQILETHLGWVAKSGWKIDVAGGIPDWAVNLPEELLHAAPNQIVSTPVFDGAKEEELQGLLSSTLPNRDGDVMVGGDGKAVLFDGRSGEPFPYPVTVGYMYIMKLHHLVDDKIHARSTGPYSMITQQPLGGKAQFGGQRFGEMECWAMQAYGAAYTLQELLTIKSDDTVGRVKVYEAIVKGENIPEPGIPESFKVLLKELQSLCLNVEVLSSDGAAIELREGEDEDLERAAANLGINLSRNESASIEDLA"}}}}}}}, "407": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1370": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"314": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGTTACGCAGCAGCAGTCGCCCTAAAACAAAGTTAGGCATCACAAAGTACAGCATCGTGACCAACAGCAACGATTCCGTCACACTGCGCCTCATGACTGAGCATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGAGTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAACAGTACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTCACTCCATACATTGCAATGCTGAATGGAGAGCCGATTGGGTATGCCCAGTCGTACGTTGCTCTTGGAAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCAGGAGTACGCGGAATAGACCAGTTACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGAACCAAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCACCAAGATCCAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCTACGAGAAAGCGGGGTTTGAGAGGCAAGGTACCGTAACCACCCCAGATGGTCCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGCGAACACGCAGTGATGCCTAA"}}}}}}}}}}, "405": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1372": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"457": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGACACAACGCAGGTCACATTGATACACAAAATTCTAGCTGCGGCAGATGAGCGAAATCTGCCGCTCTGGATCGGTGGGGGCTGGGCGATCGATGCACGGCTAGGGCGTGTAACACGCAAGCACGATGATATTGATCTGACGTTTCCCGGCGAGAGGCGCGGCGAGCTCGAGGCAATAGTTGAAATGCTCGGCGGGCGCGTCATGGAGGAGTTGGACTATGGATTCTTAGCGGAGATCGGGGATGAGTTACTTGACTGCGAACCTGCTTGGTGGGCAGACGAAGCGTATGAAATCGCGGAGGCTCCGCAGGGCTCGTGCCCAGAGGCGGCTGAGGGCGTCATCGCCGGGCGGCCAGTCCGTTGTAACAGCTGGGAGGCGATCATCTGGGATTACTTTTACTATGCCGATGAAGTACCACCAGTGGACTGGCCTACAAAGCACATAGAGTCCTACAGGCTCGCATGCACCTCACTCGGGGCGGAAAAGGTTGAGGTCTTGCGTGCCGCTTTCAGGTCGCGATATGCGGCCTAA"}}}}}}}}, "ARO_category": {"$insert": {"40307": {"category_aro_name": "plazomicin", "category_aro_cvterm_id": "40307", "category_aro_accession": "3003675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Plazomicin is a neoglycoside, or next-generation, aminoglycoside, that has been identified as a potentially useful agent to combat drug-resistant bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa."}}}}}, "1375": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1857": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCAACAACGACAATCCATCCTGTGGGGGGCCGTGGCCACCCTGATGTGGGCCGGTCTGGCCCATGCAGGTGAGGCTTCACCGGTCGATCCCCTGCGCCCCGTGGTGGATGCCAGCATCCAGCCGCTGCTCAAGGAGCACAGGATCCCGGGCATGGCGGTGGCCGTGCTCAAGGATGGCAAGGCCCACTACTTCAATTACGGGGTGGCCAACCGGGAGAGCGGGGCCGGCGTCAGCGAGCAGACCCTGTTCGAGATAGGATCCGTGAGCAAGACCCTGACTGCGACCCTGGGGGCCTATGCGGTGGTCAAGGGAGCGATGCAGCTGGATGACAAGGCGAGCCGGCACGCGCCCTGGCTCAAGGGATCCGCCTTTGACAGCATCACCATGGGGGAGCTTGCCACCTACAGCGCCGGAGGCCTGCCACTGCAATTCCCCGAGGAGGTGGATTCATCCGAGAAGATGCGCGCCTACTACCGCCAGTGGGCCCCTGTCTATTCGCCGGGCTCCCATCGCCAGTACTCCAACCCCAGCATAGGGCTGTTCGGCCACCTGGCGGCGAGCAGCCTGAAGCAGCCGTTTGCCCCCTTGATGGAGCAGACCCTGCTGCCCGGGCTCGGCATGCACCACACCTATGTCAATGTGCCGAAGCAGGCCATGGCGAGTTATGCCTATGGCTATTCGAAAGAGGACAAGCCCATCCGTGTCAACCCTGGCATGCTGGCGGACGAGGCCTATGGCATCAAGACCAGCTCGGCGGATCTGCTGCGTTTTGTGAAGGCCAACATCGGCGGGGTTGATGACAAGGCGTTGCAGCAGGCCATCTCCCTGACCCACCAAGGGCATTACTCGGTAGGCGGGATGACCCAGGGGCTGGGTTGGGAGAGTTACGCCTATCCCGTCACCGAGCAGACATTGCTGGCGGGCAATTCGGCCAAGGTGAGCCTCGAAGCCAATCCGACGGCGGCGCCCCGGGAGTCGGGGAGCCAGGTGCTCTTCAACAAGACCGGCTCGACCAATGGCTTTGGCGCCTATGTGGCCTTCGTGCCGGCCAGGGGGATCGGCATCGTCATGCTGGCCAATCGCAACTACCCCATCGAGGCGCGCATCAAGGCGGCCCACGCCATCCTGGCGCAGTTGGCCGGTTGA"}}}}}}}}}}, "1374": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4710": {"dna_sequence": {"fmax": "1440", "fmin": "1059", "accession": "EF540343.1", "strand": "-", "sequence": "ATGTCAAACCAAACACCTAGCATATCGGAAGCAGAATGGGAAGTTATGAAAGTTTTGTGGAAAAAGGGGCCGCAAACAGCCAATCAAGTCATTTCCGCGATCCAAGAGCAAACGGACTGGAAACCAAAAACGATTCGGACGTTACTCGATCGATTAACGAAGAAGAAAGTAGTAGGCGTAGATAAAGAGCAGAAAATCTATGTCTTCTTTCCCCTATACTCAGAAGAAGCGTGTAAGCATGCAGAAGCACAGTCTTTCGTAAAGAGAGTTTACGGGGGAACAGTAAAACCATTGTTGGTCCAGTTCTTGGAGGAAGAGTCACTAACAAAAGAAGAGCTGGATGAACTGTATGCGATCTTAGATCAAAAACGGAAAGAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Bacillus clausii", "NCBI_taxonomy_id": "79880", "NCBI_taxonomy_cvterm_id": "36882"}, "protein_sequence": {"accession": "ABU39978.1", "sequence": "MSNQTPSISEAEWEVMKVLWKKGPQTANQVISAIQEQTDWKPKTIRTLLDRLTKKKVVGVDKEQKIYVFFPLYSEEACKHAEAQSFVKRVYGGTVKPLLVQFLEEESLTKEELDELYAILDQKRKE"}}}}}}}, "1377": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1966": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAGCCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCGGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTCGCGATGTGCAGCACCAGTAAAGTGATGGCCGTGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAGTCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTGGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCAGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGACTATGGCACCACCAACGATATCGCGGTGATTTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATATATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA"}}}}}}}}}}, "400": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1379": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1378": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"616": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCATACGCGGAAGGCAATAACGGAGGCGCTTCAAAAACTCGGAGTCCAAACCGGTGACCTATTGATGGTGCATGCCTCACTTAAAGCGATTGGTCCGGTCGAAGGAGGAGCGGAGACGGTCGTTGCCGCGTTACGCTCCGCGGTTGGGCCGACTGGCACTGTGATGGGATACGCATCGTGGGACCGATCACCCTACGAGGAGACTCGTAATGGCGCTCGGTTGGATGACAAAACCCGCCGTACCTGGCCGCCGTTCGATCCCGCAACGGCCGGGACTTACCGTGGGTTCGGCCTGCTGAATCAGTTTCTGGTTCAAGCCCCCGGCGCGCGGCGCAGCGCGCACCCCGATGCATCGATGGTCGCGGTTGGTCCACTGGCTGAAACGCTGACGGAGCCTCACAAGCTCGGTCACGCCTTGGGGGAAGGGTCGCCCGTCGAGCGGTTCGTTCGCCTTGGCGGGAAGGCCCTGCTGTTGGGTGCGCCGCTAAACTCCGTTACCGCATTGCACTACGCCGAGGCGGTTGCCGATATCCCCAACAAACGGCGGGTGACGTATGAGATGCCGATGCTTGGAAGCAACGGCGAAGTCGCCTGGAAAACGGCATCGGATTACGATTCAAACGGCATTCTCGATTGCTTTGCTATCGAAGGAAAGCCGGATGCGGTCGAAACTATAGCAAATGCTTACGTGAAGCTCGGTCGCCATCGAGAAGGTGTCGTGGGCTTTGCTCAGTGCTACCTGTTCGACGCGCAGGACATCGTGACGTTCGGCGTCACCTATCTTGAGAAGCATTTCGGAACCACTCCGATCGTGCCAGCACACGAAGTCGCCGAGTGCTCTTGCGAGCCTTCAGGTTAG"}}}}}}}}}}, "1342": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"486": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCTTTCTTAAAAACCGTAAAGAAAAATAAGCACAAATTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTATTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATATAGCGTGTTACGGTGAAAACCTGGCCTATTTCCCCAAAGGGTTCATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTTTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAA"}}}}}}}}}}, "409": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"287": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGACGGATAGAATAGTTGTTGTGGATGATGAACAAGAGATAGCCAATTTGATTACAACTTTTTTAGAAAATGAAGGGTTTCAAGTAACAACCTTTTATAAAGGAGAAGATTTTTTGACTTATATAGCTAGAGAGTCAATTTCTTTAGCTATATTAGATGTCATGCTACCTGATATTGATGGGTTTCGAATCTTGCAAGAAATTAGAAAGAATTTTTATTTTCCGGTATTAATGCTTACAGCTAAGGAAGAAAATATGGACAAGATTATGGGACTAACCTTGGGAGCGGATGATTATATTACTAAACCATTTAACCCAATAGAAGTAGTTGCCCGGGTAAAAACACAACTAAGACGAGTCCAAAAGTATAACCGGAAAGTGGAAAATGAATCAGTCATAGAGTTTAACAAAGACGGACTAACGCTAAAAAAAGACAGTCATCAAGTATTTTTATTTGATAAAGAAATAACTGTAACACCTATTGAATTCAATTTGCTTTTATATTTATTTGAACACCAAGGAGTGGTTGTTAGTTCAGAAGAACTATTTGAAGCTGTTTGGAAAGAGAAATATTTAGAAAATAATAACACAATCATGGCACACATTGCTCGCTTAAGGGAAAAATTAGACGAACAGCCACGCAAACCTAAATTCATAAAAACCGTATGGGGGGTAGGATATATTATTGAAAAGTAA"}}}}}}}}}}, "408": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4501": {"dna_sequence": {"fmax": "869", "fmin": "44", "accession": "KF986261", "strand": "-", "sequence": "ATGAACATTAAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGTGCTTCAAAATCTGATGACAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCATCAAGGTCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACCACAGAAATATTTAAGTGGGACGGGCAAAAAAGGCTGTTCCCAGAATGGGAAAAGGACATGACCCTAGGTGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAAGGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAGTTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCTAAAAGTCCAAGATGAAGTGCAATCCATGTTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAGACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGAAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGTTTAGAACAATTAGGTATTTTATAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "AHL30280.1", "sequence": "MNIKALLLITSAIFISACSPYIVTANPNHSASKSDDKAEKIKNLFNEAHTTGVLVIHQGQTQQSYGNDLARASTEYVPASTFKMLNALIGLEHHKATTTEIFKWDGQKRLFPEWEKDMTLGDAMKASAIPVYQDLARRIGLELMSKEVKRVGYGNADIGTQVDNFWLVGPLKITPQQEAQFAYKLANKTLPFSLKVQDEVQSMLFIEEKNGNKIYAKSGWGWDVDPQVGWLTGWVVQPQGNIVAFSLNLEMKKGIPSSVRKEITYKSLEQLGIL"}}}}}}}, "453": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"400": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAATACTACATTGAAAACTACCTTGACCTCTGTTGCAGCAGCCTTTGCATTGTCTGCCTGCACCATGATTCCTCAATACGAGCAGCCCAAAGTCGAAGTTGCGGAAACCTTCCAAAACGACACATCGGTTTCTTCCATCCGCGCGGTTGATTTGGGTTGGCATGACTATTTTGCCGACCCGCGCCTGCAAAAGCTGATCGACATCGCACTCGAGCGCAATACCAGTTTGCGTACAGCCGTATTGAACAGCGAAATCTACCGCAAACAATACATGATCGAGCGCAACAACCTCCTGCCCACGCTTGCCGCCAATGCGAACGGCTCGCGCCAAGGCAGCTTGAGCGGCGGCAATGTCAGCAGCAGCTACAATGTCGGACTGGGTGCGGCATCTTACGAACTCGATCTGTTCGGGCGCGTGCGCAGCAGCAGCGAAGCAGCACTGCAAGGCTATTTTGCCAGCGTTGCCAACCGCGATGCGGCACATTTGAGTCTGATTGCCACCGTTGCCAAAGCCTATTTCAACGAGCGTTATGCCGAAGAAGCGATGTCTTTGGCGCAGCGTGTCTTGAAAACGCGCGAGGAAACCTACAATGCTGTCCGAATTGCGGTACAAGGCAGGCGTGATTTCCGCCGTCGCCCTGCGCCAGCAGAAGCCTTGATTGAATCTGCCAAAGCCGATTATGCCCATGCCGCGCGCAGCCGCGAACAGGCGCGCAATGCCTTGGCAACCTTGATTAACCGTCCGATACCCGAAGACCTGCCCGCCGGTTTGCCGTTGGACAAGCAGTTTTTTGTTGAAAAACTGCCTGCCGGTTTGAGTTCCGAAGTATTGCTCGACCGTCCCGACATCCGCGCCGCCGAACACGCGCTCAAACAGGCAAACGCCAATATCGGTGCGGCGCGCGCCGCCTTTTTCCCGTCCATCCGCCTGACCGGAAGCGTCGGTACGGGTTCTGTCGAATTGGGCGGGCTGTTCAAAAGCGGCACGGGCGTTTGGGCGTTCGCGCCGTCTATTACCCTGCCGATTTTTACTTGGGGAACGAACAAGGCGAACCTTGATGTGGCAAAACTGCGCCAACAGGCACAAATTGTTGCCTATGAATCCGCCGTCCAATCCGCCTTTCAAGACGTGGCAAACGCATTGGCGGCGCGCGAGCAGCTGGATAAAGCCTATGACGCTTTAAGCAAACAAAGCCGCGCCTCTAAAGAAGCGTTGCGCTTGGTCGGACTGCGTTACAAACACGGCGTATCCGGCGCGCTCGATTTGCTCGATGCGGAACGCAGCAGCTATTCGGCGGAAGGTGCGGCTTTGTCGGCACAACTGACCCGCGCCGAAAACCTTGCCGATTTGTACAAGGCGCTCGGCGGCGGATTGAAACGGGATACCCAAACCGGCAAATAA"}}}}}}}}}}, "454": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1279": {"$update": {"dna_sequence": {"$update": {"sequence": "TGTCACTGTATCGCCGTCTAGTTCTGCTGTCTTGTCTCTCATGGCCGCTGGCTGGCTTTTCTGCCACCGCGCTGACCAACCTCGTCGCGGAACCATTCGCTAAACTCGAACAGGACTTTGGCGGCTCCATCGGTGTGTACGCGATGGATACCGGCTCAGGCGCAACTGTAAGTTACCGCGCTGAGGAGCGCTTCCCACTGTGCAGCTCATTCAAGGGCTTTCTTGCTGCCGCTGTGCTGGCTCGCAGCCAGCAGCAGGCCGGCTTGCTGGACACACCCATCCGTTACGGCAAAAATGCGCTGGTTCGGTGGTCACCCATCTCGGAAAAATATCTGACAACAGGCATGACGGTGGCGGAGCTGTCCGCGGCCGCCGTGCAATACAGTGATAACGCCGCCGCCAATTTGTTGCTGAAGGAGTTGGGCGGCCCGGCCGGGCTGACGGCCTTCATGCGCTCTATCGGCGATACCACGTTCCGTCTGGACCGCTGGGAGCTGGAGCTGAACTCCGCCATCCCAGGCGATGCGCGCGATACCTCATCGCCGCGCGCCGTGACGGAAAGCTTACAAAAACTGACACTGGGCTCTGCACTGGCTGCGCCGCAGCGGCAGCAGTTTGTTGATTGGCTAAAGGGAAACACGACCGGCAACCACCGCATCCGCGCGGCGGTGCCGGCAGACTGGGCAGTCGGAGACAAAACCGGAACCTGCGGAGGGTATGGCACGGCAAATGACTATGCCGTCGTCTGGCCCACTGGGCGCGCACCTATTGTGTTGGCCGTCTACACCCGGGCGCCTAACAAGGATGACAAGCACAGCGAGGCCGTCATCGCCGCTGCGGCTAGACTCGCGCTCGAGGGATTGGGCGTCAACGGGCAGT"}}}}}}}}}}, "1345": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"96": {"$update": {"dna_sequence": {"$update": {"sequence": "TTGTTTAGTTTATATAAAAAATTTAAAGGTTTGTTTTATAGCGTTTTATTTTGGCTTTGTATTCTTTCATTTTTTAGTGTATTAAATGAAATGGTTTTAAATGTTTCTTTACCTGATATTGCAAATCATTTTAATACTACTCCTGGAATTACAAACTGGGTAAACACTGCATATATGTTAACTTTTTCGATAGGAACAGCAGTATATGGAAAATTATCTGATTATATAAATATAAAAAAATTGTTAATTATTGGTATTAGTTTGAGCTGTCTTGGTTCATTGATTGCTTTTATTGGTCACAATCACTTTTTTATTTTGATTTTTGGTAGGTTAGTACAAGGAGTAGGATCTGCTGCATTCCCTTCACTGATTATGGTGGTTGTAGCTAGAAATATTACAAGAAAAAAACAAGGCAAAGCCTTTGGTTTTATAGGATCAATTGTAGCTTTAGGTGAAGGGTTAGGTCCTTCAATAGGGGGAATAATAGCACATTATATTCATTGGTCTTACCTACTTATACTTCCTATGATTACAATAGTAACTATACCTTTTCTTATTAAAGTAATGGTACCTGGTAAATCAACAAAAAATACATTAGATATCGTAGGTATTGTTTTAATGTCTATAAGTATTATATGTTTTATGTTATTTACGACAAATTATAATTGGACTTTTTTAATACTCTTCACAATCTTTTTTGTGATTTTTATTAAACATATTTCAAGAGTTTCTAACCCTTTTATTAATCCTAAACTAGGGAAAAACATTCCGTTTATGCTTGGTTTGTTTTCTGGTGGGCTAATATTTTCTATAGTAGCTGGTTTTATATCAATGGTGCCTTATATGATGAAAACTATTTATCATGTAAATGTAGCGACAATAGGTAATAGTGTTATTTTTCCTGGAACCATGAGTGTTATTGTTTTTGGTTATTTTGGTGGTTTTTTAGTGGATAGAAAAGGATCATTATTTGTTTTTATTTTAGGATCATTGTCTATCTCTATAAGTTTTTTAACTATTGCATTTTTTGTTGAGTTTAGTATGTGGTTGACTACTTTTATGTTTATATTTGTTATGGGCGGATTATCTTTTACTAAAACAGTTATATCAAAAATAGTATCAAGTAGTCTTTCTGAAGAAGAAGTTGCTTCTGGAATGAGTTTGCTAAATTTCACAAGTTTTTTATCAGAGGGAACAGGTATAGCAATTGTAGGAGGTTTATTGTCACTACAATTGATTAATCGTAAACTAGTTCTGGAATTTATAAATTATTCTTCTGGAGTGTATAGTAATATTCTTGTAGCCATGGCTATCCTTATTATTTTATGTTGTCTTTTGACGATTATTGTATTTAAACGTTCTGAAAAGCAGTTTGAATAG"}}}}}}}}}}, "2749": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1346": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1347": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1245": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "379": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "378": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "371": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "370": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "373": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1810": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGACAAAATCCCTAAGCTGTGCCCTGCTGCTCAGCGTCGCCAGCGCTGCATTCGCCGCACCGATGTCCGAAAAACAGCTGGCTGAGGTGGTGGAACGTACCGTTACGCCGCTGATGAACGCGCAGGCCATTCCGGGTATGGCGGTGGCGGTAATTTATCAGGGTCAGCCACACTACTTTACCTTCGGTAAAGCCGATGTTGCGGCGAACAAACCCGTCACCCCGCAAACCCTGTTTGAGCTGGGCTCTATAAGTAAAACCTTCACCGGCGTACTGGGCGGCGATGCCATTGCCCGGGGTGAAATAGCGCTGGGCGATCCGGTAGCAAAATACTGGCCTGAGCTCACGGGCAAGCAGTGGCAGGGCATTCGCATGCTGGATCTGGCAACCTATACCGCAGGCGGTCTGCCGTTACAGGTGCCGGATGAGGTCACGGATACCGCCTCTCTGCTGCGCTTTTATCAAAACTGGCAGCCGCAGTGGAAGCCGGGCACCACGCGTCTTTACGCTAACGCCAGCATCGGTCTTTTTGGTGCGCTGGCGGTCAAACCTTCCGGCATGAGCTATGAGCAGGCCATGACGACGCGGGTCTTTAAACCCCTCAAGCTGGACCATACCTGGATTAACGTCCCGAAAGCGGAAGAGGCGCATTACGCCTGGGGATACCGTGAGGGTAAAGCGGTCCACGTTTCGCCAGGGATGCTGGACGCGGAAGCCTATGGCGTAAAAACTAACGTGAAGGATATGGCGAGCTGGCTGATAGCCAACATGAAGCCGGATTCTCTTCACGCTCCCTCACTCAAGCAAGGCATTGCTCTGGCGCAGTCTCGCTACTGGCGCGTGGGTGCTATGTATCAGGGGTTAGGCTGGGAGATGCTCAACTGGCCGGTCGATGCCAAAACCGTCGTCGGAGGCAGTGATAACAAGGTGGCGCTGGCACCATTGCCCGTGGCAGAAGTGAATCCACCCGCGCCGCCGGTCAAAGCCTCCTGGGTCCATAAAACAGGCTCGACGGGCGGGTTTGGCAGCTACGTGGCATTTATTCCTGAAAAGCAGCTCGGCATTGTGATGCTGGCGAATAAAAGCTATCCGAACCCGGCACGCGTTGAGGCGGCATACCGTATCCTCGACGCGCTGCAGTAA"}}}}}}}}, "ARO_category": {"$delete": ["35962"]}}}, "372": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "375": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4493": {"dna_sequence": {"fmax": "1125326", "fmin": "1124117", "accession": "U00096", "strand": "-", "sequence": "ATGTCCCGCGTGTCGCAGGCGAGGAACCTGGGTAAATATTTCCTGCTCATCGATAATATGCTGGTCGTGCTGGGGTTCTTTGTTGTCTTCCCGCTGATCTCTATCCGCTTCGTTGATCAAATGGGCTGGGCCGCCGTCATGGTCGGTATTGCTCTCGGTCTACGCCAATTTATTCAGCAAGGTCTGGGTATTTTCGGCGGTGCAATTGCCGACCGCTTTGGTGCCAAACCGATGATTGTTACCGGTATGCTGATGCGCGCCGCCGGATTCGCCACAATGGGTATCGCCCACGAACCGTGGCTATTGTGGTTTTCATGCCTGCTCTCGGGACTCGGTGGCACGTTGTTTGATCCGCCGCGTTCGGCGCTGGTGGTGAAATTAATCCGTCCACAGCAGCGTGGTCGTTTTTTCTCGCTGTTGATGATGCAGGACAGTGCCGGTGCGGTCATTGGCGCATTGTTGGGGAGCTGGCTGTTGCAATACGACTTTCGCCTGGTCTGCGCCACAGGGGCAGTTCTATTTGTGCTATGTGCGGCGTTCAATGCGTGGTTGTTACCAGCATGGAAACTCTCCACCGTACGCACGCCCGTTCGCGAAGGCATGACCCGCGTGATGCGTGACAAGCGTTTTGTCACCTATGTTCTGACGCTGGCGGGTTACTACATGCTGGCTGTACAAGTGATGCTGATGCTGCCAATTATGGTCAACGACGTGGCTGGCGCGCCCTCTGCCGTTAAATGGATGTATGCCATTGAAGCGTGTCTGTCGTTAACGTTGCTCTACCCTATCGCCCGCTGGAGTGAAAAGCATTTTCGTCTGGAACACCGGTTGATGGCTGGGCTGTTGATAATGTCATTAAGCATGATGCCGGTGGGCATGGTCAGCGGCCTGCAACAACTTTTCACCCTGATTTGTCTGTTTTATATCGGGTCGATCATTGCCGAGCCTGCGCGTGAAACCTTAAGTGCTTCGCTGGCGGACGCAAGAGCTCGCGGCAGCTATATGGGGTTTAGCCGTCTGGGTCTGGCGATTGGCGGCGCTATTGGTTATATCGGTGGCGGCTGGCTGTTTGACCTGGGCAAATCGGCGCACCAGCCAGAGCTTCCGTGGATGATGCTGGGCATTATTGGCATCTTCACTTTCCTTGCGCTGGGTTGGCAGTTTAGCCAGAAACGCGCCGCGCGTCGTTTGCTTGAACGCGACGCCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli str. K-12 substr. MG1655", "NCBI_taxonomy_id": "511145", "NCBI_taxonomy_cvterm_id": "36849"}, "protein_sequence": {"accession": "AAC74149.2", "sequence": "MSRVSQARNLGKYFLLIDNMLVVLGFFVVFPLISIRFVDQMGWAAVMVGIALGLRQFIQQGLGIFGGAIADRFGAKPMIVTGMLMRAAGFATMGIAHEPWLLWFSCLLSGLGGTLFDPPRSALVVKLIRPQQRGRFFSLLMMQDSAGAVIGALLGSWLLQYDFRLVCATGAVLFVLCAAFNAWLLPAWKLSTVRTPVREGMTRVMRDKRFVTYVLTLAGYYMLAVQVMLMLPIMVNDVAGAPSAVKWMYAIEACLSLTLLYPIARWSEKHFRLEHRLMAGLLIMSLSMMPVGMVSGLQQLFTLICLFYIGSIIAEPARETLSASLADARARGSYMGFSRLGLAIGGAIGYIGGGWLFDLGKSAHQPELPWMMLGIIGIFTFLALGWQFSQKRAARRLLERDA"}}}}}}}, "374": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "377": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "376": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "393": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "392": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1163": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGTACCACTACTTTAGCAGTTTATTTGTACTGATTTTTTCTACTTTGGTCTATCCTCAATCGGATAAATTAAAAATTGAGCCGTTGAACGATCATATGTATGTCTATACGACCTACCAAGTATTTCAAGGCGTCGAATATTCTTCCAATGCTTTATATGTAGTGACGGATGAAGGAGTAATTCTCATTGATACCCCTTGGGATAAAGATCAGTACGCCCCTTTAGTAGAACACATCAGACGTGAACATAACAAAGAAATAAAATGGGTCATTACCACTCACTTCCACGAAGATCGTTCGGGTGGACTTGATTACTTCAATAAAGCTGGAGCAGAAACCTATACTTATGCTTTGACCAACGAAATCTTAAAACAGCGCAATGAACCACAAGCGACTTTTACTTTTGGTTCAACAAAGCAGTTCAACTTGGGCAAAGAAAAAATAGAGGTCTATTTCTTAGGAGAAGGTCATAGTAAAGATAATACGGTGGTTTGGTTTCCAGAAGAAGCGATTTTATACGGTGGTTGTTTGATTAAAAGTGCAGAGGCAACGACTATCGGCAATATCGTCGATGGCAATGTAGAGGCTTGGCCTACGACAATCAAAGCCGTAAAGCGCAAATTCAAAAAGGCCAAAGTGATTATTCCAGGGCATGATGCCTGGAATCAATCCGGTCATCTTGAAAATACAGCCCGTATCTTATCGGCTTATCAGGCACAAAAATTAAAGAACAACAAGCAATTATAA"}}}}}}}}}}, "391": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1577": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGTTCAAACTTTTGAGTAAGTTATTGGTCTATTTGACCGCGTCTATCATGGCTATTGCGAGTCCGCTCGCTTTTTCCGTAGATTCTAGCGGTGAGTATCCGACAGTCAGCGAAATTCCGGTCGGGGAGGTCCGGCTTTACCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTTTGATGGCGCAGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAGAAGCAAATTGGACTTCCTGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCCGAGGTAGAGGGGAACGAGATTCCCACGCACTCTCTAGAAGGACTCTCATCGAGCGGGGACGCAGTGCGCTTCGGTCCAGTAGAACTCTTCTATCCTGGTGCTGCGCATTCGACCGACAACTTAGTTGTGTACGTCCCGTCTGCGAGTGTGCTCTATGGTGGTTGTGCGATTTATGAGTTGTCACGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCATTGAGCGGATTCAACAACACTACCCGGAAGCACAGTTCGTCATTCCGGGGCACGGCCTGCCGGGCGGTCTAGACTTGCTCAAGCACACAACGAATGTTGTAAAAGCGCACACAAATCGCTCAGTCGTTGAGTAG"}}}}}}}}}}, "390": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"706": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGACAGTGACTATACACAGCTCCAGACAAAAATATTAATAAGGACAGCGGTTGTGCTATTCGGGGCGTTTGCTCTGATTTCCGCATCTCTTAGTTTATTAAGCGGGCATTTTTCAAGGGCTGTTGTGGGGATTTTGGAAATATTCTATAAAGATTATGAAAAGGCTTTGGTGGTATACACCTATGTGTTTCGGGACAATAAAGAATGGTTTGTGATGATAGCTGCATTTGTGTCGTTTCTAATTGTATTACGATTGTATCTGAAAGGCTTCACAAAGTATTTTAATGAAATAAACAGAGGTATTAATGCCTTGAAAGAGGAAAGTTCAGAAGATGTTGTATTATCTTCTGAGCTTGCGGCGACTGAAAAAACAATCAATACAATTAAGCATACCCTTGAACAGCAGAAAACTGCGGCGCTGGTTGCAGAGCAAAGGAAGAACGACCTTGTAGTGTATCTTGCTCATGATTTAAAGACTCCGCTTACATCTGTGATTGGATATTTGACATTGCTTAGGGACGAGAAGCAAATTTCAGATGAATTAAGGGAAAAGTATATATGTATTTCACTGGAAAAAGCAGAACGATTGGAAAATCTGATCAATGAATTTTTTGAGATTACACGTTTTAATCTTTCCAACATAATACTTGAATATAGTGTGGTAAATTTAACTCGTATGTTGGAGCAGTTGGTTTTTGAATTCAATCCAATGCTTGCGGAAAAAAAATTAAATTGTGTTCTTAAGACGATGCCGAATAAAATGATACGCTGCGACGCCAATAAAATGCAGAGGGTATTCGATAATTTATTGAGAAATGCAGTGAATTATAGTTTTGAGAATACAGAGATTTCTATTACAGTCACACAAAATGAAAATATGGTTCATATTAAATTTGTAAATCATGGAAATACAATTCCAAAAGAGAAACTGGAACGTATTTTTGAACAGTTTTATCGTCTGGATACTTCCAGAAGCACAGGGAATGGCGGCGCAGGCTTAGGGCTTGCTATTGCAAGGGAAATCGTAATGCTGCATGGAGGGACAATAACCGCCCGCAGTGAAGATGAAAAGATTGAATTTGAAGTGACGATTCTTTCATCGTAG"}}}}}}}}}}, "397": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "396": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4494": {"dna_sequence": {"fmax": "9323", "fmin": "8531", "accession": "FJ196385", "strand": "-", "sequence": "ATGAGCAAGATTTTTGGAATCGTAAATATAACCACCGATAGTTTTTCCGATGGAGGACTTTATTTAGATACAGATAAGGCAATTGAGCATGCTCTGCATTTGGTTGAAGATGGAGCAGATGTGATTGATTTGGGAGCCGCTTCCAGTAATCCTGATACAACTGAAGTGGGCGTTGTGGAAGAAATCAAAAGACTCAAACCTGTCATTAAGGCTTTAAAAGAAAAAGGCATTTCTATTTCTGTTGATACATTTAAACCTGAGGTTCAGAGTTTTTGCATAGAACAAAAGGTTGATTTTATTAATGATATTCAAGGTTTTCCTTATCCTGAGATTTATTCAGGCTTGGCAAAGTCAGATTGCAAACTTGTGTTGATGCACTCCGTTCAGCGAATTGGTGCAGCTACTAAAGTTGAAACGAATCCGGAAGAGGTTTTTACTTCCATGATGGAATTTTTTAAAGAAAGAATTGCTGCTTTAGTTGAGGCTGGTGTAAAGCGTGAACGAATTATTCTTGATCCGGGTATGGGCTTCTTTTTAGGCTCTAATCCAGAAACATCTATTCTTGTTTTGAAGCGTTTCCCTGAAATTCAAGAAGCTTTTAATTTGCAAGTAATGATTGCAGTGTCACGGAAATCATTCTTAGGTAAAATAACTGGAACCGATGTGAAATCTCGTTTAGCACCAACTCTTGCAGCAGAAATGTATGCATACAAAAAAGGTGCAGATTATCTCCGCACCCATGATGTTAAGTCTTTATCAGATGCCTTGAAAATATCCAAAGCCCTAGGTTAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli", "NCBI_taxonomy_id": "562", "NCBI_taxonomy_cvterm_id": "35914"}, "protein_sequence": {"accession": "ACJ63260.1", "sequence": "MSKIFGIVNITTDSFSDGGLYLDTDKAIEHALHLVEDGADVIDLGAASSNPDTTEVGVVEEIKRLKPVIKALKEKGISISVDTFKPEVQSFCIEQKVDFINDIQGFPYPEIYSGLAKSDCKLVLMHSVQRIGAATKVETNPEEVFTSMMEFFKERIAALVEAGVKRERIILDPGMGFFLGSNPETSILVLKRFPEIQEAFNLQVMIAVSRKSFLGKITGTDVKSRLAPTLAAEMYAYKKGADYLRTHDVKSLSDALKISKALG"}}}}}}}, "395": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "394": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "399": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_category": {"$delete": ["35962"]}}}, "398": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1574": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCAGTAAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA"}}}}}}}}}}, "1247": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1346": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTGGCGATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATGACGTTACGGATAAAGCCGAATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGCGGTGAAATCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAACTATGCCTGGGGCTATCTCGAAGGGAAGCCTGTGCACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACAGGTGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATAGTGATGCTGGCAAACAAAAGCTATCCTAACCCGGCTCGCGTAGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA"}}}}}}}}}}, "2301": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model."}}, "2300": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2303": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4627": {"dna_sequence": {"fmax": "5980365", "fmin": "5979156", "accession": "CP012901.1", "strand": "-", "sequence": "GTGCCTGCGAGTGCATCGAGGATTCAGGTCGGAAGCGGCGAACGACGCCTGTTGCTGCTGTTGTCGGCGCTGGTGGCGTTCGGCCCGCTGTCGATCGACATGTACCTGCCGAGCCTGCCGGCGATCGCCGCCGATCTCGGCGCCAGCGATGCCCAGGTGCAGCGGAGCATCAGCGGCTTCCTGGTCGGCTTCTGCGTCGGCATGCTGTTCTACGGCCCCTTGTCCGACCGTTTCGGCCGGCGCCCGGTGCTGCTGGCCGGTATCGCCTTGTACCTGTTCAGCAGCCTGGCCTGCGCGCTGGCCGACAGCGCGGGGCAACTGGTCCTGCTGAGGGTGCTCCAGGCCCTCGGCGGCGGCGCCGCGTCGGTGCTGGCGCGGGCCATGGTGCGCGACCTCTATCCGTTGGGCGAGGCCGCCCGGATGCTGGCATTGATGCACATGGTGACCATGCTGGCACCGCTGGCCGCGCCGCTGCTCGGCGGCTACCTGATGCTCTGGGCCGGCTGGCGCGCGTTGTTCGTGGTCCTGGCGCTGTTCGCCGGGCTCTGCCTGCTGGCGGTCTGGCGGGTCGCCGAAAGCCACCCGCCGGAGCGCCGCGGCGGCAGCCTGGCCCAGGCCTTTCTCGCCTATGGGCGGCTGCTCGGCGACCGTCGCGCGCTGGGCTACGTGCTGTGCATGGGGCTGGCGTTCGCCGGGATGTTCGCCTACATCAGCGCCGCGCCCTTCGTGTTCATCGAGCATTTCGGCGTGCGCGCGGAGCGCTTCGGCTGGTTCTTCGGCCTGAACATCCTCGGCGTGATGCTCGCCACCTGGTGCAGCGCGCGCCTGGTGCGCCGCCACGGTCCGCGGCCGCTGCTGCGGGCCGGCAGCCTGCTGGCCTGCGTGTCCGGGCTGTTCCTCCTCGGCTATGCGGCGCTCGGCGAGCGGGGCGGGTTGTGGGCGCTGGTGCCCGGCCTGCTGTGCTTCGTCAGCGTCACCGGCCTGCTCGGCGCCAACTGCATCGCCAGCCTGCTGGCGTTGTATCCCGGACAGGCCGGGGCGGCTTCGGCGGTGGCGGTGTCCGGGCAGTTCGGCCTCGGCTGCCTGGCCAGCCTGGCGGTCGGCTGGCTGGCGCTGCCCGGCGTGCTGCCGATGGCGCTGGTGATGGCCGTCTGCGGCGTCGGCAGCCTGCTCGCGCTGGGCTTGGCCCTGCACGGCGGAAACCGTTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "ALV80601.1", "sequence": "MPASASRIQVGSGERRLLLLLSALVAFGPLSIDMYLPSLPAIAADLGASDAQVQRSISGFLVGFCVGMLFYGPLSDRFGRRPVLLAGIALYLFSSLACALADSAGQLVLLRVLQALGGGAASVLARAMVRDLYPLGEAARMLALMHMVTMLAPLAAPLLGGYLMLWAGWRALFVVLALFAGLCLLAVWRVAESHPPERRGGSLAQAFLAYGRLLGDRRALGYVLCMGLAFAGMFAYISAAPFVFIEHFGVRAERFGWFFGLNILGVMLATWCSARLVRRHGPRPLLRAGSLLACVSGLFLLGYAALGERGGLWALVPGLLCFVSVTGLLGANCIASLLALYPGQAGAASAVAVSGQFGLGCLASLAVGWLALPGVLPMALVMAVCGVGSLLALGLALHGGNR"}}}}}}}, "2305": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"4626": {"dna_sequence": {"fmax": "1663635", "fmin": "1661364", "accession": "NZ_CP014949.1", "strand": "-", "sequence": "ATGAATTATAGAGAATTAATGCAAAAGAAAAATGTTCGTCCTTACGTATTGATGGCTCGTTTTGGTTTAGAAAAAGAAAACCAACGTAGTACACGAGAAGGGCTTTTAGCGACAACTGATCATCCCACGGTTTTTGGTAACCGTTCTTATCATCCATATATTCAAACAGATTTTAGTGAAACACAATTAGAACTAATCACGCCTGTAGCAAATAGCGGCACAGAAATGCTTCGTTTTTTAGATGCCATTCACGATGTGGCTCGTCGTTCGATTCCAGAAGATGAAATGCTGTGGCCATTAAGTATGCCGCCACAATTACCAACAAAAGATGAAGAGATTAAAATTGCTAAATTAGATCAATATGATGCAGTGTTATATCGTCGTTATTTGGCAAAAGAGTATGGCAAACGAAAACAAATGGTCAGCGGAATTCATTTTAATTTTGAATATGACCAAGCCCTGATTCAGCAATTATATGATGAACAATCCGAAGTGACAGATTGCAAACAATTTAAAACGAAAGTGTACATGAAAGTTGCCCGTAACTTTTTACGTTATCGTTGGTTAATTACGTATCTTTTTGGGGCTTCGCCAGTTAGTGAAGACGGCTACTTTAGAGTCTATGACGACCAACCGCAAGAACCCATTCGCAGTATTCGGAATAGTACGTATGGCTACAGAAATCATGACAATGTGAAAGTATCGTATGCCTCATTGGAACGCTATTTAGAAGATATTCATCGCATGGTGGAAAATGGTTTACTTTCTGAAGAAAAAGAATTTTATGCGCCTGTGCGCTTACGTGGTGGGAAACAAATGTCTGATCTGCCTAAAACAGGTATTCGCTATATCGAGTTGCGTAATTTAGACTTAAATCCTTTTTCACGTTTAGGCATTGTGGAAGATACTGTGGATTTCTTACATTATTTCATGTTGTATTTATTGTGGACAGATGAAAAAGAAGAAGCGGATGAATGGGTAAAAACTGGCGATATTTTAAATGAACAAGTGGCTCTTGGTCATCCTCATGAAACGATTAAGTTAATTGCAGAAGGCGATCGGATTTTTTCAGAAATGATTGATATGTTAGATGCTCTAGGCATTCGTAAAGGCAAAGAAGTTGTCGGTAAGTATTATCAACAACTGCGGAATCCACAAGACACCGTTTCTGGCAAAATGTGGACGATTATTCAAGAAAACTCCAACAGTGAACTGGGAAATATTTTTGGAAACCAATATCAAAGTATGGCCTTTGAACGCCCTTATCAATTAGCTGGTTTCCGTGAGATGGAATTATCCACACAAATTTTCTTGTTTGATGCGATTCAAAAAGGTTTGGAAATCGAAATTTTAGATGAACAAGAGCAATTTTTGAAACTGCAACATGGCGAGCACATTGAATACGTCAAAAATGCCAACATGACTAGCAAAGATAACTACGTGGTACCATTGATTATGGAAAACAAAACCGTGACAAAGAAAATTTTGTCTGCAGCAGGGTTCCATGTGCCTGGCGGTGAAGAATTTTCATCTTTTATTGAGGCACAAGAAGCACATTTACGCTACGCCAATAAAGCGTTTGTCGTGAAACCAAAATCAACGAATTACGGTTTAGGAATTACCATTTTTAAAGAAGGCGCTTCGTTGGAAGACTTTACGGAAGCGTTACGGATTGCTTTTAAAGAGGACACAGCGGTTTTAATTGAAGAGTTTTTACCTGGAACAGAATATCGGTTCTTTGTGTTAGATAATGATGTAAAAGCCATCATGTTGCGCGTGCCAGCCAATGTTACCGGAGATGGCAAACACACTGTAGAAGAATTGGTGGCCGCTAAAAATAGTGATCCATTGCGGGGGACCAATCACCGTGCACCACTAGAATTAATCCAGTTAAATGATTTAGAAAAACTAATGTTGAAAGAACAAGGTTTAACTATCTATTCTGTGCCAGAAAAAGAGCAAATCGTGTACTTGCGAGAAAATTCTAATGTTAGCACGGGCGGGGATTCGATTGATATGACCGATGTCATTGATGATAGTTATAAACAAATCGCCATTGAGGCCGTAGCTGCTTTAGGAGCCAAAATTTGTGGCATTGATTTAATCATTCCTGACAAAGACGTAAAAGGCACACGTGATAGCTTAACGTACGGGATTATCGAAGCAAACTTTAATCCAGCCATGCACATGCATGTGTATCCATACGCTGGACAGGGTAGACGCTTGACAATGGACGTTTTAAAACTTTTATACCCAGAAGTGGTTCAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Enterococcus", "NCBI_taxonomy_id": "1350", "NCBI_taxonomy_cvterm_id": "37056"}, "protein_sequence": {"accession": "WP_002389492.1", "sequence": "MNYRELMQKKNVRPYVLMARFGLEKENQRSTREGLLATTDHPTVFGNRSYHPYIQTDFSETQLELITPVANSGTEMLRFLDAIHDVARRSIPEDEMLWPLSMPPQLPTKDEEIKIAKLDQYDAVLYRRYLAKEYGKRKQMVSGIHFNFEYDQALIQQLYDEQSEVTDCKQFKTKVYMKVARNFLRYRWLITYLFGASPVSEDGYFRVYDDQPQEPIRSIRNSTYGYRNHDNVKVSYASLERYLEDIHRMVENGLLSEEKEFYAPVRLRGGKQMSDLPKTGIRYIELRNLDLNPFSRLGIVEDTVDFLHYFMLYLLWTDEKEEADEWVKTGDILNEQVALGHPHETIKLIAEGDRIFSEMIDMLDALGIRKGKEVVGKYYQQLRNPQDTVSGKMWTIIQENSNSELGNIFGNQYQSMAFERPYQLAGFREMELSTQIFLFDAIQKGLEIEILDEQEQFLKLQHGEHIEYVKNANMTSKDNYVVPLIMENKTVTKKILSAAGFHVPGGEEFSSFIEAQEAHLRYANKAFVVKPKSTNYGLGITIFKEGASLEDFTEALRIAFKEDTAVLIEEFLPGTEYRFFVLDNDVKAIMLRVPANVTGDGKHTVEELVAAKNSDPLRGTNHRAPLELIQLNDLEKLMLKEQGLTIYSVPEKEQIVYLRENSNVSTGGDSIDMTDVIDDSYKQIAIEAVAALGAKICGIDLIIPDKDVKGTRDSLTYGIIEANFNPAMHMHVYPYAGQGRRLTMDVLKLLYPEVVQ"}}}}}}}, "245": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"695": {"$update": {"dna_sequence": {"$update": {"sequence": "GTGCGCTCAAAAAACTTTAGTTGGCGGTACTCCCTTGCCGCCACGGTGTTGTTGTTATCACCGTTCGATTTATTGGCATCACTCGGCATGGACATGTACTTGCCAGCAGTGCCGTTTATGCCAAACGCGCTTGGTACGACAGCGAGCACAATTCAGCTTACGCTGACAACGTACTTGGTCATGATTGGTGCCGGTCAGCTCTTGTTTGGACCGCTATCGGACCGACTGGGGCGCCGCCCCGTTCTACTGGGAGGTGGCCTCGCCTACGTTGTGGCGTCAATGGGCCTCGCTCTTACGTCATCGGCTGAAGTCTTTCTGGGGCTTCGGATTCTTCAGGCTTGTGGTGCCTCGGCGTGCCTTGTTTCCACATTTGCAACAGTACGTGACATTTACGCAGGTCGCGAGGAAAGTAATGTCATTTACGGCATACTCGGATCCATGCTGGCCATGGTCCCGGCGGTAGGCCCATTGCTCGGAGCGCTCGTCGACATGTGGCTTGGGTGGCGGGCTATCTTTGCGTTTCTAGGTTTGGGCATGATCGCTGCATCTGCAGCAGCGTGGCGATTCTGGCCTGAAACCCGGGTGCAACGAGTTGCGGGCTTGCAATGGTCGCAGCTGCTACTCCCCGTTAAGTGCCTGAACTTCTGGTTGTACACGTTGTGTTACGCCGCTGGAATGGGTAGCTTCTTCGTCTTTTTCTCCATTGCGCCCGGACTAATGATGGGCAGGCAAGGTGTGTCTCAGCTTGGCTTCAGCCTGCTGTTCGCCACAGTGGCAATTGCCATGGTGTTTACGGCTCGTTTTATGGGGCGTGTGATACCCAAGTGGGGCAGCCCAAGTGTCTTGCGAATGGGAATGGGATGCCTGATAGCTGGAGCAGTATTGCTTGCCATCACCGAAATATGGGCTTCGCAGTCCGTGTTAGGCTTTATTGCTCCAATGTGGCTAGTGGGTATTGGTGTCGCCACAGCGGTATCTGTGTCGCCCAATGGCGCTCTTCGAGGATTCGACCATGTTGCTGGAACGGTCACGGCAGTCTACTTCTGCTTGGGCGGTGTACTGCTAGGAAGCATCGGAACGTTGATCATTTCGCTGTTGCCGCGCAACACGGCTTGGCCGGTTGTCGTGTACTGTTTGACCCTTGCAACAGTCGTGCTCGGTCTGTCTTGTGTTTCCCGAGTGAAGGGCTCTCGCGGCCAGGGGGAGCATGATGTGGTCGCGCTACAAAGTGCGGAAAGTACATCAAATCCCAATCGTTGA"}}}}}}}}}}, "244": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "247": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "246": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "241": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "240": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"202": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAAATATAACAATATTAATAGCTGATGATGATGCTGAAATTGCTGATTTGGTTGCTATACATTTAGAGAAAGAAGGGTATCGTGTCATTAAGGTATCGGATGGGCAAGAAACCATTGATGTTATCCAGAACCAACCCATTGATTTACTGATTTTGGATATTATGATGCCGAAAATGGATGGATTTGAAGTGACACGTCGCATTCGCGAAAAACATAATATGCCCATTATTTTTTTGAGCGCTAAAACGTCTGATTTTGATAAAGTGCAGGGACTCGTGATTGGAGCAGACGATTATATGACGAAACCATTTATACCCATTGAATTGGTAGCTCGGGTAAATGCACAGCTGCGACGCTTTATGAAGTTGAATCAACCTAAAACCAAACAGAACTCAAACTTGGAATTTGGAGGATTAACGATTTCTCCTGAACAACGTACAGTTACTCTATATGGTAAGAATATTGAGTTAACACCGAAAGAGTTTGAAATTTTATTTTTATTAGCCAGTAATCCAAATAAAGTTTATCGTGCAGAAGATATTTTTCAGAAGGTATGGGGGGATGCATACTATGAAGGTGGGAATACCGTTATGGTTCATATTCGTACTTTGCGGAAAAAACTTGAAGAGGATAAACGAAAAAACAAATTGATACAAACTGTATGGGGGGTAGGTTATAAATTCAATGGGTAA"}}}}}}}}}}, "243": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "242": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "249": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "248": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2274": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2277": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4638": {"dna_sequence": {"fmax": "4143", "fmin": "3243", "accession": "AHEL01000071.1", "strand": "-", "sequence": "TTGAACAAACAGAAAGCGGTAGAAATAGCAAGAAAGTATGGTTTGGAAGTTAAAGATGAGTCCATCATATTCAACGAGTCCGGTTTAGATTTTCTGGTTGCTTATGCAGAAGACGATAAAGGCGAAGAATGGGTGCTAAGGTTTCCGAGACGGGACGATGTGATGCCAAGGACGATAGTGGAGAAGAAAGCACTGGATCTTGTAAATAAATATGCCACTTTTCAGGTTCCAGTCTGGTCGGTTTATGAAGGCGATCTAATAGCTTATAAAAAGTTAATCGGAGTGCCAGCAGGCACGATTGATCCGGAGATTCAAAACTATGTGTGGGAGATGGATTATGAAAATGTGCCTGAACAATTTCACCAGACATTAGCCAAAGCGTTGGCTTCGCTACACACAGTTCCGAAAACAGAGGCTCTTAAAGTAGGCCTGTTTGTCCAGACAGCAGAAGAGGCAAGAAAATCGATGATTGAGCGTATGAAAAAGGTTAAAGCGAAGTTTGGCGTAGGCGAATCCTTATGGAACCGCTGGCAGGCCTGGGTAAAAAATGAGGAATTGTGGCCTCAGAGAACAGGTCTGATTCATGGGGATGTTCATGCTGGCCACACGATGATTGATAAAGATGCTAACTTAACAGGTTTTATCGACTGGACCGAAGCAAAAGTAACGGATGTATCAAATGACTTTGTTTTCCAGTACCGGGTATTCGGGGAGGCAGCCCTGGAGAAACTGATCAACTATTACCGGCAAGCAGGTGGGATTTACTGGCCTGCCATGAAAGAGCACGTCATTGAACTTAATGCGGCATACCCTGTTGCGATAGCTGAGTTTGCGATTATCTCAGGCTTGGAAGAATATGAGCAGATGGCGAAAGAAACATTGGAAGTGAATGACCGCTAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Bacillus cereus K-5975c", "NCBI_taxonomy_id": "1053217", "NCBI_taxonomy_cvterm_id": "39641"}, "protein_sequence": {"accession": "EOO80837.1", "sequence": "MNKQKAVEIARKYGLEVKDESIIFNESGLDFLVAYAEDDKGEEWVLRFPRRDDVMPRTIVEKKALDLVNKYATFQVPVWSVYEGDLIAYKKLIGVPAGTIDPEIQNYVWEMDYENVPEQFHQTLAKALASLHTVPKTEALKVGLFVQTAEEARKSMIERMKKVKAKFGVGESLWNRWQAWVKNEELWPQRTGLIHGDVHAGHTMIDKDANLTGFIDWTEAKVTDVSNDFVFQYRVFGEAALEKLINYYRQAGGIYWPAMKEHVIELNAAYPVAIAEFAIISGLEEYEQMAKETLEVNDR"}}}}}}}, "2276": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model."}}, "2271": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2270": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2272": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model."}}, "2279": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4636": {"dna_sequence": {"fmax": "1761291", "fmin": "1758693", "accession": "NC_003210.1", "strand": "-", "sequence": "ATGAAAGAAAAATTAATGCAAGCCTATGCCTGGTTTCAAAAAAATAGTACCGTCGTAAAAATCGTTTTTATTACTTTTGTGATGGCTTTTGTTATTTTTGAAATTATTAATATTGCGACGGGGATTGACTATCCGTCGCTAAAAGAAAATTTAACTTCTCAAAGCCCGGAACAAATATTTATTATGTTTATCGTGGGCTTAATTGCTGTCACTCCAATGCTTTTGTATGATTATGTCATCGTTAAGTTGTTACCTGGAAAGTTTTCGCCAAGTCATGTGATTGCCTCTGGTTGGATTACGAATACCTTTACTAATATTGGCGGTTTTGGTGGCGTATTAGGTGCCAGTTTAAGAGCAAGTTTTTATGGGAAAAATGCATCTCATAAGGAAATTTTACTAGCTATTTCTAAGATTGCTTTATTTTTAGTATCTGGTTTATCGATTTACTGTTTAGTATCATTAGCCACTTTACTCATTCCAGGATTTGCAGATCATTTTGTTAATTACTGGCCATGGCTTCTTGCGGGTGGTCTTTACTTCCCGATTTTATTTACTATTACGAAATGGAAAAGTAAGTCACTCTTTGTTGATTTACCTATCAAAAGAGAATTAACGTTAATTATCGCTTCTCTTTTGGAGTGGGGCTTCGCTTTTGGATGTTTCGCGATTATCGGTACATTGATGGGAGAACCAGTCGATATTTTCAAAGTGTTCCCGTTATTTGTTATTGCTTCGGTAATTGGGATTGCTTCGATGGTACCTGGTGGAGTAGGGACATTTGACGTCGTGATGATTCTTGGACTTAGCCAATTAGGTGTTTCTCAAGAATTAGCGCTCGCTTGGATGCTATTTTACCGAATTTTCTACTATATTATTCCTTTTGTAGTGGGACTACTTTTCTTCGTCCAAAAAGCTGGTAAAAAAGTAAATGACTTTTTAGAAGGATTACCGTTATTATTCTTACAAAAAGTGGCCCATCGCTTCTTAGTTATTTTTGTTTACGGCTCTGGGTTATTGTTAATTTTGTCTTCCGCCGTACCAAACGCTATTTACCATGTGCCATTCTTATACAAAATTATGCCGTTTAATTTCTTATTCACTTCCCAAATTACCATTGTTGCATTTGGCTTTTTACTACTGGGGCTTGCGAGAGGGATTGAATGTAAAACAAAGAAAGCGTATATTATTACAGTAATTGTTCTAGGTTGCGCGATTTTCAACACACTTGCTCGCGTATTTTCGATGAAGCAGGCAATCTTTTTAGGAATTGTGCTGTTATGTTTATTCTTAGCTCGAAACGAATTTTACCGAGAAAAACTGGTTTATACTTGGAGTAAAGTAATTATTGATAGCATTATTTTCATCGTATGTCTGGCAGGTTACATTGTTATCGGTATTTACAACTCACCAAATATCAAACACTCCAAAGAAATCCCTGACTATTTACGCATTGCCTCAGAGCATTTATGGTTAGTCGGCTTCGTTGGCGTATTTATCGCCGTTGTTAGTTTAGTCATTATTTACATTTATTTATCCACAACAAAAGAAAAACTTGGCTCTCCATTTGAAGCAGTCAAAGTACGCGAACATTTAGCGAAATGGGGCGGAAATGAAGTCAGTCATACGATGTTCTTACGTGATAAACTGCTATTTTGGGCAGCAGAGGGGGAAGTACTTTTCTCTTACCGAATCATTGCGGACAAAATGGTCATCATGGGCGAACCAACTGGGAACATGGACAAAATGGAAGCAGCGATTGAAGAGGTAATGATGAACGCTGATAGATTTGGCTATCGACCTGTTTTCTATGAAGTCCGGGGCACGATGATTCCATATTTACATGATCACGGATTTGACTTTATCAAGCTTGGCGAGGAAGGTTTTGTCGACGTCCAAAACTTTACAATGAGTGGTAAAAAGAAAAAAGGTGAGCGAGCTCTCATGAATAAATTAGAACGAGAAGGTTATACTTTTGAAATAATAGAACCACCATTCAATCACGACACTTGGACAACTTTACGAGCAGTTTCTGATGAGTGGCTAGATGGTAGGGAAGAAAAAGGTTTCTCATTAGGATTCTTCGATACGTATTATCTCGAACAAGCTCCGATTGCTATCGCTAAAAACGGAGAAGGTACTATCGTTGGATTTGCTTCGATGATGCCGTCATATACAGACGAAATGACTTCGATTGATTTAATGCGTTACTCCAAAGAAGCGCCATCAGGTATTATGGATTTCCTTTTCATTAACCTATTCGAAAAAGCCAAAGAAGATGGCTTCCAAACATTTAATGCCGGTATGGCACCACTTGCCAATGTTGGGGAAAGTAAATATGCTTTCCTAGGTGAACGATTAGCCGGACTTGTATACCGTTATAGTCAAGGTTTTTACGGTTTCAAAGGATTACGTAATTTTAAATCCAAATATGTTACAGAATGGGAACAAAAATTTGTTGCCTTTAGAAAAAGAAGTTCCATTGCTTTCACCATGTTACAATTAATGATTCTTGTTGGTAAAAAACGACCACTTGCAAATAGCCAAGTAGTCCTTGATTTCCCACTCGAAGAAGAAACAAAAAAACCAGATTCTGAGTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Listeria monocytogenes EGD-e", "NCBI_taxonomy_id": "169963", "NCBI_taxonomy_cvterm_id": "40443"}, "protein_sequence": {"accession": "NP_465220.1", "sequence": "MKEKLMQAYAWFQKNSTVVKIVFITFVMAFVIFEIINIATGIDYPSLKENLTSQSPEQIFIMFIVGLIAVTPMLLYDYVIVKLLPGKFSPSHVIASGWITNTFTNIGGFGGVLGASLRASFYGKNASHKEILLAISKIALFLVSGLSIYCLVSLATLLIPGFADHFVNYWPWLLAGGLYFPILFTITKWKSKSLFVDLPIKRELTLIIASLLEWGFAFGCFAIIGTLMGEPVDIFKVFPLFVIASVIGIASMVPGGVGTFDVVMILGLSQLGVSQELALAWMLFYRIFYYIIPFVVGLLFFVQKAGKKVNDFLEGLPLLFLQKVAHRFLVIFVYGSGLLLILSSAVPNAIYHVPFLYKIMPFNFLFTSQITIVAFGFLLLGLARGIECKTKKAYIITVIVLGCAIFNTLARVFSMKQAIFLGIVLLCLFLARNEFYREKLVYTWSKVIIDSIIFIVCLAGYIVIGIYNSPNIKHSKEIPDYLRIASEHLWLVGFVGVFIAVVSLVIIYIYLSTTKEKLGSPFEAVKVREHLAKWGGNEVSHTMFLRDKLLFWAAEGEVLFSYRIIADKMVIMGEPTGNMDKMEAAIEEVMMNADRFGYRPVFYEVRGTMIPYLHDHGFDFIKLGEEGFVDVQNFTMSGKKKKGERALMNKLEREGYTFEIIEPPFNHDTWTTLRAVSDEWLDGREEKGFSLGFFDTYYLEQAPIAIAKNGEGTIVGFASMMPSYTDEMTSIDLMRYSKEAPSGIMDFLFINLFEKAKEDGFQTFNAGMAPLANVGESKYAFLGERLAGLVYRYSQGFYGFKGLRNFKSKYVTEWEQKFVAFRKRSSIAFTMLQLMILVGKKRPLANSQVVLDFPLEEETKKPDSE"}}}}}}}, "2278": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4637": {"dna_sequence": {"fmax": "1613960", "fmin": "1610636", "accession": "NC_014638.1", "strand": "-", "sequence": "GTGAGCGAAACCACCAATTCCCACGTGTATCCCAAGGCGAACGAGGGCGGCGAGACCGCCAGCGTCGCGCCGAACCCGAGTTTCCCCAACATGGAGGAAACCGTCCTGAAGTATTGGGACAAGGACGACACCTTCAACAAGTCCGTTGAACGCAACCCTTCCGGCGACCATAGTCAGAACGAGTTCGTGTTCTTCGACGGCCCGCCGTTCGCGAACGGCCTGCCGCACTACGGCCACCTGCTGACCGGTTACGCGAAGGACGTGATCCCGCGCTACCAGACCATGAAGGGCCGCAAGGTCAACCGCGTGTTCGGCTGGGACACGCACGGTCTGCCCGCCGAGCTGGAGGCGCAGAAGGAGCTCGGCATCGACTCGGTCGACCAGATCGAGAAGATGGGCATCGACAAGTTCAATGACGCCTGCCGCGCCTCCGTCCTGAAGTACACGCACGAATGGCAGGATTACGTGCATCGTCAGGCCCGCTGGGTCGACTTCGAGCACGGGTACAAGACGCTGAACATCCCGTATATGGAGTCGGTGATGTGGGCGTTCAAGCAGCTGTACGAGAAGGGCCTGGCGTACCAGGGCTACCGCGTGCTGCCGTACTGCCCGAAGGATCAGACGCCGCTTTCGGCGCACGAGCTGCGCATGGACGCCGACGTGTATCAGGATCGTCAGGACACCACCGTGTCGGTGGCCGTGAAGCTGCGCGACGAGGAGGACGCCTACGCGGTCTTCTGGACCACCACGCCGTGGACCGTGCCCACTAACTTCGCGATCGTCGTCGGCGCTGACATCGACTATGTCGAGGTGCGCCCGACGCAGGGCAAGTACGCCGGCAAGAAGTTCTACTTCGGCAAGCCCCTGCTCTCCAAGTACGAGAAGGAGCTCGGCGAGGATTACGAGGTCGTGCGCGAGCTCAAGGGCTCCGAGATGGCCGGTTGGCGTTACTGGCCGGTGTTCCCGTACTTCGCTGGCGACAAAGCCGAGTCTGAGGGCAACGTGCCGGGGCCCGAAGGCTACCAAATCTTTACCGCGGACTACGTAGACACCGTCGAGGGTACCGGCCTGGTTCACCAGGCTCCCTATGGTGAGGACGATATGAACACGCTGAACGCGCACGGCATCAAGAGCACTGACGTGCTCGACGCCGGCTGCCGCTTCACCGCGCAGTGCCCCGATTACGAGGGCATGTACGTGTTCGACGCGAACAAGCCGATCCTGCGCAACCTGCGCAACGGAGACGGCCCGCTGGCCGAGATCCCGGCCGAGCATCGCGCGATCCTGTTCCAGGAGAAGAGCTATGTGCACTCCTACCCGCATTGCTGGCGTTGCGCCACGCCGCTGATCTACAAGCCTGTGAGCTCATGGTTCGTGTCGGTGACGAAGATCAAGCCGCGCCTGTTGGAGCTCAACCAGCAGATCAACTGGATTCCTGAGAATGTCAAGGATGGTCAGTTCGGTAAGTGGCTCGCCAACGCGCGCGACTGGTCGATCTCCCGCAACCGCTTCTGGGGTTCGCCGATCCCGGTGTGGGTGAGCGATGACCCGAAGTACCCGCGCGTCGACGTGTACGGTTCGTTGGAGGAGCTCAAGGCCGACTTCGGCGACTACCCGCGCGACAAGGACGGCAACGTCAACATGCACCGTCCGTGGATCGACAACCTCACGCGCGTCAACCCGGACGACCCGACCGGCAAGAGCCACATGCACCGTATCAGCGACGTGCTCGACTGCTGGTTCGAATCCGGTTCGATGTCGTTCGCGCAGTTCCACTACCCGTTCGAGAACAAGGAGAAGTTCGAGCAGCACTTCCCGGCCGACTACATTGTCGAATACATCGGCCAGACCCGCGGCTGGTTCTACCTGCTGCACGTGATGGCCACCGCGCTGTTCGACCGCCCGGCGTTCAAGAACGTGATCTGCCACGGCATCGTGCTCGGTTCCGACGGCCAGAAGATGTCGAAGCACCTGCGCAACTACCCGGACGTGAACGGCGTGTTCGACAAGTACGGTTCCGACGCCATGCGCTGGTTCCTTATGTCGTCGCCGATCCTGCGCGGCGGCAACCTCATTGTTACCGCTGAGGGCATCCGCGACACCGTGCGCCAGGTCATGCTGCCGGTGTGGAGCTCCTACTACTTCTTCACGCTGTATGCGAACGCGGCCAATGGCGGGGCCGGCTTCGACGCCCGTCAGCTGCGCGCGGACGAGGTGGCGGGTCTGCCTGAGATGGATCGTTACCTGCTGGCCCGCACCCGCAGGCTCGTAGAGCGTGTAGAGAAGTCGCTCGACGAGTTCGCGATTTCTGACGCGTGCGATGCGGCGAGTGACTTCATCGACGTGCTCACCAACTGGTACATCCGCAACACCCGTGATCGCTTCTGGAAGGAGGACGTGAATGCGTTCAACACGCTGTACACCGTGCTTGAGGTGTTCATGCGCGTTCTCGCGCCGCTCGCCCCGATGGAGTCCGAATCCGTGTGGCGTGGCCTGACCGGCGGCGAATCCGTGCATCTGGCCGATTGGCCGTACGTCGCGGACGAGAAGACCGGTGAGGCGACCGAGCTTGGCCGTGTGCTGGTCGACGACCCGGCACTGGTGGACGCGATGGAGAAGGTGCGCGAGATCGTCTCCGGCGCTCTGTCGTTGCGCAAGGCCGCCCAGATCCGTGTGCGCCAGCCGCTCGCCAAGCTCACCGTCGTGGTCGAGGATGTGGATGCCGTCAAGGCGTACGACGAAATTCTCAAGTCAGAGCTTAATATAAAGGATATTGAGTTCTGCACGATGGAGGATGCCGGTTCGCAGGGGCTGAAGATCGTGCACGAGCTGAAGGTCAACGCCCGCGCCGCCGGCCCGCGCCTCGGCAAGCAGGTCCAGTTCGCCATCAAGGCGTCCAAGACCGGTGCCTGGCATGTCGATGCCGCGACCGGTGCTCCGGTCGTCGAGACGCCGAACGGCGAGGTTGCGCTGGAGGCTGGCGAATACGAGCTAATCAACCGCGTGGAGGAGGAGAACGCCGCCGAGGCCGACGCTTCCGTGTCGGCCGCTCTGCCTACCGGCGGTTTCGTGATTCTCGATACCGTGCTGACCGCCGACCTGGAGGCCGAGGGCTACGCCCGCGACGTGATTCGCGCCGTGCAGGACGCCCGCAAGGCCGCCGACCTGGACATCGCCGATCGCATCGCCCTGGTGCTGACCGTGCCGTCCGCCAATGTGGCCGATGTCGAGCGGTTCCGCGATCTGATCGCCCATGAGACGCTGGCCACCTCCTTCGCGGTGAAGGAAGGTGCCGAGCTGGGCGTGGAGGTCGCCAAGGCGTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Bifidobacterium bifidum PRL2010", "NCBI_taxonomy_id": "702459", "NCBI_taxonomy_cvterm_id": "40437"}, "protein_sequence": {"accession": "YP_003971446.1", "sequence": "MSETTNSHVYPKANEGGETASVAPNPSFPNMEETVLKYWDKDDTFNKSVERNPSGDHSQNEFVFFDGPPFANGLPHYGHLLTGYAKDVIPRYQTMKGRKVNRVFGWDTHGLPAELEAQKELGIDSVDQIEKMGIDKFNDACRASVLKYTHEWQDYVHRQARWVDFEHGYKTLNIPYMESVMWAFKQLYEKGLAYQGYRVLPYCPKDQTPLSAHELRMDADVYQDRQDTTVSVAVKLRDEEDAYAVFWTTTPWTVPTNFAIVVGADIDYVEVRPTQGKYAGKKFYFGKPLLSKYEKELGEDYEVVRELKGSEMAGWRYWPVFPYFAGDKAESEGNVPGPEGYQIFTADYVDTVEGTGLVHQAPYGEDDMNTLNAHGIKSTDVLDAGCRFTAQCPDYEGMYVFDANKPILRNLRNGDGPLAEIPAEHRAILFQEKSYVHSYPHCWRCATPLIYKPVSSWFVSVTKIKPRLLELNQQINWIPENVKDGQFGKWLANARDWSISRNRFWGSPIPVWVSDDPKYPRVDVYGSLEELKADFGDYPRDKDGNVNMHRPWIDNLTRVNPDDPTGKSHMHRISDVLDCWFESGSMSFAQFHYPFENKEKFEQHFPADYIVEYIGQTRGWFYLLHVMATALFDRPAFKNVICHGIVLGSDGQKMSKHLRNYPDVNGVFDKYGSDAMRWFLMSSPILRGGNLIVTAEGIRDTVRQVMLPVWSSYYFFTLYANAANGGAGFDARQLRADEVAGLPEMDRYLLARTRRLVERVEKSLDEFAISDACDAASDFIDVLTNWYIRNTRDRFWKEDVNAFNTLYTVLEVFMRVLAPLAPMESESVWRGLTGGESVHLADWPYVADEKTGEATELGRVLVDDPALVDAMEKVREIVSGALSLRKAAQIRVRQPLAKLTVVVEDVDAVKAYDEILKSELNIKDIEFCTMEDAGSQGLKIVHELKVNARAAGPRLGKQVQFAIKASKTGAWHVDAATGAPVVETPNGEVALEAGEYELINRVEEENAAEADASVSAALPTGGFVILDTVLTADLEAEGYARDVIRAVQDARKAADLDIADRIALVLTVPSANVADVERFRDLIAHETLATSFAVKEGAELGVEVAKA"}}}}}}}, "179": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "178": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "177": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"2108": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAAAGTTATCAGTATTCTTTATGTTTTTGTTTTGTAGCATTGCTGCCTCAGGAGAGGCTTTGCCAGATTTAAAAATTGAGAAGCTTGACGAAGGCGTTTATGTTCATACTTCGTTTGAGGAAGTTAACGGCTGGGGCGTGGTTCCTAAACACGGCTTGGTGGTTCTTGTAAATACTGACGCTTATTTGATTGACACTCCATTTACAGCTAAAGATACTGAAAAGTTAGTTACTTGGTTTGTAGAGCGCGGCTATAAAATAAAAGGCAGTATCTCCTCTCATTTTCATAGCGACAGCACGGGCGGAATAGAGTGGCTTAATTCTCAATCTATTCCAACATATGCATCTGAATTAACAAATGAACTTCTTAAAAAAGACGGTAAGGTACAAGCTAAAAATTCATTTAGCGGAGCCAGCTATTGGTTAGTTAAGAAAAAGATTGAAATTTTTTATCCTGGCCCAGGGCACACTCCAGATAACGTAGTGGTTTGGCTACCTGAACATAGAGTTTTGTTTGGTGGTTGTTTTGTTAAACCGTATGGTCTAGGTAATTTGGGTGACGCAAATTTAGAAGCTTGGCCAAAGTCTGCCAAATTATTAGTGTCCAAATATGGTAAGGCAAAACTGGTTGTTCCAGGTCACAGTGAAGTTGGAGATGCATCACTCTTGAAACGTACATTAGAACAGGCTGTTAAAGGATTAAACGAAAGTAAAAAGCTATCAAAACCAAGTAACTAA"}}}}}}}}}}, "176": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "175": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "174": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4470": {"dna_sequence": {"fmax": "1037", "fmin": "71", "accession": "AF118110.1", "strand": "-", "sequence": "ATGGAAAAAAACAGAAAAAAACAAATCGTAGTTTTGAGTATAGCTTTAGTTTGCATTTTCATCTTGGTATTTTCATTGTTCCATAAATCAGCGACAAAAGATAGCGCAAATCCTCCTTTAACAAATGTTTTGACTGATAGCATTTCTCAAATTGTCTCAGCTTGTCCTGGCGAAATTGGTGTGGCGGTTATTGTTAATAACAGAGATACGGTTAAGGTCAATAATAAGAGTGTTTATCCTATGATGAGTGTGTTTAAGGTTCATCAGGCATTAGCTCTTTGTAATGACTTTGACAATAAAGGAATTTCACTTGATACCTTAGTAAATATAAATAGGGATAAACTTGACCCAAAGACTTGGAGTCCTATGCTGAAAGATTATTCAGGGCCAGTCATATCATTGACAGTGAGAGATTTGCTGCGTTATACTCTTACTCAGAGTGACAACAATGCAAGCAACCTTATGTTTAAGGATATGGTTAATGTCGCTCAAACAGATAGTTTTATAGCCACACTCATTCCTCGTTCAAGTTTTCAGATAGCTTATACGGAAGAGGAAATGTCGGCTGACCATAACAAGGCTTACTCTAACTATACATCTCCTCTTGGTGCTGCAATGTTGATGAATCGTTTGTTTACTGAAGGTCTTATCGATGATGAGAAACAAAGTTTCATTAAGAATACGTTAAAAGAATGCAAAACAGGTGTAGATAGGATAGCAGCTCCACTTCTTGATAAAGAAGGGGTTGTTATAGCGCATAAGACAGGTTCAGGTTATGTTAATGAAAATGGTGTTCTTGCAGCTCACAATGATGTTGCCTATATATGTCTGCCTAATAATATCAGTTATACCTTAGCGGTATTTGTTAAGGATTTCAAGGGAAATGAATCACAAGCGTCACAATATGTTGCGCATATATCAGCTGTAGTATATTCTTTATTAATGCAAACTTCAGTAAAATCTTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Prevotella intermedia", "NCBI_taxonomy_id": "28131", "NCBI_taxonomy_cvterm_id": "39547"}, "protein_sequence": {"accession": "AAD23513.1", "sequence": "MEKNRKKQIVVLSIALVCIFILVFSLFHKSATKDSANPPLTNVLTDSISQIVSACPGEIGVAVIVNNRDTVKVNNKSVYPMMSVFKVHQALALCNDFDNKGISLDTLVNINRDKLDPKTWSPMLKDYSGPVISLTVRDLLRYTLTQSDNNASNLMFKDMVNVAQTDSFIATLIPRSSFQIAYTEEEMSADHNKAYSNYTSPLGAAMLMNRLFTEGLIDDEKQSFIKNTLKECKTGVDRIAAPLLDKEGVVIAHKTGSGYVNENGVLAAHNDVAYICLPNNISYTLAVFVKDFKGNESQASQYVAHISAVVYSLLMQTSVKS"}}}}}}}, "173": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"524": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGACGAATGACTGGATTCCCACTTCGCATGACAACTGCTCGCAAGTAGCGGGGCCGTTCTATCACGGCACCAAAGCCAAACTCACGGTTGGTGACTTGCTTTCCCCAGGACACCCGTCTCACTTTGAGCAAGGTCGCAAGCTCAAACACATCTACTTTGCCGCCCTGATGGAACCAGCCATCTGGGGAGCGGAGCTTGCGATGTCGCTGTCAAGCCTAGAGGGGCGCGGCCACATCTACATCGTTGAACCGCTCGGCCCATTTGAGGACGACCCGAACCTTACAAACAAGAAATTCCCGGGAAATCCAACCAAGTCCTATCGCACCACTGAGCCGCTGCGGATTGTTGGGATCGTAGAAGACTGGCAAGGCCACTCACCGGAGGTGTTACAGGGCATGTTGGCGTCTCTGGAGGATCTTCAGCGTCGTGGCCTCGCCATCATTGAGGACTAA"}}}}}}}}}}, "172": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"309": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATTCACGCGCAGTCGATCCGGAGCGGGCTCGCGTCCGCCCTGGGTCTGTTCAGTCTGCTGGCGCTCAGCGCCTGCACGGTGGGTCCGGACTACCGGACCCCCGACACCGCGGCGGCGAAGATCGACGCCACGGCGAGCAAGCCCTACGACCGCAGCCGCTTCGAAAGCCTGTGGTGGAAACAGTTCGACGATCCGACCCTGAACCAGTTGGTCGAACAGTCGCTGAGCGGCAACCGCGACCTGCGCGTGGCCTTCGCCCGCCTGCGCGCCGCCCGCGCCCTGCGCGACGACGTGGCCAACGATCGCTTCCCGGTGGTCACCAGCCGCGCCAGCGCCGACATCGGCAAGGGCCAGCAACCGGGAGTGACCGAGGACCGGGTCAACAGCGAGCGCTACGACCTTGGCCTGGATAGCGCCTGGGAGCTTGACCTGTTCGGGCGCATCCGCCGTCAGCTGGAGTCCAGCGACGCCCTCAGCGAAGCGGCCGAGGCCGACCTGCAGCAACTGCAGGTCAGCCTGATCGCCGAGCTGGTGGACGCCTACGGCCAACTGCGCGGCGCGCAACTGCGCGAGAAGATTGCCCTGAGCAACCTGGAGAACCAGAAGGAGTCGCGCCAGCTCACCGAGCAACTGCGCGACGCCGGGGTCGGTGCCGAACTCGACGTACTGCGCGCCGATGCGCGCCTGGCGGCCACCGCCGCCAGCGTGCCGCAACTGCAGGCGGAAGCCGAGCGCGCCAGGCACCGTATCGCCACCCTCCTCGGCCAACGGCCGGAAGAGTTGACAGTGGACCTTTCGCCGCGCGACCTGCCGGCGATCACCAAGGCCCTGCCGATCGGCGATCCCGGCGAACTGCTGCGCCGCCGGCCGGACATCCGCGCCGCCGAACGGCGCCTGGCCGCCAGCACCGCCGACGTCGGCGTGGCCACCGCCGACCTGTTCCCGCGGGTCAGCCTCAGCGGCTTCCTCGGCTTCACCGCCGGGCGGGGCTCGCAGATCGGCTCAAGCGCCGCCCGCGCCTGGAGCGTCGGCCCGAGCATCAGTTGGGCCGCCTTCGACCTCGGCAGCGTGCGTGCCCGCCTGCGCGGCGCCAAGGCCGACGCCGACGCCGCGCTGGCCAGCTACGAACAGCAGGTGCTGCTGGCCCTGGAAGAATCGGCGAATGCCTTCAGCGACTATGGCAAGCGCCAGGAGCGCCTGGTCTCGCTGGTCCGCCAGTCGGAAGCCAGCCGCGCCGCCGCGCAACAGGCGGCGATCCGCTACCGCGAAGGCACCACCGATTTCCTGGTGCTGCTGGACGCCGAACGCGAGCAACTCTCCGCCGAAGATGCCCAGGCCCAGGCCGAGGTCGAGCTGTACCGCGGCATCGTGGCGATCTACCGCTCCCTCGGCGGTGGCTGGCAACCCAGCGCCTGA"}}}}}}}}}}, "171": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"2038": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGGTGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATCGTCGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAGATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA"}}}}}}}}}}, "170": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1014": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAGAAATTATTTGTTTTATGTGTATGCTTCCTTTGTAGCATTACTGCCGCAGGAGCGGCTTTGCCTGATTTAAAAATCGAGAAGCTTGAAGAAGGTGTTTATGTTCATACATCGTTCGAAGAAGTTAACGGTTGGGGTGTTGTTTCTAAACACGGTTTGGTGGTTCTTGTAAACACTGACGCCTATCTGATTGACACTCCATTTACTGCTACAGATACTGAAAAGTTAGTCAATTGGTTTGTGGAGCGCGGCTATAAAATCAAAGGCACTATTTCCTCACATTTCCATAGCGACAGCACAGGGGGAATAGAGTGGCTTAATTCTCAATCTATTCCCACGTATGCATCTGAATTAACAAATGAACTTCTTAAAAAAGACGGTAAGGTGCAAGCTAAAAACTCATTTAGCGGAGTTAGTTATTGGCTAGTTAAAAATAAAATTGAAGTTTTTTATCCCGGCCCGGGGCACACTCAAGATAACGTAGTGGTTTGGTTACCTGAAAAGAAAATTTTATTCGGTGGTTGTTTTGTTAAACCGGACGGTCTTGGTAATTTGGGTGACGCAAATTTAGAAGCTTGGCCAAAGTCCGCCAAAATATTAATGTCTAAATATGTTAAAGCAAAACTGGTTGTTTCAAGTCATAGTGAAATTGGGGACGCATCACTCTTGAAACGTACATGGGAACAGGCTGTTAAAGGGCTAAATGAAAGTAAAAAACCATCACAGCCAAGTAACTAA"}}}}}}}}}}, "2051": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"2102": {"$update": {"dna_sequence": {"$update": {"sequence": "GTGAAACTATCACTAATGGCAGCAATTTCGAAGAATGGAGTTATCGGAAATGGCCCAGATATTCCATGGAGTGCCAAAGGGGAACAATTACTCTTCAAAGCGATTACCTATAATCAGTGGCTTTTGGTAGGCCGAAAGACTTTCGAGTCAATGGGGGCTTTACCCAACCGAAAATATGCCGTTGTAACTCGTTCAAGCTTCACTTCCAGTGATGAGAATGTATTGGTATTTCCATCTATCGATGAAGCGCTAAATCATCTGAAGACGATAACGGATCATGTGATTGTGTCTGGTGGTGGTGAAATATACAAAAGCCTGATCGATAAAGTTGATACTTTACATATTTCAACAATCGACATTGAGCCAGAAGGTGATGTCTATTTTCCAGAAATCCCCAGTAGTTTTAGGCCAGTTTTTAGCCAAGACTTCGTGTCTAACATAAATTATAGTTACCAAATCTGGCAAAAGGGTTAA"}}}}}}}}}}, "2050": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2053": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"525": {"$update": {"dna_sequence": {"$update": {"sequence": "TTGAAAATTTCATTGATTTCTGCAACGTCAGAAAATGGCGTAATCGGTAATGGCCCTGATATCCCATGGTCAGCAAAAGGTGAGCAGTTACTCTTTAAAGCGCTCACATATAATCAGTGGCTCCTTGTTGGAAGGAAAACATTTGACTCTATGGGTGTTCTTCCAAATCGAAAATATGCAGTAGTGTCGAGGAAAGGAATTTCAAGCTCAAATGAAAATGTATTAGTCTTTCCTTCAATAGAAATCGCTTTGCAAGAACTATCGAAAATTACAGATCATTTATATGTCTCTGGTGGCGGTCAAATCTACAATAGTCTTATTGAAAAAGCAGATATAATTCATTTGTCTACTGTTCACGTTGAGGTTGAAGGTGATATCAATTTTCCTAAAATTCCAGAGAATTTCAATTTGGTTTTTGAGCAGTTTTTTTTGTCTAATATAAATTACACATATCAGATTTGGAAAAAAGGCTAA"}}}}}}}}}}, "2052": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"276": {"$update": {"dna_sequence": {"$update": {"sequence": "GTGACCGAGTGGCTGCCCGTCACACGCGGTGAATCCGGTGCCGGGGTCTTCAGGAACTCCGACGGTTCGAGCTACGCGAAGGTGGTCGACGCCGCGGCGGTGGCAGACCTGGCCGCGGAGCGTGACCGGGTGTCCTGGGCCCACAGGCACGGTGTCCCCGGGCCCGCGGTCATCGACTGGCGTGTCACCGAAGACGGCGGCGCGTGCTTGATCACGAGCACTGTGCGCGGTGTCGCTGCCGATCGGCTTTCCGAATCGGCGCTGCGGGCGGCCTGGCCGGCGATTGTGGAGGCGGTCCGGACACTGCACGCCCTTCCGGCCGACGGTTGTCCCTACCGGCGCGATCTCGACGACATGCTGGCCCGGGCCCGCGCGGTCGTCGGCGCCGGTGCCGTGAACCCGGAGTTCCTGTCCGACGAGGACCGCGAGGTACCGGCGGAGGCGCTGCTGGACCGAGTCGAACGGGAAGCCGATCTACGTCGTCGGGAGGAGGCCGCCGACTGGGTGGTGTGCCACGGCGATCTGTGCCTGCCGAACATTTTGGTCGACCCCGACCGTCACACCGTCGAGGGATTCATCGATCTGGGCAGGCTGGGGCTGGCCGACCGGCACGCCGACCTGGCACTGCTGCTGGCCAATACGGCTGATACCGTTCCGGGCTTCGCCGAGGAGGCCACGGCGGGGTTGGCCGCGGGGTATCCGGCGCAGGTGGATCCGGAGCGGCTGCGGTTCTATCTCGCGCTCGATCCGCTGACCTGGGGATGA"}}}}}}}}}}, "2055": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1917": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAATCGAAACTGCTTCTTGCCGCGGCCTTGGCCGCACTCGCCGGCACGTCGATGGCCGCCCAGGCGGCCGAACTGCAATATAAGCCGCCGCCGATCACCAACAAGGAATGGGAGACCCCGTTCCCCGGCTTCAAGATCGTCGGCAACATGTATTATGTCGGCACCTACGATCTGGGCTGCTATCTGATCGACACGGGGGCCGGGCTTATTCTGATCAATTCCGGCGCCGACGGTTCGTATCCGCTGATCAAGGCCAATATCGAGAAGCTCGGTTTCAAGACCAGCGACATCAAGATCATCACCTCGACGCACGGCCACGGCGATCATGTCGGCGACCTCGCCGCGTTCCAGAAAGATGCGCCCGCCGCCAAGACCTATATGAATTTTCGCGATGCGCCGACCATCGAATCGGGCGGCAACATCGATTACCGGCGCCCTGAGGGGCGCGGGTTTTATCCCTACCATCCGGTGAAGGTTGATGTGCGCACCAAGCCGGGCGACCATATCAAGCTCGGCAACACCGATCTGACGCTGCACCAGGCTTACGGCCATACGCCGGGGGCGACGAGCTTCACCTTCACGGTCCAGGATGGTGGGCGCAATTACAACGTGCTGATCGTCAACATGAACGGCATCAATGCGGGCGTGAAATTGCTCGGCTCGCCGGGGTATCCGACCATCGTCGAGGATTTTGCCAGCACGCTGAAGGAACAGGCGACCTATACGCCCGACCTCTGGGTCTCTTCGCATGCGGGCCAGTTCAACCTGCATCAGGTCTACAAGCCGGGCGATCCGTACAACCCGGCGCGCTTCGGCGATTTGGCGGCCTACAAATTGAAGATCGCCAACGCGACGAAGGCTTACGAAAAACAATTGGCTGAAGAGCGCGCCGCGAAGGCGAAGTAA"}}}}}}}}}}, "2054": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_category": {"$delete": ["36001", "36002", "36298"], "$insert": {"41687": {"category_aro_name": "ABC-F ATP-binding cassette ribosomal protection protein", "category_aro_cvterm_id": "41687", "category_aro_accession": "3004469", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2057": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2056": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4664": {"dna_sequence": {"fmax": "4306557", "fmin": "4304505", "accession": "AP009048.1", "strand": "-", "sequence": "ATGAGCGCGCTCAACTCCCTGCCATTACCGGTGGTCAGGCTGCTGGCGTTCTTTCATGAAGAGTTAAGCGAGCGGCGACCAGGTCGCGTGCCGCAGACCGTGCAACTCTGGGTAGGCTGCCTGCTGGTGATTCTGATCTCGATGACCTTTGAGATCCCTTTTGTGGCGTTATCGCTGGCAGTGCTGTTTTACGGTATTCAGTCGAACGCGTTTTACACCAAATTTGTCGCGATCTTGTTTGTGGTTGCCACGGTGCTGGAGATCGGCAGCCTGTTTTTGATCTACAAATGGTCATACGGCGAACCGTTGATCCGATTGATCATCGCCGGACCGATCCTGATGGGCTGCATGTTTTTGATGCGCACCCATCGCTTGGGGCTGGTCTTTTTCGCCGTCGCCATTGTCGCTATTTACGGGCAAACCTTCCCCGCCATGCTCGACTATCCGGAAGTGGTCGTGCGCTTAACGCTGTGGTGTATCGTTGTTGGCCTCTATCCAACCTTGCTGATGACGTTAATCGGCGTGCTGTGGTTTCCCAGTCGTGCCATTTCGCAAATGCATCAGGCGCTTAATGATCGGCTTGATGATGCCATTAGTCACCTGACAGACAGCCTCGCACCGCTACCCGAAACGCGGATTGAAAGAGAGGCGCTGGCGCTACAAAAACTCAATGTCTTTTGCCTCGCGGACGATGCCAACTGGCGAACTCAAAACGCATGGTGGCAAAGCTGCGTGGCAACGGTAACCTACATTTACTCGACGCTGAATCGCTACGATCCCACCTCTTTTGCTGATTCTCAGGCAATTATTGAATTCCGACAAAAATTAGCTTCAGAAATCAACAAGCTGCAGCATGCCGTTGCTGAAGGTCAGTGCTGGCAAAGCGACTGGCGGATCAGTGAAAGTGAAGCGATGGCGGCACGGGAATGTAACCTGGAGAATATCTGCCAGACGTTGTTACAACTGGGTCAGATGGACCCGAATACGCCGCCAACGCCCGCAGCCAAACCGCCATCAATGGCCGCCGATGCTTTTACCAATCCAGACTATATGCGCTACGCGGTAAAAACGCTGCTCGCCTGTTTGATCTGTTACACCTTTTACAGCGGCGTGGACTGGGAAGGCATTCACACCTGTATGCTGACATGCGTGATCGTCGCTAACCCAAATGTCGGTTCGTCGTACCAGAAGATGGTGCTGCGTTTTGGCGGGGCCTTTTGCGGCGCGATTCTGGCGCTGTTATTCACGCTACTGGTCATGCCCTGGCTGGACAATATTGTCGAATTGCTGTTTGTGCTGGCACCGATTTTCCTGTTGGGCGCATGGATTGCCACCAGCTCTGAACGCTCTTCTTATATCGGCACACAGATGGTGGTCACCTTCGCGCTCGCCACGCTCGAAAACGTTTTTGGCCCAGTGTACGACCTGGTGGAAATTCGCGATCGCGCCCTGGGTATCATCATTGGTACCGTGGTGTCCGCGGTGATTTACACCTTTGTCTGGCCTGAAAGTGAAGCGCGCACACTGCCGCAAAAACTGGCTGGCACGCTGGGTATGTTAAGTAAAGTAATGCGGATCCCACGCCAGCAGGAAGTCACGGCTCTGCGCACTTATCTGCAAATTCGTATCGGTCTGCATGCGGCGTTTAATGCCTGTGAAGAGATGTGCCAACGCGTGGCGCTGGAGCGTCAACTGGACAGCGAAGAACGCGCATTACTGATTGAACGTTCGCAAACGGTTATTCGTCAGGGCCGCGATCTTCTTCACGCCTGGGATGCCACCTGGAACTCGGCGCAGGCGCTGGATAACGCACTACAGCCGGACAGAGCAGGTCAGTTTGCCGACGCCCTGGAGAAATACGCTGCCGGTCTGGCAACCGCACTCAGCCGTTCTCCTCAAATAACGCTTGAAGAGACACCCGCCTCTCAGGCCATCCTGCCCACCTTATTAAAACAGGAGCAACACGTCTGCCAGCTTTTCGCCCGCTTGCCAGACTGGACAGCCCCGGCATTAACGCCCGCCACGGAACAGGCACAAGGAGCCACGCAATGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli str. K-12 substr. W3110", "NCBI_taxonomy_id": "316407", "NCBI_taxonomy_cvterm_id": "36839"}, "protein_sequence": {"accession": "BAE78083.1", "sequence": "MSALNSLPLPVVRLLAFFHEELSERRPGRVPQTVQLWVGCLLVILISMTFEIPFVALSLAVLFYGIQSNAFYTKFVAILFVVATVLEIGSLFLIYKWSYGEPLIRLIIAGPILMGCMFLMRTHRLGLVFFAVAIVAIYGQTFPAMLDYPEVVVRLTLWCIVVGLYPTLLMTLIGVLWFPSRAISQMHQALNDRLDDAISHLTDSLAPLPETRIEREALALQKLNVFCLADDANWRTQNAWWQSCVATVTYIYSTLNRYDPTSFADSQAIIEFRQKLASEINKLQHAVAEGQCWQSDWRISESEAMAARECNLENICQTLLQLGQMDPNTPPTPAAKPPSMAADAFTNPDYMRYAVKTLLACLICYTFYSGVDWEGIHTCMLTCVIVANPNVGSSYQKMVLRFGGAFCGAILALLFTLLVMPWLDNIVELLFVLAPIFLLGAWIATSSERSSYIGTQMVVTFALATLENVFGPVYDLVEIRDRALGIIIGTVVSAVIYTFVWPESEARTLPQKLAGTLGMLSKVMRIPRQQEVTALRTYLQIRIGLHAAFNACEEMCQRVALERQLDSEERALLIERSQTVIRQGRDLLHAWDATWNSAQALDNALQPDRAGQFADALEKYAAGLATALSRSPQITLEETPASQAILPTLLKQEQHVCQLFARLPDWTAPALTPATEQAQGATQ"}}}}}}}, "2059": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2058": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"285": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGACCACCCTACACCCCGCGTGGGCCTATACGCTGCCCGCAGCACTGCTGCTGATGGCTCCTTTCGACATCCTCGCTTCACTGGCGATGGATATTTATCTCCCTGTCGTTCCAGCGATGCCCGGCATCCTGAACACGACGCCCGCTATGATCCAACTCACGTTGAGCCTCTATATGGTGATGCTCGGCGTGGGCCAGGTGATTTTTGGTCCGCTCTCAGACAGAATCGGGCGACGGCCAATTCTACTTGCGGGCGCAACGGCTTTCGTCATTGCGTCTCTGGGAGCAGCTTGGTCTTCAACTGCACCGGCCTTTGTCGCTTTCCGTCTACTTCAAGCAGTGGGCGCGTCGGCCATGCTGGTGGCGACGTTCGCGACGGTTCGCGACGTTTATGCCAACCGTCCTGAGGGTGTCGTCATCTACGGCCTTTTCAGTTCGGTGCTGGCGTTCGTGCCTGCGCTCGGCCCTATCGCCGGAGCATTGATCGGCGAGTTCTTGGGATGGCAGGCGATATTCATTACTTTGGCTATACTGGCGATGCTCGCACTCCTAAATGCGGGTTTCAGGTGGCACGAAACCCGCCCTCTGGATCAAGTCAAGACGCGCCGATCTGTCTTGCCGATCTTCGCGAGTCCGGCTTTTTGGGTTTACACTGTCGGCTTTAGCGCCGGTATGGGCACCTTCTTCGTCTTCTTCTCGACGGCTCCCCGTGTGCTCATAGGCCAAGCGGAATATTCCGAGATCGGATTCAGCTTTGCCTTCGCCACTGTCGCGCTTGTAATGATCGTGACAACCCGTTTCGCGAAGTCCTTTGTCGCCAGATGGGGCATCGCAGGATGTGGGCGCGTGGGATGGCGTTGCTTGTTTGCGGCGGTCCTGTTGGGGATCGGCGAACTTTACGGCTCGCTCAATTCCTCACCTTCATCCTACCGATGTGGGTTGTCGCGGTCGGTATTGTCTTCACGGTGTCCGTTACCGCGAACGGCGCTTTTGGCAGAGTTCGACGACATCGCGGGATCAGCGGTCGCTTTCTACTTCTGCGTTCAAAGCCTGATAGTCAGCATTGTCGGGACATTGGCGGTGGCACTTTTAAACGGTGACACAGCGTGGCCCGTGATCTGTTAG"}}}}}}}}}}, "1500": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"94": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGTTCGTCGGACCACATCCACGTCCCGGACGGCCTGGCCGAGTCGTACAGCAGAAGCGGTGGCGAGGAAGGGCGCGCCTGGATCGCCGGACTTCCCGCTCTCGTCGCGCGATGCGTCGACCGCTGGGAGCTGAAGAGGGACGGCGGCGTCCGCTCCGGTGAGGCCTCCCTCGTGGTGCCGGTGCTGCGTGCTGACGGCACCCGGGCGGCGCTCAAACTCCAGATGCCCCGGGAAGAGACGACGGCCGCGCTGATCGGCCTGCGAGCCTGGGGCGGGGACGGCATGGTGCGGCTGCTCGACCACGACGAGGAGAGCAGCACGATGCTGCTGGAACGCCTGGACGGTTCGCGGACGCTGGCGTCGGTCGAGGACGACGACGAGGCCATGGGCGTCCTCGCCGGGCTGCTGAACCGGCTGCACTCCGTTCCGGCACCTCCGGGGCTGCGGGGTCTGGGAGAGATCGCCGGCGCCATGGTGGAGGAAGTTCCCTCCGCTGTCGACTCGTTGGCGGATCCGGAGGACCGTAGCCGGTTGCGCGGCTGGGCGTCGGCCGTGGCCGAGCTGGTGGGCGAGCCCGGTGACCGCGTCCTGCACTGGGACCTGCACTACGAGAACGTGCTGGCCGCCGAGCGCGAACCGTGGCTGGCCATCGACCCCGAGCCGCTGGTCGGCGACCCGGGGTTCGACCTGTGGCCGGCCCTGGACACCGGTTGGGAGCGGATCGAGGCCACCGGTGACGCGCGGCGGGTGGTCCGGCGGCGCTTCGACCTGCTGACGGAATCGCTGGAGCTGGACCGCGGGAGGGCGGCCGGGTGGACCCTGGCCCGGCTCCTGCAGAACACCCTGTGGGACATCGAGGACGGGCTGACGGCGATCGCCCCCTCCCAGATCGCCGTGGCCGAAGCGCTGGCGAAGCCCTGA"}}}}}}}}, "ARO_category": {"$insert": {"40307": {"category_aro_name": "plazomicin", "category_aro_cvterm_id": "40307", "category_aro_accession": "3003675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Plazomicin is a neoglycoside, or next-generation, aminoglycoside, that has been identified as a potentially useful agent to combat drug-resistant bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa."}}}}}, "1501": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1506": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1017": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAAAATCCCTGTGCTGCGCCCTGCTGCTCAGCACCTCCTGCGCTGCATTAGCCGCACCTCTGTCAGAAACACAGCTGGCGAAGGTCGTGGAACGTACCGTTACGCCCCTGATGAAAGCGCAGTCTATTCCGGGTATGGCGGTCGCCGTGATCTATCAGGGCCAGCCGCACTACTTCACCTTCGGCAAGGCCGATGTCGCCGCGAACACACCCGTCACTGCACAAACGCTGTTTGAGCTGGGCTCAATCAGCAAAACCTTCACCGGCGTTCTGGGTGGCGATGCTATTGCTCGCGGTGAAATTTCGCTGGGCGATCCGGTGACCAAATACTGGCCTGAACTGACCGGCAAACAGTGGCAGGGCGTTCGCATGCTGGACCTGGCAACCTATACTGCCGGTGGCCTGCCGTTACAGGTGCCCGATGAGGTTACCGATAATGCCTCGCTGCTGCGTTTTTACCAGTCCTGGCAACCACAGTGGGCGCCAGGCACCACGCGTCTTTATGCGAATGCCAGCATCGGTCTGTTTGGGGCTCTGGCAGTGAAACCTTCTGGCATGCGCTTTGAGCAGGCGATGACGGAGCGGGTCCTGAAGCCGCTTAACCTGAACCATACGTGGATTAACGTTCCGAAGGCAGAAGAACAGCATTACGCCTGGGGTTATCGTGACGGTAAAGCGGTTCACGTTTCGCCGGGCATGCTCGATGCCGAAGCATATGGCGTGAAAACCAACGTGAAGGATATGGCGAGCTGGGTGGTGGCTAACATGGCCCCCGATGGGGTACAGGATGCCTCACTGAAGCAGGGCATGGTGCTTGCACAGTCTCGCTACTGGCGCACAGGCTCGATGTACCAGGGCCTGGGCTGGGAGATGCTCAACTGGCCGGTAGAAGCCAAAACCGTGGTGGAGGGCAGCGACAACAAGGTAGCGCTTGCACCGTTGCCCGTGGCAGAAGTGAACCCTCCGGCTCCACCGGTAAAAGCGTCATGGGTACATAAAACAGGCTCGACGGGCGGATTTGGCAGCTACGTGGCATTTATCCCTGAGAAGGAACTCGGCATCGTTATGCTGGCGAACAAGAGCTACCCGAACCCGGCACGCGTGGAAGCGGCATACCGTATTCTGAGCGCTCTGCAGTAA"}}}}}}}}}}, "1507": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"496": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGTCTCTCCTGCGCCCGCTGTCCCGTTCCCCGCGTCCCCTGCTGTTGCCCCTGCTGCTGGCCCTGGCGGCCTGTTCGGCGGACAGGACCGACGCCCCGGCCATGCCCGAAGTGGGCGTCATCATCGCCAGCGCGCAGCCGCTGGCACTCCAGCAGACCTTGCCCGGCCGTGCCGTGCCGTTCGAGATCTCCGAGGTGCGGCCGCAGATCGGCGGCCTGATCCGCCAGCGGTTGTTCACCGAAGGCCAGCAGGTCAAGGCAGGGCAGCTGCTGTACCAGGTCGACCCGGCACCGTACCAGGCGGCCTTCGATACCGCCCGCGGGCAGCTGGCGCAGGCCGAGGCCACCGTGTTGTCGGCACAGCCGAAGGCCGAGCGTACCCGCGCGCTGGTGAGCATGGATGCAGCCAGCAAGCAGGACGCCGACGATGCCACCTCGGCGTTGAAGCAGGCGCAGGCCAACGTGATTGCCGCGCGCGCTGCATTGCAGGCTGCCCGCATCAACCTCGACTACACCCGGGTGACCGCCCCCATCGACGGTCGCATCGGCACCTCCAGCGTCACCGCCGGCGCGCTGGTCGCGGCCGGCCAGGATACGGCGTTGACCACCATCCAGCGGCTGGACCCGGTGTACCTGGATGTCACCCAGTCCAGCACGCAGATGCTGGCGCTGCGCAAGCGGCTCGATGCGGGCCTAGTGAAGGCCATCGATGGCAAGGCACAGGTTAAGGTGCTGCTGGAGGACGGCAGCACCTACGCGCATGAAGGCACGTTGGAGTTCGTCGGCAGCGCAGTGGATCCGGGCACCGGAAACGTGAAGCTGCGCGCGGTCATTCCGAACCCGGACGGCCTGCTGTTGCCGGGCATGTACCTGAAGGCGGTGCTGCCGATGGCCACCGACGCGCGTGCCCTGCTGGTGCCGCAGAAGGCAGTGGTGCGCAACGAACGCGGCGAACCGCTGCTGCGCCTGCTCGACGCCAAGGATCATGTGGTCGAGCGCCGCGTCAGCACCGGCCAGGTGGTCGGTAACCAGTGGCAGATCACCAGCGGCCTCAAGGCTGGCGAACGGGTGATCGTCAGCAACGGCAGCGCGGTATCGCTCGGTCAGCAGGTGAAAGCGGTGGCGCCCACGACGGCGCAGTTGGCGGCGATGCCGGCGGTCGATCCGAACGGCAACACCGACGAAAAGTCGCACTGA"}}}}}}}}}}, "1504": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "651": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model."}}, "1977": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"541": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAATATTAAACCAGCATCAGAAGCTTCACTCAAAGATTGGTTAAAACTAAGAATAAAGCTTTGGAATGATCTTGAAGAATCACATTTGCAAGAGATGCATCAGTTATTGGCTGAAAAGCATGCATTACAATTATTAGTCTATTCGGATGATCACGCGGTTGGCATGCTAGAAGCATCTATTCGGTATGAATATGTAAACGGGACAGAGACTTCTCCCGTGGCATTTCTAGAAGGCATTTATGTACTTCCAGAATATCGTCGCTTAGGTGTAGCAACTTTACTTGTTCGTCAGGTTGAGGCGTGGGCAAAACAATTTTCTTGTACTGAGTTTGCATCTGATGCGGCATTGGACAATGTCATTAGTCATGCAATGCATCGTGCATTGGGTTTTCAAGAAACTGAAAGAGTTGTTTATTTTAGTAAAAAAATAGATTAA"}}}}}}}}}}, "1600": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model."}}, "2697": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "659": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1975": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"710": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAAAATCAATAAATGAGCAAAAAACGATATTCATTATACTATTAAGCAACATCTTCGTAGCATTTCTTGGTATCGGTTTAATCATTCCAGTTATGCCTTCTTTTATGAAAATCATGCATTTATCCGGCAGCACAATGGGTTATCTTGTTGCGGCTTTTGCCATTTCTCAGTTAATTACTTCACCTTTTGCAGGTAGGTGGGTTGACCGTTTCGGGAGAAAAAAAATGATTATTCTCGGGTTGCTTATATTCAGTTTATCTGAGTTGATTTTCGGATTAGGGACCCATGTTTCAATATTTTATTTCTCGAGGATATTGGGTGGTGTAAGTGCGGCTTTTATCATGCCCGCGGTAACAGCATATGTAGCTGATATTACAACCCTAAAGGAAAGGTCAAAGGCTATGGGGTATGTTTCTGCTGCAATTAGCACCGGCTTTATTATTGGACCTGGTGCGGGAGGATTTATTGCCGGCTTTGGTATCCGCATGCCGTTTTTCTTCGCCTCCGCCATCGCGTTAATAGCAGCTGTCACTTCCGTTTTTATACTAAAAGAGTCATTGTCGATAGAAGAACGCCATCAACTCTCATCTCATACAAAGGAATCAAATTTCATTAAAGACTTGAAGAGATCCATTCATCCTGTCTATTTCATTGCATTTATTATCGTCTTTGTAATGGCTTTTGGTTTATCAGCTTATGAAACGGTATTCAGCTTGTTTTCTGATCATAAATTTGGCTTCACACCAAAAGATATTGCAGCCATTATTACGATTAGTTCCATTGTTGCGGTAGTTATTCAAGTTTTACTATTCGGGAAATTGGTCAACAAACTTGGAGAGAAAAGAATGATTCAGCTGTGCTTAATAACCGGTGCGATCTTGGCTTTCGTGTCTACTGTTATGTCAGGATTTTTAACTGTTTTGCTTGTAACTTGTTTTATTTTTCTGGCGTTCGATTTGCTACGTCCGGCCTTAACCGCTCATTTATCCAATATGGCCGGTAACCAGCAGGGTTTCGTAGCAGGCATGAACTCCACATACACCAGCCTGGGAAATATATTTGGACCTGCTCTAGGCGGTATACTATTTGATCTTAACATTCATTATCCTTTCCTTTTTGCAGGTTTCGTTATGATTGTCGGCCTTGGTCTTACAATGGTTTGGAAAGAAAAAAAGAATGATGCTGCAGCTTTGAATTAA"}}}}}}}}}}, "1973": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1972": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1971": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1970": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"2025": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTACTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACTGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATCGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA"}}}}}}}}}}, "1968": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1969": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4666": {"dna_sequence": {"fmax": "3322", "fmin": "2212", "accession": "AF353562.1", "strand": "-", "sequence": "ATGTGTGTGATCATGCCAGCTTCTAGTTGGGGTGCGTACATCATTACCATCATCGGTGGTATCTTGGTGTCACACGGCATCACTGAATACTCGGCGCTTGGTGCTTACGTTCGTCTTATTCCTATGAACTTCTACGCAGTATTTGCTCTACTAATGGTATTTGCAGTGGCGTGGTTTGGTCTAGATATCGGTAAGATGCGTGAACATGAAATCGCAGCATCTCAAGGCCGTGGTTTTGATAAAGATAAAGAGAACGACTCACAAGAAGCACACGACCTAAACGAAGAGCTAGATATTCGTGAAAGCGAGAAGGGTAAGGTTTCTGACCTAATTCTTCCTATCGTAACGCTTATTGTGGCGACTATTGCTTCAATGCTTTACACCGGTGGTCAAGCGCTAGCAGCAGATGGTAAAGAATTTGTGCTGTTGGGTGCGTTTGAAAACACGGATGTTGGTACTTCTCTAATCTACGGTAGTTTACTTGGTCTAGCAGTTGCATTGTTCACTGTTATTAAGCAAGGTCTACCAATGGTTGAGATTGCACGCACGCTTTGGATTGGTGCTAAGTCAATGTTTGGTGCAATCCTTATCCTTGTTTTCGCTTGGACTATTGGTTCAGTTATCGGTGACATGAAGACGGGTTCTTACCTATCTACAATGGCGCAAGGCAACATCAACCCACACTGGCTACCAGTTATCCTGTTCTTGCTGTCTGGCCTAATGGCGTTCTCTACAGGTACGTCATGGGGTACGTTCGGTATCATGCTTCCAATCGCGGGTGACATGGCTGGCGCAACAGACGTGGCACTAATGCTACCAATGCTAAGTGCGGTTCTAGCTGGTGCAGTATTTGGTGACCACTGTTCACCAATTTCAGATACAACGATTCTGTCGTCAACAGGTGCACGCTGTAACCACATCGATCACGTATCGACGCAGCTACCTTATGCATTATCAGTGGCGTTTGTGTCATGTATTGGCTTTATCACGCTGGGTATGACTGCATCGATCGCGTTCTCTTTCATCGCAGCATCGATCACTTTCGTTATCGTTTGTGCGATTCTGTCGTGGCTGTCGAAGTCTAAAATGGCATCCTGCCAGAACGCGTAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Vibrio harveyi", "NCBI_taxonomy_id": "669", "NCBI_taxonomy_cvterm_id": "36785"}, "protein_sequence": {"accession": "AAK37619.1", "sequence": "MCVIMPASSWGAYIITIIGGILVSHGITEYSALGAYVRLIPMNFYAVFALLMVFAVAWFGLDIGKMREHEIAASQGRGFDKDKENDSQEAHDLNEELDIRESEKGKVSDLILPIVTLIVATIASMLYTGGQALAADGKEFVLLGAFENTDVGTSLIYGSLLGLAVALFTVIKQGLPMVEIARTLWIGAKSMFGAILILVFAWTIGSVIGDMKTGSYLSTMAQGNINPHWLPVILFLLSGLMAFSTGTSWGTFGIMLPIAGDMAGATDVALMLPMLSAVLAGAVFGDHCSPISDTTILSSTGARCNHIDHVSTQLPYALSVAFVSCIGFITLGMTASIAFSFIAASITFVIVCAILSWLSKSKMASCQNA"}}}}}}}, "1618": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1619": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1616": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1617": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"216": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAGACAGTTGCGATTATCTTTGGCGGAGTTTCTTCTGAATATGAAGTTTCACTGAAATCTGCTGTAGCGATTATTAAAAATATGGAATCTATTGATTATAACGTAATGAAAATAGGGATCACCGAAGAAGGTCATTGGTATCTATTTGAAGGAACGACAGACAAAATAAAGAAAGATCGTTGGTTTTTAGATGAAAGCTGTGAAGAAATCGTAGTTGATTTCGCAAAAAAAAGCTTTGTATTGAAAAACAGTAAAAAAATAATCAAGCCTGATATTTTATTCCCAGTTTTACATGGAGGTTATGGTGAGAATGGTGCTATGCAGGGAGTATTTGAGTTATTAGATATTCCATATGTAGGTTGTGGTATCGGAGCTGCAGCAATCTCTATGAATAAAATAATGCTCCATCAATTTGCTGAAGCAATTGGTGTAAAAAGCACCCCTAGTATGATTATAGAAAAGGGACAAGACCTACAAAAAGTCGATGCGTTTGCGAAAATACATGGATTTCCTTTATATATTAAACCGAATGAGGCAGGCTCATCAAAAGGAATTAGCAAGGTAGAACGAAAAAGTGATTTATATAAAGCAATAGACGAAGCTTCAAAATATGATAGTCGTATTTTAATTCAAAAGGAAGTGAAAGGGGTAGAAATTGGTTGTGGTATTTTAGGAAATGAACAATTGGTCGTTGGAGAATGTGACCAAATCAGTCTTGTGGATGGCTTTTTCGATTATGAAGAGAAATACAATTTAGTAACAGCAGAAATTTTGTTACCAGCTAAACTATCAATAGACAAAAAAGAAGATATTCAGATGAAAGCAAAAAAACTATACAGACTATTAGGATGCAAAGGATTAGCGAGAATCGACTTTTTCTTAACTGATGACGGAGAAATTTTATTAAATGAAATCAATACAATGCCTGGTTTTACAGAGCATTCGAGATTTCCAATGATGATGAATGAGATTGGGATGGACTACAAAGAGATTATAGAAAACCTATTAGTATTGGCGGTGGAAAATCATGAAAAAAAATTATCTACGATTGATTAA"}}}}}}}}}}, "1614": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1615": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"696": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGTTAACTTGGACGCTGAGATATATGAGCACTTAAATAAACAGATAAAAATAAATGAACTCCGTTATTTATCGTCCGGCGATGATAGTGATACTTTTTTGTGTAATGAACAATATGTTGTGAAAGTTCCTAAACGAGATTCTGTTAGAATTTCTCAGAAACGAGAGCTTGAATTGTATCGTTTTTTAGAAAACTGTAAGCTATCTTATCAAATCCCTGCGGTAGTGTATCAAAGTGACCGATTTAATATTATGAAATATATTAAAGGGGAACGTATTACTTATGAGCAGTATCATAAGTTGAGTGAAAAGGAAAAGGATGCCCTTGCATATGATGAAGCGACGTTTTTGAAAGAGTTACATTCCATAGAGATTGATTGTTCTGTCAGTTTGTTTTCAGATGCTCTGGTGAATAAGAAAGATAAGTTTTTGCAAGATAAAAAATTACTTATAAGTATTCTGGAAAAGGAGCAGCTGTTAACTGATGAGATGTTGGAACATATCGAAACAATATATGAAAACATATTAAGCAATGCTGTTTTATTTAAATATACCCCTTGTTTGGTACATAATGATTTCAGTGCAAATAACATGATTTTTAGAAATAATAGACTGTTTGGAGTTATTGATTTTGGCGATTTTAATGTAGGTGACCCGGATAATGATTTTTTGTGCTTGCTGGATTGTAGTACAGATGATTTCGGGAAAGAATTTGGCAGGAAGGTATTAAAATACTATCAGCATAAGGCGCCGGAAGTAGCAGAAAGAAAAGCAGAGCTTAATGATGTATATTGGTCGATAGACCAAATCATTTATGGTTATGAAAGAAAAGATAGGGAAATGTTGATTAAGGATGTTTCTGAATTGCTACAAACACAAGCAGAGATGTTTATATTTTAG"}}}}}}}}, "ARO_category": {"$insert": {"40307": {"category_aro_name": "plazomicin", "category_aro_cvterm_id": "40307", "category_aro_accession": "3003675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Plazomicin is a neoglycoside, or next-generation, aminoglycoside, that has been identified as a potentially useful agent to combat drug-resistant bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa."}}}}}, "1960": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"521": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGTTCGTTTCTTCATCGACCGGCCGATCTTCGCCTGGGTGATCGCCATCGCGGTCAGCCTGCTCGGCCTGCTCGCGATCCTGATCCTGCCGGTGGACCGCTACCCGCAGATCGCCCCGCCCACCATCACCATCCGCGCCACCTACACCGGCGCCTCGTCGCAGACCGTGGAAAACGCGGTCACCCAGGTCATCGAGCAGTCCCAGCAAAGCCTCGATCACCTGATGTACATGACCTCGACCAGTGCCTCCGACGGCTCGGCGCAGGTCAACCTGGTGTTCGCCACCGGTACCAATCCGGATACCGCGCAGGTGCAGGTGCAGAACCAGCTGCAGGCCGCCATGGCCACGCTGCCGCAGGCGGTGCAGCAGAACGGCCTGACCATCACCAAGTCCAGTGGTTCGATCTTCGAGGTGCTGTCGTTCACCAGCGAAGACGGCAGCATGGACAACTTCGATGTCGCCAACTTCATGGAAGCGCGCATCGATGACCAGATCAGCCGCGTCAGCGGTGTCGGCAACATCCAGCCGATCGGCCAGGAATACGCCATGCGCATCTGGCTGGATCCGGAGAAGATGCGCCAGTACGCGCTGATGCCCTGGGACATCGAGACCGCATTGCAGGCACAGAACACCGATGTCTCCGCCGGTGAGCTGGGTGGCCAGCCGGCGCTGAAGGGCCAGCAGCTCGACGCCACGGTAACCGCGCGCAGCCGCCTGCACACGCCCGAGCAGTTCGCGCAGGTGGTGCTCAAGGCCGATGCCAACGGCAGCGTGGTGCGTCTGGGCGACGTGGCAAAGATCGGCCTCGGGCCGGAAAGCTACGACAGCATCAGCACCTTCAATGGCAAGCCGTCGGCGTCGCTGGGCATTGAACTCAATGCCGGTGCCAACGCGATCGCCGTCTCCAAGGCCATCGATGCACGGCTTCAGCAGCTGCAGAAGTACTGGCCGCATGGCTACACCGCCCACGTGGCCTTCACCACCACCCCATTCGTGACCATTTCGCTGAAGGAAGTGGTGATCACCCTGATCGAAGCGATCATCCTGGTGGTGCTGGTGATGTACCTGTTCCTGCAGAACTGGCGCGCCACGCTGATCCCGACCATCGCGGTGCCGGTGGTGCTGCTGGGCACGTTCGGCGTGCTGGCTGCATTCGGGTATTCGATCAACACCCTGACCATGTTCGCACTGGTGCTGGCCATCGGCCTGCTGGTGGACGATGCCATCGTGGTGGTGGAGAACGTAGAGCGGGTGATGACCTTCGAAGGGCTGGCGCCGAAGCCGGCCACGCTGAAGGCGATGGGCCAGATCACCGGCGCGCTGGTCGGCATCGTGCTGGTGCTGACCGCGGTGTTCCTGCCGATGGCGTTCTTCAGCGGTGTAACCGGGGTGATCTATCGCCAGTTCTCGGTGACGATCGCCGCCGCGATGATCCTGTCGGTGCTGGTGGCGATGACCATCACCCCGGCACTGTGTGGCAGCATCCTGCACCAGATTCCCAAGGGCGGCCATCCGCATGGCGACCACGGTGGCGAGCCGAGCCTGCTGGGCAAGTTCTTCATCTGGTTCAACCACCGCTTCGAGCGCACCTCCAACGGCCTGCGCCATCGCGTGGATCGTTTCCTCGGCCGCCGCACGCTCGGCGTGCTGTTCTACCTGGTGCTGAGCGTGGCCACCGGCCTGTTGCTGTGGCACCTGCCGGGCGCGTTCCTGCCCGATGAAGACCAGGGCATGCTCAACGCGCTGGTGAAGCTGCCGGCCGGTTCCACGCTGGAGCAGACGCGGGCGGTGATGGATCGTCTGAGTGCCGTCGCGGTGAAGGACGACGGCGTGCTCTCGATCCAGGCCACCGCCGGTTTCAGTGTTACCGGCAGCGGCCAGAACGTCGGCCAGGCCTTCATCCGGCTGAAGGACTGGGATGACCGCAAGGACGACGCCGATACCATCGCCGCACGCTTGACGCGGGCGATGGCCAGCGTGCCCGATGCGCAGGTGTTCATCACCTCGCCACCGGCCATCCTGGGCCTCGGCGATGCGGGTGGCTTCACCCTGGAACTGCAGGACGAAGGCGGTGCAGGCCATGCCGCCGCCGTGGCCGCGCGCAACACGCTGCTGAAGGAAGCCGCCAAGGACCCGAAGCTGGTCAACGTGCGCTACGCCAGCCTGGAAGACGCGCCGGTATACGCGGTGAAGGTGGACGACGCCAAGGCGCAGGCGATGGGCGTGAACCCGCAGGACGTCAATGACACCTTGAACGCGGCGTTGGGCGGCGACTTCGTCAACAACTTCATCTACAAGGGGCGCATCAAGAAGGTGTTCATCCAGGGCACCGCCGAAGCACGCATGCAGCCGCAGGACATCGAGCGCTGGAGCGTGCGCAACCAGGCCGGGCAGATGGTGCCGCTGTCGTCGTTGATCAGCACGCATTGGACCAGCGCGCCGGCCGCAGTGCAGCGCTACAACGGCATCTCGGCGATGGAAATCACCGGCCAGCCGGCACCGGGCGTCAGCTCCGGCGAGGCGATGGCCGAGATCGCGCGCCTGGCCGACACGCTGCCGGAAGGCTTCAGCCATGCCTGGTCGGACATGGCCTACCAGGAACAGCTGTCGGGCAACCAGGCGCCGATGCTGTACGCCATCTCGCTGCTGTTCGTGTTCCTGTGCCTGGCCGCGCTGTATGAAAGCTGGGCGGTGCCGTTCGCGGTGATGCTGGCGGTGCCGGTGGGCATGTTCGGCGCCGTGCTGATGATGAACCTGCGTGGCCTCAACAACGACGTGTACTTCCAGGTCGGCCTGCTGACCACGATTGGTCTGGCAGCGAAGAACGGCATCCTGATCGTCGAGTTCGCGCGCATCCTCGAACAGCAGGGCAAGAGCACCCGCGAAGCGATCCTGCAGGCGGTCTACCTGCGGCTGCGGCCGATCGTAATGACCTCGCTGGCGTTCCTGATGGGCGTACTGCCGCTGGTGTTCGCCACCGGCGCCGGTTCGGCTGCGCGCCGTTCGCTGGGTACCGGCGTGGCCGGTGGTACGGTTGCCTCGATGGTGCTGGGCATGTTCTTCGTGCCGTTGTTCTACCTGCTGGTGCGCCGCCTGTTCCCGGGCCGCGCGCCGGCCGACGCCACTGTCCCGGAGACAAGCCCATGA"}}}}}}}}}}, "1613": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1610": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1611": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1114": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1418": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAAAATCCCTTTGCTGCGCCCTGCTGCTCGGCATCTCTTGCTCTGCTCTCGCCACGCCAGTGTCAGAAAAACAGCTGGCGGAGGTGGTCGCGAATACGGTTACCCCGCTGATGAAAGCCCAGTCTGTTCCAGGCATGGCGGTGGCCGTTATTTATCAGGGAAAACCGCACTATTACACGTTTGGCAAGGCCGATATCGCGGCGAATAAACCCGTTACGCCTCAGACCCTGTTCGAGCTGGGTTCTATAAGTAAAACCTTCACCGGCGTTTTAGGTGGGGATGCCATTGCTCGCGGTGAAATTTCGCTGGACGATCCGGTGACCAGATACTGGCCACAGCTGACGGGCAAGCAGTGGCAGGGTATTCGTATGCTGGATCTCGCCACCTACACCGCTGGCGGCCTGCCGCTACAGGTACCGGATGAGGTCACGGATAACGCCTCCCTGCTGCGCTTTTATCAAAACTGGCAGCCGCAGTGGAAGCCTGGCACAACGCGTCTTTACGCCAACGCCAGCATCGGTCTTTTTGGTGCGCTGGCGGTCAAACCTTCTGGCATGCCCTATGAGCAGGCCATGACGACGCGGGTCCTTAAGCCGCTCAAGCTGGACCATACCTGGATTAACGTGCCGAAAGCGGAAGAGGCGCATTACGCCTGGGGCTATCGTGATGGTAAAGCGGTGCGTGTTTCGCCGGGTATGCTAGATGCACAAGCCTATGGCGTGAAAACCAACGTGCAGGATATGGCGAACTGGGTCATGGCAAACATGGCGCCGGAGAACGTTGCTGATGCCTCACTTAAGCAGGGCATCGCGCTGGCGCAGTCGCGCTACTGGCGTATCGGGTCAATGTATCAGGGTCTGGGCTGGGAGATGCTCAACTGGCCCGTGGAGGCCAACACGGTGGTCGAGGGCAGCGACAGTAAGGTAGCGCTGGCGCCGTTGCCCGTGGCAGAAGTGAATCCACCGGCTCCCCCGGTCAAAGCGTCCTGGGTCCATAAAACGGGCTCTACTGGCGGGTTTGGCAGCTACGTGGCCTTTATTCCTGAAAAGCAGATCGGTATTGTGATGCTCGCGAATACAAGCTATCCGAACCCGGCACGCGTTGAGGCGGCATACCATATCCTCGAGGCGCTACAGTAA"}}}}}}}}}}, "2873": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2872": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2871": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2870": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2877": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2876": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2875": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2874": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_category": {"$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36989": {"category_aro_name": "cefotaxime", "category_aro_cvterm_id": "36989", "category_aro_accession": "3000645", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotaxime is a semisynthetic cephalosporin taken parenterally. It is resistant to most beta-lactamases and active against Gram-negative rods and cocci due to its aminothiazoyl and methoximino functional groups."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}}}}}, "1768": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1185": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGTGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCTGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGGCTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA"}}}}}}}}}}, "1769": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"766": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGACTCAGAGCATTCGCCGCTCAATGTTAACGGTGATGGCGACGCTACCCCTGCTATTTAGCAGCGCAACGCTGCATGCGCAGGCGAACAGCGTGCAACAGCAGCTGGAAGCCCTGGAGAAAAGTTCGGGAGGTCGGCTTGGCGTTGCGCTGATTAACACCGCCGATAATTCGCAGATTCTCTACCGTGCCGATGAACGTTTTGCGATGTGCAGTACCAGTAAGGTGATGGCGGCCGCGGCGGTGCTTAAACAGAGCGAGAGCGATAAGCACCTGCTAAATCAGCGCGTTGAAATCAAGAAGAGCGACCTGGTTAACTACAATCCCATTGCTGAGAAACACGTTAACGGCACTATGACGCTGGCTGAGCTTGGCGCAGCGGCGCTGCAGTATAGCGACAATACTGCCATGAATAAGCTGATTGCCCATCTGGGTGGGCCCGATAAAGTGACGGCGTTTGCTCGCTCGTTGGGTGATGAGACCTTCCGTCTGGACAGAACCGAGCCCACGCTCAATACCGCCATTCCAGGCGACCCGCGTGATACCACCACGCCGCTCGCGATGGCGCAGACCCTGAAAAATCTGACGCTGGGTAAAGCGCTGGCGGAAACTCAGCGGGCACAGTTGGTGACGTGGCTTAAGGGCAATACTACCGGTAGCGCGAGCATTCGGGCGGGTCTGCCGAAATCATGGGTAGTGGGCGATAAAACCGGCAGCGGAGATTATGGCACCACCAACGATATCGCGATTATCTGGCCGGAAAACCACGCACCGCTGGTTCTGGTGACCTACTTTACCCAACCGGAGCAGAAGGCGGAAAGCCGTCGGGATGTTCTGGCTGCGGCGGCGAAAATCGTAACCCACAGTTTCTGA"}}}}}}}}}}, "1762": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"373": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGCAACGCAGTGCCCGCCGAGATTTCGGTACAGCTATCACAGGCACTCAACGTCATCGAGCGTCATCTGGGATCGACGTTGCTGGCCGTGCATTTGTACGGCTCTGCACTCGACGGTGGCCTGAAGCCATGCAGTGATATTGATTTGCTGGTTACTGTGACTGCACAGCTCGATGAGACTGTGCGGCAGGCTCTGTTCGTAGATTTCCTGGAAGTTTCCGCTTCTCCCGGCCAAAGTGAAGCTCTCCGTGCCTTGGAAGTTACCATCGTCGTGTACGGCGATGTTGCTCCTTGGCGTTATCTAGCCAGACGGGAACTGCAATTCGGGGAGTGGCAGCGCAAGGACATTCTTGCGGGCATCTTCGAGCCCGCGACAACCGATGTTGATCTGGCTATTCTGCTAACTAAAGCAAGGCAACACAGCCTTGCCTTGGCAGGTTCGGCCGCGGAAGATTTCTTCAACTCAGTCCCGGAAAGCGATCTATTCAAAGCACTGGCCGACACCTTGAAACTATGGAACTCACAACCGGATTGGGCAGGCGACGAGCGGAATGTAGTGCTTACTTTGTCTCGCATTTGGTACAGCGCAGCAACCGGCAAGATCGCGCCGAAGGATGTAGCTGCCAACTGGGTAATGGAACGCCTGCCCGTCCAACATCAGCCCGTGCTGCTTGAAGCCCAGCAGGCTTACCTTGGACAAGGGATGGATTGCTTGGCCTCACGCGCTGATCAGTTGACTGCGTTCATTTACTTTGTGAAGCACGAAGCCGCCAGTCTGCTCGGCTCCACGCCAATGATGTCTAACAGTTCATTCAAGCCGACGCCGCTTCGCGGCGCAGCTTAA"}}}}}}}}}}, "1763": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1760": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"555": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGCTCTGGCATTAATTGGCGAAAAAATTGACAGAAACCGCTTCACCGGTGCAAAAGTTGAAAATAGCACTTTTTTTAACTGTGATTTTTCGGGCGCCGACCTTAGCGGTACTGAATTTATCGGCTGTCAGTTCTATGATCGAGAAAGCCAGAAAGGGTGCAATTTCAGTCGCGCAATACTGAAAGATGCCATTTTTAAAAGCTGTGATTTATCCATGGCGGATTTTCGCAACGTCAGTGCGTTGGGCATAGAAATTCGCCACTGCCGAGCACAGGGTGCAGATTTTCGCGGCGCAAGTTTCATGAATATGATCACCACGCGCACCTGGTTTTGCAGCGCATATATCACTAATACCAATCTAAGCTATGCCAACTTTTCGAAGGCCGTGCTTGAAAAGTGCGAATTGTGGGAAAATCGCTGGATGGGAACTCAGATGCTGGGTGCGACGTTGAGTGGTTCCGATCTCTCCGGTGGCGAGTTTTCGTCGTTCGACTGGCGGACGGCAAATTTCACGCACTGTGATTTGACCAATTCAGAACTGGGTGATTTAGATATTCGGGGCGTCGATTTACAAGGTGTCAAATTGGACAGCTATCAGGCCGCGTTGCTCATGGAACGTCTTGGCATCGCTGTCATTGGCTAA"}}}}}}}}}}, "1761": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1766": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1767": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1764": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4681": {"dna_sequence": {"fmax": "12565", "fmin": "11722", "accession": "EF102240.1", "strand": "-", "sequence": "ATGAAATTATTAAAAATATTGAGTTTAGTTTGCTTAAGCATAAGTATTGGGGCTTGTGCTGAGCATAGTATGAGTCGAGCAAAAACAAGTACAATTCCACAAGTGAATAACTCAATCATCGATCAGAATGTTCAAGCGCTTTTTAATGAAATCTCAGGTGATGCTGTGTTTGTCACATATGATGGTCAAAATATTAAAAAATATGGCACGCATTTAGACCGAGCAAAAACAGCTTATATTCCTGCATCTACATTTAAAATTGCCAATGCACTAATTGGTTTAGAAAATCATAAAGCAACATCTACAGAAATATTTAAGTGGGATGGAAAGCCACGTTTTTTTAAAGCATGGGACAAAGATTTTACTTTGGGCGAAGCCATGCAAGCATCTACAGTGCCTGTATATCAAGAATTGGCACGTCGTATTGGTCCAAGCTTAATGCAAAGTGAATTGCAACGTATTGGTTATGGCAATATGCAAATAGGCACGGAAGTTGATCAATTTTGGTTGAAAGGGCCTTTGACAATTACACCTATACAAGAAGTAAAGTTTGTGTATGATTTAGCCCAAGGGCAATTGCCTTTTAAACCTGAAGTTCAGCAACAAGTGAAAGAGATGTTGTATGTAGAGCGCAGAGGGGAGAATCGTCTATATGCTAAAAGTGGCTGGGGAATGGCTGTAGACCCGCAAGTGGGTTGGTATGTGGGTTTTGTTGAAAAGGCAGATGGGCAAGTGGTGGCATTTGCTTTAAATATGCAAATGAAAGCTGGTGATGATATTGCTCTACGTAAACAATTGTCTTTAGATGTGCTAGATAAGTTGGGTGTTTTTCATTATTTATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "ABO33299.1", "sequence": "MKLLKILSLVCLSISIGACAEHSMSRAKTSTIPQVNNSIIDQNVQALFNEISGDAVFVTYDGQNIKKYGTHLDRAKTAYIPASTFKIANALIGLENHKATSTEIFKWDGKPRFFKAWDKDFTLGEAMQASTVPVYQELARRIGPSLMQSELQRIGYGNMQIGTEVDQFWLKGPLTITPIQEVKFVYDLAQGQLPFKPEVQQQVKEMLYVERRGENRLYAKSGWGMAVDPQVGWYVGFVEKADGQVVAFALNMQMKAGDDIALRKQLSLDVLDKLGVFHYL"}}}}}}}, "1765": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1142": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1143": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"894": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAACATTTGCCGCATATGTAATTACTGCGTGTCTTTCAAGTACGGCATTAGCTAGTTCAATTACAGAAAATACGTTTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTTTTCGTGCTTTGTAAAAGTAGCAGTAAATTAGCCTGCGCTACCAATAACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAACGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGATTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAACAATGGGAAAGAGACTTGAGCTTAAGAGGGGCAATACAAGTTTCAGCGGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATATCTTAAAAAATTTTCATATGGTAACCAGAATATCAGTGGTGGCATTGACAAATTCTGGTTGGAGGGTCAGCTTAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATTTTTAAATAAATTGTCAGCATCAAAAGAAAATCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCGCCTGAATATCTTGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGTTGGGTTGAGAAGGGAGCAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAATAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGCAAGTGAGGGCATCATTGGTGGCTAA"}}}}}}}}}}, "1140": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1197": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAAAATCGTTATGCTGCGCTCTGCTGCTGACAGCCCCTTTCTCCACGTTTGCCGCAGCCAAAACAGAACAACAGATTGCCGATATCGTTAATCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCCGTTATCTACCAGGGAAAACCCTATTATTTCACCTGGGGTAAAGCCGATATCACCAATAACCACCCAGTCACGCAGCAAACTCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCAGGGTATCAGCCTGCTGCACTTAGCCACCTACACGGCAGGCGGCCTGCCGCTGCAGATCCCCGATGACGTTACGGATAAAGCCGCATTACTGCGTTTTTATCAAAACTGGCAGCCGCAATGGGCCCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGCGCGCTGGCGGTGAAACCCTCAGGAATGAGTTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACAGTTCCGCAAAGCGAACAAAAAGATTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATTGATATGGCCCGCTGGGTTCAGGTCAACATGGACGCCAGCCGCGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGCGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGTAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCCGCCCCCGCAGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACTGGAGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGTGGCCTGGCACATTCTTGAAAAGCTGCAATAA"}}}}}}}}}}, "1141": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1146": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1400": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATAGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA"}}}}}}}}}}, "1147": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1859": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAAAATCGTTATGCTGCGCTCTGCTGCTGACAGCCTCATTCTCCACGTTTGCCGCCGCCAAAACAGAACAACAGATTGCCGATATCGTTAATCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCCGTTATCTACCAGGGAAAACCCTATTATTTCACCTGGGGTAAAGCCGATATCACCAATAACCACCCAGTCACGCAGCAAACTCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCAGGGTATCAGCCTGCTGCACTTAGCCACCTACACGGCAGGCGGCCTGCCGCTGCAGATCCCCGATGACGTTACGGATAAAGCCGCATTACTGCGTTTTTATCAAAACTGGCAGCCGCAATGGGCCCCGGGCGCTAAGAGACTTTACGCTAACTCCAGCATTGGTCTGTTTGGCGCGCTGGCGGTGAAACCCTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACAGTTCCGCAGAACGAACAAAAAGATTATGCCTGGGGCTATCGCGAAGGGAAGGCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGTGTTATTGATATGGCCCGCTGGGTTCAGGTCAACATGGACGCCAGCCGCGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGCGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCAATCATCAACGGTAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCTGCCCCCGCAGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACTGGAGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAAACTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGCGGCCTGGCGCATTCTTGAAAAGCTGCAATAA"}}}}}}}}}}, "1144": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_category": {"$insert": {"37021": {"category_aro_name": "virginiamycin S2", "category_aro_cvterm_id": "37021", "category_aro_accession": "3000677", "category_aro_class_name": "Antibiotic", "category_aro_description": "Virginiamycin S2 is a streptogramin B antibiotic."}, "37023": {"category_aro_name": "vernamycin C", "category_aro_cvterm_id": "37023", "category_aro_accession": "3000679", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin C is a streptogramin B antibiotic."}, "37026": {"category_aro_name": "ostreogrycin B3", "category_aro_cvterm_id": "37026", "category_aro_accession": "3000682", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid."}}}}}, "1145": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1148": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1149": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"901": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGTACGTACTTTCCGTGGAGAAACCTACATTGAGAAACAAATTTGCGGCCGGAATAGGCGTCGTGCTTGTATGTGTCGTTGCCTCGTTTATTCCAACCCCAGTATTCGCCCTAGACACCACGAAGCTGATCCAAGCCGTCCAGTCGGAAGAGAGCGCCTTGCATGCCCGAGTCGGCATGACCGTGTTTGACTCAAACACTGGAACGACTTGGAACTATCGGGGCGATGAGCGGTTTCCATTGAACAGTACGCACAAGACGTTTTCCTGTGCAGCTTTGCTCGCGAAGGTCGATGGGAAGTCCCTCTCTCTGGGCCAATCCGTATCGATCAGCAAGGAAATGCTGGTCACCTATTCGCCGATTACGGAAAAGTCGCTGTCACCCGAAACCGTTACCTTCGGCAAGATTTGTCAGGCAGCGGTGAGCTATAGCGATAACACAGCCGCAAACGTCGTCTTTGATGCCATTGGAGGAGCAACCGGATTCAACGCATACATGCGGTCTATCGGCGATGAAGAAACCCAGCTTGATCGCAAAGAACCCGAGTTGAACGAAGGTACGCCGGGCGATGTGCGTGACACCACCACTCCCAACGCCATGGTCAATAGTCTTAGGAAGATACTTCTTGGCGACGCGTTGTCAGCATCATCCCGATCCCAGCTGACGCAATGGATGCTGGACGATCAGGTTGCTGGTGCGCTCCTGCGTGCCTCACTGCCATCCGATTGGAAGATCGCCGACAAGACCGGCGCGGGGGGTTACGGCTCACGCTCGATCGTCGCAGTAATCTGGCCGCCATCGAAGCAGCCACTGGTGGTTGGCATCTATATCACGCAAACCAAAGCATCCATGCAGGCCAGCAATCAGGCGATTGCAAGGATAGGAGTGGTGCTGAAGGATACGGTCGCTCCTTGA"}}}}}}}}}}, "690": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4583": {"dna_sequence": {"fmax": "2407", "fmin": "1582", "accession": "JN086160", "strand": "-", "sequence": "ATGAAAAATATTTTATTTGTAGTTTTTATTTCAATGATATTTTTATTTGTTTGCTGTAACACAACAACGAATAAAAACATAATTGAAACAGAAATTTCTGATTTTGACAAAATTTTAGATAGTTTTCAAGTAAATGGTTCAATTCTAATTTATGATAACGACAAGAATACTTTTTACTCAAATGACTTTGATTGGGCTAAAAACGGAAAATTACCTGCATCAACATTCAAAATTCCAAATTCTATAATTGCTGTTGAATTAGGCATTATTGAAAATGATACAACTATTTTAAAATGGAATGGCGAGCAGAGAAAAATGGATATTTGGGAAAAAGATTTATCATTTAAAGATGCTTTTAGAATTTCCTGTGTTCCTTGCTATCAGGAAATTGCAAGGAAAATCGGAACAATTAAAATGAAAGAATATTTAGAAAAATTTGAGTATAAAAATATGATTTTTGACAGTTTAACGATTGACAATTTTTGGCTTGAAGGAAATTCAAAAATATCTCAAAAACAACAAATCGACTTTTTAAGGAAATTCTATTTTTCAAAATTTCCAATTTCTGATAGGACAATAAAGATTGTCAAAAATATTATGGAAATTGAGCGAACTGAAAATTACATTTTAAGCGGTAAGACTGGATTAAGTTCGATAGAAGAAAAATATAATGGTTGGTTTGTTGGTTATGTTGAAACAAAATCTAATGTTTATTTTTTTGCAACAAATGTAATTCCGACAGACGGATTGAATGTTGATGATTTTATTTCATCGAGAATTAATGTAACAAAAAATGCGTTAAAGCAAATGAATATAATGAAATGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "uncultured bacterium", "NCBI_taxonomy_id": "77133", "NCBI_taxonomy_cvterm_id": "36791"}, "protein_sequence": {"accession": "AET35493.1", "sequence": "MKNILFVVFISMIFLFVCCNTTTNKNIIETEISDFDKILDSFQVNGSILIYDNDKNTFYSNDFDWAKNGKLPASTFKIPNSIIAVELGIIENDTTILKWNGEQRKMDIWEKDLSFKDAFRISCVPCYQEIARKIGTIKMKEYLEKFEYKNMIFDSLTIDNFWLEGNSKISQKQQIDFLRKFYFSKFPISDRTIKIVKNIMEIERTENYILSGKTGLSSIEEKYNGWFVGYVETKSNVYFFATNVIPTDGLNVDDFISSRINVTKNALKQMNIMK"}}}}}}}, "692": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "693": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1606": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAACGCCGCCACGCCGCCATCGGCGCCCTGCTTGCCGCGCTTGCCACCTTTGCCCACGCCGAGCACCCGATCTGCACGATCGTGGCCGATGCCGCCACGGGCAAGGCCGTCTTGCATGAAGGCAAGTGCGACGAGCGCGTGACGCCCGCTTCCACCTTCAAGCTGGCGCTGGCCGTCATGGGCTTCGACCACGGCTTCCTCAAAGATGAGCACACCCCGGTTGAGCACTTCAGGCACGGTGACCCCGACTGGGGCGGCGAAGCCTGGCACCAGCCGATCGACCCGGCGCTGTGGCTCAAGTATTCGGTGGTCTGGTATTCGCAGCGCATTACGCATGCGATGGGCGCGCAGACCTTCCAGGCCTACGTGCGCAAGCTTGGCTACGGCAACATGGATGTGAGCGGCGATCCGGGCAAGAACAACGGCATGGACCGCTCGTGGATCACCTCGTCGCTGAAGATTTCGCCGGAAGAGCAAGTCGGCTTGATGCGCCGGATCGTCAACCGGCAGTTGCCGGTGTCGGCGCACACCTACGAGATGCTCGACCGTACCGTGCAGACCTGGCAGGTGCCCGGCGGCTGGGCGGTGCAGGGCAAGACGGGCACTGCCGGTCCGGCGCCGGGCAACACGTCGCCCGATGGCACGTGGGATCAGGCACACGCTTACGGCTGGTTTGTCGGCTGGGCCAGGAAGGGCGACAAGACCTACGTATTCGCCAACCTGATCCAGGACGACAAGGTTGAGCCGACGTCGGGCGGTATCCGCTCGCGCGATGCGCTGTTTGCTCGCCTGTCGGAAGTGCTGGCCTTTGCTGGGCACTGA"}}}}}}}}}}, "1544": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4696": {"dna_sequence": {"fmax": "234307", "fmin": "233812", "accession": "AIIS01000002.1", "strand": "-", "sequence": "ATGTTAGCAGCTATTTGGGCCCAAGATGAACAAGGAGTGATTGGTAAAGAAGGCAAATTGCCTTGGCATTTACCCAATGACTTGAAATTTTTCAAGGAAAAAACAATTCATAATACATTGGTCTTAGGACGTGCAACTTTCGAAGGCATGGGATGTCGTCCGCTACCAAATCGAACAACGATTGTCCTAACCAGTAATCCGGATTACCGAGCTGAAGGCGTTTTGGTTATGCATTCCGTAGAGGAAATTCTTGCGTATGCTGACAACTATGAAGGTGTGACCGTTATTGGTGGAGGTTCTGTCGTTTTTAAAGAACTGATTCCCGCATGCGATGTCTTATATCGGACGATGATTCATGAAACGTTTGAAGGCGACACTTTCTTTCCAGAAATCGACTGGTTTGTTTGGGAAAAAGTTGCCACTGTTCCCGGCGTCGTGGACGAGAAAAATCTCTATGCACATGACTATGAAACGTATCATCGAAACGATAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Enterococcus faecalis EnGen0074", "NCBI_taxonomy_id": "1151194", "NCBI_taxonomy_cvterm_id": "41527"}, "protein_sequence": {"accession": "EOD99669.1", "sequence": "MLAAIWAQDEQGVIGKEGKLPWHLPNDLKFFKEKTIHNTLVLGRATFEGMGCRPLPNRTTIVLTSNPDYRAEGVLVMHSVEEILAYADNYEGVTVIGGGSVVFKELIPACDVLYRTMIHETFEGDTFFPEIDWFVWEKVATVPGVVDEKNLYAHDYETYHRNDK"}}}}}}}, "691": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"167": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGCTAAAATACTAATTTTAGATGATGAAAAAGAGATTGTAAGTCTTCTAAGTACGCTACTTTCTAACGAAGGATATGAGGTTTATGAGGCTATGTCAGGAAAAGAAAGCTTGGAGATTATAGAAAATAACAAGATCGATTTAGCCATACTAGATGTCATGCTTCCCGATATTTCCGGTTTTGATGTATTGCAAAGCATTAGAGAAAAACAATTTTTTCCTGTGTTGATGCTAACTGCTCGAGGTCAGGATATGGATAAAATTACTGGACTGTCTATGGGGGCAGATGACTATATTGTTAAGCCGTTCAATCCTTTTGAAGTGTTGGCTAGAGTGAAAACACAGCTACGTAGATATCAAACGTATAATTCTCAAAGTATAGATGAAACAAATGAATATGCAAAAAATGGATTAAATATATCTGTCAACAGTCGAAAAGTATTCTTATATGATGAAGAAATTAAATTAACGCCTATTGAATTTGATATCTTGTGGTATTTGTGTAGAAATGAAGGTCGCGTAATATCGTCAGAAGAGTTATTTGAAAAAGTCTGGAAAGAAGACTATCTAGAGAATAATAATACTGTTATGGCGCATATTGCTAAAATTAGAGAAAAGATGCATGAAAAGCCGAGACAGCCAAATATTATAAAAACGGTATGGGGAGTAGGTTATACAATTGAAAAATAA"}}}}}}}}}}, "696": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4584": {"dna_sequence": {"fmax": "11077", "fmin": "10027", "accession": "AM408573", "strand": "-", "sequence": "ATGAATTTTAATAATAAAACAAAGTATGGTAAAATACAGGAATTTTTAAGAAGTAATAATGAGCCTGATTATAGAATAAAACAAATAACCAATGCGATTTTTAAACAAAGAATTAGTCGATTTGAGGATATGAAGGTTCTTCCAAAATTACTTAGGGAGGATTTAATAAATAATTTTGGAGAAACAGTTTTGAATATCAAGCTCTTAGCAGAGCAAAATTCAGAGCAAGTTACGAAAGTGCTTTTTGAAGTATCAAAGAATGAGAGAGTAGAAACGGTAAACATGAAGTATAAAGCAGGTTGGGAGTCATTTTGTATATCATCACAATGCGGATGTAATTTTGGGTGTAAATTTTGTGCTACAGGCGACATTGGATTGAAAAAAAACCTAACTGTAGATGAGATAACAGATCAAGTTTTATACTTCCATTTATTAGGTCATCAAATTGATAGCATTTCTTTTATGGGAATGGGTGAAGCTCTAGCCAACCGTCAAGTATTTGATGCTCTTGATTCGTTTACGGATCCTAATTTATTTGCATTAAGTCCTCGTAGACTTTCTATATCAACGATTGGTATTATACCTAGTATCAAAAAAATAACCCAGGAATATCCTCAAGTAAATCTTACATTTTCATTACACTCACCTTATAGTGAGGAACGCAGCAAATTGATGCCAATAAATGATAGATACCCAATAGATGAGGTAATGAATATACTCGATGAACATATAAGATTAACTTCAAGGAAAGTATATATAGCTTATATCATGTTGCCTGGTGTAAATGATTCTCTTGAGCATGCAAACGAAGTTGTTAGCCTTCTTAAAAGTCGCTATAAATCAGGGAAGTTATATCATGTAAATTTGATACGATACAATCCTACAATAAGTGCACCTGAGATGTATGGAGAAGCAAACGAAGGGCAGGTAGAAGCCTTTTACAAAGTTTTGAAGTCTGCTGGTATCCATGTCACAATTAGAAGTCAATTTGGGATTGATATTGACGCTGCTTGTGGTCAATTATATGGTAATTATCAAAATAGCCAATAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Staphylococcus warneri", "NCBI_taxonomy_id": "1292", "NCBI_taxonomy_cvterm_id": "40034"}, "protein_sequence": {"accession": "CAL64019.1", "sequence": "MNFNNKTKYGKIQEFLRSNNEPDYRIKQITNAIFKQRISRFEDMKVLPKLLREDLINNFGETVLNIKLLAEQNSEQVTKVLFEVSKNERVETVNMKYKAGWESFCISSQCGCNFGCKFCATGDIGLKKNLTVDEITDQVLYFHLLGHQIDSISFMGMGEALANRQVFDALDSFTDPNLFALSPRRLSISTIGIIPSIKKITQEYPQVNLTFSLHSPYSEERSKLMPINDRYPIDEVMNILDEHIRLTSRKVYIAYIMLPGVNDSLEHANEVVSLLKSRYKSGKLYHVNLIRYNPTISAPEMYGEANEGQVEAFYKVLKSAGIHVTIRSQFGIDIDAACGQLYGNYQNSQ"}}}}}}}, "697": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "694": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "695": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"783": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAAAATCGATATGCTGCGCACTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTGGCGATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATGACATTACGGATAAAGCCGCATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGTGGTAAAACCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAATTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTACACGTTTCTCCGGGGCAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCTCGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACAGGATCCACAGGCGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTAATGTTGGCAAACAAAAGCTACCCCAACCCGGCTCGCGTCGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA"}}}}}}}}}}, "698": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "699": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1548": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"407": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGAAAGCACGTTGCGCCGGACATACCCGCACCACACTTGGCACCTCGTGAACGAAGGAGACTCGGGCGCCTTCGTCTACCGCCTCACCGGACACGGGCCCGAGCTCTACGCGAAGATCGCCCCCCGCACCCCCGAGAACTCCGCCTTCCACCTCGACGGCGAGGCCGACCGCCTCGACTGGCTCGCCCGCCATGGCATCTCGGTCCCCCGTGTCGTCGAGCGCGGTGCCGACGACACCACCGCCTGGCTCGTCACCGAGGCCGTGCCCGGCGCCGCGGCCTCCGAGGAGTGGCCCGAGGACGAGCGGGCGGCCGTTGTCGACGCGATCGCCGAAATGGCCCGCACCCTCCATGAACTCCCCGTGTCCGAGTGCCCCTTCGACCGCCGCCTCGACGTCACCGGCGAGGCCCGGCACAACGTCCGCGAGGGCCTGGTCGACCTCGACGACCTCCAGGAGGAGCCGGCCGGCTGGACCGGCGACCAACTCCTGGCCGAACTCGACCTGACGCGGCCCGAGAAGGAGGACTTGGTCGTCTGCCATGGCGACCTGTGCCCCAACAACGTGCTGCTCGACCCCGAGACCCACCGGATCACCGGGCTGATCGACGTCGGCCGCCTCCGGCTCGCCACCTGCCACGCCGACCTCGCCCTCGCCGCCCGCGAACTGGCGATCGACGAGGACCCGTGGTTCGGCCCCGCATACGCCGAACGGTTCCTCGAACGGTACGGGGCCCACCACGTCGACCAGGAGAAGATGGCCTTCTACCAGCTGCTCGACGAGTTCTTCTAG"}}}}}}}}}}, "1549": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"323": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAACAAAAATATAAAATATTCTCAAAACTTTTTAACGAGTGAAAAAGTACTCAACCAAATAATAAAACAATTGAATTTAAAAGAAACCGATACCGTTTACGAAATTGGAACAGGTAAAGGGCATTTAACGACGAAACTGGCTAAAATAAGTAAACAGGTAACGTCTATTGAATTAGACAGTCATCTATTCAACTTATCGTCAGAAAAATTAAAACTGAATACTCGTGTCACTTTAATTCACCAAGATATTCTACAGTTTCAATTCCCTAACAAACAGAGGTATAAAATTGTTGGGAGTATTCCTTACAATTTAAGCACACAAATTATTAAAAAAGTGGTTTTTGAAAGCCGTGCGTCTGACATCTATCTGATTGTTGAAGAAGGATTCTACAAGCGTACCTTGGATATTCACCGAACACTAGGGTTGCTCTTGCACACTCAAGTCTCGATTCAGCAATTGCTTAAGCTGCCAGCGGAATGCTTTCATCCTAAACCAAAAGTAAACAGTGTCTTAATAAAACTTACCCGCCATACCACAGATGTTCCAGATAAATATTGGAAGCTATATACGTACTTTGTTTCAAAATGGGTCAATCGAGAATATCGTCAACTGTTTACTAAAAATCAGTTTCATCAAGCAATGAAACACGCCAAAGTAAACAATTTAAGTACCATTACTTATGAGCAAGTATTGTCTATTTTTAATAGTTATCTATTATTTAACGGGAGGAAATTAATTCTATGA"}}}}}}}}, "ARO_category": {"$insert": {"37021": {"category_aro_name": "virginiamycin S2", "category_aro_cvterm_id": "37021", "category_aro_accession": "3000677", "category_aro_class_name": "Antibiotic", "category_aro_description": "Virginiamycin S2 is a streptogramin B antibiotic."}, "37023": {"category_aro_name": "vernamycin C", "category_aro_cvterm_id": "37023", "category_aro_accession": "3000679", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin C is a streptogramin B antibiotic."}, "37026": {"category_aro_name": "ostreogrycin B3", "category_aro_cvterm_id": "37026", "category_aro_accession": "3000682", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid."}}}}}, "542": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "543": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1153": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTAAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGACGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA"}}}}}}}}}}, "540": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"65": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGCAATCACTAAATCAACTCCGGCACCATTAACCGGTGGGACGTTATGGTGCGTCACTATTGCATTGTCATTAGCGACATTTATGCAAATGTTGGATTCCACTATTTCTAACGTCGCAATACCGACAATATCTGGCTTTCTGGGAGCATCAACAGACGAAGGCACCTGGGTTATCACCTCGTTTGGTGTAGCAAATGCCATTGCGATCCCTGTTACTGGCAGGTTGGCACAAAGAATAGGCGAATTAAGATTATTTTTACTTTCAGTCACTTTTTTTTCGCTGTCTTCATTAATGTGTAGCCTATCGACCAATCTTGATGTGCTGATATTTTTTAGAGTCGTTCAGGGGTTAATGGCGGGGCCGTTAATTCCACTGTCACAGAGTTTATTATTAAGGAATTATCCGCCAGAAAAAAGAACATTTGCTCTGGCATTATGGTCAATGACCGTGATTATCGCTCCGATATGTGGACCGATATTGGGCGGTTATATTTGTGATAACTTTAGCTGGGGTTGGATATTTTTAATCAATGTCCCTATGGGGATTATCGTCCTGACATTATGCTTAACCTTACTTAAAGGAAGAGAAACTGAGACTTCACCGGTCAAAATGAATCTACCAGGACTGACCCTGTTAGTGCTCGGTGTTGGTGGCTTGCAAATTATGCTTGATAAAGGGCGCGATCTGGATTGGTTCAACTCGAGTACAATAATAATATTAACAGTAGTATCAGTTATTTCTCTGATCTCTTTAGTCATTTGGGAGTCGACCTCAGAGAACCCGATTCTTGATCTCAGTTTGTTTAAGTCCCGTAACTTCACCATTGGTATTGTGAGTATCACATGCGCGTATTTATTTTACTCTGGAGCGATCGTCCTTATGCCGCAGTTACTCCAGGAAACGATGGGGTATAATGCGATATGGGCCGGACTTGCTTATGCGCCCATCGGCATCATGCCACTATTAATTTCACCTTTGATAGGACGTTATGGCAACAAAATAGACATGCGGTTGTTAGTGACATTTAGTTTTTTGATGTATGCGGTTTGCTATTACTGGCGTTCTGTGACATTTATGCCAACGATTGATTTTACAGGCATCATTTTGCCGCAGTTTTTTCAGGGATTCGCCGTTGCCTGTTTCTTTTTACCCTTAACAACGATTTCGTTTTCAGGCTTGCCAGATAATAAATTTGCCAATGCCTCGAGTATGAGTAATTTTTTTCGTACCTTGTCAGGATCAGTTGGTACGTCGTTGACAATGACGCTGTGGGGACGACGCGAATCGTTACACCATAGTCAGTTGACAGCAACCATCGATCAATTTAACCCCGTGTTTAATTCATCGTCACAAATTATGGATAAATATTATGGTTCGCTTTCAGGAGTTCTTAATGAAATTAATAATGAAATAACCCAGCAGTCACTTTCTATTTCTGCAAATGAGATTTTCCGTATGGCGGCTATTGCTTTTATCTTACTTACGGTTTTGGTTTGGTTTGCGAAACCGCCGTTTACAGCGAAAGGCGTTGGGTGA"}}}}}}}}}}, "541": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "546": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "547": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"567": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGACGGTAGACTGGATCCCCATTTCGCACGACAACTACCATCAAGTGCGTGGCCCGTTTTATCACGGAACAAAAGCCGAACTCGCCATTGGCGACTTAATTTCAACCGGATTTATTTCTCACTTTGAGCGGGACAGAGCACTAAAGCATGTGTACTTTTCCGCGCTGATGGAGCCAGCAATCTGGGGGGCCGAGCTCGCTGTAGCACTCTCTGGCTCTGACGGGCCAGGCCATATTTACATCATTGAGCCAACCGGCCCGTTTGAAGACGACCCCAATCTCACAAACAAACGATTCCCTGGCAATCCAACACAGTCCTATCGCACATGCCACCCACTTAAAATTGTTGGCATACTGCGGGAGTGGGAGCGCCATTCTCCTGAAGCATTGAAGACCATGCTAGATTCTCTGGCAGACCTCAAGCGACGCGGCTTGGCCATCATTGAAGAATGA"}}}}}}}}}}, "544": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "545": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1415": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCGCTTCATTCACGCACTATTACTGGCAGGGATCGCTCACTCTGCATATGCGTCGGAAAAATTAACCTTCAAGACCGATCTTGAGAAGCTAGAGCGCGAAAAAGCAGCTCAGATCGGTGTTGCGATCGTCGATCCCCAAGGAGAGATCGTCGCGGGCCACCGAATGGCGCAGCGTTTTGCAATGTGCTCAACGTTCAAGTTTCCGCTAGCCGCGCTGGTCTTTGAAAGAATTGACTCAGGCACCGAGCGGGGGGATCGAAAACTTTCATATGGGCCGGACATGATCGTCGAATGGTCTCCTGCCACGGAGCGGTTTCTAGCATCGGGACACATGACGGTTCTCGAGGCAGCGCAAGCTGCGGTGCAGCTTAGCGACAATGGGGCTACTAACCTCTTACTGAGAGAAATTGGCGGACCTGCTGCAATGACGCAGTATTTTCGTAAAATTGGCGACTCTGTGAGTCGGCTAGACCGGAAAGAGCCGGAGCTGGGCGACAACACACCTGGCGACCTCAGAGATACAACTACGCCTATTGCTATGGCACGTACTGTGGCTAAAGTCCTCTATGGCGGCGCACTGACGTCCACCTCGACCCACACCATTGAGAGGTGGCTGATCGGAAACCAAACGGGAGACGCGACACTACGAGCGGGTTTTCCTAAAGATTGGGTTGTTGGAGAGAAAACTGGTACCTGCGCCAACGGGGCCCGGAACGACATTGGTTTTTTTAAAGCCCAGGAGAGAGATTACGCTGTAGCGGTGTATACAACGGCCCCGAAACTATCGGCCGTAGAACGTGACGAATTAGTTGCCTCTGTCGGTCAAGTTATTACACAACTCATCCTGAGCACGGACAAATAG"}}}}}}}}}}, "548": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "549": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1240": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTAAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCATTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGACGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCAGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA"}}}}}}}}}}, "1782": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"996": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATAGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA"}}}}}}}}}}, "1783": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1784": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1982": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1516": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGCAAGTTATTTGTATTCTTTATGTTTTTGTTTTGTAGCATTACTGCCGCAGGAGAGTCTTTGCCAGATTTAAAAATTGAGAAGCTTGACGAAGGCGTTTATGTTCATACTTCGTTTGAAGAAGTTAACGGTTGGGGTGTTATTCCTAAACACGGCTTGGTGGTTCTTGTAAATACTGATGCCTATCTGATAGACACTCCATTTACTGCTAAAGATACTGAAAATTTAGTTAATTGGTTTGTTGAGCGCGGCTATAGAATAAAAGGCAGTATTTCCTCACATTTCCATAGCGACAGCACGGGTGGAATAGAGTGGCTTAATTCTCAATCTATCCCCACGTATGCATCTGAATTAACAAATGAACTTCTTAAAAAAGACGGTAAGGTACAAGCTAAATATTCATTTAGCGGAGTTAGCTATTGGCTAGTTAAGAAAAAGATTGAAGTTTTTTATCCTGGTCCAGGGCACGCTCCAGATAACGTAGTGGTTTGGCTGCCTGAAAATAGAGTTTTGTTCGGTGGTTGTTTTGTTAAACCCTACGGTCTAGGTAATTTGGGTGACGCAAATTTAGAAGCTTGGCCAAAATCCGCCAAATTATTAATGTCAAAATATAGTAAGGCAAAACTGGTTGTACCAAGTCATAGTGACATAGGAGATTCGTCGCTCTTGAAGCTTACATGGGAGCAGACGGTAAAAGGATTCAATGAAAGCAAAAAAAGTACCACTGCACATTAA"}}}}}}}}}}, "1785": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1786": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"414": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGCTCGTTTCTTCATTGACCGGCCGGTCTTCGCCTGGGTGATCTCCCTGCTGATCGTGCTCGCCGGGGTCCTGGCGATCCGCTTCCTGCCGGTCGCCCAGTACCCGGACATCGCGCCGCCGGTGGTCAACGTCAGCGCCACGTATCCCGGCGCCTCGGCCAAGGTGGTCGAGGAAGCGGTGACCGCGATCATCGAGCGCGAGATGAACGGCGCGCCCGGCCTGCTCTACACCAAGGCCACCAGCAGCACCGGCCAGGCCTCGCTGACCCTGACCTTCCGCCAGGGCGTGAACGCGAACCTCGCCGCGGTGGAAGTGCAGAACCGCCTGAAGATCGTCGAGTCGCGCCTGCCCGAATCGGTGCGGCGCGACGGCATCTACGTGGAGAAGGCGGCGGACAGCATCCAGCTGATCGTTACCCTTACCTCCTCCAGCGGCCGCTACGACGCCATGGAGCTGGGCGAGATCGCCTCGTCCAACGTGTTGCAGGCGCTGCGCCGGGTGGAGGGCGTGGGCAAGGTCGAGACCTGGGGCGCCGAGTACGCCATGCGCATCTGGCCCGACCCGGCCAAGCTGACCTCGATGAACCTCAGCGCCAGCGACCTGGTCAACGCCGTGCGCCGGCACAACGCCCGCCTCACCGTGGGCGACATCGGCAACCTCGGGGTCCCCGACTCGGCGCCGATCAGCGCCACGGTGAAGGTCGACGACACCCTGGTGACGCCCGAGCAGTTCGGCGAAATTCCGCTGGCGCATCCGCGCGACGGCGGCGCGATCCGCCTGCGCGACGTGGCCCGCGTCGAGTTCGGCCAGAGCGAGTACGGCTTCGTCTCGCGGGTCAACCAAATGACCGCCACCGGCCTGGCGGTGAAGATGGCGCCCGGCTCCAACGCGGTGGCCACCGCCAAGCGCATCCGCGCCACCCTCGACGAGCTGTCGCGCTACTTCCCGGAGGGCGTGAGCTACAACATCCCCTATGACACCTCGGCGTTCGTCGAGATCTCGATCAGGAAGGTGGTCAGCACCCTGCTCGAGGCGATGCTGCTGGTGTTCGCCGTGATGTACCTGTTCATGCAGAACTTCCGCGCCACCCTGATCCCGACACTGGTGGTGCCGGTGGCCCTGCTGGGCACCTTCACGGTGATGCTCGGCCTGGGCTTCTCGATCAACGTGCTGACCATGTTCGGCATGGTCCTGGCGATCGGCATCCTGGTGGACGACGCGATCATCGTGGTGGAGAACGTCGAGCGGCTGATGGCCGAGGAAGGCCTGTCGCCGCACGACGCCACGGTCAAGGCGATGCGCCAGATCAGCGGGGCCATCGTCGGCATCACCGTAGTGCTGGTCTCGGTGTTCGTGCCGATGGCGTTCTTCAGCGGCGCGGTGGGCAACATCTACCGCCAGTTCGCGGTGACCCTGGCGGTCTCCATCGGCTTCTCGGCGTTCCTCGCGCTGTCGCTGACCCCGGCCCTGTGCGCCACCCTGCTGCGCCCGATCGACGCCGACCACCACGAGAAGCGCGGCTTCTTCGGCTGGTTCAACCGCGCCTTCCTGCGCCTGACCGGACGCTACCGCAACGCGGTGGCCGGCATCCTCGCCCGGCCGATCCGCTGGATGCTGGTCTACACCCTGGTCATCGGCGTGGTCGCCCTGCTCTTCGTGCGCCTGCCGCAGGCGTTCCTGCCGGAAGAGGACCAGGGCGACTTCATGATCATGGTGATGCAGCCCGAAGGCACGCCGATGGCGGAGACCATGGCCAACGTCGGCGACGTCGAGCGCTACCTGGCGGAGCACGAACCGGTGGCCTACGCCTATGCGGTCGGCGGCTTCAGCCTGTACGGCGACGGCACCAGCTCGGCGATGATCTTCGCCACCCTGAAGGACTGGTCGGAACGCCGGGAGGCCAGCCAGCACGTCGGCGCCATCGTCGAGCGCATCAACCAGCGCTTCGCCGGCCTGCCCAACCGTACGGTGTATGCGATGAACTCGCCGCCGCTGCCGGACCTGGGTTCCACCAGCGGCTTCGACTTCCGCCTGCAGGACCGTGGCGGGGTTGGCTACGAGGCCCTGGTCAAGGCCCGCGACCAGTTGCTGGCGCGCGCCGCCGAGGACCCGCGCCTGGCCAACGTGATGTTCGCCGGCCAGGGCGAGGCGCCGCAGATCCGCCTGGACATCGACCGGCGCAAGGCGGAGACCCTTGGCGTGAGCATGGACGAGATCAACACCACCCTGGCGGTGATGTTCGGCTCGGACTACATCGGCGACTTCATGCACGGCAGCCAGGTGCGCAAGGTGGTGGTCCAGGCCGACCGGCGCAAGCGCCTGGGCATCGACGACATCGGCCGGCTTCACGTGCGCAACGAGCAGGGCGAGATGGGTGCCGCTGGCGACGTTCGCCAAGGCCGCCTGGACCCTCGGCCCGCCGCAACTGACCCGCTACAACGGCTATCCCTCGTTCAACCTCGAGGGCCAGGCCGCGCCGGGCTACAGCAGCGCGAAGCCATGCAGGCGATGGAGCAATTGATGCAGGGAACTGCCCGAGGCATTCGCCCACGAGTGGTCCGGCCAGTCCTTCGAAGAACGCCTGTTGCCGGCGCCCAGGCGCCGGCGCTGTTCGCCCTCTCGGTGTTGATCGTGTTCCTCGCCCTGGCCGCCCTCTACGAAAGCTGGTCGATCCCGCTGGCGGTGATCCTGGTGGTGCCGCTGGGCGTACTCGGCGCACTGCTCGGGGTGAGCCTGCGCGGTCTGCCCAACGACATCTACTTCAAGGTCGGCCTGATCACCATCATCGGCCTCTCGGCGAAGAACGCCATCCTCATCATCGAGGTGGCCAAGGACCATTACCAGGAAGGCATGAGCCTGCTGCAGGCGACCCTGGAGGCCGCGCGCCTGCGCCTGCGACCGATCGTCATGACCTCGCTGGCGTTCGGTTTCGGCGTGGTCCCGCTGGCGCTCTCCAGCGGCGCCGGTATCCGCGCCCAGGTCGCCATCGGCACCGGGGTGCTCGGCGGGATCGTCACCGCCACGGTACTCGCGGTGTTCCTGGTACCGCTGTTCTTCCTGGTGGTCGGGCGCCTGTTCCGGTTGCGCAAGGCGCCGCGCACCGGCAACTCGCCCCAGATCCCCACGGAGCAAGCCTGA"}}}}}}}}}}, "1787": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "414": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1612": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAACATTAAAACACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGCGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGTACACACTAAGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACCACAGAAGTATTTAAGTGGGACGGGCAAAAAAGGCTATTCCCAGAATGGGAAAAGGACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAAGGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAGTTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCCAAAAGTCCAAGATGAAGTGCAATCCATGTTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAGACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGTTTAGAACAATTAGGTATTTTATAG"}}}}}}}}}}, "415": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4506": {"dna_sequence": {"fmax": "51165", "fmin": "50304", "accession": "GU371926", "strand": "-", "sequence": "ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGCTGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli", "NCBI_taxonomy_id": "562", "NCBI_taxonomy_cvterm_id": "35914"}, "protein_sequence": {"accession": "ADL13944.1", "sequence": "MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEDQLGARVGYIELDLNSGKILESFRPEERFPMLSTFKVLLCGAVLSRVDAGQEQLGRRIHYSQNDLVEYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTMPAAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGAGERGSRGIIAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGASLIKHW"}}}}}}}, "416": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1605": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCGTGTATTAGCCTTATCGGCTGTGTTTTTGGTGGCATCGATTATCGGAATGCCTGCGGTAGCAAAGGAATGGCAAGAAAACAAAAGTTGGAATGCTCACTTTACTGAACATAAATCACAGGGCGTAGTTGTGCTCTGGAATGAGAATAAGCAGCAAGGATTTACCAATAATCTTAAACGGGCGAACCAAGCATTTTTACCCGCATCTACCTTTAAAATTCCCAATAGCTTGATCGCCCTCGATTTGGGCGTGGTTAAGGATGAACACCAAGTCTTTAAGTGGGATGGACATCGGCGCGATATCGCCACTTGGAATCGCGATCATAATCTAATCACCGCGATGAAATATTCAGTTGTGCCTGTTTATCAAGAATTTGCCCGCCAAATTGGCGAGGCACGTATGAGCAAGATGCTACATGCTTTCGATTATGGTAATGAGGACATTTCGGGCAATGTAGACAGTTTCTGGCTCGATGGTGGTATTCGAATTTCGGCCACTGAGCAAATCAGCTTTTTAAGAAAGCTGTATCACAATAAGTTACACGTATCGGAGCGCAGCCAGCGTATTGTCAAACAAGCCATGCTGACCGAAGCCAATGGCGACTATATTATTCGGGCTAAAACGGGATACTCGACTAGAATCGAACCTAAGATTGGCTGGTGGGTCGGTTGGGTTGAACTGGATGATAATGTGTGGTTTTTTGCGATGAATATGGATATGCCCACATCGGATGGTTTAGGGCTGCGCCAAGCCATCACAAAAGAAGTGCTCAAACAGGAAAAAATTATTCCCTAG"}}}}}}}}}}, "417": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "410": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"188": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGTCCATGCCGCCGTCAGCAGGGTCGGCCGCCTGCTCGATGGCCCCGACACCATCATCGCCGCCCTGCGCGATACCGTCGGCCCGGGCGGTACCGTTCTCGCCTATGCCGATTGGGAGGCACGATACGAGGACCTGGTCGACGACGCGGGCCGCGTGCCTCCGGAATGGCGCGAACATGTCCCACCCTTCGACCCGCAGCGCTCGCGTGCGATCCGCGACAATGGTGTGCTGCCGGAATTCCTGCGGACCACGCCCGGCACGCTCCGCAGCGGCAACCCCGGCGCCTCGCTCGTCGCGCTCGGGGCGAAGGCGGAGTGGTTCACTGCCGACCACCCGCTCGACTACGGCTATGGCGAGGGCTCGCCGCTGGCCAAGCTGGTCGAGGCCGGCGGCAAGGTGCTGATGCTTGGGGCGCCGCTCGACACGCTGACCCTGCTGCACCATGCCGAGCATCTGGCTGATATCCCCGGCAAGCGGATCAAGCGGATCGAGGTGCCGTTCGCGACACCTACAGGCACGCAATGGCGCATGATCGAGGAGTTCGACACCGGCGATCCGATCGTCGCAGGGCTGGCCGAGGACTATTTCGCGGGAATCGTGACCGAATTCCTCGCCAGCGGCCAGGGTCGGCAAGGGTTGATCGGCGCCGCTCCCTCGGTGCTGGTCGATGCCGCGGCGATCACCGCCTTCGGCGTCACCTGGCTCGAAAAACGGTTCGGTACGCCCTCGCCCTGA"}}}}}}}}}}, "411": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "412": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "413": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1384": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"2011": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAACATTAAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGCGCTTCAAAAACTGATAAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACCACAGAAGTATTTAAGTGGAACGGGCAAAAAAGGCTGTTCCCAGAATGGGAAAAGGACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGGCTTGAACTCATGTCTAATGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAATTTACTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAGACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGTTTAGAACAATTAGGTATTTTATAG"}}}}}}}}}}, "1385": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4709": {"dna_sequence": {"fmax": "397061", "fmin": "393893", "accession": "NC_003197.2", "strand": "-", "sequence": "ATGAAATTCACCCACTTTTTCATTGCACGCCCCATCTTCGCCATCGTCCTGTCGCTGTTAATGCTGCTGGCTGGCGCTATCGCCTTTTTAAAACTGCCGCTGAGTGAATATCCGGCCGTTACGCCGCCCACGGTACAGGTTAGCGCCAGCTACCCCGGCGCTAACCCGCAAGTGATTGCCGATACGGTAGCCGCGCCGCTGGAACAGGTGATCAACGGCGTTGACGGCATGTTGTATATGAATACCCAGATGGCCATTGATGGTCGCATGGTTATCTCTATCGCCTTCGAACAGGGAACCGATCCTGATATGGCGCAAATTCAGGTGCAAAACCGGGTATCCCGCGCGCTGCCTCGCCTGCCCGAAGAAGTCCAGCGAATTGGCGTTGTAACGGAGAAAACGTCCCCCGATATGTTGATGGTGGTTCATCTTGTCTCGCCGCAAAAACGCTATGACTCGCTTTACCTGTCTAACTTCGCCATCCGGCAGGTTCGCGACGAACTGGCCCGTTTACCCGGCGTCGGCGATGTTCTCGTCTGGGGCGCGGGCGAGTACGCCATGCGCGTCTGGCTGGACCCGGCGAAAATCGCCAACCGCGGTCTTACCGCCAGTGATATCGTTACGGCGTTGCGGGAACAAAACGTACAGGTCGCCGCCGGTTCCGTCGGGCAACAGCCGGAGGCCTCCGCCGCTTTTCAGATGACGGTAAACACGCTGGGCCGCCTGACCAGCGAAGAACAGTTCGGCGAGATTGTGGTAAAAATCGGCGCTGACGGCGAGGTGACGCGTCTGCGTGATGTCGCCCGCGTCACGCTGGGCGCAGATGCCTATACGCTGCGCAGTTTACTGAATGGCGAAGCGGCGCCAGCGTTACAGATTATTCAAAGTCCGGGCGCCAATGCGATTGACGTTTCTAACGCGATTCGCGGCAAAATGGATGAGTTGCAGCAAAACTTCCCGCAGGATATCGAATACCGGATTGCCTATGATCCTACGGTCTTCGTGCGCGCATCGCTACAATCGGTGGCGATTACGTTGCTGGAAGCCCTCGTGCTGGTCGTCCTTGTCGTGGTGATGTTCCTGCAAACCTGGCGGGCGTCCATTATTCCTCTGGTGGCGGTTCCCGTTTCGCTGGTCGGCACCTTTGCCTTGATGCACCTGTTTGGCTTTTCGCTGAATACGCTTTCGCTGTTTGGTTTGGTCCTGTCGATAGGTATCGTTGTCGATGACGCCATCGTTGTGGTCGAAAACGTGGAACGGCATATCTCGCAGGGCAAAAGTCCCGGAGAGGCGGCAAAGAAGGCGATGGATGAAGTCACTGGTCCCATTCTTTCTATTACCTCGGTGCTAACGGCGGTCTTTATCCCTTCCGCATTCCTGGCGGGCCTGCAGGGTGAGTTTTATCGTCAGTTCGCGTTGACCATCGCTATTTCGACCATCCTTTCGGCCATTAACTCGCTGACGCTCTCCCCTGCGCTGGCTGCCATTTTGCTAAGACCGCACCACGATACTGCGAAGGCTGACTGGCTAACGCGGTTGATGGGCACGGTCACTGGCGGTTTTTTCCATCGCTTTAACCGTTTCTTCGACAGCGCGTCGAACCGCTATGTTAGCGCCGTCCGTCGGGCCGTGCGCGGCAGCGTCATTGTGATGGTGCTCTATGCTGGCTTTGTGGGGCTGACCTGGCTTGGCTTCCATCAGGTGCCGAACGGGTTTGTGCCTGCGCAGGATAAATACTATCTCGTCGGCATCGCCCAGCTCCCAAGCGGCGCATCGTTGGATCGCACAGAGGCGGTCGTGAAACAGATGTCCGCTATCGCGCTGGCGGAACCCGGCGTTGAAAGCGTCGTCGTCTTCCCCGGTCTGTCGGTTAACGGCCCGGTAAATGTGCCAAATTCGGCGCTGATGTTCGCCATGCTGAAACCCTTTGACGAGCGTGAAGATCCTTCGCTTTCCGCTAACGCTATCGCCGGAAAGCTAATGCACAAATTTAGCCACATTCCCGACGGATTTATTGGCATCTTCCCGCCACCGCCGGTTCCAGGGCTTGGCGCGACGGGCGGCTTTAAATTGCAGATTGAAGATCGTGCGGAACTGGGATTTGAAGCGATGACAAAGGTGCAAAGCGAGATTATGTCTAAGGCGATGCAGACGCCCGAACTGGCCAATATGCTGGCCAGTTTCCAGACAAACGCCCCGCAATTACAGGTGGATATCGACCGGGTAAAGGCGAAATCAATGGGGGTATCGCTCACCGACATCTTTGAAACGTTGCAAATTAACCTCGGCTCGCTTTACGTCAACGATTTCAACCGATTTGGCCGTGCCTGGCGGGTGATGGCGCAGGCCGATGCGCCATTCCGTATGCAGCAAGAGGATATCGGCCTGCTTAAAGTCCGCAATGCGAAGGGCGAGATGATCCCGCTTAGCGCTTTCGTCACGATTATGCGCCAGTCGGGGCCGGACAGAATCATCCATTACAACGGCTTCCCCTCGGTAGATATTAGCGGTGGACCGGCTCCGGGCTTCTCCTCCGGACAGGCGACGGACGCGATTGAAAAGATCGTGCGTGAAACGTTACCGGAAGGGATGGTCTTCGAATGGACCGATCTGGTTTATCAGGAAAAACAGGCCGGCAACTCTGCGCTTGCTATCTTTGCGCTGGCGGTGCTGCTGGCCTTCCTGATCCTGGCGGCGCAGTACAACAGTTGGTCGCTGCCCTTCGCCGTCCTGCTTATTGCGCCTATGTCATTACTCTCAGCCATTGTCGGCGTGTGGGTATCTGGCGGAGATAACAATATCTTTACGCAGATTGGTTTCGTGGTGCTGGTCGGCCTGGCGGCCAAGAACGCCATTTTGATTGTCGAGTTTGCCCGCGCCAAAGAACACGACGGCGCAGACCCGCTGACCGCCGTACTGGAAGCGTCCCGCCTGCGTCTGCGTCCTATCCTGATGACCTCATTCGCCTTTATCGCAGGTGTAGTACCACTGGTACTCGCGACGGGTGCCGGCGCGGAAATGCGACATGCGATGGGCATCGCCGTGTTTGCCGGCATGTTGGGCGTCACGCTCTTCGGCCTGTTATTGACGCCTGTATTTTACGTGGTGGTTCGCAGGATGGCATTAAAGCGTGAGAACCGCGTTGATTCGCATGATCAGCAAGCATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Salmonella enterica subsp. enterica serovar Typhimurium str. LT2", "NCBI_taxonomy_id": "99287", "NCBI_taxonomy_cvterm_id": "35734"}, "protein_sequence": {"accession": "NP_459346.1", "sequence": "MKFTHFFIARPIFAIVLSLLMLLAGAIAFLKLPLSEYPAVTPPTVQVSASYPGANPQVIADTVAAPLEQVINGVDGMLYMNTQMAIDGRMVISIAFEQGTDPDMAQIQVQNRVSRALPRLPEEVQRIGVVTEKTSPDMLMVVHLVSPQKRYDSLYLSNFAIRQVRDELARLPGVGDVLVWGAGEYAMRVWLDPAKIANRGLTASDIVTALREQNVQVAAGSVGQQPEASAAFQMTVNTLGRLTSEEQFGEIVVKIGADGEVTRLRDVARVTLGADAYTLRSLLNGEAAPALQIIQSPGANAIDVSNAIRGKMDELQQNFPQDIEYRIAYDPTVFVRASLQSVAITLLEALVLVVLVVVMFLQTWRASIIPLVAVPVSLVGTFALMHLFGFSLNTLSLFGLVLSIGIVVDDAIVVVENVERHISQGKSPGEAAKKAMDEVTGPILSITSVLTAVFIPSAFLAGLQGEFYRQFALTIAISTILSAINSLTLSPALAAILLRPHHDTAKADWLTRLMGTVTGGFFHRFNRFFDSASNRYVSAVRRAVRGSVIVMVLYAGFVGLTWLGFHQVPNGFVPAQDKYYLVGIAQLPSGASLDRTEAVVKQMSAIALAEPGVESVVVFPGLSVNGPVNVPNSALMFAMLKPFDEREDPSLSANAIAGKLMHKFSHIPDGFIGIFPPPPVPGLGATGGFKLQIEDRAELGFEAMTKVQSEIMSKAMQTPELANMLASFQTNAPQLQVDIDRVKAKSMGVSLTDIFETLQINLGSLYVNDFNRFGRAWRVMAQADAPFRMQQEDIGLLKVRNAKGEMIPLSAFVTIMRQSGPDRIIHYNGFPSVDISGGPAPGFSSGQATDAIEKIVRETLPEGMVFEWTDLVYQEKQAGNSALAIFALAVLLAFLILAAQYNSWSLPFAVLLIAPMSLLSAIVGVWVSGGDNNIFTQIGFVVLVGLAAKNAILIVEFARAKEHDGADPLTAVLEASRLRLRPILMTSFAFIAGVVPLVLATGAGAEMRHAMGIAVFAGMLGVTLFGLLLTPVFYVVVRRMALKRENRVDSHDQQA"}}}}}}}, "1386": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"495": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGTTAATTGGGGTGTATTTGTATGGTTCGGCAGTAATGGGTGGTTTACGTATGAATAGCGATGTAGATATTTTGGTAATAACAAATCAAAGTTTATCTGAAAAAACTCGAAGGAATCTTACAAATAGGTTAATGCTTATATCTGGGAAAATAGGAAACATAAAAGATATGAGGCCTCTTGAAGTTACGGTCATAAATCAAAAGGATATTGTCCCTTGGCATTTCCCCCCCAAATATGAATTTATGTATGGCGAGTGGCTAAGAGAGCAGTTTGAAAAGGGAGAAATTCCTGAGTCGACTTATGATCCGGATTTAGCAATACTTTTAGCACAACTAAGAAAAAATAGTATTAACCTTTTGGGACCAAAGGCAACAGAAGTAATTGAGCCTGTGCCAATGACAGATATTCGAAAAGCAATTAAAGAATCGTTGCCCGGGTTGATAGCTAGCATTAACGGTGACGAACGCAATGTGATTTTAACTTTAGCCAGAATGTGGCTGACAGCATCTACTGGTGAAATTCGCTCAAAAGATCTGGCAGCTGAATGGGCGATACCTCAATTACCCGATGAGCATGCTACTTTACTCAACAAAGCGAGAGAGGCTTATTTAGGAGAGTGTGTTGACAAGTGGGAAGGAATGGAATCTGAGGTGGCTGAACTCGTTAATCATATGAAAAAGTCTATAGAGTCTTCCCTTAATATCCAATTACCTTTTCGAATAGTTTAA"}}}}}}}}}}, "1387": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1380": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "419": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1382": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1383": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "368": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1991": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGACGTACGTAAACACAAGGCTAGTTTTTTTAGCGTAGTAATTACTTTTTTATGTCTCACGCTATCATTAAATGCTAATGCAACAGACTCAGTACTTGAAGCGGTTACCAATGCTGAAACTGAATTAGGCGCTAGAATTGGTCTAGCTGTGCATGATTTGGAAACGGGAAAACGTTGGGAACATAAATCTAATGAACGTTTTCCTCTAAGTAGTACCTTTAAAACACTTGCCTGTGCAAACGTTCTTCAAAGAGTTGATCTAGGTAAAGAAAGAATTGATAGAGTTGTGAGATTCTCTGAAAGCAATCTCGTTACATACTCACCTGTAACAGAAAAACATGTGGGTAAAAAAGGGATGTCGCTCGCAGAGCTGTGTCAGGCCACATTATCAACCAGTGATAATTCAGCTGCCAATTTTATTCTACAAGCGATTGGTGGACCTAAGGCTCTAACGAAATTTTTGCGTTCCATTGGCGACGATACTACGCGCCTTGATCGCTGGGAAACAGAACTTAACGAAGCGGTACCTGGAGATAAGCGAGACACGACAACACCAATTGCAATGGTAACGACACTTGAAAAGTTACTAATTGACGAAACACTATCTATCAAATCTCGTCAACAACTAGAATCTTGGCTTAAAGGTAATGAGGTTGGCGATGCATTGTTTCGTAAAGGCGTTCCAAGTGACTGGATAGTAGCAGATAGAACAGGCGCTGGTGGTTATGGGTCGCGTGCTATTACTGCGGTGATGTGGCCTCCAAATCGCAAGCCTATCGTAGCCGCTCTATACATTACAGAGACAGACGCCTCGTTTGAAGAAAGAAATGCTGTCATTGCAAAAATTGGTGAGCAAATAGCGAAGATAGTATTAATGGAGAATAGCCGTAACTGA"}}}}}}}}}}, "369": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "366": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"$update": {"2099": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGTCCCCGCCGGTTTGTGCGCATACCGTGATCTGAGGCGTAAACGAGCGAGAAAGTGGGGCGACACGGTGACCCAGCCCGATGACCCACGTCGGGTCGGTGTGATCGTCGAACTGATCGATCACACTATCGCCATCGCCAAACTGAACGAGCGTGGTGATCTAGTACAGCGGTTGACGCGGGCTCGCCAGCGGATCACCGACCCGCAGGTCCGTGTGGTGATCGCCGGGCTGCTCAAACAGGGCAAGAGTCAATTGCTCAATTCGTTGCTCAACCTGCCCGCGGCGCGAGTAGGCGATGACGAGGCCACCGTGGTGATCACCGTCGTAAGCTACAGCGCCCAACCGTCGGCCCGGCTTGTGCTGGCCGCCGGGCCCGACGGGACAACCGCAGCGGTTGACATTCCCGTCGATGACATCAGCACCGATGTGCGTCGGGCTCCGCACGCCGGTGGCCGCGAGGTGTTGCGGGTCGAGGTCGGCGCGCCCAGCCCGCTGCTGCGGGGCGGGCTGGCGTTTATCGATACTCCGGGTGTGGGCGGCCTCGGACAGCCCCACCTGTCGGCGACGCTGGGGCTGCTACCCGAGGCCGATGCCGTCTTGGTGGTCAGCGACACCAGCCAGGAATTCACCGAACCCGAGATGTGGTTCGTGCGGCAGGCCCACCAGATCTGTCCGGTCGGGGCGGTCGTGGCCACCAAGACCGACCTGTATCCGCGCTGGCGGGAGATCGTCAATGCCAATGCAGCACATCTGCAGCGGGCCCGGGTTCCGATGCCGATCATCGCAGTCTCATCACTGTTGCGCAGCCACGCGGTCACGCTTAACGACAAAGAGCTCAACGAAGAGTCCAACTTTCCGGCGATCGTCAAGTTTCTCAGCGAGCAGGTGCTTTCCCGCGCGACGGAGCGAGTGCGTGCTGGGGTACTCGGCGAAATACGTTCGGCAACAGAGCAATTGGCGGTGTCTCTAGGTTCCGAACTATCGGTGGTCAACGACCCGAACCTCCGTGACCGACTTGCTTCGGATTTGGAGCGGCGCAAACGGGAAGCCCAGCAGGCGGTGCAACAGACAGCGCTGTGGCAGCAGGTGCTGGGCGACGGGTTCAACGACCTGACTGCTGACGTGGACCACGACCTACGAACCCGCTTCCGCACCGTCACCGAAGACGCCGAGCGCCAGATCGACTCCTGTGACCCGACTGCGCATTGGGCCGAGATTGGCAACGACGTCGAGAATGCGATCGCCACAGCGGTCGGCGACAACTTCGTGTGGGCATACCAGCGTTCCGAAGCGTTGGCCGACGACGTCGCTCGCTCCTTTGCCGACGCGGGGTTGGACTCGGTCCTGTCAGCAGAGCTGAGCCCCCACGTCATGGGCACCGACTTCGGCCGGCTCAAAGCGCTGGGCCGGATGGAATCGAAACCGCTGCGCCGGGGCCATAAAATGATTATCGGCATGCGGGGTTCCTATGGCGGCGTGGTCATGATTGGCATGCTGTCGTCGGTGGTCGGACTTGGGTTGTTCAACCCGCTATCGGTGGGGGCCGGGTTGATCCTCGGCCGGATGGCATATAAAGAGGACAAACAAAACCGGTTGCTGCGGGTGCGCAGCGAGGCCAAGGCCAATGTGCGGCGCTTCGTCGACGACATTTCGTTCGTCGTCAGCAAACAATCACGGGATCGGCTCAAGATGATCCAGCGTCTGCTGCGCGACCACTACCGCGAGATCGCCGAAGAGATCACCCGGTCGCTCACCGAGTCCCTGCAGGCGACCATCGCGGCGGCGCAGGTGGCGGAAACCGAGCGGGACAATCGAATTCGGGAACTTCAGCGGCAATTGGGTATCCTGAGCCAGGTCAACGACAACCTTGCCGGCTTGGAGCCAACCTTGACGCCCCGGGCGAGCTTGGGACGAGCGTGA"}}}}}}}}}}, "367": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1551": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAGAAAAAGCGTAAGGCGGGCGATGTTAATGACGACAGCCTGTGTTTCGCTGCTGTTGGCCAGTGTGCCGCTGTGTGCCCAGGCGAACGATGTTCAACAAAAGCTCGCGGCGCTGGAGAAAAGCAGCGGGGGACGACTGGGTGTGGCGTTGATTAACACCGCCGATAACACGCAGACGCTCTACCGCGCCGACGAGCGTTTTGCCATGTGCAGCACCAGTAAAGTGATGGCGGTAGCGGCGGTGCTTAAGCAAAGTGAAACGCAAAAGGGCTTGTTGAGTCAGCGGGTTGAAATTAAGCCCTCAGACTTGATTAACTACAACCCCATTGCGGAAAAACACGTCAATGGCACGATGACATTCGGGGAGTTGAGCGCGGCGGCGCTACAGTACAGCGATAATACTGCCATGAATAAGCTGATTGCCCATCTCGGGGGGCCGGATAAAGTGACGGCATTTGCCCGTACGATTGGCGATGACACGTTCCGGCTCGATCGTACCGAGCCGACGCTCAACACCGCGATCCCCGGCGACCCGCGCGATACCACCACGCCGTTAGCGATGGCGCAGGCTCTGCGCAATCTGACGTTGGGCAATGCCCTGGGTGACACTCAGCGTGCGCAGCTGGTGATGTGGCTGAAAGGCAACACCACCGGCGCTGCCAGCATTCAGGCAGGGCTACCCACATCGTGGGTTGTCGGGGATAAAACCGGCAGCGGCGGTTATGGTACGACGAATGATATCGCGGTTATTTGGCCGGAAGGTCGCGCGCCGCTCGTTCTGGTGACTTACTTCACCCAGTCGGAGCCGAAGGCAGAGAGCCGTCGTGACGTGCTCGCTGCTGCCGCCAGAATTGTCACCGACGGTTATTAA"}}}}}}}}}}, "364": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"959": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCTTCGTTCTCCACGTTTGCCGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCGCTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCGATTATCTATCAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCGTCCAGTCACTCAACAAACGCTGTTTGAACTCGGATCGGTCAGTAAAACGTTCAACGGCGTGCTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGCATTACTGGCCTGAACTGACTGGTAAGCAGTGGCAGGGTATCAGCCTGCTGCACTTAGCCACCTACACGGCAGGCGGCCTGCCGCTTCAGGTTCCGGACGACGTTACGGATAAAGCCGCGTTACTACGCTTTTATCAAAACTGGCAGCCGCAATGGGCCCCAGGCGCTAAACGTCTTTATGCTAACTCCAGCATTGGTCTGTTTGGCGCCCTGGCGGTGAACCCCTCAGGCATGAGCTACGAAGAGGCGATGACCAAACGCGTCCTGCGCCCCTTAAAACTGGCGCATACCTGGATTACGGTTCCGCAGAGCGAACAAAAAGATTATGCCTGGGGTTATCGCGAAGGAAAGCCAGTGCATGTATCCCCTGGGCAACTTGATGCCGAAGCCTACGGGGTGAAATCGAGCGTTATCGATATGACCCGTTGGGTTCAGGCCAACATGGACGCCAGCCAGGTTCAGGAGAAAACGCTCCAGCAGGGCATCGAGCTTGCGCAGTCACGTTACTGGCGTATTGGCGATATGTACCAGGGCCTGGGCTGGGAGATGCTGAACTGGCCGGTGAAGGCCGACTCGATAATTAGCGGTAGCGACAGCAAAGTGGCCCTGGCAGCGCTTCCTGCCGTTGAGGTAAACCCGCCCGCGCCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGCTCCACTGGCGGATTCGGCAGCTACGTTGCTTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAGAGCTACCCAAACCCTGTTCGCGTCGAAGCCGCCTGGCGCATTCTTGAAAAACTGCAGTAA"}}}}}}}}}}, "365": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "362": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1511": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATCAATAAACGGCTGAGTATTGCTCTGGCGCTGGCGGCCATGATAGGTACGCCTGTGGCGATGGCCCTCGAGAGCCAGAAGCCGGGGAGCGATTCTGCTAATCATATTCAGCACCAGATGGTGCAACAGCTGTCGGCGCTGGAGAAAAGCGCTAACGGGCGGCTTGGCGTAGCGGTTATCGATACCGGCAGCGGCGCAATTGCGGGCTGGCGGATGGATGAACCTTTCCCCATGTGCAGTACCAGTAAAGTGATGGCGGTAGCGGCGCTGCTGAAACAGAGCGAACAGACTCCTGAACTTATGAGTCAGCCTCAGCCGGTAGCGAGCGGAGATCTGGTGAACTACAACCCGATAACTGAACGTTTTGTGGGTAAGAGCATGACGTTTGATGAGCTAAGCGCCGCAACGCTGCAATATAGCGATAACGCCGCAATGAACCTGATTCTGGCCAAACTGGGTGGGCCGCAAAAAGTAACGGCGTTTGCCCGCAGTATTGGCGATGATAAATTCCGGCTCGACCGCAATGAACCTTCGCTAAATACCGCCATTCCCGGCGATCTTCGGGATACCAGCACTCCACGAGCTATGGCCTTAAGCCTGCAAAAGCTGGCGCTGGGGGATGCTTTAGGCCAGGTTCAGCGCGAGAAACTTAGCCACTGGTTGCGCGGCAATACCACCGGTGCGGCCAGCATTCGGGCCGGGCTGCCATCGGGATGGAGCGTTGGGGATAAGACCGGCAGCGGTGATTACGGCACAACCAACGATATTGCCGTGGTATGGCCGACCGGCAGACCGCCGCTGGTTATTGTGACTTACTTTACTCAGCCGCAGCAGCAGGCAGAAAGCCAGCGGCCGGTGCTGGCGAAAGCGGCTGCTATCGTTGCCAGCCATTATGTATTGCCTAAAGGCTGA"}}}}}}}}}}, "363": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1323": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATAAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATAGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTAAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA"}}}}}}}}}}, "360": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"397": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGACATCAGGCAAATGAACAAAACCCATCTGGAGCACTGGCGCGGATTGCGAAAACAGCTCTGGCCTGGTCACCCGGATGACGCCCATCTGGCGGACGGCGAAGAAATTCTGCAAGCCGATCATCTGGCATCATTTATTGCGATGGCAGACGGGGTGGCGATTGGCTTTGCGGATGCCTCAATCCGCCACGATTATGTCAATGGCTGTGACAGTTCGCCCGTGGTTTTCCTTGAAGGTATTTTTGTTCTCCCCTCATTCCGTCAACGCGGCGTAGCGAAACAATTGATTGCAGCGGTGCAACGATGGGGAACGAATAAAGGGTGTCGGGAAATGGCCTCCGATACCTCGCCGGAAAATACAATTTCCCAGAAAGTTCATCAGGCGTTAGGATTTGAGGAAACAGAGCGCGTCATTTTCTACCGAAAGCGTTGTTGA"}}}}}}}}}}, "361": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "380": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "381": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "382": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"721": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGACTCTGGCATTAGTTGGCGAAAAAATTGACAGAAATCGCTTCACCAGTGAGAAAGTTGAAAATAGTACATTTTTTAACTGCGATTTTTCAGGTGCCGACCTGAGCGGCACTGAATTTATCGGCTGCCAGTTCTATGATCGCGAAAGTCAGAAAGGATGCAATTTTAGTCGCGCAATGCTGAAAGATGCCATTTTCAAAAGCTGTGATTTATCAATGGCAGATTTCCGCAACGTCAGCGCATTGGGCATTGAAATTCGCCACTGCCGCGCACAAGGCGCAGATTTCCGCGGTGCAAGCTTTATGAATATGATCACCACGCGCACCTGGTTTTGCAGCGCATATATCACTAATACCAATCTAAGCTACGCCAATTTTTCGAAAGTCGTGTTGGAAAAGTGTGAGCTATGGGAAAACCGCTGGATGGGGACTCAGGTACTGGGTGCGACGTTCAGTGGTTCAGATCTCTCCGGCGGCGAGTTTTCGACTTTCGACTGGCGAGCAGCAAACTTCACACATTGCGATCTGACCAATTCGGAGTTAGGTGACTTAGATATTCGGGGTGTTGATTTACAAGGCGTTAAGTTAGACAACTACCAGGCATCGTTGCTCATGGAGCGGCTTGGCATCGCTGTGATTGGTTAG"}}}}}}}}}}, "383": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model."}}, "384": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "385": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1536": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGCAATCCGATTCTTCACCATACTGCTATCCACCTTCTTTCTTACCTCATTCGTGTATGCGCAAGAACATGTGGTAATCCGTTCGGACTGGAAAAAGTTCTTCAGCGACCTCCAGGCCGAAGGTGCAATCGTTATTGCAGACGAACGTCAAGCGAAGCATACTTTATCGGTTTTTGATCAAGAGCGAGCGGCAAAGCGTTACTCGCCAGCTTCAACCTTCAAGATACCCCACACACTTTTTGCACTTGATGCAGACGCCGTTCGTGATGAGTTCCAGGTTTTTCGATGGGACGGCGTTAACCGAAGCTTTGCAGGTCACAATCAAGACCAAGATTTGCGATCAGCGATGCGAAATTCTACGGTTTGGGTTTATGAGCTGTTTGCAAAAGATATCGGAGAGGACAAAGCAAGACGTTATTTAAAGCAAATTGATTATGGCAACGTCGATCCTTCGACAATCAAGGGCGATTACTGGATAGATGGAAATCTTAAAATCTCAGCGCACGAACAGATTTTGTTTCTCAGAAAACTCTATCGAAATCAGTTACCATTTAAGGTGGAGCACCAGCGCTTGGTGAAAGATCTCATGATTACGGAAGCCGGGCGCAGTTGGATACTACGCGCAAAGACCGGCTGGGAAGGCAGGTTTGGCTGGTGGGTAGGGTGGATTGAATGGCCAACAGGCCCCGTATTCTTTGCGCTGAATATTGATACGCCAAACAGAACGGACGATCTTTTCAAAAGAGAGGCCATCGCACGGGCAATCCTTCGTTCTATTGACGCATTGCCACCCAACTAA"}}}}}}}}}}, "386": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "387": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"15": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAGGTAGTTATAAATCCCGTTGGGTAATCGTAATCGTGGTGGTTATCGCCGCCATCGCCGCATTCTGGTTCTGGCAAGGCCGCAATGACTCCCGGAGTGCAGCCCCAGGGGCGACGAAACAAGCGCAGCAATCGCCAGCGGGTGGTCGACGTGGTATGCGTTCCGGCCCATTAGCCCCGGTTCAGGCGGCGACCGCCGTAGAACAGGCAGTTCCGCGTTACCTCACCGGGCTTGGCACCATTACCGCCGCTAATACCGTTACGGTGCGCAGCCGCGTGGACGGCCAACTGATAGCGTTACATTTCCAGGAAGGCCAGCAGGTCAAAGCAGGCGATTTACTGGCAGAAATTGACCCCAGCCAGTTCAAAGTTGCATTAGCACAAGCCCAGGGCCAACTGGCAAAAGATAAAGCCACGCTTGCCAACGCCCGCCGTGACCTGGCGCGTTATCAACAACTGGCAAAAACCAATCTCGTTTCCCGCCAGGAGCTGGATGCCCAACAGGCGCTGGTCAGTGAAACCGAAGGCACCATTAAGGCTGATGAAGCAAGCGTTGCCAGCGCGCAGCTGCAACTCGACTGGAGCCGGATTACCGCACCAGTCGATGGTCGCGTTGGTCTCAAGCAGGTTGATGTTGGTAACCAAATCTCCAGTGGTGATACCACCGGGATCGTGGTGATCACCCAGACGCATCCTATCGATTTAGTCTTTACCCTGCCGGAAAGCGATATCGCTACCGTAGTGCAGGCGCAGAAAGCCGGAAAACCGCTGGTGGTAGAAGCCTGGGATCGCACCAACTCGAAGAAATTAAGTGAAGGCACGCTGTTAAGTCTAGATAACCAAATCGATGCCACTACCGGTACGATTAAAGTGAAAGCACGCTTTAATAATCAGGATGATGCGCTGTTTCCCAATCAGTTTGTTAACGCGCGCATGTTAGTCGACACCGAACAAAACGCCGTAGTGATCCCAACAGCCGCCCTGCAAATGGGCAATGAAGGCCATTTTGTCTGGGTGCTGAATAGCGAAAACAAGGTCAGCAAACATCTGGTGACGCCGGGCATTCAGGACAGTCAGAAAGTGGTGATCCGTGCAGGTATTTCTGCGGGCGATCGCGTGGTGACAGACGGCATTGATCGCCTGACCGAAGGGGCGAAAGTGGAAGTGGTGGAAGCCCAGAGCGCCACTACTCCGGAAGAGAAAGCCACCAGCCGCGAATACGCGAAAAAAGGAGCACGCTCCTGA"}}}}}}}}}}, "388": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "389": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2191": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "258": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2193": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2194": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2195": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2196": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"4654": {"dna_sequence": {"fmax": "3559198", "fmin": "3556426", "accession": "NC_002516.2", "strand": "-", "sequence": "ATGGGCGAACTGGCCAAAGAAATTCTCCCGGTCAATATCGAAGACGAGCTGAAACAGTCCTATCTCGACTACGCGATGAGCGTGATCGTCGGGCGGGCCCTGCCGGATGCACGTGACGGCCTGAAGCCGGTGCACCGCCGTGTGCTTTATGCCATGAGCGAGCTGGGCAACGACTGGAACAAGCCCTACAAGAAATCCGCCCGTGTGGTCGGCGACGTGATCGGTAAGTACCACCCGCACGGCGACACCGCGGTCTACGACACCATCGTGCGCATGGCGCAGCCGTTCTCGCTGCGCTACATGCTGGTAGACGGCCAGGGCAACTTCGGTTCGGTGGACGGCGACAACGCCGCAGCCATGCGATACACCGAAGTGCGCATGGCCAAGCTGGCCCACGAACTGCTGGCGGACCTGGAAAAGGAAACCGTCGACTGGGTGCCCAACTACGATGGCACCGAGCAGATCCCGGCGGTCATGCCGACCAAGATTCCCAACCTGCTGGTCAACGGTTCCAGCGGTATCGCCGTGGGCATGGCGACCAACATCCCGCCGCACAACCTCGGCGAAGTGATCGACGGCTGCCTGGCGCTGATGGACAACCCCGACCTGACCGTCGATGAGCTGATGCAGTACATCCCCGGTCCGGACTTCCCCACCGCCGGCATCATCAACGGCCGCGCCGGGATCATCGAGGCCTACCGCACCGGTCGCGGGCGCATCTACATCCGTGCCCGCGCCGTCGTCGAGGAGATGGAGAAGGGCGGCGGTCGCGAGCAGATTATCATCACCGAGCTGCCGTACCAGTTGAACAAGGCGCGGTTGATCGAGAAGATCGCCGAGCTGGTGAAAGAGAAGAAGATCGAGGGTATTTCCGAGCTGCGCGACGAGTCTGACAAGGACGGCATGCGCGTGGTCATCGAGCTGCGTCGCGGCGAGGTGGGCGAGGTGGTCCTCAACAACCTCTATGCCCAGACCCAGCTGCAGAGCGTGTTCGGCATCAACGTGGTGGCCCTGGTCGACGGCCAGCCGCGCACGCTGAACCTGAAGGACATGCTCGAGGTGTTCGTCCGCCACCGCCGCGAAGTGGTGACCCGGCGTACCGTCTACGAGCTGCGCAAGGCCCGCGAGCGCGGGCACATCCTGGAAGGCCAGGCGGTCGCCCTGTCGAACATCGACCCGGTGATCGAGCTGATCAAGAGTTCGCCGACCCCGGCCGAGGCCAAGGAACGCCTGATCGCCACTGCCTGGGAGTCCAGCGCGGTGGAAGCGATGGTCGAGCGTGCCGGCGCCGACGCCTGTCGTCCGGAAGACCTGGATCCGCAGTACGGCCTGCGCGACGGCAAGTACTACCTGTCGCCGGAGCAGGCCCAGGCGATCCTCGAGCTGCGCCTGCATCGCCTGACCGGCCTGGAGCACGAGAAGCTGCTCTCCGAATACCAGGAAATCCTCAACCTGATCGGCGAGCTGATCCGCATCCTGACCAACCCGGCGCGCCTGATGGAGGTGATCCGTGAGGAACTGGAAGCGGTCAAGGCCGAATTCGGCGATGCTCGCCGCACCGAGATCGTGGCTTCCCAGGTCGACCTGACCATCGCCGACCTGATCACCGAGGAAGACCGCGTGGTGACCATCTCGCACGGCGGCTACGCCAAGTCCCAGCCGCTGGCCGCCTACCAGGCGCAGCGTCGCGGCGGCAAAGGCAAGTCCGCCACCGGGATGAAGGACGAGGACTACATCGAACACCTGCTGGTGGCCAACAGCCATGCGACCCTCCTGCTGTTCTCCAGCAAGGGCAAGGTCTACTGGCTGCGTACCTTCGAGATTCCGGAAGCCTCGCGTACCGCGCGTGGCCGGCCGCTGGTGAACCTGCTGCCGCTGGATGAGGGCGAGCGGATCACCGCGATGTTGCAGATCGACCTGGAGGCGCTGCAGCAGAACGGTGGCGCCGATGACGACCTCGACGAAGCCGAAGGCGCGGTGCTCGAGGGCGAGGTGGTCGAGGCCGCCGAGGTCGAGGAAGTCGAGGGCGAGACCGCCGAGCTGGTGGCCGAGCCGACCGGCGCCTACATCTTCATGGCCACCGCCTTCGGTACCGTGAAGAAGACCCCGCTGGTGCAGTTCAGCCGTCCGCGCAGCAGCGGCCTGATCGCGCTCAAGCTGGAAGAGGGCGACACCCTGATCGCCGCCGCGATCACCGATGGCGCCAAGGAAGTCATGCTGTTCTCCAGCGCCGGCAAGGTGATCCGCTTCGCCGAGAGCGTGGTGCGCATCATGGGCCGCAACGCCCGCGGCGTACGTGGCATGCGCCTGGGCAAGGGGCAGCAGCTGATCTCCATGCTGATTCCGGAGTCCGGGGCGCAGATCCTCACCGCCTCCGAGCGCGGCTTCGGCAAGCGTACCCCGCTGAGCAAGTTCCCGCGTCGCGGCCGCGGCGGCCAGGGGGTGATCGCCATGGTCACCAACGAGCGCAACGGCGCGCTGATCGCCGCGGTACAGGTCCAGGAAGGCGAGGAGATCATGCTGATTTCCGACCAGGGCACCCTGGTGCGGACGCGTGTCGACGAAGTCTCCCTGTCCGGCCGCAATACCCAGGGCGTAACCCTGATCAAGCTCGCCAGCGACGAGGTACTGGTCGGTCTGGAGCGTGTCCAGGAGCCGTCGGGCGGAGATGACGAGGACCTGCCCGAGGGCGAGGAAGCTGCCGAATCTCTGGGCGAGTCGGCCGAGTCCGAGTCCGAGCCCGCGGCGGAAGCGGAAGGCAACGAAGAGTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa PAO1", "NCBI_taxonomy_id": "208964", "NCBI_taxonomy_cvterm_id": "36804"}, "protein_sequence": {"accession": "NP_251858.1", "sequence": "MGELAKEILPVNIEDELKQSYLDYAMSVIVGRALPDARDGLKPVHRRVLYAMSELGNDWNKPYKKSARVVGDVIGKYHPHGDTAVYDTIVRMAQPFSLRYMLVDGQGNFGSVDGDNAAAMRYTEVRMAKLAHELLADLEKETVDWVPNYDGTEQIPAVMPTKIPNLLVNGSSGIAVGMATNIPPHNLGEVIDGCLALMDNPDLTVDELMQYIPGPDFPTAGIINGRAGIIEAYRTGRGRIYIRARAVVEEMEKGGGREQIIITELPYQLNKARLIEKIAELVKEKKIEGISELRDESDKDGMRVVIELRRGEVGEVVLNNLYAQTQLQSVFGINVVALVDGQPRTLNLKDMLEVFVRHRREVVTRRTVYELRKARERGHILEGQAVALSNIDPVIELIKSSPTPAEAKERLIATAWESSAVEAMVERAGADACRPEDLDPQYGLRDGKYYLSPEQAQAILELRLHRLTGLEHEKLLSEYQEILNLIGELIRILTNPARLMEVIREELEAVKAEFGDARRTEIVASQVDLTIADLITEEDRVVTISHGGYAKSQPLAAYQAQRRGGKGKSATGMKDEDYIEHLLVANSHATLLLFSSKGKVYWLRTFEIPEASRTARGRPLVNLLPLDEGERITAMLQIDLEALQQNGGADDDLDEAEGAVLEGEVVEAAEVEEVEGETAELVAEPTGAYIFMATAFGTVKKTPLVQFSRPRSSGLIALKLEEGDTLIAAAITDGAKEVMLFSSAGKVIRFAESVVRIMGRNARGVRGMRLGKGQQLISMLIPESGAQILTASERGFGKRTPLSKFPRRGRGGQGVIAMVTNERNGALIAAVQVQEGEEIMLISDQGTLVRTRVDEVSLSGRNTQGVTLIKLASDEVLVGLERVQEPSGGDDEDLPEGEEAAESLGESAESESEPAAEAEGNEE"}}}}}}}, "2198": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"4653": {"dna_sequence": {"fmax": "5577917", "fmin": "5576027", "accession": "NC_002516.2", "strand": "-", "sequence": "ATGGCTACTTACAACGCAGACGCCATCGAAGTCCTTTCCGGCCTCGACCCGGTGCGCAAGCGCCCGGGGATGTACACCGACACCACCCGCCCCAACCATCTGGCCCAGGAAGTCATCGACAACAGCGTCGACGAAGCCCTGGCCGGCCATGCGAAGAGCGTGCAGGTGATCCTGCACCAGGACAACTCGCTGGAAGTCATCGACGATGGCCGCGGCATGCCGGTGGACATCCACCCGGAAGAGGGCGTGCCGGGCGTCGAGCTGATCCTTACCAAGCTGCATGCCGGCGGCAAGTTCTCGAACAAGAACTACCAGTTCTCCGGCGGCTTGCACGGGGTCGGCATCTCGGTGGTGAACGCGCTCTCGACCCGGGTCGAGGTACGCGTCAAGCGCGACGCCAACGAGTACCGGATGACCTTCGCCGACGGCTTCAAGGACAGCGATCTGGAAGTCATCGGCACGGTCGGCAAGCGCAATACCGGTACCAGCGTGCATTTCTGGCCGGATCCGAAGTATTTCGATTCGGCGAAGTTCTCGGTCAGCCGCCTCAAGCATGTGCTCAAGGCCAAGGCGGTGCTGTGCCCGGGCCTGAGCGTGGTGTTCGAGGACAAGAACACCGGCGAGCGCGTCGAGTGGCACTTCGAGGACGGCCTGCGCTCCTACCTGACCGACGCGGTCGCCGAGCTGCCGCGCCTGCCCGATGAACCCTTCTGCGGCAACCTCGAAGGTTCCAAGGAAGCGGTGAGCTGGGCCCTGCTGTGGCTGCCCGAGGGCGGTGAGTCGGTGCAGGAAAGCTACGTCAACCTGATTCCCACGGCCCAGGGCGGCACCCATGTGAACGGCCTGCGCCAGGGCCTGCTCGACGCCATGCGCGAGTTCTGCGAGTTCCGCAACCTGTTGCCGCGCGGCGTCAAGCTGGCGCCCGAGGACGTCTGGGAGCGGATCGCCTTCGTCCTCTCGATGAAGATGCAGGAGCCGCAGTTCTCCGGGCAGACCAAGGAGCGCCTGTCGTCCCGCGAGGCGGCGGCGTTCGTCTCGGGCGTGGTGAAGGACGCCTTCAGCCTGTGGCTCAACGAGCACGCCGAAATCGGCCTGCAACTGGCGGAACTGGCGATCAGCAACGCCGGGCGTCGCCTCAAGGCGGGCAAGAAGGTCGAGCGCAAGAAGATCACCCAGGGGCCGGCGCTGCCCGGCAAACTGGCCGACTGCGCCGGACAGGAACCGATGCGCGCGGAACTGTTCCTGGTCGAGGGCGACTCCGCCGGCGGCTCGGCGAAGCAGGCGCGGGACAAGGAATTCCAGGCGATCATGCCGCTGCGCGGAAAGATCCTGAACACCTGGGAAGTGGACGGCGGCGAGGTGCTCGCCAGCCAGGAGGTCCACGACATCGCGGTGGCCATCGGCGTCGATCCGGGTGCCAGTGACCTGGCCCAGCTGCGCTACGGCAAGATCTGTATCCTCGCGGATGCCGACTCCGACGGGCTGCACATCGCCACGCTGCTCTGCGCGCTGTTCGTCCGCCATTTCCGCCCGCTGGTGGAAGCCGGCCACGTCTACGTGGCGATGCCGCCGCTGTACCGCATCGACCTCGGCAAGGACATCTACTACGCCCTCGACGAAGCCGAGCGCGACGGCATCCTCGAGCGCCTGGCCGCAGAGAAGAAGCGCGGCAAGCCGCAGGTCACCCGCTTCAAGGGCCTTGGCGAAATGAATCCGTTGCAACTGCGCGAGACCACCATGGATCCGAATACCCGGCGGCTGGTCCAGCTCACCCTGGAGGACGCCACCGGTACCCTGGAGATCATGGACATGCTGCTGGCCAAGAAGCGCGCCGGTGACCGCAAGTCCTGGCTGGAAAGCAAGGGCAACCTGGCCGAGGTGCTGGTCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa PAO1", "NCBI_taxonomy_id": "208964", "NCBI_taxonomy_cvterm_id": "36804"}, "protein_sequence": {"accession": "NP_253654.1", "sequence": "MATYNADAIEVLSGLDPVRKRPGMYTDTTRPNHLAQEVIDNSVDEALAGHAKSVQVILHQDNSLEVIDDGRGMPVDIHPEEGVPGVELILTKLHAGGKFSNKNYQFSGGLHGVGISVVNALSTRVEVRVKRDANEYRMTFADGFKDSDLEVIGTVGKRNTGTSVHFWPDPKYFDSAKFSVSRLKHVLKAKAVLCPGLSVVFEDKNTGERVEWHFEDGLRSYLTDAVAELPRLPDEPFCGNLEGSKEAVSWALLWLPEGGESVQESYVNLIPTAQGGTHVNGLRQGLLDAMREFCEFRNLLPRGVKLAPEDVWERIAFVLSMKMQEPQFSGQTKERLSSREAAAFVSGVVKDAFSLWLNEHAEIGLQLAELAISNAGRRLKAGKKVERKKITQGPALPGKLADCAGQEPMRAELFLVEGDSAGGSAKQARDKEFQAIMPLRGKILNTWEVDGGEVLASQEVHDIAVAIGVDPGASDLAQLRYGKICILADADSDGLHIATLLCALFVRHFRPLVEAGHVYVAMPPLYRIDLGKDIYYALDEAERDGILERLAAEKKRGKPQVTRFKGLGEMNPLQLRETTMDPNTRRLVQLTLEDATGTLEIMDMLLAKKRAGDRKSWLESKGNLAEVLV"}}}}}}}, "253": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"123": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAACGATTGAGCTTGAAAAGGAAGAAATTTATTGTGGAAATTTGCTGCTCGTCAACAAAAATTATCCGCTACGAGATAACAATGTAAAGGGTTTAGTTCCTGCTGATATACGCTTTCCAAATATTCTTATGAAGCGTGATGTGGCAAATGTTTTGCAGCTTATTTTTGAAAAAATCTCGGCAGGTAACTCTATCGTTCCTGTAAGCGGTTATCGCTCATTAGAAGAACAGACAGCCATATATGACGGCTCTCTCAAAGATAATGGAGAGGATTTTACAAGAAAATATGTTGCTCTGCCCAATCATAGTGAACATCAAACAGGTCTTGCCATTGATTTAGGACTGAATAAAAAGGATATAGACTTTATCCGTCCCGATTTTCCCTATGACGGTATTTGCGATGAATTTAGGAGAGCTGCCCCAGACTATGGCTTTACCCAGCGTTATGCAAGGGATAAAGAAGAAATAACAGGGATTTCACACGAGCCGTGGCATTTTCGATATGTAGGATACCCACACTCAAAAATTATGCAGGAAAATGGTTTTTCACTTGAAGAATACACACAATTTATAAAAGCCTATCTGGAAGATAACAAATATCTTTTTGAGCAGGCTCACAGAGCTGAGATTGAAATATATTATGTTCCTGCAAAAGACGACAAAACGCTGATAAAAATACCAGAAAATTGTGTTTATCAGATTTCTGGTAATAACATAGACGGTTTTGTTGTGACCATATGGAGGAAAACAGATGACTAA"}}}}}}}}}}, "250": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"663": {"$update": {"dna_sequence": {"$update": {"sequence": "GTGCCATTCGCCATCTATGTCCTGGGTATTGCTGTATTCGCCCAGGGCACATCGGAATTCATGCTGTCCGGACTCATACCGGATATGGCTCAGGATCTACAGGTTTCGGTCCCCACTGCAGGACTTCTCACTTCGGCATTCGCAATCGGCATGATCATCGGTGCCCCGTTGATGGCAATTGTCAGTATGCGGTGGCAACGTCGACGAGCGCTCTTGACCTTCCTCATCACTTTTATGGTTGTGCATGTCATCGGCGCACTCACCGACAGTTTCGGCGTCTTGCTGGTCACCCGGATCGTAGGAGCACTGGCCAACGCCGGTTTCCTGGCTGTAGCGCTGGGCGCAGCCATGTCGATGGTTCCTGCCGACATGAAGGGACGAGCGACCTCAGTTCTACTGGGCGGAGTGACCATCGCCTGCGTAGTTGGAGTCCCGGGCGGAGCGCTATTGGGCGAACTGTGGGGATGGCGCGCCTCGTTCTGGGAGGTAGTGCTGATTTCCGCACCGGCAGTGGCAGCGATCATGGCATCGACCCCTGCTGATTCCCCTACAGATTCTGTTCCGAACGCGACCCGCGAACTGTCCTCGCTGCGTCAACGCAAACTTCAACTGATCTTGGTGCTGGGCGCGCTGATCAACGGTGCCACCTTCTGTTCCTTCACCTACCTGGCTCCGACGCTCACCGACGTCGCCGGGTTCGACTCTCGCTGGATCCCTTTGCTTCTCGGACTGTTCGGACTGGGGTCGTTCATCGGCGTCAGTGTCGGTGGCCGGCTCGCTGACACCCGTCCGTTTCAATTGCTGGTGGCGGGCTCGGCAGCTCTTCTGGTCGGGTGGATCGTGTTCGCTATCACTGCCTCTCACCCGGTAGTGACCCTGGTGATGCTGTTCGTGCAAGGAACGCTGTCGTTCGCTGTGGGGTCGACGTTGATCTCGCGAGTGCTCTACGTCGCCGACGGTGCTCCGACTTTGGGGGGATCCTTCGCTACGGCTGCCTTCAATGTCGGAGCCGCATTGGGGCCGGCCCTCGGCGGTGTGGCCATCGGTATCGGAATGGGCTATCGCGCTCCACTGTGGACCAGCGCGGCTCTGGTGGCACTTGCGATCGTGATCGGTGCCGCGACGTGGACGCGTTGGCGGGAACCACGTCCAGCGCTGGACACCGTTCCTCCGTGA"}}}}}}}}}}, "251": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"326": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAATATATCGATGAAATTCAAATTCTGGGAAAATGTTCAGAGGGTATGTCTCCAGCAGAAGTATATAAATGCCAGCTTAAAAATACTGTATGCTATCTGAAAAAAATTGACGATATATTTTCAAAAACCACATACAGCGTGAAAAGAGAAGCTGAGATGATGATGTGGTTATCCGATAAACTGAAAGTACCAGATGTAATCGAATACGGAGTACGAGAACATTCAGAATATTTGATCATGAGTGAGTTAAGGGGGAAACACATAGATTGCTTTATTGATCATCCAATAAAATATATTGAGTGCTTGGTAAACGCACTTCATCAGCTACAAGCAATAGATATAAGAAACTGCCCATTTTCATCCAAAATAGATGTTCGATTAAAAGAACTAAAATATCTTTTGGATAACAGAATTGCCGATATTGATGTATCGAATTGGGAAGATACAACAGAATTTGATGATCCAATGACGTTATATCAGTGGCTTTGCGAAAATCAACCTCAAGAAGAACTGTGTCTCTCTCATGGAGATATGAGCGCTAATTTTTTTGTATCTCATGATGGAATATATTTTTATGATTTGGCAAGATGTGGAGTTGCAGACAAATGGTTGGATATAGCATTTTGTGTCAGAGAGATTCGAGAATATTATCCTGATTCTGATTATGAAAAATTCTTTTTTAACATGTTGGGACTTGAACCGGATTATAAAAAAATTAACTATTACATTTTATTAGATGAGATGTTTTAG"}}}}}}}}}}, "256": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"957": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAAAATCGTTATGCTGCGCTCTGCTGCTGACAGCCTCTTTCTCCACATTTGCTGCCGCAAAAACAGAACAACAGATTGCCGATATCGTTAATCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCCGTTATCTACCAGGGAAAACCCTATTATTTCACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGATCGGTTAGTAAGACGTTTAACGGCGTGTTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCAGGGTATCCGCCTGCTGCACTTAGCCACCTATACGGCAGGCGGCCTACCGCTGCAGATCCCCGATGACGTTAGGGATAAAGCCGCATTACTGCATTTTTATCAAAACTGGCAGCCGCAATGGACTCCGGGCGCTAAGCGACTTTACGCTAACTCCAGCATTGGTCTGTTTGGCGAGCTGGCGGTGAAACCCTCAGGAATGAGTTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAGAACGAACAAAAAGATTATGCCTGGGGCTATCGCGAAGGGAAGCCCGTACACGTTTCTCCGGGAAAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATTGATATGGCCCGCTGGGTTCAGGCCAACATGGATGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGCGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCCGCCCCCGCAGTGAAAGCCTCATGGGTGCATAAAACGGGCTCCACTGGTGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGCGGCCTGGCGCATTCTTGAAAAGCTGCAATAA"}}}}}}}}}}, "257": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1735": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAAAATCCTTTTGCTGCGCCCTGCTGCTCGCCATCTCTGGCGCTGCTCTCGCCGCGCCAGTATCAGAAAAACAGCTGGCGGAGGTGGTCGCGAATACGGTTACCCCGCTGATGAAAGCCCAGGCTATTCCAGGCATGGCGGTGGCCGTTATCTATCAGGGAAAACCGCACTATTACACGTTTGGCGAAGCCGATATTGCGGCCAAAAAACCCGTTACGCCACAAACCCTGTTCGAGCTAGGTTCTATAAGTAAAACCTTCACCGGCGTTTTAGGTGGGGATGCCATTGCTCGCGGTGAAATTTCGCTGGATGATCCGGTGATCAAATACTGGCCTGAACTGACGGGCAAGCAGTGGCAGGGTATTCGTATGCTGGATCTCGCAACCTACACCGCGGGCGGCCTGCCGCTACAGGTACCGGAAGAGGTCACGGATAACGCCTCCCTGCTGCGCTTTTATCAACACTGGCAACCGCAGTGGAAGCCTGGCACAACGCGTCTTTACGCCAATGCCAGCATCGGACTTTTTGGCGCGCTGGCGGTCAAACCTTCCGGCATGCGCTATGAGCAGGCCATGACGAAGCGGGTCTTCAAGCCGCTCAGGCTGAACCATACCTGGATTAACGTTCCGAAAGCGGAAGCGGCGCATTACGCCTGGGGTTATCGTGACGGTAAAGCGGTCCACGTTTCACCGGGTATGCTGGACGCAGAGGCCTATGGCGTGAAAACTAACGTGCAGGATATGGCGAACTGGGTGATGGCGAACATGGCGCCGGAGAACGTTGCTGATGCCTCACTCAAGCAGGGCATCGCGCTGGCGCAGTCGCGCTACTGGCGTATCGGGTCAATGTATCAGGGCCTGGGCTGGGAAATGCTCAACTGGCCCGTGGAGGCCAAAACAGTGATCGAGGGCAGCGACAATAAGGTGGCACTGGCGCCGTTGCCCGTGGCAGAAGTGAATCCACCGGTTCCCCCGGTCAAAGCGTCCTGGGTCCATAAAACGGGCTCTACTGGCGGGTTTGGCAGCTACGTGGCATTTATTCCTGAAAAGCAGATCGGTATTGTGATGCTCGCGAATAAAAGCTATCCGAATCCGGCACGCGTTGAGGCGGCATACCATATCCTCGACGCACTACAGTAA"}}}}}}}}}}, "254": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "255": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2200": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2203": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2204": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2205": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4652": {"dna_sequence": {"fmax": "4120373", "fmin": "4119269", "accession": "NC_002516.2", "strand": "-", "sequence": "ATGTACCGCCATATCCCGCTCGTCGCCCTGTCCCTGTTTTCCTCCCTGTTCCTCGCCGCCTGCGGCAACGGCACGCCGCCGCCAGCCGCGGCGCGTCCGGCGATCGTCGTCCAGCCCCAGCCGGCGGGGGAGGTGAGCCAGGCCTTTCCCGGCGAGATCCGCGCCCGCCACGAGCCGGAGCTGGCCTTCCGCATCGGCGGCAAGGTCATCCGCCGGCTGGTGGAAGTCGGCGAGCGGGTAAAGAAGGACCAGCCCCTGGCCGAACTCGATCCCCAGGACGTGCGCCTGCAACTGGAGGCGGCGCGGGCCCAGGTCAGTGCCGCCGAGGCCAACTTGCAGACCGTGCGCGCCGAGTACCGGCGCTACCGCACCTTGCTCGACCGCAACCTGGTCAGCCATTCCCAGTTCGAGAACATCCAGAACAGCTACCGCGCCGGCGAGGCGCGGCTGAAGCAGATCCGCGCCGAATTCAACGTCGCCGACAACCAGGCCGGCTACGCCGTGCTGCGCTCGCCCCAGGATGGCGTGATCGCCAGCCGGCGCGTCGAGGTGGGCCAGGTGGTGGCGGCCGGACAGACGGTCTTCAGCCTGGCCGCCGACGGCGAACGCGAGGTGCTGATCGGCCTGCCGGAACACAGCTTCGAACGTTTCCGCATCGGCCAGCCGGTGTCGGTCGAACTCTGGTCGCAACGCGACAGACGCTTCGCCGGGCATATCCGCGAGCTCTCGCCCGCGGCCGATCCGCAATCGCGTACCTTCGCCGCCCGGGTGGCCTTCGACGACCGCGCGACTCCGGCCGAACTGGGCCAGAGCGCGCGGGTCTACGTCGCCGCCGCCGAGGCGGTGCCGTTATCGGTTCCCTTGTCGGCGCTGACCGCAGAGGCCGGCCAGGCGTTCGTCTGGGTGGTCGAGCCGGGCAGCTCGACCCTGCGCCGGCAGGCGGTGCGCACCGGTCCCTATGCCGAGGACCGGGTGCCGGTGCTCGAAGGCCTGAAGGCTGGCGACTGGGTGGTGGCCACCGGGGTCCAGGTGCTTCGCGAAGGGCAGCAGGTGCGTCCGATCGACCGGGCCAACCGCACGGTGAAACTGGCGGCCAAGGAGTAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa PAO1", "NCBI_taxonomy_id": "208964", "NCBI_taxonomy_cvterm_id": "36804"}, "protein_sequence": {"accession": "NP_252367.1", "sequence": "MYRHIPLVALSLFSSLFLAACGNGTPPPAAARPAIVVQPQPAGEVSQAFPGEIRARHEPELAFRIGGKVIRRLVEVGERVKKDQPLAELDPQDVRLQLEAARAQVSAAEANLQTVRAEYRRYRTLLDRNLVSHSQFENIQNSYRAGEARLKQIRAEFNVADNQAGYAVLRSPQDGVIASRRVEVGQVVAAGQTVFSLAADGEREVLIGLPEHSFERFRIGQPVSVELWSQRDRRFAGHIRELSPAADPQSRTFAARVAFDDRATPAELGQSARVYVAAAEAVPLSVPLSALTAEAGQAFVWVVEPGSSTLRRQAVRTGPYAEDRVPVLEGLKAGDWVVATGVQVLREGQQVRPIDRANRTVKLAAKE"}}}}}}}, "2206": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4651": {"dna_sequence": {"fmax": "4119265", "fmin": "4116187", "accession": "AE004091.2", "strand": "-", "sequence": "ATGTCCTTCAACCTTTCCGCCTGGGCGTTGCAGAATCGCCAGATCGTCCTGTACCTGATGATCCTGCTTGGCGCGGTCGGCGCGCTGTCCTACAGCAAGCTGGGGCAGAGCGAAGACCCGCCGTTCACCTTCAAGGCCATGGTGGTGCAGACCAACTGGCCGGGCGCCAGCGCCGAAGAGGTGGCCCGGCAGGTCACCGAGCGTATCGAGAAGAAGCTGATGGAAACCGGCGACTACGATCGCATCGTGTCCTTCTCCCGCCCCGGCGTCTCGCAGGTGACCTTCATGGCCCGCGAGGACATCCATTCCAGCGAGATCCCCGAACTCTGGTACCAGATCCGCAAGAAGATCAGCGACATTCGCGCCACCTTGCCGCAAAGCATCCAGGGCCCGTTCTTCAACGACGAGTTCGGCACCACCTACGGCAACATCTATGCGCTCACCGGCAAGGGCTTCGACTACGCGGTGATGAAGGACTATGCCGACCGCCTGCAACTGCAATTGCAGCGGATCAGGAACGTCGGCAAGGTCGAGCTGATCGGCCTGCAGGACGAGAAGATCTGGATCGACCTGTCCAACACCAAGCTGGCCACCCTCGGCCTGCCCCTGGCGGCGGTACAGAAGGCGCTGGAGGAACAGAACGCGGTGGCCTCCTCCGGGTTCTTCGAGACCGCCAGCGACCGCGTGCAGTTGCGCGTTTCCGGGCGTTTCGATTCGGTGGAGGAGATCCGCGACTTCCCCATCCGCGTCGGCGACCGCACCTTCCGCATCGGCGACGTGGCCGAGGTTCGCCGCGGCTTCAACGATCCGCCGGCGCCGCGCATGCGCTTCATGGGCGAGGACGCCATCGGCCTGGCGGTAGCGATGAAGCCGGGCGGCGACATCCTGGTGCTGGGCAAGGCCCTGGAAACCGAGTTCGCCCGCCTGCAGCAGTCGCTGCCGGCCGGACTGGAACTGCGCAAGGTGTCCGACCAGCCGGCGGCGGTACGTACCGGGGTCGGCGAGTTCATCCGGGTGCTGGCCGAGGCGCTGGTGATCGTCCTGCTGGTGAGCTTCTTCTCCCTCGGCCTGCGCACCGGCCTGGTGGTGGCGCTGTCGATCCCGCTGGTGCTGGCGATGACCTTCGCCGCCATGCATTACTTCGGCATCGGCCTGCACAAGATCTCCCTCGGCGCCCTGGTGCTGGCGCTGGGATTACTGGTGGACGACGCGATCATCGCGGTGGAGATGATGGCGGTGAAGATGGAGCAGGGCTACGACCGCCTCAAGGCGGCCAGCTTCGCCTGGACCAGCACCGCCTTCCCGATGCTCACCGGCACCCTGATCACCGCCGCCGGCTTCCTGCCGATCGCCACCGCGCAGTCCGGCACCGGCGAATACACCCGCTCGTTGTTCCAGGTGGTGACCATCGCCCTGGTGGTCTCCTGGTTCGCCGCGGTGGTCTTCGTTCCCTACCTGGGGGCCAAGCTGCTGCCGGACCTGGCCAGGTTGCACGCGCAGAAGCACGGCGGCAGCGCCGATGGCTACGATCCCTATGCTACGGCCTTCTACCAGCGCTTCCGGCGTCTGGTGGAGTGGTGCGTGCGCTACCGCAAGACGGTGATCGTCCTGACTCTCGCGGCCTTCGTCGGCGCGCTGCTGCTGTTCCGCCTGGTGCCGCAGCAGTTCTTCCCGCCCTCGGCGCGCCTGGAGCTGCTGCTGGACATCAAGCTGGCGGAGGGTGCCTCACTGCGCTCTACCGGCGAGGAAGTCCAGCGCCTGGAAAAAATGCTGCAGGGCCATGACGGCATCGACAACTACGTGGCCTACGTCGGCACCGGCTCGCCCCGCTTCTACCTGCCGCTGGACCAGCAATTGCCGGCGGCCAGCTTCGCCCAGGTGGTGGTGCTGGCCAAGGACCTGGAGAGCCGCGAGGCGCTGCGCAAGTGGCTGATCGAGCGGATGAACGAGGACTTCCCGCACCTGCGCAGCCGCATCAGTCGCCTGGAGAACGGGCCGCCGGTGGGCTATCCGGTGCAGTTCCGGGTTTCCGGCGAGGACATCCCGCAGGTTCGCGAACTGGCGCGCAAGGTCGCCGACAAGATGCGCGAGAACCCGCACGTGGTGAATGTGCACCTGGATTGGGAAGAGCCGAGCAAGGTGGTGTACCTGAGCATCGACCAGGAGCGCGCCCGTGCCCTGGGGGTGAGCACCGCCAGCCTGTCGCAGTTCCTGCAGAGCGCGCTGACCGGCTCGCACGTGAGCTTCTTCCGCGAAGACAACGAGCTGATCGAGATCCTCCTGCGCGGCACCGAGCAGGAGCGTCGTGACCTGTCGTTGCTGCCGAGCCTGGCGGTGCCGACCGAGAATGGCCGGAGCGTGGCGCTGTCGCAGATCGCTACGCTCGAATACGGCTTCGAAGAGGGCATCATCTGGCACCGCAACCGCCTGCCGACGGTCACCGTGCGCGCCGATATCTACGACGATTCGCTGCCGGCGACCCTGGTCGCGCAGATCGCCCCGACCCTGGAACCGATCCGCGCCGAGTTGCCGGACGGCTACCTGCTGGAGGTGGGCGGCACGGTGGAGGACGCGGCGAAGGGCCAGAGTTCGGTGAACGCCGGCGTGCCGCTGTTCATCGTGGTGGTGTTGAGCCTGCTGATGGTGCAGTTGCGCAGCTTCTCGCGGATGGCGATGGTATTCCTCACCGCACCGCTGGGCCTGATCGGCGTGACCCTGTTCCTGCTGCTGTTCCGCCAGCCGTTCGGCTTCGTGGCGATGCTCGGGACCATCGCCCTGGCCGGCATGATCATGCGCAACTCGGTGATCCTGGTGGACCAGATCGAACAGGACATCAGCCATGGACTGGATCGCTGGCACGCCATCATCGAGGCTACCGTGCGGCGTTTCAGGCCCATCGTGCTGACCGCGCTGGCGGCGGTGCTGGCGATGATCCCGCTGTCGCGCAGCGTGTTCTTCGGGCCGATGGCGGTGGCGATCATGGGCGGGCTGATCGTCGCCACCGTGCTCACCCTGCTGTTCCTGCCGGCGCTCTATGCCGCCTGGTTCCGCGTGAAGAAGGACGAGGCGCGGGCCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa PAO1", "NCBI_taxonomy_id": "208964", "NCBI_taxonomy_cvterm_id": "36804"}, "protein_sequence": {"accession": "AAG07064.1", "sequence": "MSFNLSAWALQNRQIVLYLMILLGAVGALSYSKLGQSEDPPFTFKAMVVQTNWPGASAEEVARQVTERIEKKLMETGDYDRIVSFSRPGVSQVTFMAREDIHSSEIPELWYQIRKKISDIRATLPQSIQGPFFNDEFGTTYGNIYALTGKGFDYAVMKDYADRLQLQLQRIRNVGKVELIGLQDEKIWIDLSNTKLATLGLPLAAVQKALEEQNAVASSGFFETASDRVQLRVSGRFDSVEEIRDFPIRVGDRTFRIGDVAEVRRGFNDPPAPRMRFMGEDAIGLAVAMKPGGDILVLGKALETEFARLQQSLPAGLELRKVSDQPAAVRTGVGEFIRVLAEALVIVLLVSFFSLGLRTGLVVALSIPLVLAMTFAAMHYFGIGLHKISLGALVLALGLLVDDAIIAVEMMAVKMEQGYDRLKAASFAWTSTAFPMLTGTLITAAGFLPIATAQSGTGEYTRSLFQVVTIALVVSWFAAVVFVPYLGAKLLPDLARLHAQKHGGSADGYDPYATAFYQRFRRLVEWCVRYRKTVIVLTLAAFVGALLLFRLVPQQFFPPSARLELLLDIKLAEGASLRSTGEEVQRLEKMLQGHDGIDNYVAYVGTGSPRFYLPLDQQLPAASFAQVVVLAKDLESREALRKWLIERMNEDFPHLRSRISRLENGPPVGYPVQFRVSGEDIPQVRELARKVADKMRENPHVVNVHLDWEEPSKVVYLSIDQERARALGVSTASLSQFLQSALTGSHVSFFREDNELIEILLRGTEQERRDLSLLPSLAVPTENGRSVALSQIATLEYGFEEGIIWHRNRLPTVTVRADIYDDSLPATLVAQIAPTLEPIRAELPDGYLLEVGGTVEDAAKGQSSVNAGVPLFIVVVLSLLMVQLRSFSRMAMVFLTAPLGLIGVTLFLLLFRQPFGFVAMLGTIALAGMIMRNSVILVDQIEQDISHGLDRWHAIIEATVRRFRPIVLTALAAVLAMIPLSRSVFFGPMAVAIMGGLIVATVLTLLFLPALYAAWFRVKKDEARA"}}}}}}}, "2207": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2208": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2428": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2429": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2421": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2422": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2423": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2424": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4605": {"dna_sequence": {"fmax": "2308615", "fmin": "2306971", "accession": "NC_000913.3", "strand": "-", "sequence": "ATGGAACTTCTTGTACTTGTCTGGCGGCAGTATCGCTGGCCATTTATCAGTGTGATGGCGCTAAGCCTCGCCAGTGCGGCATTAGGCATTGGCTTAATTGCTTTTATCAATCAGCGCCTTATCGAAACGGCGGATACCAGTCTGCTGGTGTTGCCGGAGTTTCTGGGATTATTGCTGCTGTTGATGGCAGTCACTCTCGGATCGCAACTGGCGCTCACCACTTTGGGGCATCACTTCGTTTACCGACTGCGTAGTGAATTTATCAAGCGGATTCTGGATACTCACGTCGAGCGCATTGAACAACTCGGTAGCGCCTCGTTGCTGGCGGGGTTAACCAGCGATGTGCGCAATATCACCATTGCTTTTGTGCGTCTGCCGGAACTGGTGCAGGGGATCATTCTCACTATCGGTTCAGCGGCGTATCTGTGGATGCTGTCGGGCAAAATGTTGCTGGTAACGGCTATCTGGATGGCGATCACCATCTGGGGCGGTTTTGTGCTGGTGGCGCGGGTGTACAAACATATGGCGACCCTGCGTGAAACCGAAGACAAGCTGTACACGGATTTTCAAACTGTACTTGAAGGGCGCAAAGAGCTGACTCTGAACCGGGAACGCGCCGAGTATGTGTTTAACAACCTCTACATTCCTGATGCGCAAGAGTATCGCCACCATATTATTCGCGCAGACACCTTCCATCTTAGTGCCGTGAACTGGTCAAACATCATGATGCTGGGCGCAATCGGCCTGGTGTTCTGGATGGCGAACAGCCTCGGTTGGGCTGATACCAACGTTGCCGCGACCTATTCGTTGACGCTTTTATTCCTGCGTACGCCGCTGCTTTCGGCGGTTGGCGCATTGCCGACGCTGCTGACGGCGCAGGTGGCGTTTAACAAGCTGAACAAATTCGCGCTCGCGCCTTTCAAAGCAGAGTTTCCGCGCCCGCAGGCGTTTCCCAACTGGCAAACGCTGGAGCTGCGTAACGTGACGTTTGCTTATCAGGATAACGCGTTTTCCGTTGGTCCGATTAATCTCACCATCAAACGTGGCGAGCTGCTGTTTCTGATTGGCGGCAACGGTAGCGGAAAATCGACGCTGGCGATGTTGTTGACGGGCTTGTATCAGCCACAAAGCGGCGAAATCTTGCTGGATGGCAAACCTGTCAGCGGCGAACAACCGGAAGATTATCGCAAACTGTTTTCGGCAGTGTTTACCGATGTCTGGCTGTTTGATCAACTGCTGGGGCCGGAGGGTAAACCCGCTAACCCGCAACTGGTTGAGAAGTGGCTGGCGCAGCTGAAAATGGCTCATAAGCTTGAGTTAAGCAACGGGCGTATTGTTAACCTGAAGTTATCAAAAGGGCAGAAAAAACGCGTGGCGCTGTTGCTGGCGCTGGCAGAAGAACGCGATATTATCCTGCTGGATGAATGGGCGGCGGATCAGGATCCACACTTCCGTCGTGAGTTTTATCAGGTGTTGCTGCCGCTGATGCAGGAGATGGGTAAAACTATTTTCGCTATCAGTCATGATGATCATTACTTTATCCACGCCGACCGCCTGCTGGAAATGCGCAATGGGCAACTTAGCGAGCTGACGGGCGAAGAGCGCGATGCCGCTTCGCGTGATGCCGTTGCCCGGACGGCATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli str. K-12 substr. MG1655", "NCBI_taxonomy_id": "511145", "NCBI_taxonomy_cvterm_id": "36849"}, "protein_sequence": {"accession": "NP_416715.1", "sequence": "MELLVLVWRQYRWPFISVMALSLASAALGIGLIAFINQRLIETADTSLLVLPEFLGLLLLLMAVTLGSQLALTTLGHHFVYRLRSEFIKRILDTHVERIEQLGSASLLAGLTSDVRNITIAFVRLPELVQGIILTIGSAAYLWMLSGKMLLVTAIWMAITIWGGFVLVARVYKHMATLRETEDKLYTDFQTVLEGRKELTLNRERAEYVFNNLYIPDAQEYRHHIIRADTFHLSAVNWSNIMMLGAIGLVFWMANSLGWADTNVAATYSLTLLFLRTPLLSAVGALPTLLTAQVAFNKLNKFALAPFKAEFPRPQAFPNWQTLELRNVTFAYQDNAFSVGPINLTIKRGELLFLIGGNGSGKSTLAMLLTGLYQPQSGEILLDGKPVSGEQPEDYRKLFSAVFTDVWLFDQLLGPEGKPANPQLVEKWLAQLKMAHKLELSNGRIVNLKLSKGQKKRVALLLALAEERDIILLDEWAADQDPHFRREFYQVLLPLMQEMGKTIFAISHDDHYFIHADRLLEMRNGQLSELTGEERDAASRDAVARTA"}}}}}}}, "1849": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"$update": {"2076": {"$update": {"dna_sequence": {"$update": {"sequence": "GTGGCACGACGTGCCCGCGTTGACGCCGAGCTGGTCCGGCGGGGCCTGGCGCGATCACGTCAACAGGCCGCGGAGTTGATCGGCGCCGGCAAGGTGCGCATCGACGGGCTGCCGGCGGTCAAGCCGGCCACCGCCGTGTCCGACACCACCGCGCTGACCGTGGTGACCGACAGTGAACGCGCCTGGGTATCGCGCGGAGCGCACAAACTAGTCGGTGCGCTGGAGGCGTTCGCGATCGCGGTGGCGGGCCGGCGCTGTCTGGACGCGGGCGCATCGACCGGTGGGTTCACCGAAGTACTGCTGGACCGTGGTGCCGCCCACGTGGTGGCCGCCGATGTCGGATACGGCCAGCTGGCGTGGTCGCTGCGCAACGATCCTCGGGTGGTGGTCCTCGAGCGGACCAACGCACGTGGCCTCACACCGGAGGCGATCGGCGGTCGCGTCGACCTGGTAGTGGCCGACCTGTCGTTCATCTCGTTGGCTACCGTGTTGCCCGCGCTGGTTGGATGCGCTTCGCGCGACGCCGATATCGTTCCACTGGTGAAGCCGCAGTTTGAGGTGGGGAAAGGTCAGGTCGGCCCCGGTGGGGTGGTCCATGACCCGCAGTTGCGTGCGCGGTCGGTGCTCGCGGTCGCGCGGCGGGCACAGGAGCTGGGCTGGCACAGCGTCGGCGTCAAGGCCAGCCCGCTGCCGGGCCCATCGGGCAATGTCGAGTACTTCCTGTGGTTGCGCACGCAGACCGACCGGGCATTGTCGGCCAAGGGATTGGAGGATGCGGTGCACCGTGCGATTAGCGAGGGCCCGTAG"}}}}}}}}}}, "2426": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2427": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4603": {"dna_sequence": {"fmax": "3154631", "fmin": "3153038", "accession": "NC_000962.3", "strand": "-", "sequence": "ATGACGGCTCTCAACGACACAGAGCGGGCGGTCCGTAACTGGACAGCCGGACGCCCACACCGTCCGGCCCCGATGCGCCCGCCGCGCTCGGAGGAGACCGCTTCAGAGCGCCCCAGCAGGTACTACCCGACTTGGCTGCCCTCGCGCAGCTTTATCGCTGCGGTTATTGCTATCGGCGGGATGCAGCTGCTGGCGACCATGGACAGCACCGTCGCCATCGTCGCGCTACCTAAGATTCAAAACGAGCTGAGCTTGTCTGATGCCGGCCGCAGCTGGGTGATCACCGCCTACGTGCTGACCTTCGGCGGGCTGATGCTGCTCGGCGGCCGGCTTGGCGACACCATCGGGCGCAAACGCACCTTCATTGTTGGCGTTGCGCTATTCACCATCTCGTCGGTGCTGTGCGCGGTCGCCTGGGACGAGGCGACGTTGGTGATCGCCCGGTTGTCCCAGGGTGTGGGGTCGGCCATCGCATCTCCGACCGGTCTGGCGCTGGTGGCGACCACGTTCCCCAAGGGACCTGCCCGCAACGCCGCGACGGCGGTGTTCGCCGCGATGACCGCGATCGGGTCGGTGATGGGGCTGGTGGTCGGCGGAGCACTGACCGAGGTGTCATGGCGGTGGGCGTTCCTGGTGAACGTGCCGATCGGGCTGGTGATGATCTACCTGGCCCGCACCGCCCTACGGGAAACCAACAAAGAACGGATGAAGCTCGACGCCACCGGGGCCATACTGGCCACGCTGGCATGCACCGCGGCGGTTTTCGCCTTCTCGATCGGTCCTGAAAAGGGCTGGATGTCAGGCATTACCATCGGTTCGGGCCTGGTGGCCTTGGCGGCCGCTGTCGCGTTTGTCATCGTGGAGCGCACTGCCGAGAACCCCGTCGTGCCGTTCCACTTGTTCCGCGACCGCAACCGGTTGGTCACGTTCAGCGCGATCCTGTTGGCCGGCGGCGTCATGTTCAGCCTGACCGTCTGCATCGGCCTGTACGTGCAGGACATCTTGGGCTACAGCGCGCTACGCGCGGGCGTAGGTTTCATCCCGTTCGTCATCGCGATGGGAATCGGCCTAGGTGTGTCCTCGCAGCTGGTGTCCCGGTTTTCGCCACGGGTGTTGACCATCGGCGGCGGATATCTGCTATTCGGCGCCATGCTGTACGGCTCATTTTTCATGCACCGTGGTGTGCCCTACTTCCCCAACCTGGTCATGCCGATCGTCGTCGGCGGGATTGGCATCGGCATGGCCGTCGTCCCGCTGACTCTGTCGGCGATCGCTGGCGTCGGCTTCGACCAGATCGGTCCGGTATCGGCAATTGCGCTGATGCTGCAGAGCCTGGGCGGTCCGCTGGTGCTCGCCGTCATCCAGGCTGTGATCACGTCGCGCACGCTGTACCTGGGCGGTACCACCGGTCCGGTGAAGTTCATGAACGACGTGCAGTTGGCCGCGCTTGACCACGCCTACACCTACGGCCTGCTGTGGGTGGCCGGAGCGGCCATCATCGTCGGCGGTATGGCGCTGTTTATCGGGTATACGCCGCAGCAGGTTGCCCATGCGCAGGAGGTCAAGGAAGCGATCGACGCCGGCGAGCTGTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Mycobacterium tuberculosis H37Rv", "NCBI_taxonomy_id": "83332", "NCBI_taxonomy_cvterm_id": "39507"}, "protein_sequence": {"accession": "NP_217362.1", "sequence": "MTALNDTERAVRNWTAGRPHRPAPMRPPRSEETASERPSRYYPTWLPSRSFIAAVIAIGGMQLLATMDSTVAIVALPKIQNELSLSDAGRSWVITAYVLTFGGLMLLGGRLGDTIGRKRTFIVGVALFTISSVLCAVAWDEATLVIARLSQGVGSAIASPTGLALVATTFPKGPARNAATAVFAAMTAIGSVMGLVVGGALTEVSWRWAFLVNVPIGLVMIYLARTALRETNKERMKLDATGAILATLACTAAVFAFSIGPEKGWMSGITIGSGLVALAAAVAFVIVERTAENPVVPFHLFRDRNRLVTFSAILLAGGVMFSLTVCIGLYVQDILGYSALRAGVGFIPFVIAMGIGLGVSSQLVSRFSPRVLTIGGGYLLFGAMLYGSFFMHRGVPYFPNLVMPIVVGGIGIGMAVVPLTLSAIAGVGFDQIGPVSAIALMLQSLGGPLVLAVIQAVITSRTLYLGGTTGPVKFMNDVQLAALDHAYTYGLLWVAGAAIIVGGMALFIGYTPQQVAHAQEVKEAIDAGEL"}}}}}}}, "1848": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "168": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1330": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGTTCAAACTTTTGAGTAAGTTATTGGTCTATTTGACCGCGTCTATGATGGCTATTGCGAGTCCGCTCGCTTTTTCCGTAGATTCTAGCGGTGAGTATCCGACAGTCAGCGAAATTCCGGTCGGGGAGGTCCGGCTTTACCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTTTGATGGCGCAGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAGAAGCAAATTGGACTTCCTGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCCGAGGTAGAGGGGAACGAGATTCCCACGCACTCTCTAGAAGGACTCTCATCGAGCGGGGACGCAGTGCGCTTCGGTCCAGTAGAACTCTTCTATCCTGGTGCTGCGCATTCGACCGACAACTTAGTTGTGTACGTCCCGTCTGCGAGTGTGCTCTATGGTGGTTGTGCGATTTATGAGTTGTCACGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCATTGAGCGGATTCAACAACACTACCCGGAAGCACAGTTCGTCATTCCGGGGCACGGCCTGCCGGGCGGTCTAGACTTGCTCAAGCACACAACGAATGTTGTAAAAGCGCACACAAATCGCTCAGTCGTTGAGTAG"}}}}}}}}}}, "169": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "164": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"684": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAAAAATCGCCTTAATTTTTGGTGGTACTTCAGCAGAATATGAAGTATCCCTCAAATCAGCAGCTAGTGTTTTGTCTGTATTAGAAAATCTAAATGTTGAAATTTACAGAATTGGCATAGCTTCGAACGGAAAATGGTATTTAACCTTTAGTGATAATGAAACTATTGCAAATGACTTATGGTTACAAGATAAAAAATTAAATGAGATCACTCCCTCCTTCGATGGGAGAGGGTTTTATGACCAAGCAGAAAAAGTATATTTTAAACCAGATGTCTTATTTCCGATGCTACACGGTGGCACTGGAGAAAATGGTACATTACAAGGAGTTTTTGAATGTATGCAAATTCCTTATGTTGGTTGCGGCGTTGCCTCCTCTGCCATTTGTATGAATAAATATCTATTACATCAGTTTGCAAAAAGTGTCGGAGTGATGAGTACGCCTACACAGCTGATCTCATCGACGGACGAACAACAAGTAATCAAAAATTTTACTGAGTTGTACGGTTTTCCTATATTTATCAAACCAAATGAAGCTGGTTCTTCAAAGGGAATCAGCAAAGTTCATACCGAAGCAGAGTTAACTAAAGCGCTGACCGAAGCGTTCCAATTCAGTCAGACAGTCATTTTACAAAAAGCTGTTTCTGGAGTAGAGATCGGTTGCGCCATCCTAGGAAATGATCAATTGCTTGTTGGGGAATGTGATGAAGTATCCTTAGCGACCGACTTTTTTGATTATACGGAAAAATATCAAATGACTACAGCAAAGTTGACCGTTCCAGCAAAAATTCCAGTGGCAACTAGTAGAGAAATCAAGCGTCAAGCACAATTACTGTATCAATTACTTGGATGTCAGGGCTTAGCTCGCATTGATTTTTTTCTAACAGAAGCAGGTGAAATTCTCTTAAATGAAATCAATACAATGCCAGGCTTTACCAATCATTCTAGATTTCCAGCCATGATGGCAGCTACGGGTATCACTTATCAGGAGCTTATTTCAACATTAATTACTTTAGCGGAGGATAAATAG"}}}}}}}}}}, "165": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "166": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1960": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGCTGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTAGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA"}}}}}}}}}}, "167": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "160": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "161": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "162": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "163": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1534": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAACATTAAAACACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGCGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGTACACACTACGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGTACCATAAGGCAACCACCACAGAAGTATTTAAGTGGGACGGGCAAAAAAGGCTATTCCCAGAATGGGAAAAGGACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAAGGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAGTTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCCAAAAGTCCAAGATGAAGTGCAATCCATGTTATTCATAGAAGAAAAGAACGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAGACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGAAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGTTTAGAACAATTAGGTATTTTATAG"}}}}}}}}}}, "2518": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2519": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1980": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2517": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1841": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2734": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4505": {"dna_sequence": {"fmax": "1473980", "fmin": "1472546", "accession": "NC_002516.2", "strand": "-", "sequence": "GTGAACAGCCCCGCCCTGCCCCTTTCCCGTGGCTTGCGCATCCGCGCCGAACTCAAGGAACTGCTGACCCTCGCCGCGCCGATCATGATCGCGCAACTGGCGACCACCGCCATGGGCTTCGTCGATGCGGTGATGGCCGGGCGCGCCAGTCCGCACGACCTGGCAGCGGTGGCGCTGGGCAACTCCATCTGGATCCCGATGTTCCTGCTGATGACCGGCACCCTGCTCGCCACCACGGCCAAGGTCGCCCAGCGCCATGGCGCCGGCGACCAGCCCGGCACCGGGCCGCTGGTGCGCCAGGCGCTGTGGCTGGCGCTGCTGATCGGACCGCTGTCGGGGGCGGTGCTGTGGTGGTTGTCGGAGCCGATCCTCGGCTTGATGAAAGTGCGCCCGGAACTGATCGGGCCGAGCCTGCTGTACCTCAAGGGCATCGCCCTGGGCTTCCCGGCGGCGGCGCTGTACCACGTACTGCGCTGCTACACCAACGGCCTGGGACGGACCCGGCCGAGCATGGTGCTGGGGATCGGCGGGCTGCTGCTGAACATCCCGATCAACTACGCGCTGATCTACGGCCACTTCGGCATGCCGAAGATGGGTGGCCCCGGCTGCGGCTGGGCCACCGGCTCGGTGATGTGGTTCATGTTCCTCGGCATGCTGTTCTGGGTGAACAAGGCCTCGATCTACCGCGCCAGCCAGTTGTTCTCGCGCTGGGAGTGGCCGGATCGCGCGACCATCGGCCCGCTGGTGGCGGTCGGCCTGCCGATCGGCATCGCGGTGTTCGCCGAGTCGAGCATCTTCTCGGTGATCGCCCTGCTGATCGGCGGGCTCGACGAGAACGTGGTGGCCGGCCACCAGATCGCCCTGAACTTCAGCGCGCTGGTGTTCATGATTCCCTATTCGCTGGGGATGGCGGTGACCGTGCGGGTCGGCCACAACCTCGGCGCCGGCCTGCCGCGCGACGCGCGCTTCGCCGCCGGCGTGGGGATGGCCGCGGCGCTGGGCTACGCCTGCGTCTCGGCGAGCCTGATGTTGTTGCTGCGCGAGCAGATCGCCGCGATGTATTCGCCGGACCCGGCGGTGATCGCCATCGCCGCCTCGCTGATCGTGTTCTCCGCGCTGTTCCAGTTCTCCGACGCCCTGCAGGTCACCGCCGCCGGGGCCCTGCGCGGCTACCAGGACACCCGGGTGACGATGATCATGACCCTGTTCGCCTACTGGGGCATCGGCCTGCCGGTGGGCTACAGCCTCGGCCTCACCGACTGGTTCCAGGAACCCACCGGACCGCGCGGTCTGTGGCAAGGCCTGGTGGTGGGCCTGACCGGCGCGGCGATCATGCTCTGCATCCGCCTGGCGCGCAGCGCGCGGCGCTTCATCCGCCAGCACGAGCGCCTGCAGCGGGAGGACGCGGAGGCCGCCTCAGTCCTTGGCCGGTAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa PAO1", "NCBI_taxonomy_id": "208964", "NCBI_taxonomy_cvterm_id": "36804"}, "protein_sequence": {"accession": "NP_250052.1", "sequence": "MNSPALPLSRGLRIRAELKELLTLAAPIMIAQLATTAMGFVDAVMAGRASPHDLAAVALGNSIWIPMFLLMTGTLLATTAKVAQRHGAGDQPGTGPLVRQALWLALLIGPLSGAVLWWLSEPILGLMKVRPELIGPSLLYLKGIALGFPAAALYHVLRCYTNGLGRTRPSMVLGIGGLLLNIPINYALIYGHFGMPKMGGPGCGWATGSVMWFMFLGMLFWVNKASIYRASQLFSRWEWPDRATIGPLVAVGLPIGIAVFAESSIFSVIALLIGGLDENVVAGHQIALNFSALVFMIPYSLGMAVTVRVGHNLGAGLPRDARFAAGVGMAAALGYACVSASLMLLLREQIAAMYSPDPAVIAIAASLIVFSALFQFSDALQVTAAGALRGYQDTRVTMIMTLFAYWGIGLPVGYSLGLTDWFQEPTGPRGLWQGLVVGLTGAAIMLCIRLARSARRFIRQHERLQREDAEAASVLGR"}}}}}}}, "1840": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "678": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "679": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1814": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"305": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAATATAGTTGAAAATGAAATATGTATAAGAACTTTAATAGATGATGATTTTCCTTTGATGTTAAAATGGTTAACTGATGAAAGAGTATTAGAATTTTATGGTGGTAGAGATAAAAAATATACATTAGAATCATTAAAAAAACATTATACAGAGCCTTGGGAAGATGAAGTTTTTAGAGTAATTATTGAATATAACAATGTTCCTATTGGATATGGACAAATATATAAAATGTATGATGAGTTATATACTGATTATCATTATCCAAAAACTGATGAGATAGTCTATGGTATGGATCAATTTATAGGAGAGCCAAATTATTGGAGTAAAGGAATTGGTACAAGATATATTAAATTGATTTTTGAATTTTTGAAAAAAGAAAGAAATGCTAATGCAGTTATTTTAGACCCTCATAAAAATAATCCAAGAGCAATAAGGGCATACCAAAAATCTGGTTTTAGAATTATTGAAGATTTGCCAGAACATGAATTACACGAGGGCAAAAAAGAAGATTGTTATTTAATGGAATATAGATATGATGATAATGCCACAAATGTTAAGGCAATGAAATATTTAATTGAGCATTACTTTGATAATTTCAAAGTAGATAGTATTGAAATAATCGGTAGTGGTTATGATAGTGTGGCATATTTAGTTAATAATGAATACATTTTTAAAACAAAATTTAGTACTAATAAGAAAAAAGGTTATGCAAAAGAAAAAGCAATATATAATTTTTTAAATACAAATTTAGAAACTAATGTAAAAATTCCTAATATTGAATATTCGTATATTAGTGATGAATTATCTATACTAGGTTATAAAGAAATTAAAGGAACTTTTTTAACACCAGAAATTTATTCTACTATGTCAGAAGAAGAACAAAATTTGTTAAAACGAGATATTGCCAGTTTTTTAAGACAAATGCACGGTTTAGATTATACAGATATTAGTGAATGTACTATTGATAATAAACAAAATGTATTAGAAGAGTATATATTGTTGCGTGAAACTATTTATAATGATTTAACTGATATAGAAAAAGATTATATAGAAAGTTTTATGGAAAGACTAAATGCAACAACAGTTTTTGAGGGTAAAAAGTGTTTATGCCATAATGATTTTAGTTGTAATCATCTATTGTTAGATGGCAATAATAGATTAACTGGAATAATTGATTTTGGAGATTCTGGAATTATAGATGAATATTGTGATTTTATATACTTACTTGAAGATAGTGAAGAAGAAATAGGAACAAATTTTGGAGAAGATATATTAAGAATGTATGGAAATATAGATATTGAGAAAGCAAAAGAATATCAAGATATAGTTGAAGAATATTATCCTATTGAAACTATTGTTTATGGAATTAAAAATATTAAACAGGAATTTATCGAAAATGGTAGAAAAGAAATTTATAAAAGGACTTATAAAGATTGA"}}}}}}}}, "ARO_category": {"$insert": {"40307": {"category_aro_name": "plazomicin", "category_aro_cvterm_id": "40307", "category_aro_accession": "3003675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Plazomicin is a neoglycoside, or next-generation, aminoglycoside, that has been identified as a potentially useful agent to combat drug-resistant bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa."}}}}}, "1815": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1816": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"932": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATAAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTAAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATAGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCAGTGAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA"}}}}}}}}}}, "1817": {"$update": {"ARO_description": "Vga(B) is an ABC-F protein expressed in staphylococci that confers resistance to streptogramin A antibiotics and related compounds. It is associated with plasmid DNA.", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"475": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCTTAAAATCGACATGAAGAATGTAAAAAAATATTATGCAGATAAATTAATTTTAAATATAAAAGAACTAAAGATTTATAGTGGGGATAAAATAGGTATTGTAGGTAAGAATGGAGTTGGCAAAACAACACTTTTAAAAATAATAAAAGGACTAATAGAGATTGACGAAGGAAATATAATTATAAGTGAAAAAACAACTATTAAATATATCTCTCAATTAGAAGAACCACATAGTAAGATAATTGATGGAAAATATGCTTCAATATTTCAAGTTGAAAATAAGTGGAATGACAATATGAGTGGTGGTGAAAAAACTAGATTTAAACTAGCAGAGGGATTTCAAGATCAATGTTCTTTAATGCTCGTAGATGAACCTACAAGTAATTTAGATATCGAAGGAATAGAGTTGATAACAAATACTTTTAAAGAGTACCGTGATACTTTTTTGGTAGTATCTCATGATAGAATTTTTTTAGATCAAGTTTGTACAAAAATTTTTGAAATTGAAAATGGATATATTAGAGAATTCATCGGTAATTATACAAACTATATAGAGCAAAAAGAAATGCTTCTACGAAAGCAACAAGAAGAATACGAAAAGTATAATTCTAAAAGAAAGCAATTGGAGCAAGCTATAAAGCTAAAAGAGAATAAGGCGCAAGGAATGATTAAGCCCCCTTCAAAAACAATGGGAACATCTGAATCTAGAATATGGAAAATGCAACATGCTACTAAACAAAAAAAGATGCATAGAAATACGAAATCGTTGGAAACACGAATAGATAAATTAAATCATGTAGAAAAAATAAAAGAGCTTCCTTCTATTAAAATGGATTTACCTAATAGAGAGCAATTTCATGGTCGCAATGTAATTAGTTTAAAAAACTTATCTATAAAATTTAATAATCAATTTCTTTGGAGAGATGCTTCATTTGTCATTAAAGGTGGAGAAAAGGTTGCTATAATTGGTAACAATGGTGTAGGAAAAACAACATTGTTGAAGCTGATTCTAGAAAAAGTAGAATCAGTAATAATATCACCATCAGTTAAAATTGGATACGTCAGTCAAAACTTAGATGTTCTACAATCTCATAAATCTATCTTAGAAAATGTTATGTCTACCTCCATTCAAGATGAAACAATAGCAAGAATTGTTCTAGCAAGATTACATTTTTATCGCAATGATGTTCATAAAGAAATAAATGTTTTGAGTGGTGGAGAACAAATAAAGGTTGCTTTTGCCAAGCTATTTGTTAGCGATTGTAATACATTAATTCTTGATGAACCAACAAACTATTTGGATATCGATGCTGTTGAGGCATTAGAAGAATTGTTAATTACCTATGAAGGTGTTGTGTTATTTGCTTCCCATGATAAAAAATTTATACAAAACCTAGCTGAACAATTGTTAATAATAGAAAATAATAAAGTGAAAAAATTCGAAGGAACATATATAGAATATTTAAAAATTAAAGATAAACCAAAATTAAATACAAATGAAAAAGAACTCAAAGAAAAAAAGATGATACTAGAAATGCAAATTTCATCATTATTAAGTAAAATCTCAATGGAAGAAAATGAAGAAAAAAACAAAGAATTAGATGAAAAGTACAAATTGAAATTAAAAGAATTGAAAAGCCTAAATAAAAATATTTAA"}}}}}}}}, "ARO_category": {"$delete": ["36001", "36002", "36298"], "$insert": {"41687": {"category_aro_name": "ABC-F ATP-binding cassette ribosomal protection protein", "category_aro_cvterm_id": "41687", "category_aro_accession": "3004469", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}}}}}, "1810": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1811": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1096": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAGTTTTTATTGGCATTTTCGCTTTTAATACCATCCGTGGTTTTTGCAAGTAGTTCAAAGTTTCAGCAAGTTGAACAAGACGTTAAGGCAATTGAAGTTTCTCTTTCTGCTCGTATAGGTGTTTCCGTTCTTGATACTCAAAATGGAGAATATTGGGATTACAATGGCAATCAGCGCTTCCCGTTAACAAGTACTTTTAAAACAATAGCTTGCGCTAAATTACTATATGATGCTGAGCAAGGAAAAGTTAATCCCAATAGTACAGTCGAGATTAAGAAAACAGATCTTGTGACCTATTCCCCTGTAATAGAAAAGCAAGTAGGGCAGGCAATCACACTCGATGATGCGTGCTTCGCAACTATGACTACAAGTGATAATACTGCGGCAAATATCATCCTAAGTGCTGTAGGTGGCCCCAAAGGCGTTACTGATTTTTTAAGACAAATTGGGGACAAAGAGACTCGTCTAGACCGTATTGAGCCTGATTTAAATGAAGGTAAGCTCGGTGATTTGAGGGATACGACAACTCCTAAGGCAATAGCCAGTACTTTGAATAAATTTTTATTTGGTTCCGCGCTATCTGAAATGAACCAGAAAAAATTAGAGTCTTGGATGGTGAACAATCAAGTCACTGGTAATTTACTACGTTCAGTATTGCCGGCGGGACGGAACATTGCGGATCGCTCAGGTGCTGGCGGATTTGGTGCTCGGAGTATTACAGCAGTTGTGTGGAGTGAGCATCAAGCCCCAATTATTGTGAGCATCTATCTAGCTCAAACACAGGCTTCAATGGCAGAGCGAAATGATGCGATTGTTAAAATTGGTCATTCAATTTTTGACGTTTATACATCACAGTCGCGCTGA"}}}}}}}}}}, "1812": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1557": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAATAGCTCTTGTTATATCGTTTGGTCTGCTGTTGTTTACCAATATGGTATGCGCTGACGATTCATTACCAGAACTAGATATCCAAAAAATAGAAGACGGCGTTTATCTGTACACCGCTTACGAAAAAATCGAAGGCTGGGGGCTTGTTGGCTCTAACGGATTAGTCGTGCTTGATAACAAAAATGCTTATCTGATTGATACGCCCATTTCAGCCACAGATACTGAAAAATTAGTGAAGTGGATTGACGCGCAGGGCTTTACGGCCAAGGCAAGTATTTCTACCCATTTCCACACCGACAGTACAGGCGGTATTGCATTTCTCAACTCCAAGTCCATTCCAACCTATGCCTCCAAGCTAACTAACCAGCTGCTTAAAAATAAAGGCGAAGAGCAGGCTACGCATTCGTTCGGTAAGAATCCTTATTGGCTATTAAAAAATAAAATCGAAGCCTTTTATCCGGGTGCGGGTCACACACCTGATAATTTAGTAGTGTGGCTGCCGAAACAGAAAATTTTATTTGGTGGCTGTTTTGTCAAACCCGAAGGCCTTGGCAATCTTAGCCATGCGGTAATTGCAGAATGGCCAGCTTCCGCCGAAAAACTTATCGCCCGTTATAGCAATGCAACAATGGTAGTTCCCGGTCACGGAAAAGTTGGCGACGCATCGCTGCTGGAAAAAACCAGGCAGCGCGCAGTTGAAGCGCTTGCAGCTAAAAAGTGA"}}}}}}}}}}, "1813": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1818": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1819": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4678": {"dna_sequence": {"fmax": "1337", "fmin": "476", "accession": "X64523.1", "strand": "-", "sequence": "ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATAAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTAAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCAGTGAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Klebsiella pneumoniae", "NCBI_taxonomy_id": "573", "NCBI_taxonomy_cvterm_id": "35915"}, "protein_sequence": {"accession": "CAA45828.1", "sequence": "MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEDKLGARVGYIELDLNSGKILESFRPEERFPMMSTFKVLLCGAVLSRVDAGQEQLGRRIHYSQNDLVKYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTMPAAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGASERGSRGIIAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGASLIKHW"}}}}}}}, "670": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "671": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1609": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"508": {"$update": {"dna_sequence": {"$update": {"sequence": "TTGAATTATTCCCATAAAACGTACGATCAAATTGATTTTTCCGGCCAAGATTTGAGCTCTCATCACTTTTCTCACTGTAAATTTTTTGGTTGTAATTTTAATCGAGTGAATTTACGTGATGCTAAATTCATGGGTTGTACATTTATTGAATCGAATGATTTTGAAGGATGTAATTTTATCTATGCAGACCTACGAGATGCTTCATTTATGAATTGCATGCTTTCAATGGCGAATTTCCAAGGGGCAAACTGTTTTGGCCTTGAATTGAGAGAATGCGATTTAAAAGGTGCTAATTTCTCACAGGCAAACTTTGTTAATCATGTTTCTAACAAAATGTATTTTTGCTCTGCTTACATTACGGGTTGTAATTTGTCTTATGCTAATTTCGATAAGCAATGCCTTGAAAAGTGTGATTTATTTGAAAATAAATGGGTAGGTGCAAGCCTGCAAGGGGCCTCTTTTAAAGAGTCAGACTTAAGTAGGGGATCATTTTCTGATGACTTTTGGGAGCAATGCAGAATTCAGGGGTGTGATCTCACTCATTCAGAATTAAATGGCTTAGAACCTCGTAAAGTGGATTTAACTGGCGTGAAAATTTGTTCATGGCAACAAGAGCAGCTTTTGGAGCAGTTGGGGGTGATTGTTATTCCAGACAAAGTGTTTTGA"}}}}}}}}}}, "1608": {"$update": {"model_sequences": {"$update": {"sequence": {"4446": {"dna_sequence": {"fmax": "2808512", "fmin": "2807468", "accession": "NC_002516.2", "strand": "+", "sequence": "ATGCCTGTCAGTGATCCTATGCCCCTCCGGCACCTCGCCAGGCCCCGCCCCGTCTCGCACGCAAGGCTTGACGGCGAGCCCCCGCGGTTGCAGCCTCTAGCCCCTGGAAACGAGGAACGCCATGAACCGAAACGACCTGCGCCGCGTCGATCTGAACCTGCTGATCGTGTTCGAGACCCTGATGCACGAACGCAGCGTGACCCGCGCCGCAGAGAAACTGTTCCTCGGCCAGCCGGCCAGCCGGCCATCAGCGCCGCGCTGTCGCGCCTGCGCACGCTGTTCGACGACCCGCTGTTCGTCCGTACCGGACGCAGCATGGAGCCCACCGCGCGAGCCCAGGAAATCTTCGCCCACCTGTCGCCGGCGCTGGATTCCATCTCCACCGCCATGAGTCGCGCCAGCGAGTTCGATCCGGCGACCAGCACCGCGGTGTTCCGCATCGGCCTTTCCGACGACGTCGAGTTCGGCCTGTTGCCGCCCCTGCTCCGCCGCCTGCGCGCGGAGGCGCCGGGGTTCGTCCTCGTCGTGCGCCGCGCCAACTATCTATTGATGCCGAACCTGCTGGCCTCGGGGGAGATCTCGGTGGGCGTCAGCTACACCGACGAACTGCCGGCCAACGCCAAGCGCAAGACCGTGCGCCGCAGCAAGCCGAAGATCCTCCGCGCCGACTCCGCGCCCGGCCAGCTGACCCTCGACGACTATTGCGCGCGACCGCACGCGCTGGTGTCCTTCGCCGGCGACCTCAGCGGCTTCGTCGACGAGGAGCTGGAAAAATTCGGCCGCAAGCGCAAGGTGGTCCTGGCGGTGCCGCAGTTCAACGGCCTCGGCACCCTCCTGGCCGGCACCGACATCATCGCCACCGTGCCCGACTACGCCGCCCAGGCGCTGATCGCCGCCGGCGGCCTACGCGCCGAGGACCCACCGTTCGAGACCCGGGCCTTCGAACTGTCGATGGCTTGGCGCGGCGCCCAGGACAACGATCCGGCCGAACGCTGGCTGCGCTCGCGGATCAGCATGTTCATCGGCGATCCGGACAGTCTCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa PAO1", "NCBI_taxonomy_id": "208964", "NCBI_taxonomy_cvterm_id": "36804"}, "protein_sequence": {"accession": "NP_251182.1", "sequence": "MPVSDPMPLRHLARPRPVSHARLDGEPPRLQPLAPGNEERHEPKRPAPRRSEPADRVRDPDARTQRDPRRRETVPRPAGQPAISAALSRLRTLFDDPLFVRTGRSMEPTARAQEIFAHLSPALDSISTAMSRASEFDPATSTAVFRIGLSDDVEFGLLPPLLRRLRAEAPGFVLVVRRANYLLMPNLLASGEISVGVSYTDELPANAKRKTVRRSKPKILRADSAPGQLTLDDYCARPHALVSFAGDLSGFVDEELEKFGRKRKVVLAVPQFNGLGTLLAGTDIIATVPDYAAQALIAAGGLRAEDPPFETRAFELSMAWRGAQDNDPAERWLRSRISMFIGDPDSL"}}}}}}}, "1979": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1978": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1601": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4688": {"dna_sequence": {"fmax": "5713", "fmin": "4825", "accession": "EU408346.1", "strand": "-", "sequence": "ATGAATCCTCCAATCCATCGCCGCACCCTGTTGCTCGCCGCCTCGGTCCTCCCGCTCGCAAGCGCCTGCACCGCGTGGTCCGCCAAGGGGCCGCAGCAAGACGCATCGGCGCAGCTCGCCGCGCTCGAAGCCGCATCGGGCAGCCGGCTCGGTGTGGTCGGTTTCAACACCGCCACCGGCGCGCGCGTGCAGCACCGTGCCGAGGAACGCTTTCCGTTCTGCAGCACCTTCAAGCTCATGCTGGCCGCGGCCGTCCTCGAACGCAGCGCGAAAGAGGGCGACCTGCTCGCGCGCCGCGTCAACTACAGCAAGGGCGACCTGGTCTCCTACTCGCCCATCACCGAAAAGAATGTGGCGACCGGCATGACGGTGGCCGAGCTGTGCGCCGCCACCGTCCAGTACAGCGACAACGGCGCGGCCAACCTGCTGATGAAGATCCTGGGCGGCCCGTCCGCCGTGACGGCCTTTGCGCGTGCCTCCGGCGACGAGGTCTTCAGGCTGGACCGCTGGGAGACCGAACTCAACACCGCCATCCCCGGCGACCTGCGCGACACCACCACGCCCGCGGCCATGGCGGCAAGCGTGCAGCGGCTGGTGCTGGGCAACGCGCTGGGCGCGGCACAGCGCGAGCAGCTCAAGACCTGGTTGCTGGGCAACACCACGAGCACCCAGCGCTTCCTGGCCGGCGTGCCCGCCGGCTGGAAGGTGGGCGACAAGACCGGTTCGGGCTCCTACGGCACCACGAACGACGTGGGCGTGCTGTGGCCGCCGGCCGGCGCGCCGCTGGTGCTGGCGGTCTACCTGACGTTTCCGCAGAAGGAGGCGAAGGGGCGCAGCGATGTGGTTGCGTCGGCGACGCGCATTGCGGTGAGCGCGCTGGCGAGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "uncultured bacterium BLR1", "NCBI_taxonomy_id": "506512", "NCBI_taxonomy_cvterm_id": "39079"}, "protein_sequence": {"accession": "ACH58980.1", "sequence": "MNPPIHRRTLLLAASVLPLASACTAWSAKGPQQDASAQLAALEAASGSRLGVVGFNTATGARVQHRAEERFPFCSTFKLMLAAAVLERSAKEGDLLARRVNYSKGDLVSYSPITEKNVATGMTVAELCAATVQYSDNGAANLLMKILGGPSAVTAFARASGDEVFRLDRWETELNTAIPGDLRDTTTPAAMAASVQRLVLGNALGAAQREQLKTWLLGNTTSTQRFLAGVPAGWKVGDKTGSGSYGTTNDVGVLWPPAGAPLVLAVYLTFPQKEAKGRSDVVASATRIAVSALAS"}}}}}}}, "1976": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4665": {"dna_sequence": {"fmax": "66509", "fmin": "65291", "accession": "NC_023287.1", "strand": "-", "sequence": "ATGGAAAAATACAACAATTGGAAACTTAAGTTTTATACAATATGGGCAGGGCAAGCAGTATCATTAATCACTAGTGCCATCCTGCAAATGGCGATTATTTTTTACCTTACAGAAAAAACTGGATCTGCGATGGTCTTGTCTATGGCTTCACTAGTAGGTTTTTTACCCTATGCGGTCTTTGGACCTGCAATTGGTGTGCTAGTGGATCGTCATGATAGGAAGAAGATAATGATTGGTGCTGATTTAATTATCGCAGCAGCTGGTGCAGTGCTTGCTATTGTTGCATTCTATATGGAGCTACCTGTCTGGATGGTTATGATAGTATTGTTTATCCGTAGCATTGGAACAGCTTTTCATACCCCAGCACTCAATTCGGTTACACCACTTTTAGTACCAGAAGAGCAGCTAACGAAATGCGCAGGCTATAGTCAGTCTTTGCAGTCTATAAGCTATATTGTTAGTCCGGCAGTTGCAGCACTCTTATACTCCGTTTGGGATTTAAATGCTATTATTGCCATCGACGTATTGGGTGCTGTGATTGCATCTATTACGGTAGCAATTGTACGTATACCTAAGCTGGGTAATCAAGTGCAAAGTTTGGAACCAAATTTCATAAGAGAAATGAAAGAAGGAATTGTCGTTCTGAGACAAAACAAAGGATTGTTTGCCTTATTACTCTTAGGAACACTATATACTTTTGTTTATATGCCAATTAATGCACTATTTCCTTTAATAAGCATGGAATACTTTAATGGAACACCTGTGCATATTTCTATTACGGAAATTTCCTTTGCCTTTGGAATGCTAGCAGGAGGCTTATTGTTAGGAAGATTAGGGAGCTTCGAAAAGCGTGTATTACTAATAACTAGTTCATTTTTTATAATGGGGGCCAGTTTAGCCGTTTCGGGAATACTTCCTCCAAATGGATTTGTAATATTTGTAGTTTGCTGTGCAATAATGGGGCTTTCGGTGCCATTTTATAGCGGTGTGCAAACAGCTCTTTTTCAGGAGAAAATTAAGCCTGAATATTTAGGACGTGTATTTTCTTTGACCGGAAGTATCATGTCACTTGCTATGCCAATTGGATTAATTCTTTCTGGATTCTTTGCTGATAGAATTGGTGTAAATCATTGGTTTTTACTATCAGGTATTTTAATTATTGGCATTGCTATAGTTTGCCCAATGATAACAGAGGTTAGAAAATTAGATTTAAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Exiguobacterium sp. S3-2", "NCBI_taxonomy_id": "1389960", "NCBI_taxonomy_cvterm_id": "39580"}, "protein_sequence": {"accession": "YP_008997285.1", "sequence": "MEKYNNWKLKFYTIWAGQAVSLITSAILQMAIIFYLTEKTGSAMVLSMASLVGFLPYAVFGPAIGVLVDRHDRKKIMIGADLIIAAAGAVLAIVAFYMELPVWMVMIVLFIRSIGTAFHTPALNSVTPLLVPEEQLTKCAGYSQSLQSISYIVSPAVAALLYSVWDLNAIIAIDVLGAVIASITVAIVRIPKLGNQVQSLEPNFIREMKEGIVVLRQNKGLFALLLLGTLYTFVYMPINALFPLISMEYFNGTPVHISITEISFAFGMLAGGLLLGRLGSFEKRVLLITSSFFIMGASLAVSGILPPNGFVIFVVCCAIMGLSVPFYSGVQTALFQEKIKPEYLGRVFSLTGSIMSLAMPIGLILSGFFADRIGVNHWFLLSGILIIGIAIVCPMITEVRKLDLK"}}}}}}}, "1603": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1602": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"708": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAATACACTATTATTGATATTAAAGATTCAGAAACGTACATTACTCAAGCTGCAGAAATATTATTTGATGTATTTTCAGAAATAAGCCCAGAATCATGGCCAACACTCCAAAAAGCAAAAGAAGATGTTATTGAATGTATAGAAGGTGAAAACATTTGCATTGGCATTATAATAAATAAAGAATTAATTGGATGGATTGGATTAAGAGAAATGTATAAAAAAACATGGGAATTACATCCTATGGTTATCAAGAAAACACATCATAATATGGGATTTGGAAAAATACTAATTAATGAAATAGAAAAAAAAGCAAGAGAAAGAAATTTAGAAGGTATTGTACTTGGAACAGATGATGAAACATATAGAACTTCATTATCAATGATTGAATTAAATAATGAAAATATTTTGCAAGAAATAAAGAATATTAGAAATTTAGAAAATCATCCTTATGAATTTTATAAAAAATGTGGATATTGTATTATTGGTGTAATTCCAAACGCAAATGGGAAGAATAAGCCAGATATATTAATGTGGAAAAATATTATGGAAGAAAATTGCGGCTAA"}}}}}}}}}}, "1605": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1604": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1607": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model."}}, "1606": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "809": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "808": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "803": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1409": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAGGTTGGATGAAGTGCACATTAGCCGGGGCCGTGGTGCTGATGGCGAGTTTCTGGGGTGGCAGCGTGCGGGCGGCGGGGATCTCCCTTAAGCAGGTGAGTGGCCCTGTGTATGTGGTTGAAGATAACTACTACGTAAAGGAAAACTCCGTGGTCTATTTCGGGGCCAAGGGGGTGACGGTGGTGGGGGCGACCTGGACGCCGGATACCGCCCGCGAGCTGCACAAGCTGATCAAACGGGTCAGCAGCAAGCCGGTGCTGGAGGTGATCAACACCAACTACCACACCGATCGGGTGGGCGGTAATGCCTACTGGAAGTCCATCGGGGCCAAGGTGGTGGCGACGCGCCAGACCCGGGATCTGATGAAGAGCGACTGGGCCGAGATTGTCGCCTTTACCCGCAAGGGGCTGCCGGAGTATCCGGATCTGCCGCTGGTGCTGCCCAACGTGGTGCACGATGGCGACTTCACCCTGCAAGAGGGCAAGGTGCGCGCTTTCTACGCGGGCCCGGCCCATACGCCGGACGGCATCTTTGTCTACTTCCCTGACGAGCAGGTGCTTTATGGCAACTGCATCCTCAAGGAGAAGCTGGGCAACCTGAGCTTTGCCAATGTGAAGGCCTATCCGCAGACCATCGAGCGGCTTAAAGCGATGAAGTTGCCGATCAAGACGGTGATTGGNGGTCACGACTCGCCGCTGCATGGCCCCGAGCTGATTGATCACTACGAGGAGCTGATCAAGGCGGCCGCCGCAGTCTAA"}}}}}}}}}}, "802": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "801": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4588": {"dna_sequence": {"fmax": "3773567", "fmin": "3773015", "accession": "AL123456", "strand": "-", "sequence": "TTGCAGCAGTGGGTTGATTGCGAATTCACCGGTCGAGACTTCCGCGACGAGGACCTTAGCCGCCTGCACACCGAACGGGCGATGTTCAGCGAATGCGATTTCAGCGGCGTGAATCTGGCCGAGTCACAACACCGAGGGTCGGCGTTTCGTAATTGCACCTTCGAACGGACGACACTGTGGCACAGCACATTTGCCCAGTGCAGCATGTTGGGCTCGGTCTTCGTGGCTTGCCGGCTGCGGCCGCTGACGTTGGACGACGTGGATTTCACGCTCGCCGTGCTCGGCGGAAATGATCTGCGTGGTCTCAACTTGACCGGCTGCCGGTTGCGAGAGACCAGCCTGGTGGATACCGACTTGCGCAAGTGCGTGCTGCGCGGCGCCGACCTCAGTGGTGCCCGTACCACGGGCGCCCGGCTGGATGACGCCGACTTGCGGGGCGCGACCGTGGACCCGGTATTGTGGCGGACCGCGTCGTTGGTGGGTGCGCGTGTCGACGTCGACCAAGCCGTGGCCTTTGCGGCGGCGCACGGGCTGTGCTTGGCAGGGGGCTAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Mycobacterium tuberculosis H37Rv", "NCBI_taxonomy_id": "83332", "NCBI_taxonomy_cvterm_id": "39507"}, "protein_sequence": {"accession": "CCP46182.1", "sequence": "MQQWVDCEFTGRDFRDEDLSRLHTERAMFSECDFSGVNLAESQHRGSAFRNCTFERTTLWHSTFAQCSMLGSVFVACRLRPLTLDDVDFTLAVLGGNDLRGLNLTGCRLRETSLVDTDLRKCVLRGADLSGARTTGARLDDADLRGATVDPVLWRTASLVGARVDVDQAVAFAAAHGLCLAGG"}}}}}}}, "800": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "807": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "806": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "805": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"52": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGCTGATTTGCGTGCAATAGGAAGGATCGGGGCGTTGGCTATGGCCATCGCGTTGGCGGGTTGTGGGCCGGCGGAAGAGCGACAGGAGGCCGCCGAAATGGTGTTGCCGGTGGAGGTCCTGACGGTGCAGGCCGAGCCCCTGGCGCTGAGTTCGGAACTGCCTGGGCGGATCGAACCGGTGCGGGTCGCCGAGGTGCGCGCGCGGGTGGCCGGCATCGTCGTGCGGAAGCGCTTCGAGGAGGGCGCCGACGTCAAGGCTGGCGACCTGCTGTTCCAGATCGATCCGGCACCGCTGAAGGCTGCGGTGTCGCGCGCCGAGGGTGAGCTGGCGCGGAACCGCGCGGTGCTGTTCGAGGCGCAGGCGCGGGTGCGTCGCTACGAGCCGCTGGTGAAGATCCAGGCGGTCAGCCAGCAGGACTTCGATACCGCCACCGCCGACCTGCGCAGCGCCGAGGCGGCGACCCGCTCGGCCCAGGCCGACCTGGAGACCGCGCGCCTGAACCTCGGCTACGCCTCGGTCACTGCGCCGATCTCCGGGCGCATCGGCCGCGCGCTGGTGACCGAGGGCGCGCTGGTCGGGCAGGGCGAGGCGACGCTGATGGCGCGCATCCAGCAGCTCGATCCGATCTATGCGGATTTCACCCAGACCGCGGCCGAGGCCCTGCGCCTGCGCGACGCCCTGAAGAAAGGCACCTTGGCCGCCGGCGACAGCCAGGCGCTGACCCTGCGCGTCGAAGGGACGCCCTACGAGCGCCAGGGCGCGTTGCAGTTCGCCGACGTGGCGGTGGATCGCGGCACCGGCCAGATCGCCCTGCGCGGCAAGTTCGCCAACCCCGACGGGGTCCTGCTGCCGGGCATGTACGTGCGCGTACGTACGCCCCAGGGCATCGACAACCAGGCGATCCTGGTGCCGCAACGGGCCGTGCACCGCTCCAGCGACGGCAGCGCCCAGGTGATGGTGGTGGGCGCCGACGAGCGCGCCGAGTCGCGCAGCGTCGGTACCGGCGTCATGCAGGGTTCGCGCTGGCAGATCACCGAGGGCCTGGAGCCGGGTGACCGGGTCATAGTCGGCGGCCTGGCTGCGGTGCAGCCGGGGGTGAAGATCGTGCCGAAGCCGGATGGTGCCCAGGCGCAAGCCCAGTCACCTGCGCCGCAACAGTAA"}}}}}}}}}}, "804": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"473": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAGAAAATAATTAATATAGGAATCGTAGCACACGTGGATGCAGGAAAAACAACTATAACAGAAAACTTATTATATTATAGTGGAGCTATAAAATCAGTTGGAAGAGTTGATTTAGGCAATACACAGACGGATTCTATGGAGCTTGAGCGTAAGAGAGGAATTACCATTAAATCGTCAACCATATCTTTTAATTGGAATAATGTTAAGGTGAATATTATTGATACTCCAGGACATGTGGATTTTATTTCGGAAGTTGAACGTTCATTAAATAGCTTAGATGGAGCAATACTAGTTATATCAGGAGTAGAGGGGATTCAGTCACAAACAAGAATATTATTTGACACATTAAAGGAGTTAAATATTCCAACAATAATTTTTGTAAATAAGCTAGATAGAATTGGGGCAAATTTCAACAAAGTATTTGAAGAAATAAAGAAGAATATGTCCAATAAAGTAGTTAGATTACAAGAAGTATATGATGTAGGAAGCAAAGCTGTTTATATAAAAAAACTATTTGATACATGCATAATAAATGATGATGCTATTAATGTTTTATCAGACTTAGACGAAGCATTTTTAGAAAGATATATTGGTGGAATAGAACCTGATAAAGAAGAAATACAAGAAAAGCTTTCATTATATGCAAGAGAAGGAAGTCTATATCCAGTATTTTGTGGTGCTGCAGCAATTGGACTTGGAATTGAAGATTTATTAGATGGAATTTGTAGTTATTTTCCATTTGCAAGTAATGATTGTGAAAGTGATTTATCTGGGGTAGTATTTAAAATCGAAAGAACAAGTAAAAATGAAAAGAAGGTTTATGTAAGATTATTTGGAGGAAAAATATCTGTAAGAGATAAAATTCAAGTACCTAATAAGGAGATAGCAGAAAAAGTAAAGAAAATTAATAGGTTAGAAAATGGGGGAGTTGTTGAAGCACAGAGGATAGAAGCAGGGGATATAGGTATTTTATATGGACTTACAAGTTTCCAAGTGGGAGATGTTATTGGAATTTCAAATGATAAAATTAAAAATATATCTATAGCTAAACCAGCATTAAAAACAACAATTTCTGCAATTGATAAAGAAAAAAATCCAGAGCTATTTAAAGCATTAACATTACTTGCAGAGGAAGATCCACTACTCGCCTTCGCGATGAATGACATAGATAAAGAAATTTATGTCAACTTATTCGGTGAAGTTCAAATGGAAATACTAAGTTCCATGTTAGATGATTTATATGGAATAAAAGTAGAGTTTTCGAATATTGAGACTATCTATAAGGAAACACCTAAAGGTTTTGGAGCGTCAATAATGCATATGCAGGAAGACTTAAATCCATTTTGGGCGACAGTAGGCTTAGAAATAGAACCAGCAGGGAGAGGCGAAGGTCTTAGGTATATTTCTAATGTTTCAGTAGGGTCATTGCCAAAATCTTTTCAAAATGCAATTGAAGAAGCAGTTATTAAGACAAGTAAACAAGGATTATTTGGATGGGAGGTTACAGATGTAAAAGTCACTCTTAGCTGTGGTGAATTTTTTAGTCCAGCCAGCACTCCAGCAGATTTTAGAAATGTGACACCTATGGTATTCATGGAAGCATTATATAAAGCACAAACTGTTTTATTAGAGCCATTACATGAGTTTGAGTTAAAGATTCCTCAAAATGCTTTAAGCAAAGCGGTATGGGATTTAGAAACTATGAGGGCAACCTTTGATAATCCTATTGTTATAGGGGATGAATTCTCAATAAAGGGATTAATTCCAGTAGAAAATTCAAAAGAATATAAAATGAAAATAGCTTCATATACAGAAGGTAGAGGAATGTTTGTGACAAAATTTTATGGGTATAAGGAAGCTTCAGCTGAATTTTCAAAAGCACGCAAAAAAACAACGTATGATCCATTGAATAAAAAAGAGTATTTGCTTCATAAACTAAACGCAATTAGAGATTAA"}}}}}}}}}}, "2848": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4477": {"dna_sequence": {"fmax": "7433", "fmin": "5807", "accession": "MF543359.1", "strand": "-", "sequence": "GTGATTTCTAGATTTAAGACGTTATCGGTTAACCAATTCACTTTCATCACTGCGTTGTTTTATGTTGCCATTTTCAATCTACCGCTCTTTGGTATAGTGCGAAAAGGAATTGAAAAACAACCAGAAGTTGATCCCCTTTTCATCGCATCTATGCCGCTATTTTTAACATTTGCGCTGAGTTTTTTGTTTTCAATTTTTACCGTCAAATACCTGCTGAAGCCCTTTTTTATCGTATTGACGTTACTTTCCTCAAGTGTATTTTTTGCAGCCTATCAATACAATGTCGTGTTTGACTACGGCATGATAGAAAACACGTTTCAAACACATCCTGCTGAAGCATTGATGTATGTAAATCTTGCATCAATTACCAATCTACTGCTGACTGGGCTATTACCGTCATATCTTATTTATAAGGCCGATATTCATTATCAGCCCTTTTTTAAGGAGTTATTGCATAAATTAGCCTTTATGCTGCTAATGTTCGTTGGCATTGGGATAGTCGCCTTTTTTTACTATCAAGATTATGCTGCATTTGTTCGAAACAACAGTGAGTTAAGGCGTTACATTGTCCCTACCTATTTTGTCAGTAGTGCATCTAAATATCTCAATGAGCACTATTTGCAGACGCCCATGGAATACCAACAACTTGGCCTAGATGCGAAGAATGCCAGTCGTAACCCGAACACTAAACCTAACTTATTAGTGGTTGTTGTGGGTGAAACTGCGCGCTCAATGAGCTATCAATATTATGGATATAACAAGCCAACCAATGCTCATACCCAAAATCAGGGGCTGATTGCGTTTAACGATACTAGCTCATGCGGCACGGCCACGGCGGTGTCTCTACCCTGTATGTTTTCACGAATGGGGCGGGCAGACTATGATCCTCGCCGTGCTAATGCTCAAGACACAGTGATTGATGTGTTAAGTCATAGTGGTATAAAAGTACAGTGGTTTGATAATGATTCTGGCTGTAAAGGTGTGTGTGATCAGGTTGAAAATCTCACGATAGATTTGAAGAGTGATCCGAAGCTGTGTTCTGGCCAATATTGTTTTGACCAAGTATTGCTCAACAAATTAGATAAAATTCTGGCAGTAGCACCAAGTCAAGATACAGTAATTTTTTTGCATATCATTGGTAGTCATGGACCAACTTATTATCTTAGATACCCGCCAGAGCATCGTAAATTTATACCGGATTGTCCGCGCAGTGATATTCAAAATTGCAGTCAAGAAGAACTGATTAACACCTACGACAACACTATTCTATATACGGATTTTATTCTCAGTGAAGTGGTGAATAAATTAAAAGGTAAGCAGGATATGTTCGATACTGCAATGCTGTATCTCTCTGACCATGGTGAGTCTTTGGGTGAAAAGGGCATGTATTTACATGGTGCGCCCTATAGTATTGCACCGAAAGAACAAACTAGCGTACCAATGCTGGCTTGGGTATCTAATGACTTTAGCCAAGATAATCAGTTGAACATGACTTGTGTTGCACAGCGAGCAGAACAGGGCGGCTTTTCCCACGACAATTTGTTCGACAGTTTGCTAGGACTTATGAATGTAAAAACCACCGTCTATCAGAGCCAACTCGATATTTTTGCACCTTGCAGGTATTAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Salmonella sp.", "NCBI_taxonomy_id": "599", "NCBI_taxonomy_cvterm_id": "41493"}, "protein_sequence": {"accession": "ASR73329.1", "sequence": "MISRFKTLSVNQFTFITALFYVAIFNLPLFGIVRKGIEKQPEVDPLFIASMPLFLTFALSFLFSIFTVKYLLKPFFIVLTLLSSSVFFAAYQYNVVFDYGMIENTFQTHPAEALMYVNLASITNLLLTGLLPSYLIYKADIHYQPFFKELLHKLAFMLLMFVGIGIVAFFYYQDYAAFVRNNSELRRYIVPTYFVSSASKYLNEHYLQTPMEYQQLGLDAKNASRNPNTKPNLLVVVVGETARSMSYQYYGYNKPTNAHTQNQGLIAFNDTSSCGTATAVSLPCMFSRMGRADYDPRRANAQDTVIDVLSHSGIKVQWFDNDSGCKGVCDQVENLTIDLKSDPKLCSGQYCFDQVLLNKLDKILAVAPSQDTVIFLHIIGSHGPTYYLRYPPEHRKFIPDCPRSDIQNCSQEELINTYDNTILYTDFILSEVVNKLKGKQDMFDTAMLYLSDHGESLGEKGMYLHGAPYSIAPKEQTSVPMLAWVSNDFSQDNQLNMTCVAQRAEQGGFSHDNLFDSLLGLMNVKTTVYQSQLDIFAPCRY"}}}}}}}, "2849": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2846": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_category": {"$insert": {"41459": {"category_aro_name": "BUT beta-lactamase", "category_aro_cvterm_id": "41459", "category_aro_accession": "3004293", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A class C beta-lactamase family of chromosome-encoded antibiotic resistance genes originally described from Buttiauxella spp."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}}, "2844": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2845": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2842": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2843": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4478": {"dna_sequence": {"fmax": "4378944", "fmin": "4377810", "accession": "NC_000913.3", "strand": "-", "sequence": "ATGTTCAAAACGACGCTCTGCGCCTTATTAATTACCGCCTCTTGCTCCACATTTGCTGCCCCTCAACAAATCAACGATATTGTGCATCGCACAATTACCCCGCTTATAGAGCAACAAAAGATCCCGGGTATGGCGGTGGCGGTAATTTATCAGGGTAAACCTTATTACTTTACCTGGGGCTATGCGGACATCGCCAAAAAGCAGCCCGTCACACAGCAAACGTTGTTTGAGTTAGGTTCGGTCAGCAAAACATTTACTGGCGTGCTTGGTGGCGACGCTATTGCTCGAGGGGAAATCAAGTTAAGCGATCCCACAACAAAATACTGGCCTGAACTTACCGCTAAACAGTGGAATGGGATCACACTATTACATCTCGCAACCTACACTGCTGGCGGCCTGCCATTGCAGGTGCCGGATGAGGTGAAATCCTCAAGCGACTTGCTGCGCTTCTATCAAAACTGGCAGCCTGCATGGGCTCCAGGAACACAACGTCTGTATGCCAACTCCAGTATCGGTTTGTTCGGCGCACTGGCTGTGAAGCCGTCTGGTTTGAGTTTTGAGCAGGCGATGCAAACTCGTGTCTTCCAGCCACTCAAACTCAACCATACGTGGATTAATGTACCGCCCGCAGAAGAAAAGAATTACGCCTGGGGATATCGCGAAGGTAAGGCAGTGCATGTTTCGCCTGGGGCGTTAGATGCTGAAGCTTATGGTGTGAAGTCGACCATTGAAGATATGGCCCGCTGGGTGCAAAGCAATTTAAAACCCCTTGATATCAATGAGAAAACGCTTCAACAAGGGATACAACTGGCACAATCTCGCTACTGGCAAACCGGCGATATGTATCAGGGCCTGGGCTGGGAAATGCTGGACTGGCCGGTAAATCCTGACAGCATCATTAACGGCAGTGACAATAAAATTGCACTGGCAGCACGCCCCGTAAAAGCGATTACGCCCCCAACTCCTGCAGTACGCGCATCATGGGTACATAAAACAGGGGCGACCGGCGGATTTGGTAGCTATGTCGCGTTTATTCCAGAAAAAGAGCTGGGTATCGTGATGCTGGCAAACAAAAACTATCCCAATCCAGCGAGAGTCGACGCCGCCTGGCAGATTCTTAACGCTCTACAGTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli str. K-12 substr. MG1655", "NCBI_taxonomy_id": "511145", "NCBI_taxonomy_cvterm_id": "36849"}, "protein_sequence": {"accession": "NP_418574.1", "sequence": "MFKTTLCALLITASCSTFAAPQQINDIVHRTITPLIEQQKIPGMAVAVIYQGKPYYFTWGYADIAKKQPVTQQTLFELGSVSKTFTGVLGGDAIARGEIKLSDPTTKYWPELTAKQWNGITLLHLATYTAGGLPLQVPDEVKSSSDLLRFYQNWQPAWAPGTQRLYANSSIGLFGALAVKPSGLSFEQAMQTRVFQPLKLNHTWINVPPAEEKNYAWGYREGKAVHVSPGALDAEAYGVKSTIEDMARWVQSNLKPLDINEKTLQQGIQLAQSRYWQTGDMYQGLGWEMLDWPVNPDSIINGSDNKIALAARPVKAITPPTPAVRASWVHKTGATGGFGSYVAFIPEKELGIVMLANKNYPNPARVDAAWQILNALQ"}}}}}}}, "2840": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2841": {"$update": {"ARO_category": {"$insert": {"37021": {"category_aro_name": "virginiamycin S2", "category_aro_cvterm_id": "37021", "category_aro_accession": "3000677", "category_aro_class_name": "Antibiotic", "category_aro_description": "Virginiamycin S2 is a streptogramin B antibiotic."}, "37023": {"category_aro_name": "vernamycin C", "category_aro_cvterm_id": "37023", "category_aro_accession": "3000679", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin C is a streptogramin B antibiotic."}, "37026": {"category_aro_name": "ostreogrycin B3", "category_aro_cvterm_id": "37026", "category_aro_accession": "3000682", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid."}}}}}, "1775": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1774": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1777": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1776": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1771": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1770": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1773": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4680": {"dna_sequence": {"fmax": "1619", "fmin": "59", "accession": "GQ244501.1", "strand": "-", "sequence": "ATGCCCCCATCTCACCACATGTTGCGCCCAATCGAACAATGTTCTATTCTATGGAACGACGTTCGATACTCGAACAGCGTTCGACTGAAGGAGGCCGGTATGACCGCCACAACTCAAGCCTCGGCACCCGCGGCACGTACCTATCTGTCGCTGCGCGCCGCGTGGATTCCGCTCTTCGCGCTCTGCCTCGCGTTCTTCGTGGAGATGGTTGACAACACCCTGCTCACGATCGCGCTGCCGACGATCGGGCGCGACCTCGGCGCGAGCGTCACCTCCTTGCAGTGGGTGACCGGCGCCTATTCGCTGACCTTTGGCGGCCTGTTGCTGACAGCGGGCTCGCTCGCCGACCGCTTTGGCCGGCGCCGCGTGCTGCAGATTGGCCTTCTCGCCTTTGGGCTCATCAGCCTCACGGTGATTGCCGTGGCAACCGCGGGCCAGCTGATCGCGGTGCGCGCTGCGCTCGGCCTCGCCGCCGCCGCGATGGCCCCAATCACCAACTCCCTCGTGTTCAGGCTGTTCGAGGGCGAGGACCTCCGTCGGCGGGCAATGACCCTCATGATCGTCGTCGGCATGAGCGGATTCATCCTTGGCCCGCTACTCGGCGGAACGGTTCTCGCTCACGCCAGCTGGCAGTGGTTGCTGCTTATCAACGCACCCATCGCGCTCATTGCGCTCATCGGCGTTCGCCTTGGCGTGCCTGCGGACGACGCCGAGGGACTCACAAAGGACCGCCTTGACGTGAAGGGCTCGGCACTCAGCATCGCCGCGATCGGCCTCGCTTGCTACACACTCACGAGCGGAGTGGAGCACGGCTGGATGTCTGCCGTCACCTGGGCCTGCGGGATCGGCGCGGCTGCCGCGCTGATGGGATTCGTGTGGCACGAGCGCCGCACCGATCACCCCATGCTGGACCTCGACGTCTTCAGGAACCGCACCGTTCGCGGCGCATCGATCGCCCAGGTAGGCACCTCAATCGCGATGGCTTCGCTGATGTTCGGCCTGATCCTTCACTTCCAGGGCGCGTACGGCTGGAGCCCCATGCGCGCCGGCCTCGCCAACCTGCCGCTCATCCTCACGATGATTCTTGCGACACCGGTCTCTGAGGGCCTCGCGAAGAGGTTCGGCCACCGCATTGCCATGCTCATCGGCGCGGGTCTCCTCGCCGGATCGCTCGCTGGCCTCGCGTGGGGCGTGGGGCATGGSTACCTCGTCATCGCGGTATTCATGGTGACCTTCACCCTCGGTCTCCGCACCGTTATGACGATCGCGGCGGTGGGCCTCGTTGGTGCGATGCCGGAGAACCGCACCTCGCTCGGCGCGGCACTCAACGACACCGCCCAAGAAGTAGGAACAAGCCTCGGCATGGCAGTGATCGGCACGCTCATCGCGGTGCTCGYCACCACGACGCTTCCCAACGGCGACKGGAGCCTCGACCTCGCGACTTCATACTTCGCCGGGGAGCGCATCGCTTATCTGTTCCTTGCCGTCGTAGTCGGAGTGATCGCGGGATGGGGCGCGCTCACGTTGTCCAACTCCAAGGAGATGGAAGACGTCCACTAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "uncultured bacterium AOTet43", "NCBI_taxonomy_id": "654983", "NCBI_taxonomy_cvterm_id": "37082"}, "protein_sequence": {"accession": "ACS83748.1", "sequence": "MPPSHHMLRPIEQCSILWNDVRYSNSVRLKEAGMTATTQASAPAARTYLSLRAAWIPLFALCLAFFVEMVDNTLLTIALPTIGRDLGASVTSLQWVTGAYSLTFGGLLLTAGSLADRFGRRRVLQIGLLAFGLISLTVIAVATAGQLIAVRAALGLAAAAMAPITNSLVFRLFEGEDLRRRAMTLMIVVGMSGFILGPLLGGTVLAHASWQWLLLINAPIALIALIGVRLGVPADDAEGLTKDRLDVKGSALSIAAIGLACYTLTSGVEHGWMSAVTWACGIGAAAALMGFVWHERRTDHPMLDLDVFRNRTVRGASIAQVGTSIAMASLMFGLILHFQGAYGWSPMRAGLANLPLILTMILATPVSEGLAKRFGHRIAMLIGAGLLAGSLAGLAWGVGHGYLVIAVFMVTFTLGLRTVMTIAAVGLVGAMPENRTSLGAALNDTAQEVGTSLGMAVIGTLIAVLXTTTLPNGDXSLDLATSYFAGERIAYLFLAVVVGVIAGWGALTLSNSKEMEDVH"}}}}}}}, "1772": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"13": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGTAACGCAGTACCCGCCGAGATTTCGGTACAGCTATCACTGGCTCTCAACGCCATCGAGCGTCATCTGGAATCAACGTTGCTGGCCGTGCATTTGTACGGCTCTGCACTGGACGGTGGCCTGAAGCCATACAGTGATATTGATTTGCTGGTTACTGTGGCTGCACAGCTCGATGAGACTGTCCGACAAGCCCTGGTCGTAGATCTCTTGGAAATTTCTGCCTCCCCTGGCCAAAGTGAGGCTCTCCGCGCCTTGGAAGTTACCATCGTCGTGCATGGTGATGTTGTCCCTTGGCGTTATCCGGCCAGACGGGAACTGCAATTCGGGGAGTGGCAGCGTAAGGACATTCTTGCGGGCATCTTCGAGCCCGCCACAACCGATGTTGATCTGGCTATTCTGCTAACTAAAGTAAGGCAGCATAGCCTTGCATTGGCAGGTTCGGCCGCAGAGGATTTCTTTAACCCAGTTCCGGAAGGCGATCTATTCAAGGCATTGAGCGACACTCTGAAACTATGGAATTCGCAGCCGGATTGGGAAGGCGATGAGCGGAATGTAGTGCTTACCTTGTCTCGCATTTGGTACAGCGCAGCAACCGGCAAGATCGCACCGAAGGATATCGTTGCCAACTGGGCAATTGAGCGTCTGCCAGATCAACATAAGCCCGTACTGCTTGAAGCCCGGCAGGCTTATCTTGGACAAGGAGAAGATTGCTTGGCCTCACGCGCGGATCAGTTGGCGGCGTTCGTTCACTTCGTGAAACATGAAGCCACTAAATTGCTTGGTGCCATGCCAGTGATGTCTAACAATTCATTCAAGCCGAACCCGCTTCGCGGGTCGGCTTAA"}}}}}}}}}}, "1779": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1008": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAGCCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCGGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTCGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAGTCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTGGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCAGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGACTATGGCACCACCAACGATATCGCGGTGATTTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATATATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA"}}}}}}}}}}, "1778": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1159": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1158": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1155": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"819": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAGACAAAATCCCTTTGCTGTGCCCTGCTGCTCAGCACCTCCTGCTCTGTTCTCGCCGCGCCGATGTCAGAGAAACAGCTGTCTGACGTGGTGGAACGTACCGTTACCCCCCTGATGAAAGCGCAAGCCATTCCGGGCATGGCGGTGGCGGTGATTTATCAGGGTCAGCCGCACTACTTTACCTTCGGAAAGGCCGATGTTACGGCGAACAAACCTGTCACCCCGCAAACCCTGTTTGAGCTGGGCTCTATAAGTAAAACCTTCACCGGCGTATTAGGTGGCGATGCGATTGCGCGCGGAGAAATATCGCTGGGCGACCCCGTGACAAAGTACTGGCCCGAGCTAACAGGCAAGCAGTGGCAGGGTATTCGCATGTTGGATCTGGCGACCTACACCGCGGGTGGCCTGCCGCTACAGGTGCCGGATGAGGTCACGGATAACACCTCCCTGCTGCGTTTCTATCAACACTGGCAACCGCAGTGGAAACCAGGCACAACGCGTCTTTATGCGAACGCCAGCATCGGGCTTTTTGGCGCCCTCGCGGTTAAACCCTCCGGTATGAACTTTGAACAGGCCATGACGAAGCGGGTCTTCAAGCCACTCAAACTGGACCATACATGGATTAACGTTCCGAAAGAAGAAGAGGCGCATTACGCCTGGGGATACCGTGATGGTAAAGCAATCCACGTTTCACCGGGAATGCTGGATGCCGAAGCGTATGGTGTCAAAACCAACATCCAGGATATGGCGAGCTGGCTGAAGGCCAACATGAACCCTGACGCCCTTTCGGATTCAACGTTGAAACAGGGTATTGCCCTGGCACAGTCTCGCTACTGGCGCGTGGGTGCCATGTATCAGGGTCTGGGCTGGGAGATGCTCAACTGGCCGGTAGAAGCCAAAACCGTCGTGGAGGGCAGCGATAACAAGGTGGCTCTTGCACCGTTACTGGTGGCAGAAGTGAACCCTCCAGCTCCGCCAGTAAAAGCATCATGGGTACATAAAACAGGCTCGACGGGTGGATTCGGCAGCTATGTCGCATTTATTCCTGAAAAGGAACTCGGCATTGTTATGCTGGCGAACAAGAGCTACCCGAACCCGGCGCGCGTGGAAGCGGCATACCGTATTTTGAGCGCTCTGTAG"}}}}}}}}}}, "1154": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1157": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"300": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCAAAATAAAAAAATAGCAGTTATTTTTGGAGGCAATTCAACAGAGTACGAGGTGTCATTGCAATCGGCATCCGCTGTTTTTGAAAATATCAATACCAATAAATTTGACATAATTCCAATAGGAATTACAAGAAGTGGTGAATGGTATCACTATACGGGAGAAAAGGAGAAAATCCTAAACAATACTTGGTTTGAAGATAGCAAAAATCTATGCCCTGTTGTCGTTTCCCAAAATCGTTCCGTTAAAGGCTTTTTAGAAATTGCTTCAGACAAATACCGTATTATAAAAGTTGATTTGGTATTCCCCGTATTGCATGGCAAAAACGGCGAAGATGGTACTTTGCAGGGCATATTTGAATTGGCAGGAATACCTGTTGTTGGCTGCGATACACTCTCATCAGCTCTTTGTATGGATAAGGACAGGGCACATAAACTCGTTAGCCTTGCGGGTATATCTGTTCCTAAATCGGTAACATTCAAACGCTTTAACGAAGAAGCAGCGATGAAAGAGATTGAAGCGAATTTAACTTATCCGCTGTTTATTAAACCTGTTCGTGCAGGCTCTTCCTTTGGAATAACAAAAGTAATTGAAAAGCAAGAGCTTGATGCTGCCATAGAGTTGGCATTTGAACACGATACAGAAGTCATCGTTGAAGAAACAATAAACGGCTTTGAAGTCGGTTGTGCCGTACTTGGCATAGATGAGCTCATTGTTGGCAGAGTTGATGAAATCGAACTGTCAAGCGGCTTTTTTGATTATACAGAGAAATATACGCTTAAATCTTCAAAGATATATATGCCTGCAAGGATTGATGCCGAAGCAGAAAAACGGATACAAGAAGCGGCTGTAACCATATATAAAGCTCTGGGCTGTTCGGGTTTTTCCAGAGTGGATATGTTTTATACACCGTCTGGCGAAATTGTATTTAATGAGGTAAACACAATACCAGGCTTTACCTCGCACAGTCGCTATCCAAATATGATGAAAGGCATTGGTCTATCGTTCTCCCAAATGTTGGATAAGCTGATAGGTCTGTATGTGGAATGA"}}}}}}}}}}, "1156": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"249": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGCATTTTCCCCGCAGGGCGGCCGACACGAGCTCGGTCAGAACTTCCTCGTCGACCGGTCAGTGATCGACGAGATCGACGGCCTGGTGGCCAGGACCAAGGGTCCGATACTGGAGATCGGTCCGGGTGACGGCGCCCTGACCCTGCCGCTGAGCAGGCACGGCAGGCCGATCACCGCCGTCGAGCTCGACGGCCGGCGCGCGCAGCGCCTCGGTGCCCGCACCCCCGGTCATGTGACCGTGGTGCACCACGACTTCCTGCAGTACCCGCTGCCGCGCAACCCGCATGTGGTCGTCGGCAACGTCCCCTTCCATCTGACGACGGCGATCATGCGGCGGCTGCTCGACGCCCAGCACTGGCACACCGCCGTCCTCCTCGTCCAGTGGGAGGTCGCCCGGCGCCGGGCCGGCGTCGGCGGGTCGACGCTGCTGACGGCCGGCTGGGCGCCCTGGTACGAGTTCGACCTGCACTCCCGGGTCCCCGCGCGGGCCTTCCGTCCGATGCCGGGCGTGGACGGAGGAGTACTGGCCATCCGGCGGCGGTCCGCGCCGCTCGTGGGCCAGGTGAAGACGTACCAGGACTTCGTACGCCAGGTGTTCACCGGCAAGGGGAACGGGCTGAAGGAGATCCTGCGGCGGACCGGGCGGATCTCGCAGCGGGACCTGGCGACCTGGCTGCGGAGGAACGAGATCTCGCCGCACGCGCTGCCCAAGGACCTGAAGCCCGGGCAGTGGGCGTCGCTGTGGGAGCTGACCGGCGGCACGGCCGACGGATCCTTCGACGGTACGGCGGGCGGTGGCGCGGCCGGATCGCACGGGGCGGCTCGGGTCGGGGCCGGTCACCCGGGCGGCCGGGTGTCCGCGAGCCGGCGGGGCGTGCCGCAGGCGCGGCGCGGCCGGGGGCATGCGGTACGGAGCTCCACGGGGACCGAGCCGAGGTGGGGCAGGGGGCGGGCGGAGAGCGCGTGA"}}}}}}}}, "ARO_category": {"$insert": {"37021": {"category_aro_name": "virginiamycin S2", "category_aro_cvterm_id": "37021", "category_aro_accession": "3000677", "category_aro_class_name": "Antibiotic", "category_aro_description": "Virginiamycin S2 is a streptogramin B antibiotic."}, "37023": {"category_aro_name": "vernamycin C", "category_aro_cvterm_id": "37023", "category_aro_accession": "3000679", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin C is a streptogramin B antibiotic."}, "37026": {"category_aro_name": "ostreogrycin B3", "category_aro_cvterm_id": "37026", "category_aro_accession": "3000682", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid."}}}}}, "1151": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1150": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1153": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1192": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGTCACTGTATCGCCGTCTAGTTCTGCTGTCTTGTCTCTCATGGCCGCTGGCTGGCTTTTCTGCCACCGCGCTGACCAACCTCGTCGCGGAACCATTCGCTAAACTCGAACAGGACTTTGGCGGCTCCATCGGTGTGTACGCGATGGATACCGGCTCAGGCGCAACTGTAAGTTACCGCGCTGAGGAGCGCTTCCCACTGTGCAGCTCATTCAAGGGCTTTCTTGCTGCCGCTGTGCTGGCTCGCAGCCAGCAGCAGGCCGGCTTGCTGGACACACCCATCCGTTACGGCAAAAATGCGCTGGTTCCGTGGTCACCCATCTCGGAAAAATATCTGACAACAGGCATGACGGTGGCGGAGCTGTCCGCGGCCGCCGTGCAATACAGTGATAACGCCGCCGCCAATTTGTTGCTGAAGGAGTTGGGCGGCCCGGCCGGGCTGACGGCCTTCATGCGCTCTATCGGCGATACCACGTTCCGTCTGGACCGCTGGGAGCTGGAGCTGAACTCCGCCATCCCAGGCGATGCGCGCGATACCTCATCGCCGCGCGCCGTGACGGAAAGCTTACAAAAACTGACACTGGGCTCTGCACTGGCTGCGCCGCAGCGGCAGCAGTTTGTTGATTGGCTAAAGGGAAACACGACCGGCAACCACCGCATCCGCGCGGCGGTGCCGGCAGACTGGGCAGTCGGAGACAAAACCGGAACCTGCGGAGTGTATGGCACGGCAAATGACTATGCCGTCGTCTGGCCCACTGGGCGCGCACCTATTGTGTTGGCCGTCTACACCCGGGCGCCTAACAAGGATGACAAGTACAGCGAGGCCGTCATCGCCGCTGCGGCTAGACTCGCGCTCGAGGGATTGGGCGTCAACGGGCAGTAA"}}}}}}}}}}, "1152": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1555": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1554": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"268": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAAAACAATTATTCATTCTTTATTTTAATATATTTCTTATATTTTTAGGGATTGGATTAGTTATTCCTGTACTTCCTGTATATTTGAAGGATTTAGGATTAAAAGGTAGTGACTTAGGAATGCTAGTTGCTGCTTTTGCATTATCACAAATGATTATTTCACCATTTGGTGGGACACTAGCTGATAAATTGGGTAAAAAATTAATTATATGTATCGGTTTAGTATTCTTTGCTGTCTCTGAATTTATGTTCGCAGCCGGTCAAAGTTTTACCATTTTAATCATTTCACGTGTTTTAGGTGGCTTTAGTGCAGGCATGGTCATGCCTGGTGTAACAGGTATGATTGCAGATATTTCTCCAGGAGCTGATAAAGCTAAAAACTTTGGTTACATGTCGGCAATTATTAATTCAGGTTTTATATTAGGACCTGGATTTGGAGGCTTTTTAGCTGAAATTTCACATAGATTACCTTTCTATGTTGCTGGAACATTAGGTGTTGTTGCATTCATTATGTCAGTTTTATTAATTCATAATCCTCAAAAAGCAACTACAGATGGATTCCACCAATATCAACCTGAATTATTCACTAAAATTAATTGGAAAGTATTTATTACTCCAGTCATATTAACACTTGTATTAGCATTTGGTTTATCTGCTTTTGAAACATTATTTTCTTTATATACAGCTGACAAAGTAAATTATACTCCTAAAGATATTTCGATAGCTATTATCGGTGGAGGCGTGTTTGGCGCATTATTCCAAGTATTCTTCTTTGATAAATTTATGAAATATATGAGTGAACTTAATTTTATTGCATGGTCATTACTATATTCAGCCATTGTTCTCGTTATGTTAGTGCTTGCAAACGGTTATTGGACGATTATGATTATTAGCTTTGTTGTTTTTATAGGTTTTGATATGATTAGACCAGCTTTAACCAATTACTTCTCGAATATAGCAGGCAAACGGCAAGGTTTTGCAGGTGGATTGAATTCAACTTTTACCAGTATGGGTAACTTTATAGGTCCTCTTGTAGCTGGTGCATTATTCGATGTTAATTTAGAGTTTCCTTTATATATGGCTATTGCGGTTTCATTAAGTGGAATTATCATTATTTTTATTGAAAAAGGACTTAAGTCACGCCGTAAAGAAGCAAATTAA"}}}}}}}}}}, "1551": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1550": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4694": {"dna_sequence": {"fmax": "1041", "fmin": "351", "accession": "AF173226.1", "strand": "-", "sequence": "ATGAGCACGTCGCCCGCCACGTCCACGAAGATCCTGATCGTCGAGGACGAGCCACGCCTGGCCTCGGTACTGCGCGACTACCTGGCCGCCGCCGGCATGGCCAGCGAGTGGGTGGACGACGGTGGCCAGGTGATCGACGCATTCGCGCGCTACCAGCCCGACCTGGTGCTGCTGGACCTGATGCTGCCGCAGCGCGACGGCGTGGACCTGTGCCGCGAACTGCGTGCCAGCAGCGATGTACCGGTCATCATGGTCACCGCACGGGTGGAAGAGATCGACCGCCTGCTGGGCCTGGAGATCGGCGCCGACGACTACATCTGCAAGCCGTTCAGTCCGCGCGAAGTGGTCGCGCGGGTAATGGCGGTGCTGCGCCGCTACCGCCCGGACCCGGGTGCGCGCGCCAACGGTGGCCTGCACATCGACGAGCCGGCCGCACGCGCCACCTGGAACGGCAAGGGCCTGGACCTGACGCCGGTGGAGTACCGCCTGCTGCGCACGCTGCTGGCCACCCCAGGCCGGATCTGGGCGCGCGATGAACTGCTCGACCGGCTGTACCTGGACCATCGCGTGGTGGTCGACCGCACCGTCGACAGCCATGTGCGCAACCTGCGCCGCAAGCTGGCCGACGCCGGCATGGAAGGCGAGCCGATCCGTTCGGTGTACGGCATGGGCTACAGCTACGAGCCCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Stenotrophomonas maltophilia", "NCBI_taxonomy_id": "40324", "NCBI_taxonomy_cvterm_id": "37076"}, "protein_sequence": {"accession": "AAD51348.1", "sequence": "MSTSPATSTKILIVEDEPRLASVLRDYLAAAGMASEWVDDGGQVIDAFARYQPDLVLLDLMLPQRDGVDLCRELRASSDVPVIMVTARVEEIDRLLGLEIGADDYICKPFSPREVVARVMAVLRRYRPDPGARANGGLHIDEPAARATWNGKGLDLTPVEYRLLRTLLATPGRIWARDELLDRLYLDHRVVVDRTVDSHVRNLRRKLADAGMEGEPIRSVYGMGYSYEP"}}}}}}}, "1553": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1552": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1597": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCACAGAATACTTAGTGTCATAACGATGTTAATCTGTACTACATTAGTACACGCTCAATCTGACAAACTAAAAATCAAACAACTCAATGATAATATGTATATATACACTACTTATCAAGAGTTTCAAGGAGTAACATACTCTTCTAATTCGATGTACGTACTGACAGACGAAGGCGTTATTCTAATAGACACACCTTGGGATAAAGATCAGTACGAACCTCTATTAGAGTACATCAGATCGAATCATAACAAAGAGGTTAAATGGGTCATCACTACCCACTTCCACGAAGATCGTTCTGGTGGATTAGGTTACTTTAACAGTATAGGAGCACAGACGTATACCTATGCATTGACCAATGAAATATTAAAAGAACGCAATGAACCACAAGCTCAACATTCTTTTAATAAAGAAAAACAGTTTACCTTTGGCAATGAGAAGTTGGCTGTATACTTTTTAGGAGAAGGACATTCACTAGATAATACCGTAGTCTGGTTTCCAAAAGAAGAAGTATTATACGGAGGATGCCTGATTAAGAGTGCCGAAGCTACCACTATAGGTAATATAGCCGATGGTAACGTGATAGCTTGGCCTAAGACTATCGAAGCCGTAAAACAAAAATTTAAGAATGCTAAAGTCATTATACCAGGACATGATGAATGGGATATGACAGGCCATATCGAGAATACTGAGCGTATATTATCAGCATACAATCAACAACATTCAACTAAAAACGATTAA"}}}}}}}}}}, "59": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1685": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAACATTTGCCGCATATGTAATTATCGCGTGTCTTTCGAGTACGGCATTAGCTGGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTCTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATGACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCGACGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAGCAATGGGAAAGAGACTTGACCTTAAGAGGGGCAATACAAGTTTCAGCTGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATACCTTAAAAAATTTTCCTATGGCAACCAGAATATCAGTGGTGGCATTGACAAATTCTGGTTGGAAGGCCAGCTTAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATATTTAAATAAATTGTCAGCATCTAAAGAAAACCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCGGCACCTGAATATCTAGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGGTGGGTTGAGAAGGAGACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAGTAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGAAAGTGAGGGCATCATTGGTGGCTAA"}}}}}}}}}}, "58": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"147": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGACTCTGGCATTAGTTGGCGAAAAAATTGACAGAAATCGCTTCACCGGTGAGAAAGTTGAAAATAGTACATTTTTTAACTGCGATTTTTCAGGTGCCGACCTGAGCGGCACTGAATTTATCGGCTGCCAGTTCTATGATCGCGAAAGTCAGAAAGGATGCAATTTTAGTCGCGCAATGCTGAGAGATGCCATTTTCAAAAGCTGTGATTTATCAATGGCAGATTTCCGCAACGTCAGCGCATTGGGCATTGAAATTCGCCACTGCCGTGCACAAGGCGCAGATTTCCGCGGTGCAAGCTTTATGAATATGATCACCACGCGCACCTGGTTTTGCAGCGCATATATCACTAATACCAATCTAAGCTACGCCAATTTTTCGAAAGTCGTGTTGGAAAAGTGTGAGCTATGGGAAAACCGCTGGATGGGGACTCAGGTACTGGGTGCGACGTTCAGTGGTTCAGATCTCTCCGGCGGCGAGTTTTCGACTTTCGACTGGCGAGCAGCAAACTTCACACATTGCGATCTGACCAATTCGGAGTTAGGTGACTTAGATATTCGGGGTGTTGATTTACAAGGCGTTAAGTTAGACAACTACCAGGCATCGTTGCTCATGGAGCGGCTTGGCATCGCTGTGATTGGTTAG"}}}}}}}}}}, "1557": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1556": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "55": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"813": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAACATTAAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGTGCTTCAAAATCTGATGACAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCATCAAGGTCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACCACAGAAGTATTTAAATGGGATGGGGAAAAAAGGCTATTCCCAGAATGGGAAAAGAACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAGCTCATGTCTAAGGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTCTAAAAATTACTCCTCAGCAAGAGGCACAGTTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAAACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGTTTAGAACAATTAGGTATTTTATAG"}}}}}}}}}}, "54": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1160": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGGTGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA"}}}}}}}}}}, "57": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "56": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "51": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"9": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGTTCTCTCGTTGGTCGAAACCTCTCGTGCTTGCCGCCGTGACCCGCGCCTCGCTCGCCGCTGATCTCGCCGCGCTTGGCCTTGCCGCGGGCGATGCGGTCATGGTCCATGCCGCCGTCAGCAAGGTCGGCCGCCTGCTCGACGGTCCCGACACGATCATCGCCGCTCTGTCCGACGCCGGTCGGCCTGCCGGCACCATCCTCGCCTATGCCGATTGGGAAGCGCGCTACGAGGACCTCGTGGACGAGGACGGCCGCGTGCCGCAGGAATGGCGCGAGCACATCCCACCCTTCGATCCGCGGCGCTCACGCGCGATCCGCGACAATGGCGTGCTTCCGGAATTCCTGCGGACGACACCGGGTGCGTTGCGCAGCGGCAATCCCGGCGCCTCGATGGTCGGGCTCGGCGCCAGAGCGGAATGGTTCACCGCAGACCATCCCCTCGACTACGGCTATGGCGAGGGTTCGCCGCTGGCCAGGCTGGTCGAAGCCGGCGGCAAGGTGCTGATGCTCGGGGCGCCGCTCGACACGCTGACCCTGCTGCACCATGCCGAGCATCTGGCCGACATCCCCGGCAAGCGCATCCGGCGGATCGAGGTGCCGCTGGCGACGCCGACCGGCACGCAATGGCGCATGATCGAGGAATTCGATACCGGCGATCCGATCGTCGAAGGTTTGGCCGAGGACTACTTCGCCGAGATCGTGACGGCGTTCCTTGCCGGCGGCCGAGGACGGCAGGGCTTGATCGGCACCGCGCCATCCGTGCTGGTCGATGCTGCCGCAATCACGGCTTTCGGCGTCGCCTGGCTGGAATCGCGCTTCGGCTCGCCCTCATCCTGA"}}}}}}}}}}, "50": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "53": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "52": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "537": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "536": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "535": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"4567": {"dna_sequence": {"fmax": "547614", "fmin": "545199", "accession": "NC_020418.1", "strand": "-", "sequence": "ATGTCGAATACCTATGACTCCTCAAGTATCAAAGTATTAAAAGGGCTGGACGCGGTGCGTAAACGCCCGGGAATGTACATTGGTGATACCGATGACGGAACCGGTTTACACCACATGGTCTTCGAGGTTGTTGACAACGCTATCGACGAAGCCCTCGCCGGTTACTGTAAAGACATCATTGTGACCATTCACAATGATAATTCAGTCTCCGTACAGGATGACGGTCGCGGTATCCCGACCGGGATCCATGAAGAAGAAGGCGTCTCCGCCGCAGAAGTTATCATGACTGTTCTGCACGCCGGCGGGAAGTTCGATGATAACTCCTATAAAGTCTCAGGCGGCCTGCACGGCGTCGGGGTCTCTGTTGTTAACGCCCTGTCTGAAAAACTGGAACTGGTTATCCGCCGTGACGGCAAAGTTCACGAGCAGATTTACCGCCACGGTGAACCGCAGGATCGCCTGACTGTTGTCGGCGAAACCGATAAAACCGGGACACGCGTGCGTTTCTGGCCGAGCATGGACACCTTCAAAGGCGAGACTGAATTCCAGTACGACATTCTGGCAAAACGCCTGCGCGAACTCTCCTTCCTGAACTCCGGTGTATCGATCCGTCTGATCGATAAACGCGACGGCAAAGAAGATCACTTTCACTACGAAGGCGGTATCAAAGCATTCGTGGAATATTTAAGCCGCGCCAAAACTTCGATTCATAACAACGTTTTCTATTTCTCCACTGAGAAAGACGATATCGGCGTGGAAATCTCCATGCAGTGGAATGACTCCTTCCAGGAAAACGTATACTGCTTCACCAACAACATTCCGCAGCGCGACGGTGGTGCTCACCTCGCCGGTTTCCGCGCCGCCATGACCCGTACCCTCAACAGCTATATTGAGAAAGAAGGGCTGAATAAAAAATCCAAAGTCAGCACCACCGGGGACGATGCCCGTGAAGGACTGGTGGCGGTCATTTCCGTCAAAGTGCCGGATCCGAAATTCTCCTCCCAGACTAAAGACAAGCTGGTCTCTTCCGAAGTGAAAACGGCGGTTGAAACCCTGATGAACGAAAAGCTGTCTGAATATCTGGATGAAAACCCGAACGACACCAAAATCATTGTCGGCAAAATTATTGATGCCGCACGCGCCCGTGAAGCTGCACGCCGTGCCCGTGAAATGACCCGCCGTAAAGGCGCGCTGGATTTAGCCGGTCTGCCGGGTAAACTGGCGGATTGTCAGGAACGCGACCCGGCCTTCTCCGAACTGTACTTAGTGGAAGGGGACTCTGCGGGCGGCTCTGCAAAACAGGGGCGTAACCGTAAGAACCAGGCTATCCTGCCGCTGAAAGGTAAAATCCTGAACGTTGAGAAGGCGCGTTTTGATAAAATGCTGGCTTCTCAGGAAGTTGCCACCCTGATCACCGCACTCGGCTGCGGTATCGGCCGCGACGAATACAACCCGGACAAACTGCGCTATCACAGCATCATCATCATGACCGATGCCGACGTCGATGGTTCACACATCCGTACCCTGTTACTGACTTTCTTCTACCGTCAGATGCCGGAAATCATTGAGCGCGGTTATGTGTATATCGCACAGCCGCCGCTGTATAAAGTGAAAAAAGGCAAGCAGGAACAGTATATTAAAGATGACGAAGCGATGGAGCAGTATCAGGTCTCTATCGCACTGGATGGCGCGGCACTGTATGTAAACGAAAATGCAGCTCCGATTCAGGGCGAACATCTGGAAAAACTGCTGCACGAATACAACGGCGCACACAAAATTATCCGCCGTTTAGAGCGTCTCTATCCGCTGGCACTGTTAAACAGCCTGGTCTACCAGCCGAAACTGGAAGAATCCGCGCTGCTGAACAAAACCGAGGTGGAAGCCTGGGCACAGAGCCTGACAGAGCGCCTGACCCGTCATGAAGAGCACGGCAGCACCTACAGCTACCGTATTGCGGAAAACAAAGAGCGCCAGCTGTTTGAGCCGGTACTGACTATCCGTACCCACGGTGTGGATACTGACTACAATCTGGATTTCGATTTTGTTCACGGCAGCGAATATGCCCGTATCTCCAAACTGGGTGAGCTTATCCGTGGTCTGATTGAAGAAGGTGCTTATGTTGTCCGTGGTGAACGCCGTCAGAACGTCAGCAACTTTGAGCAGGCACTGGACTGGCTGATGAAAGAATCACGCCGTGGTCTGGCTGTACAGCGCTATAAAGGGCTGGGTGAAATGAACCCGGAACAGCTGTGGGAAACCACAATGAACCCGGAAACCCGCCGTATGTTGCAGGTCACGGTAAAAGATGCGATTGCAACGGATCAGTTATTCACCACACTGATGGGTGATGATGTTGAACCGCGCCGTGCCTTTATCGAAGAGAATGCCCTGAAAGCGGCAAACATCGACGTATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Morganella", "NCBI_taxonomy_id": "581", "NCBI_taxonomy_cvterm_id": "40137"}, "protein_sequence": {"accession": "WP_004236715.1", "sequence": "MSNTYDSSSIKVLKGLDAVRKRPGMYIGDTDDGTGLHHMVFEVVDNAIDEALAGYCKDIIVTIHNDNSVSVQDDGRGIPTGIHEEEGVSAAEVIMTVLHAGGKFDDNSYKVSGGLHGVGVSVVNALSEKLELVIRRDGKVHEQIYRHGEPQDRLTVVGETDKTGTRVRFWPSMDTFKGETEFQYDILAKRLRELSFLNSGVSIRLIDKRDGKEDHFHYEGGIKAFVEYLSRAKTSIHNNVFYFSTEKDDIGVEISMQWNDSFQENVYCFTNNIPQRDGGAHLAGFRAAMTRTLNSYIEKEGLNKKSKVSTTGDDAREGLVAVISVKVPDPKFSSQTKDKLVSSEVKTAVETLMNEKLSEYLDENPNDTKIIVGKIIDAARAREAARRAREMTRRKGALDLAGLPGKLADCQERDPAFSELYLVEGDSAGGSAKQGRNRKNQAILPLKGKILNVEKARFDKMLASQEVATLITALGCGIGRDEYNPDKLRYHSIIIMTDADVDGSHIRTLLLTFFYRQMPEIIERGYVYIAQPPLYKVKKGKQEQYIKDDEAMEQYQVSIALDGAALYVNENAAPIQGEHLEKLLHEYNGAHKIIRRLERLYPLALLNSLVYQPKLEESALLNKTEVEAWAQSLTERLTRHEEHGSTYSYRIAENKERQLFEPVLTIRTHGVDTDYNLDFDFVHGSEYARISKLGELIRGLIEEGAYVVRGERRQNVSNFEQALDWLMKESRRGLAVQRYKGLGEMNPEQLWETTMNPETRRMLQVTVKDAIATDQLFTTLMGDDVEPRRAFIEENALKAANIDV"}}}}}}}, "534": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4564": {"dna_sequence": {"fmax": "2212277", "fmin": "2211932", "accession": "AE016830", "strand": "-", "sequence": "TTGTTTACAGAAAAATTCTGCGCTGATGGAATCTGCTTTATTATGCGGGCGAAAAATGAAATTGACCATATTTTTTCAGAACTTTACTCTGTACCGAATTGCCTGCAAAAGCCTTATTTTAAGCTGAAAGTTCAGGAATTGCTTTTGTTTTTGTGTATGCCCCTCGTGATTTGTACACCTATCTTAATTGGCTTTGCAATTCTCATTCCGTATCTCTGCTTTAAGAATTTGGAAAAACGAAGCATTGTGAATCGGCTGCGGGCAGAGCAAAAAGAGAACCAGCAGAAACAAGTCGTTCTTGCTCTGCTGATTCACTCGGAACTGTTTGATTCGGGTTTTCGTTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Enterococcus faecalis V583", "NCBI_taxonomy_id": "226185", "NCBI_taxonomy_cvterm_id": "37592"}, "protein_sequence": {"accession": "AAO82019.1", "sequence": "MFTEKFCADGICFIMRAKNEIDHIFSELYSVPNCLQKPYFKLKVQELLLFLCMPLVICTPILIGFAILIPYLCFKNLEKRSIVNRLRAEQKENQQKQVVLALLIHSELFDSGFR"}}}}}}}, "533": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4562": {"dna_sequence": {"fmax": "3358", "fmin": "2461", "accession": "HF953351", "strand": "-", "sequence": "ATGGACGTACGTAAACACAAGGCTAGTTTTTTTAGCGTAGTAATTACTTTTTTATGTCTCACGCTATCATTAAATGCTAATGCAACAGACTCAGTACTTGAAGCGGTTACCAATGCTGAAACTGAATTAGGCGCTAGAATTGGTCTAGCTGTGCATGATTTGGAAACGGGAAAACGTTGGGAACATAAATCTAATGAACGTTTTCCTCTAAGTAGCACCTTTAAAACACTTGCCTGTGCAAACGTTCTTCAAAGAGTTGATCTAGGTAAAGAAAGAATTGATAGAGTTGTGAGATTCTCTGAAAGCAATCTCGTTACATACTCACCTGTAACAGAAAAACATGTGGGTAAAAAAGGGATGTCGCTCGCAGAGCTGTGTCAGGCCACATTATCAACCAGTGATAATTCAGCTGCCAATTTTATTCTACAAGCGATTGGTGGACCTAAGGCTCTAACGAAATTTTTGCGTTCCATTGGCGACGATACTACGCGCCTTGATCGCTGGGAAACAGAACTTAACGAAGCGGTGCCTGGAGATAAGCGAGACACGACAACACCAATTGCAATGGTAACGACACTTGAAAAGTTACTAATTGACGAAACACTATCTATCAAATCTCGTCAACAACTAGAATCTTGGCTTAAAGGTAATGAGGTTGGCGATGCATTGTTTCGTAAAGGCGTTCCAAGTGACTGGATAGTAGCAGATAGAACAGGCGCTGGTGGTTATGGGTCGCGTGCTATTACTGCGGTGATGTGGCCTCCAAATCGCAAGCCTATCGTAGCCGCTCTATACATTACAGAGACAGACGCCTCGTTTGAAGAAAGAAATGCTGTCATTGCAAAAATTGGTGAGCAAATAGCGAAGACAGTATTAATGGAGAATAGCCGTAACTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Psychrobacter maritimus", "NCBI_taxonomy_id": "256325", "NCBI_taxonomy_cvterm_id": "39652"}, "protein_sequence": {"accession": "CCW43444.1", "sequence": "MDVRKHKASFFSVVITFLCLTLSLNANATDSVLEAVTNAETELGARIGLAVHDLETGKRWEHKSNERFPLSSTFKTLACANVLQRVDLGKERIDRVVRFSESNLVTYSPVTEKHVGKKGMSLAELCQATLSTSDNSAANFILQAIGGPKALTKFLRSIGDDTTRLDRWETELNEAVPGDKRDTTTPIAMVTTLEKLLIDETLSIKSRQQLESWLKGNEVGDALFRKGVPSDWIVADRTGAGGYGSRAITAVMWPPNRKPIVAALYITETDASFEERNAVIAKIGEQIAKTVLMENSRN"}}}}}}}, "532": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"825": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAAGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA"}}}}}}}}}}, "531": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"673": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGACGCCACAGTCAATGCGTGAATTGGTCATCTGTCGTGCAAGCGATGCCGACGTTCTTCAGCTTGCGCGGTGCGATTTCTCTTTCGAGGTCACAGCTGAGCTCGAAGAGCCGTTCGATGACATGCGGTCCGTTCCAGTCAAGCCGCCCTACCTCAAGAACTATGGCTTTGATGCCGATGAGTTGGTCGAGCATATGAACAACTCTGCTGGGGCGTTGTTTGTGGCTCGGGCGGACAATTGCCTTGTTGGCTACTTGGCCGTGTCTCAAAGCTGGAACGAATATGCCGTCATCGATGATATCGCGGTCGATGTGCCCTATCGGGGGAGTGGCGTTTCGCGCTTGCTGATGGATGCAGCTGTGGACTGGGCACGAAATGTGCCGTCGGCAGGCGTACGTCTGGAGACGCAGTCCGTTAATCTCGCCGCATGTCGCTTTTACCGACGATACGGTTTCCGGTTAGGTGGTTATGATCGCTACCTGTATCGTGGCCTGCATCCGGGCAGCCGAGAGGTAGCTCTGTTCTGGTATTTGAGTTTTTAA"}}}}}}}}}}, "530": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"853": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGTTCAAACTTTTGAGTAAGTTATTGGTCTATTTGACCGCGTCTATCATGGCTATTGCGAGTCCGCTCGCTTTTTCCGTAGATTCTAGCGGTGAGTATCCGACAGTCAGCGAAATTCCGGTCGGGGAGGTCCGGCTTTACCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTTTGATGGCGCAGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAGAAGCAAATTGGACTTCCTGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCCGAGGTAGAGGGGAGCGAGATTCCCACGCACTCTCTAGAAGGACTCTCATCGAGCGGGGACGCAGTGCGCTTCGGTCCAGTAGAACTCTTCTATCCTGGTGCTGCGCATTCGACCGACAACTTAGTTGTGTACGTCCCGTCTGCGAGTGTGCTCTATGGTGGTTGTGCGATTTATGAGTTGTCACGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCATTGAGCGGATTCAACAACACTACCCGGAAGCACAGTTCGTCATTCCGGGGCACGGCCTGCCGGGCGGTCTAGACTTGCTCAAGCACACAACGAATGTTGTAAAAGCGCACACAAATCGCTCAGTCGTTGAGTAG"}}}}}}}}}}, "539": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1558": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "429": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4536": {"dna_sequence": {"fmax": "398284", "fmin": "397057", "accession": "NC_003197.2", "strand": "-", "sequence": "ATGCGTAGAACATTCAAAATTATGTTGATAGCCGGCGTCATCGCCGCCATCGGGGGCGTGATTTACATGGCCGGCGAAGCACTATGGGATAAAGACAACGCCGTCGGCCCCCCGGCCAGCGCGCCGCCTCCACCGTCGGTACCGGTTGCTAAAGCCCTTAGCCGTACACTCGCGCCTACGGCGGAATTCACCGGTTTTCTGGCCGCGCCGGAAACCGTGGAGCTGCGTTCGCGCGTGGGAGGAACCCTTGACGCCATCAGCGTTCCGGAAGGACGTCTGGTAAGCCGCGGACAACTGCTGTTCCAGATCGATCCGCGCCCGTTCGAGGTCGCCCTCGACACCGCCGTCGCGCAATTACGTCAGGCTGAAGTACTGGCCCGCCAGGCGCAGGCGGATTTCGATCGCATTCAACGACTGGTCGCCAGCGGCGCCGTATCACGTAAAAACGCTGACGATGTCACCGCCACGCGTAATGCGCGACAGGCGCAGATGCAATCGGCCAAAGCCGCCGTCGCCGCAGCGCGCCTTGAACTCTCCTGGACCCGTATTACCGCGCCCATTGCCGGACGCGTTGACCGCATACTGGTGACCCGGGGCAATCTGGTCAGCGGCGGCGTAGCGGGTAACGCCACGCTTCTGACGACTATCGTGTCTCACAATCCCATGTATGTGTATTTCGATATTGACGAAGCCACCTGGCTGAAGGCGTTACGGCATACCCGCTCCGACAAAAATCCACCGGTAGTCAACATGGGGTTAACCACCGATAACGGGCTGCCTTATCAGGGCGTACTCGACTTTATGGGCAATCAGATGAACCGCAGCACCGGCACTATCCGGGCACGCGCCGTGATTCCTGACCCCGACGGAATGCTTTCTCCCGGCCTGTTTGCCCGAATCAGTTTGCCCATCGGCGAGCCGCGGGAAACCGTGCTGATTGACGATCTGGCGGTGAGCGCCGATCAGGGCAAAAACTATGTGCTGATCGTCGGCAAGGAGAATCAGGTGGAGTATCGTCCGGTTGAGTTGGGACAAATGGTCGATGGATTCCGCGTCGTTACACAGGGAGTACTGCCGGGAGAAAAAATCATCCTCAAGGGGCTGGTGCGTCCTGGCATGACCGTTGCGCCACGTCTGGTGCCGATGCGGCAGAATGTGACCGACAAACAGACCGCGACATTGACTAAAGCGGACGGCGACAGTGCGCCGAAGGCGGTGCGCCAATGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Salmonella enterica subsp. enterica serovar Typhimurium str. LT2", "NCBI_taxonomy_id": "99287", "NCBI_taxonomy_cvterm_id": "35734"}, "protein_sequence": {"accession": "NP_459347.3", "sequence": "MRRTFKIMLIAGVIAAIGGVIYMAGEALWDKDNAVGPPASAPPPPSVPVAKALSRTLAPTAEFTGFLAAPETVELRSRVGGTLDAISVPEGRLVSRGQLLFQIDPRPFEVALDTAVAQLRQAEVLARQAQADFDRIQRLVASGAVSRKNADDVTATRNARQAQMQSAKAAVAAARLELSWTRITAPIAGRVDRILVTRGNLVSGGVAGNATLLTTIVSHNPMYVYFDIDEATWLKALRHTRSDKNPPVVNMGLTTDNGLPYQGVLDFMGNQMNRSTGTIRARAVIPDPDGMLSPGLFARISLPIGEPRETVLIDDLAVSADQGKNYVLIVGKENQVEYRPVELGQMVDGFRVVTQGVLPGEKIILKGLVRPGMTVAPRLVPMRQNVTDKQTATLTKADGDSAPKAVRQ"}}}}}}}, "428": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1618": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATAAAAAGTTCGTGGCGTAAAATTGCAATGCTAGCCGCCGCCGTTCCGCTGCTGCTGGCGAGCGGCGCACTGTGGGCCAGTACCGATGCTATCCATCAGAAGCTGACAGATCTCGAGAAGCGTTCAGGCGGCAGGTTGGGCGTGGCGCTAATCAACACGGCAGATAATTCTCAAATCTTATATCGCGGCGACGAGCGTTTTGCCATGTGCAGCACCAGTAAAGTGATGGCCGCCGCCGCGGTATTAAAACAGAGCGAAAGCAATAAAGAGGTGGTAAATAAAAGGCTGGAGATTAACGCAGCCGATTTGGTGGTCTGGAGTCCGATTACCGAAAAACATCTCCAGAGCGGAATGACGCTGGCTGAGCTAAGCGCGGCGACGCTGCAATATAGCGACAATACGGCGATGAATCTGATCATCGGCTACCTTGGCGGGCCGGAAAAAGTCACCGCCTTCGCCCGCAGTATCGGCGATGCCACCTTTCGTCTCGATCGTACGGAGCCCACGCTGAATACCGCCATCCCGGGCGATGAGCGTGATACCAGCACGCCGCTGGCGATGGCTGAAAGCCTACGCAAGCTGACGCTTGGCGATGCGCTGGGCGAACAGCAACGCGCCCAGTTAGTCACCTGGCTGAAAGGCAATACCACCGGCGGGCAAAGCATTCGCGCGGGCCTGCCTGAAAGCTGGGTGGTCGGCGATAAAACCGGCGCCGGAGATTACGGCACCACCAATGATATTGCGGTTATCTGGCCGGAAGATCACGCTCCGCTGGTATTAGTCACCTACTTTACCCAGCCGCAGCAGGATGCGAAAAACCGCAAAGAGGTGTTAGCCGCAGCGGCAAAAATCGTGACCGAAGGGCTTTAA"}}}}}}}}}}, "1399": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1398": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1397": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4707": {"dna_sequence": {"fmax": "1129419", "fmin": "1128933", "accession": "AE015929.1", "strand": "-", "sequence": "ATGACATTATCAATAATTGTCGCTCACGATAAACAAAGAGTCATTGGGTACCAAAATCAATTACCTTGGCACTTACCAAATGATTTAAAGCATGTTAAACAACTGACCACTGGGAATACACTTGTAATGGGACGGAAAACTTTTAATTCTATAGGGAAACCATTGCCAAATAGACGTAACGTCGTACTCACTAACCAAGCTTCATTTCACCATGAAGGGGTAGATGTTATAAACTCTCTTGATGAAATTAAAGAGTTATCTGGTCATGTTTTTATATTTGGAGGACAAACGTTATTCGAGGCAATGATTGACCAGGTAGATGATATGTATATCACAGTAATAGATGGAAAGTTTCAAGGAGACACATTCTTTCCACCATACACATTCGAAAACTGGGAAGTCGAATCTTCAGTAGAAGGTCAACTAGATGAAAAAAATACTATACCGCATACATTCTTACATTTAGTGCGTAGAAAAGGGAAATAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Staphylococcus epidermidis ATCC 12228", "NCBI_taxonomy_id": "176280", "NCBI_taxonomy_cvterm_id": "37591"}, "protein_sequence": {"accession": "AAO04716.1", "sequence": "MTLSIIVAHDKQRVIGYQNQLPWHLPNDLKHVKQLTTGNTLVMGRKTFNSIGKPLPNRRNVVLTNQASFHHEGVDVINSLDEIKELSGHVFIFGGQTLFEAMIDQVDDMYITVIDGKFQGDTFFPPYTFENWEVESSVEGQLDEKNTIPHTFLHLVRRKGK"}}}}}}}, "420": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "423": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "422": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "425": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1392": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"238": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGGGTAGCGGTGACCATCGAAATTTCGAACCAACTATCAGAGGTGCTAAGCGTCATTGAGCGCCATCTGGAATCAACGTTGCTGGCCGTGCATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCATACAGCGATATTGATTTGCTGGTTACGGTGACCGTAAGGCTTGATGAAACAACGCGGCGAGCTTTGATCAACGACCTTTTGGAAACTTCGGCTTCCCCTGGAGAGAGCGAGATTCTCCGCGCTGTAGAAGTCACCATTGTTGTGCACGACGACATCATTCCGTGGCGTTATCCAGCTAAGCGCGAACTGCAATTTGGAGAATGGCAGCGCAATGACATTCTTGCAGGTATCTTCGAGCCAGCCACGATCGACATTGATCTGGCTATCTTGCTGACAAAAGCAAGAGAACATAGCGTTGCCTTGGTAGGTCCAGCGGCGGAGGAACTCTTTGATCCGGTTCCTGAACAGGATCTATTTGAGGCGCTAAATGAAACCTTAACGCTATGGAACTCGCCGCCCGACTGGGCTGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAGTAACCGGCAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATGGAGCGCCTGCCGGCCCAGTATCAGCCCGTCATACTTGAAGCTAGACAGGCTTATCTTGGACAAGAAGAAGATCGCTTGGCCTCGCGCGCAGATCAGTTGGAAGAATTTGTCCACTACGTGAAAGGCGAGATCACCAAGGTAATCGGCAAATAA"}}}}}}}}}}, "427": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1390": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4708": {"dna_sequence": {"fmax": "1462248", "fmin": "1461588", "accession": "NC_009641.1", "strand": "-", "sequence": "ATGACGCAAATTTTAATAGTAGAAGATGAACAAAACTTAGCAAGATTTCTTGAATTGGAACTCACACATGAAAATTACAATGTGGACACAGAGTATGATGGACAAGACGGTTTAGATAAAGCGCTTAGCCATTACTATGATTTAATCATATTAGATTTAATGTTGCCGTCAATTAATGGCTTAGAAATTTGTCGCAAAATTAGACAACAACAATCTACACCTATCATTATAATTACAGCGAAAAGTGATACGTATGACAAAGTTGCTGGGCTTGATTACGGTGCAGACGATTATATAGTTAAGCCGTTTGATATTGAAGAACTTTTAGCAAGAATTCGTGCAATTTTACGTCGTCAGCCACAAAAGGATATTATCGATGTCAACGGTATTACAATTGATAAGAACGCTTTTAAAGTGACGGTAAATGGCGCAGAAATTGAATTAACAAAAACAGAGTATGATTTACTATATCTTCTAGCTGAAAATAAAAACCATGTTATGCAACGGGAACAAATTTTAAATCATGTATGGGGTTATAATAGTGAAGTAGAAACAAATGTCGTAGATGTTTATATAAGATATTTACGAAACAAGTTAAAACCATACGATCGTGACAAAATGATTGAAACAGTTCGTGGCGTTGGGTATGTGATACGATGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Bacillales", "NCBI_taxonomy_id": "1385", "NCBI_taxonomy_cvterm_id": "41698"}, "protein_sequence": {"accession": "WP_000192137.1", "sequence": "MTQILIVEDEQNLARFLELELTHENYNVDTEYDGQDGLDKALSHYYDLIILDLMLPSINGLEICRKIRQQQSTPIIIITAKSDTYDKVAGLDYGADDYIVKPFDIEELLARIRAILRRQPQKDIIDVNGITIDKNAFKVTVNGAEIELTKTEYDLLYLLAENKNHVMQREQILNHVWGYNSEVETNVVDVYIRYLRNKLKPYDRDKMIETVRGVGYVIR"}}}}}}}, "229": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"301": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAAAACAAAATACGGGTGTAAATAATTTCCGTTTAATCGCTGCTGCCATGGTAGTAGCGATTCATTGCTTTCCATTTCAAACAATCAGTAAAGAACTAGATACATTGGTTACGCTAACTGTCTTTCGTATTGCCGTTCCTTTTTTCTTCATGGTTTCTGGGTACTACCTACTAGGTCCAATTCCAAGTTCAGCCACAAATACTTATCAAATTAATAACTATATAAAGAAACAGCTTAAAGTTTATACTTTCGCTATAGTTCTGTATCTACCTTTAGCGTTTTATAGTCAATCTATCACTTTGGATATGTCAATTATTAGTTTTATAAAACAACTACTTTTTAACGGTTTTTTTTACCATCTTTGGTTTTTCCCTGCATGGGTATTAGGATTATTAATTGTTCAATTTTTATTAAAAAGAATGAATATACAGACTGTATTGTTTATAACATTTGTGGCTTATTTAATAGGACTAGGAGGGGATAGTTGGTGGGGAATAGTTAAACAAGTTCCCTTTTTTTTCAGATTTTACAATGCTATATTTCAATTATTTGGTTATACACGAAATGGTCTATTTTATGCGCCGTTATTCTTTGCACTGGGAGCATATCTATACAAGATGAATATTAAAAACTTTAATTCCGCAAGAAATAACTATCTTTTACTGCTTTTTAGTATAGAAATGATTTTAGAAAGTTATTTCTTACATCTCTTTAACATTCCTAAACATGACAGTATGTATTTGTTTTTACCGTTTGTAATGACTTTGGTGTTTATCAAAATATACAATTGGTCACCAAAAAATAATTTATTGAACAGCTCTCAGCTATCTCTAGGAGTATATCTTATACATCCATATATCATCGCAGTAATTCACTCTATCTCAATTTACGTTTCTATTTTTACTAATAGCATAATTAATTATTTAAGTGTGCTATTGATAAGTTACCTAACTATAAGACTAATACTAAAAAGGAAGGAATGGTAG"}}}}}}}}}}, "228": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4473": {"dna_sequence": {"fmax": "2040377", "fmin": "2039654", "accession": "NC_003197.2", "strand": "-", "sequence": "ATGCAGGAAAATGATTTCTTCACCTGGCGACGCGCAATGTTGTTACGCTTTCAGGAGATGGCGGCAGCAGAGGATGTTTATACTGAATTGCAATATCAGACACAGCGGCTGGAATTTGATTATTATGCCCTGTGTGTTCGTCATCCCGTCCCCTTTACCCGGCCTAAAATATCGCTTCGTACCACTTATCCTCCGGCGTGGGTAACGCATTACCAGTCCGAAAACTATTTCGCGATCGATCCGGTATTAAAGCCGGAAAATTTCAGGCAGGGTCATTTACATTGGGATGACGTGCTATTTCATGAAGCGAAGGCGATGTGGGATGCCGCCCAGCGTTTCGGATTACGCAGAGGCGTAACCCAGTGTGTGATGTTGCCGAACCGGGCGCTGGGCTTTTTATCTTTCTCCCGTAGCAGTTTACGCTGCTCCTCGTTTACCTACGACGAAGTGGAGCTGAGGTTGCAACTGCTGGCGCGGGAGAGTCTTTCGGCGCTGACAAGATTTGAAGACGACATGGTGATGGCGCCTGAAATGCGTTTCAGTAAACGTGAGAAAGAGATTCTGAAGTGGACGGCGGAAGGGAAGACCTCATCGGAGATCGCCATTATTCTGTCGATTTCTGAAAATACCGTTAACTTCCATCAGAAAAATATGCAGAAGAAATTCAATGCGCCAAATAAAACACAGATTGCCTGCTACGCTGCGGCGACAGGTCTGATATGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Salmonella enterica subsp. enterica serovar Typhimurium str. LT2", "NCBI_taxonomy_id": "99287", "NCBI_taxonomy_cvterm_id": "35734"}, "protein_sequence": {"accession": "NP_460903.1", "sequence": "MQENDFFTWRRAMLLRFQEMAAAEDVYTELQYQTQRLEFDYYALCVRHPVPFTRPKISLRTTYPPAWVTHYQSENYFAIDPVLKPENFRQGHLHWDDVLFHEAKAMWDAAQRFGLRRGVTQCVMLPNRALGFLSFSRSSLRCSSFTYDEVELRLQLLARESLSALTRFEDDMVMAPEMRFSKREKEILKWTAEGKTSSEIAIILSISENTVNFHQKNMQKKFNAPNKTQIACYAAATGLI"}}}}}}}, "227": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "226": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "225": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "224": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_category": {"$delete": ["35962"]}}}, "223": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1708": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCGCTTCATTCACGCACTATTACTGGCAGGGATCGCTCACTCTGCATATGCGTCGGAAAAATTAACCTTCAAGACCGATCTTGAGAAGCTAGAGCGCGAAAAAGCAGCTCAGATCGGTGTTGCGATCGTCGATCCCCAAGGAGAGATCGTCGCGGGCCACCGAACGGCGCAGCGCTTTGCAATGTGCTCAACGTTCAAGTTTCCGCTAGCCGCGCTGGTCTTTGAAAGAATTGACTCAGGCACCGAGCGGGGGGATCGAAAACTTTCATATGGGCCGGACATGATCGTCAAATGGTCTCCTGCCACGGAGCGGTTTCTAGCATCGGGACACATGACGGTTCTCGAGGCAGCGCAAGCTGCGGTGCAGCTTAGCGACAATGGGGCTACTAACCTCTTACTGAGAGAAATTGGCGGACCTGCTGCAATGACGCAGTATTTTCGTAAAATTGGCGACTCTGTGAGTCGGCTAGACCGGAAAGAGCCGGAGATGGGCGACAACACACCTGGCGACCTCAGAGATACAACTACGCCTATTGCTATGGCACGTACTGTGGCTAAAGTCCTCTATGGCGGCGCACTGACGTCCACCTCGACCCACACCATTGAGAGGTGGCTGATCGGAAACCAAACGGGAGACGCGACACTACGAGCGGGTTTTCCTAAAGATTGGGTTGTTGGAGAGAAAACTGGTACCTGCGCCAACGGGGGCCGGAACGACATTGGTTTTTTTAAAGCCCAGGAGAGAGATTACGCTGTAGCGGTGTATACAACGGCCCCGAAACTATCGGCCGTAGAACGTGACGAATTAGTTGCCTCTGTCGGTCAAGTTATTACACAACTCATCCTGAGCACGGACAAATAG"}}}}}}}}}}, "222": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1483": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCGAAAATTAGCTTCGATAATTTTATTCTTAGCCGCGGTTTCAAATAGTTTGGGACAATCTAAGAATTCGCCATTACAAATAAGTCATCTTACAGGTGACTTTTATGTTTATAGAACTTTTAATGATTACAAAGGAACTAAGATTTCTGCCAATGCTATGTATGTTGTTACAGATAAAGGCGTTGTGCTTTTTGATGCGCCTTGGGATAAAACACAGTTTCAGCCGTTATTAGACAGCATAAAAGCAAAACACAATAAAGAGGTTGTGATGCTTTTTGGCACGCATTCTCATGAAGATCGTGCAGGAGGATTTGATTTTTACAAGAAAAAAGGAATCAAAACGTACTCAATTAAACTGACTGATGATATTCTTAAAAAGAATAAGGAACCAAGAGCAGAATTTATAATTTCAAATGATACAACATTTACTGTTGGAAATCATACTTTTGAAGTTTATTACCCAGGAAAAGGACATGCTCCTGATAATATTGTAGCATGGTTTAAAAAAGAGAAAATTCTTTACGGAGGCTGTTTTGTAAAAAGTGCAGAAGCATTAGATTTAGGTTATCTGGGTGATGCTGATGTTAAAGAATGGCAGAAATCTATAAAAAAAGTGCAGGCAAAATTCAAAAAACCGGATTATATAATTTCGGGACATGATGACTGGACTAGTAAAGAATCTTTAAATCATACTTTGAAATTGGTTGACGAGTATTTGGCTCAAAAATCTGCCGGAAAAAAGTAA"}}}}}}}}}}, "221": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "220": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2213": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2212": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2211": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2217": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2216": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2215": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_category": {"$delete": ["40471"]}}}, "2219": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2337": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "151": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "150": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "153": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "152": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4465": {"dna_sequence": {"fmax": "4904935", "fmin": "4903561", "accession": "NC_002695.1", "strand": "-", "sequence": "ATGATAGGCAGCTTAACCGCGCGCATCTTCGCCATCTTCTGGCTGACGCTGGCGCTGGTGTTGATGTTGGTTTTGATGTTACCCAAGCTCGATTCACGCCAGATGACCGAGCTTCTGGATAGCGAACAGCGTCAGGGTCTGATGATTGAGCAGCATGTTGAAGCGGAGCTGGCGAACGATCCGCCCAACGATTTAATGTGGTGGCGGCGTCTGTTCCGGGCGATTGATAAGTGGGCACCGCCAGGACAGCGTTTGTTATTGGTGACCACCGAAGGCCGCGTGATCGGCGCTGAACGCAGCGAAATGCAGATCATTCGTAACTTTATTGGTCAGGCCGATAACGCCGATCATCCGCAGAAGAAAAAGTATGGCCGCGTGGAACTGGTCGGTCCGTTCTCCGTGCGTGATGGCGAAGATAATTACCAACTTTATCTGATTCGTCCGGCCAGCAGTTCTCAATCCGATTTCATTAACTTACTGTTTGACCGCCCGCTATTACTGCTGATTGTCACCATGTTGGTCAGTACGCCGCTGCTGTTGTGGTTGGCCTGGAGTCTGGCAAAACCGGCGCGTAAGCTGAAAAACGCTGCCGATGAAGTTGCCCAGGGAAACTTACGCCAGCACCCGGAACTGGAAGCGGGGCCACAGGAATTCCTTGCCGCAGGTGCCAGTTTTAACCAGATGGTCACCGCGCTGGAGCGCATGATGACCTCTCAGCAGCGTCTGCTTTCTGATATCTCTCACGAGCTGCGCACCCCGCTGACGCGTCTGCAACTGGGTACGGCGTTACTGCGCCGTCGTAGTGGTGAAAGCAAGGAACTGGAGCGTATTGAAACCGAAGCGCAACGTCTGGACAGCATGATTAACGACCTGTTGGTGATGTCACGTAATCAGCAAAAAAACGCGCTGGTTAGCGAGACCATCAAAGCCAATCAGTTGTGGAGTGAAGTGCTGGATAACGCGGCGTTCGAAGCCGAGCAAATGGGCAAGTCGTTGACAGTTAACTTCCCGCCTGGGCCGTGGCCGCTGTACGGCAACCCGAACGCCCTGGAGAGTGCGCTGGAAAACATTGTTCGTAATGCCCTGCGTTATTCCCATACGAAGATTGAAGTGGGCTTTGCGGTAGATAAAGACGGTATCACCATTACGGTGGACGACGATGGTCCTGGCGTTAGCCCGGAAGATCGCGAACAGATTTTCCGTCCGTTCTATCGGACCGATGAAGCGCGCGATCGTGAATCTGGCGGTACAGGTTTGGGACTGGCGATTGTTGAAACCGCCATTCAGCAGCATCGTGGCTGGGTGAAAGCAGAAGACAGCCCGCTGGGCGGTTTACGGCTGGTGATTTGGTTGCCGCTGTATAAGCGGAGTTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli O157:H7 str. Sakai", "NCBI_taxonomy_id": "386585", "NCBI_taxonomy_cvterm_id": "36747"}, "protein_sequence": {"accession": "NP_312864.1", "sequence": "MIGSLTARIFAIFWLTLALVLMLVLMLPKLDSRQMTELLDSEQRQGLMIEQHVEAELANDPPNDLMWWRRLFRAIDKWAPPGQRLLLVTTEGRVIGAERSEMQIIRNFIGQADNADHPQKKKYGRVELVGPFSVRDGEDNYQLYLIRPASSSQSDFINLLFDRPLLLLIVTMLVSTPLLLWLAWSLAKPARKLKNAADEVAQGNLRQHPELEAGPQEFLAAGASFNQMVTALERMMTSQQRLLSDISHELRTPLTRLQLGTALLRRRSGESKELERIETEAQRLDSMINDLLVMSRNQQKNALVSETIKANQLWSEVLDNAAFEAEQMGKSLTVNFPPGPWPLYGNPNALESALENIVRNALRYSHTKIEVGFAVDKDGITITVDDDGPGVSPEDREQIFRPFYRTDEARDRESGGTGLGLAIVETAIQQHRGWVKAEDSPLGGLRLVIWLPLYKRS"}}}}}}}, "155": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "154": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4468": {"dna_sequence": {"fmax": "735860", "fmin": "735416", "accession": "NC_002745.2", "strand": "-", "sequence": "ATGTCTGATCAACATAATTTAAAAGAACAGCTATGCTTTAGTTTGTACAATGCTCAAAGACAAGTTAATCGCTACTACTCTAACAAAGTTTTTAAGAAGTACAATCTAACATACCCACAATTTCTTGTCTTAACAATTTTATGGGATGAATCTCCTGTAAACGTCAAGAAAGTCGTAACTGAATTAGCACTCGATACTGGTACAGTATCACCATTATTAAAACGAATGGAACAAGTAGACTTAATTAAGCGTGAACGTTCCGAAGTCGATCAACGTGAAGTATTTATTCACTTGACTGACAAAAGTGAAACTATTAGACCAGAATTAAGTAATGCATCTGACAAAGTCGCTTCAGCTTCTTCTTTATCTCAAGATGAAGTTAAAGAACTTAATCGCTTATTAGGTAAAGTCATTCATGCATTTGATGAAACAAAGGAAAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Staphylococcus", "NCBI_taxonomy_id": "1279", "NCBI_taxonomy_cvterm_id": "37074"}, "protein_sequence": {"accession": "WP_001283444.1", "sequence": "MSDQHNLKEQLCFSLYNAQRQVNRYYSNKVFKKYNLTYPQFLVLTILWDESPVNVKKVVTELALDTGTVSPLLKRMEQVDLIKRERSEVDQREVFIHLTDKSETIRPELSNASDKVASASSLSQDEVKELNRLLGKVIHAFDETKEK"}}}}}}}, "157": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"383": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAACCCGGAATCGGTCCGCATTTATCTGGTCGCTGCCATGGGTGCCAATCGGGTTATTGGCAATGGTCCCGATATCCCCTGGAAAATCCCAGGTGAGCAGAAGATTTTTCGCAGGCTCACCGAGAGCAAAGTGGTCGTTATGGGCCGCAAGACATTTGAGTCCATAGGCAAGCCCTTACCAAACCGCCACACAGTGGTGCTCTCGCGCCAAGCTCGTTATAGCGCTCCTGGTTGTGCAGTTGTTTCAACGCTGTCACAGGCTATCGCCATCGCAGCCGAACACGGCAAAGAACTCTACGTAGCCGGCGGAGCCGAGGTATATGCGCTGGCGCTACCGCATGCCAACGGCGTCTTTCTATCTGAGGTACATCAAACCTTTGAGGGTGACGCCTTCTTCCCAGTGCTTAACGCAGCAGAATTCGAGGTTGTCTCATCCGAAACCATTCAAGGCACAATCACGTACACGCACTCCGTCTATGCGCGTCGTAACGGCTAA"}}}}}}}}}}, "156": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"672": {"$update": {"dna_sequence": {"$update": {"sequence": "TTGGACTATTCAATATGCGATATAGCTGAATCAAATGAATTAATCCTTGAAGCAGCAAAGATTCTTAAGAAAAGCTTTCTTGATGTTGGAAATGAATCATGGGGAGATATTAAAAAAGCTATTGAAGAAGTTGAAGAATGTATAGAACATCCAAATATATGCTTGGGAATATGTCTGGATGATAAACTGATTGGCTGGACCGGATTAAGGCCGATGTACGATAAGACCTGGGAACTTCATCCCATGGTTATAAAAACTGAATATCAAGGCAAGGATTTTGGGAAAGTACTACTAAGAGAACTAGAGACGAGAGCGAAGGGTAGGGGAATTATCGGAATAGCTCTTGGAACTGATGATGAATATCAGAAAACTAGTTTGTCTATGATTGATATAAACGAACGAAATATCTTCGATGAAATCGAGAATATAAAGAACATTAATAATCATCCATATGAGTTTTATAAGAAATGTGGTTATATGATCGTTGGAATAATCCCTAATGCTAATGGAAAAAGGAAACCAGATATATGGATGTGGAAAGATATTAGCTAG"}}}}}}}}}}, "159": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_category": {"$delete": ["36001", "36002", "36298"], "$insert": {"41687": {"category_aro_name": "ABC-F ATP-binding cassette ribosomal protection protein", "category_aro_cvterm_id": "41687", "category_aro_accession": "3004469", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}}}}}, "158": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"204": {"$update": {"dna_sequence": {"$update": {"sequence": "GTGCACCCCGACCTGCTCCCCCACCTCCGCTGCCCGGTCTGCGGCCAGCCGCTGCACCAGGCCGACGCGGCACCACCACGCGCCCTGCGCTGCCCGGCCGGGCACAGCTTCGACATCGCCCGACAGGGTTACGTCAACCTGCTCACGGGCCGGGCACCGCACGTCGGCGACACCGCCGAGATGATCGCCGCCAGGGAGGAGTTTCTGGCCGCCGGGCACTACGACCCGTTCTCGGCGGCACTCGCCACCGCGGCCGCGCGGGCGGTGCCACGTCGTGTCCGGCCCGGCGACGGCGTGGGCGAACCGGTGGCGTACCCGGATCTGGTGGTGGACGCCGGAGCCGGTACCGGCCGGCACCTCGCCGCAGTGCTCGACGCGGTGCCGACCGCCGTCGGCCTGGCGCTGGACGTCTCGAAGCCCGCACTACGCCGGGCGGCCCGGGCGCATCCCCGGGCCGGCGCGGCCGTCTGCGACACCTGGGGCCGGTTGCCGCTGGCCGATGCCACGGTCGCAGTACTGGTCAACGTCTTCGCCCCGCGCAACGGGCCGGAATTCCGTCGGGTGCTCCGGCCGGACGGCGCCCTGCTCGTGGTGACACCGACCGCCGAACACCTGGTCGAGCTGGTGGACCGGCTGGGGCTGCTGCGGGTCGACCCGGCCAAGGACGCCCGGGTGGCCGACAGCCTCACGAGACACTTCGAACCGGCCGGGCAGAGCACCCACCGGCACCGGCTTCAGCTGACCCGGAAGGAGGTGCTGACCCTGGTTGGTATGGGGCCGAGCGCCTGGCACACCGACCCGGCCCGGCTCACCGCGCGGGTCGCAGCCCTGTCCGAGCCGGTCACGGTCACCGCCGCTGTCCGGCTCGCCCGTTACCGCCCGATCTGA"}}}}}}}}}}, "2430": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2436": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model."}}, "2435": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4602": {"dna_sequence": {"fmax": "1770310", "fmin": "1769089", "accession": "CP000259.1", "strand": "-", "sequence": "ATGCAAGAGTTTTTAAACCTTCCTAAGCAGATTCAGCTGAGGCAACTGGTACGCTTTGTGACCATTACCTTAGGCAGTAGTATCTTTCCCTTTATGGCCATGTATTATACGACTTACTTTGGTACGTTTTGGACAGGCCTCTTAATGATGATTACCAGTTTGATGGGATTTGTTGGAACTTTATACGGTGGGCATCTGTCAGATGCTCTTGGTCGTAAAAAAGTCATTATGATTGGGTCAGTAGGAACAACGCTAGGCTGGTTTCTGACTATTTTAGCTAATTTGCCTAATGCAGCTATTCCTTGGTTAACCTTTGCGGGTATTTTATTGGTAGAGATTGCTTCTAGTTTTTATGGTCCTGCCTATGAAGCTATGTTGATTGATTTGACTGATGAGAGTAATCGTCGATTTGTTTACACCATCAATTATTGGTTTATCAATATTGCCGTCATGTTTGGTGCAGGGCTATCTGGGCTTTTTTATGACCATCATTTTTTAGCCTTGTTAGTAGCCTTATTACTCGTTAATGTACTTTGTTTTGGCGTTGCTTACTACTATTTTGATGAGACTAGACCAGAAACACACGCTTTTGATCATGGTAAAGGATTACTGGCGAGTTTTCAGAACTACCGTCAGGTGTTTCAGGATCGTGCCTTTGTCTTGTTTACCTTAGGTGCCATCTTTTCTGGTAGTATCTGGATGCAGATGGATAACTATGTGCCAGTCCATTTGAAACTGTATTTTCAGCCAACGGCTGTGTTAGGTTTCCAAGTAACTAGTTCTAAAATGTTATCATTAATGGTTTTAACTAATACATTGCTGATTGTCCTTTTCATGACAGTAGTAAATAAATTAACGGAAAAATGGAAACTATTACCTCAGCTTGTGGTTGGTTCTTTACTATTTACTCTAGGGATGCTCTTGGCATTTACCTTTACGCAGTTCTATGCTATTTGGCTATCAGTTGTTTTGTTAACTTTTGGGGAAATGATAAATGTTCCTGCTAGTCAAGTCCTACGTGCTGATATGATGGATCATTCCCAAATAGGATCTTATACAGGTTTTGTGTCAATGGCACAACCCCTAGGTGCTATTTTGGCTAGTCTACTAGTATCTGTCAGCCATTTTACAGGTCCTTTAGGTGTGCAATGCTTATTTGTAGTCATTGCTTTGCTAGGGATTTATTTTACGGTTGTTTCTGCAAAAATGAAAAAGGTGTAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Streptococcus pyogenes MGAS9429", "NCBI_taxonomy_id": "370551", "NCBI_taxonomy_cvterm_id": "40741"}, "protein_sequence": {"accession": "ABF33001.1", "sequence": "MQEFLNLPKQIQLRQLVRFVTITLGSSIFPFMAMYYTTYFGTFWTGLLMMITSLMGFVGTLYGGHLSDALGRKKVIMIGSVGTTLGWFLTILANLPNAAIPWLTFAGILLVEIASSFYGPAYEAMLIDLTDESNRRFVYTINYWFINIAVMFGAGLSGLFYDHHFLALLVALLLVNVLCFGVAYYYFDETRPETHAFDHGKGLLASFQNYRQVFQDRAFVLFTLGAIFSGSIWMQMDNYVPVHLKLYFQPTAVLGFQVTSSKMLSLMVLTNTLLIVLFMTVVNKLTEKWKLLPQLVVGSLLFTLGMLLAFTFTQFYAIWLSVVLLTFGEMINVPASQVLRADMMDHSQIGSYTGFVSMAQPLGAILASLLVSVSHFTGPLGVQCLFVVIALLGIYFTVVSAKMKKV"}}}}}}}, "2720": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4515": {"dna_sequence": {"fmax": "2850886", "fmin": "2847775", "accession": "NC_002516.2", "strand": "-", "sequence": "ATGAGTCTGTCCACGCCCTTCATCCGCCGCCCGGTCGCCACCACGCTGCTGACCCTGGCGTTGCTGCTGGCCGGCACCCTGTCGTTCGGCCTGCTGCCGGTGGCGCCGCTGCCCAACGTCGATTTTCCGGCCATCGTGGTCAGCGCCAGCCTGCCGGGCGCCAGCCCGGAAACCATGGCCTCGTCGGTGGCCACGCCGCTGGAGCGCTCGCTGGGACGGATCGCCGGGATCAGCGAGATGACCTCCAGCAGTTCGCTGGGCTCGACCACCGTGGTGCTCGTGTTCGACCTGGAGAAGGACATCGACGGCGCCGCCCGCGAGGTGCAGGCGGCGATCAACGGCGCGATGAGCCTGCTGCCCAGCGGTATGCCGAACAATCCCAGCTACCGCAAGGCCAACCCCTCGGACATGCCGATCATGGTCCTCACCCTGACCTCGGAGACCCAGAGTCGCGGCGAGATGTACGACCTCGCCTCGACCGTGCTGGCGCCCAAGCTGTCGCAGGTGCAGGGGGTAGGGCAGGTGAGCATCGGCGGCAGCTCGCTGCCGGCGGTGCGGGTCGACCTCAACCCGGATGCCATGAGCCAGTACGGGCTGTCCCTGGACAGCGTGCGCACGGCCATCGCCGCGGCCAACAGCAACGGCCCCAAGGGCGCCGTCGAGAAGGACGACAAGCACTGGCAGGTGGACGCCAACGACCAGTTGCGCAAGGCCCGCGAGTACGAGCCGCTGGTGATCCACTACAACGCCGACAACGGCGCCGCGGTGCGCCTCGGCGACGTGGCCAAGGTCAGCGACTCGGTGGAGGACGTGCGCAACGCCGGCTTTTCCGACGACCTGCCGGCTGTGCTGCTAATCGTCACCCGCCAGCCCGGCGCCAACATCATCGAGGCCACCGACGCCATCCACGCGCAACTGCCGGTGTTGCAGGAACTGCTCGGGCCGCAGGTCAAGCTGAACGTGATGGACGATCGCAGCCCGTCGATCCGTGCGTCGCTGGAAGAGGCCGAGCTGACCCTGCTGATCTCGGTGGCGCTGGTGATCCTGGTGGTCTTCCTGTTCCTGCGCAACGGCCGCGCCACGCTGATCCCCAGCCTGGCGGTGCCGGTCTCGCTGATCGGCACCTTCGCGGTCATGTACCTGTGCGACTTCAGCCTGAACAACCTGTCGCTGATGGCGCTGATCATCGCCACCGGCTTCGTGGTGGATGACGCCATAGTGGTGGTGGAGAACATCGCCCGACGCATCGAGGAGGGCGATCCGCCGATCCAGGCGGCGATCACCGGCGCCCGCCAGGTCGGTTTCACCGTGCTGTCGATGACGCTCTCGCTGGTCGCGGTGTTCATCCCGCTGCTGCTCATGGGTGGCCTCACCGGACGGCTGTTCCGCGAGTTCGCGGTGACTCTCTCGGCGGCGATCCTGGTGTCCCTGGTGGTATCCCTGACCCTCACGCCGATGCTCTGCGCGCGTCTGCTGCGTCCGCTGAAACGGCCCGAAGGCGCTTCCCTGGCGCGGCGCAGCGATCGCTTCTTCGCCGCCTTCATGCTGCGCTACCGCGCCAGCCTGGGCTGGGCGCTGGAGCACTCGCGGCTGATGGTGGTGATCATGCTGGCCTGCATCGCCATGAACCTCTGGTTGTTCGTGGTGGTGCCCAAGGGCTTCCTCCCGCAGCAGGACTCCGGGCGCCTGCGCGGCTACGCGGTGGCCGACCAGAGCATCTCGTTCCAGTCCCTGAGCGCGAAGATGGGCGAGTACCGCAAGATCCTCTCTTCCGATCCGGCGGTGGAAAACGTGGTCGGCTTCATCGGTGGCGGCCGTTGGCAGTCGAGCAACACCGGTTCGTTCTTCGTCACTCTCAAGCCGATCGGCGAGCGCGACCCGGTGGAGAAGGTCCTCACCCGGCTGCGCGAGCGGATCGCCAAGGTGCCCGGCGCGGCGCTCTATCTCAACGCCGGCCAGGACGTGCGCCTGGGCGGCCGCGACAGCAACGCGCAGTACGAATTCACCCTGCGCAGCGACGACCTGACCCTGCTCCGCGAATGGGCGCCGAAGGTCGAGGCGGCGATGCGCAAGCTGCCGCAGCTGGTGGACGTCAACAGCGACTCCCAGGACAAGGGCGTGCAGACCCGCCTGGTGATCGACCGCGACCGCGCGGCGACCCTGGGGATCAACGTGGAAATGGTCGACGCGGTGCTCAACGACTCTTTCGGCCAGCGCCAGGTGTCGACCATCTTCAACCCGCTGAACCAGTACCGGGTGGTGATGGAGGTCGACCAGCAGTACCAGCAGAGCCCGGAGATCCTCCGCCAGGTCCAGGTGATCGGCAACGACGGCCAGCGCGTGCCGCTGTCCGCGTTCAGCCACTACGAACCGAGCCGGGCACCGCTGGAGGTCAACCACCAGGGCCAGTTCGCCGCCACCACGCTGTCCTTCAACCTGGCACCGGGCGCGCAGATCGGCCCGACCCGCGAGGCCATCATGCAGGCCCTGGAGCCGCTGCACATCCCGGTGGACGTGCAGACCAGCTTCGAGGGCAACGCCGGCGCGGTGCAGGACACGCAGAACCAGATGCCCTGGCTGATCCTCCTGGCGCTGCTGGCGGTGTACATCGTCCTCGGCATCCTCTACGAGAGCTACGTGCACCCGCTGACCATCCTCTCGACCCTGCCTTCGGCCGGGGTCGGCGCGCTGCTCGCGCTGATCCTCTGCCGCAGCGAGCTGAGCCTGATCGCGCTGATCGGCATCATCCTGCTGATCGGCATCGTCAAGAAGAACGCGATCATGATGATCGACTTCGCCCTGGAGGCCGAGCGCAACCACGGCCTGAGCCCGCGCGAGGCGATCCTCGAGGCCTGCATGATGCGCTTCCGGCCGATCATGATGACCACCCTGGCCGCCTTGCTCGGCGCCTTGCCGCTGATCTTCGGCATCGGCGGCGACGCCGCGCTGCGCCGGCCGCTGGGCATCACCATCGTCGGCGGGCTGATCGGCAGCCAGTTGCTGACCCTGTACACCACCCCGGTGGTCTACCTCTATCTCGACCGCCTGCGCCACTGGGTCAACCAGAAACGCGGCGTACGCACGGACGGTGCGCTGGAGACACCCCTATGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa PAO1", "NCBI_taxonomy_id": "208964", "NCBI_taxonomy_cvterm_id": "36804"}, "protein_sequence": {"accession": "NP_251216.1", "sequence": "MSLSTPFIRRPVATTLLTLALLLAGTLSFGLLPVAPLPNVDFPAIVVSASLPGASPETMASSVATPLERSLGRIAGISEMTSSSSLGSTTVVLVFDLEKDIDGAAREVQAAINGAMSLLPSGMPNNPSYRKANPSDMPIMVLTLTSETQSRGEMYDLASTVLAPKLSQVQGVGQVSIGGSSLPAVRVDLNPDAMSQYGLSLDSVRTAIAAANSNGPKGAVEKDDKHWQVDANDQLRKAREYEPLVIHYNADNGAAVRLGDVAKVSDSVEDVRNAGFSDDLPAVLLIVTRQPGANIIEATDAIHAQLPVLQELLGPQVKLNVMDDRSPSIRASLEEAELTLLISVALVILVVFLFLRNGRATLIPSLAVPVSLIGTFAVMYLCDFSLNNLSLMALIIATGFVVDDAIVVVENIARRIEEGDPPIQAAITGARQVGFTVLSMTLSLVAVFIPLLLMGGLTGRLFREFAVTLSAAILVSLVVSLTLTPMLCARLLRPLKRPEGASLARRSDRFFAAFMLRYRASLGWALEHSRLMVVIMLACIAMNLWLFVVVPKGFLPQQDSGRLRGYAVADQSISFQSLSAKMGEYRKILSSDPAVENVVGFIGGGRWQSSNTGSFFVTLKPIGERDPVEKVLTRLRERIAKVPGAALYLNAGQDVRLGGRDSNAQYEFTLRSDDLTLLREWAPKVEAAMRKLPQLVDVNSDSQDKGVQTRLVIDRDRAATLGINVEMVDAVLNDSFGQRQVSTIFNPLNQYRVVMEVDQQYQQSPEILRQVQVIGNDGQRVPLSAFSHYEPSRAPLEVNHQGQFAATTLSFNLAPGAQIGPTREAIMQALEPLHIPVDVQTSFEGNAGAVQDTQNQMPWLILLALLAVYIVLGILYESYVHPLTILSTLPSAGVGALLALILCRSELSLIALIGIILLIGIVKKNAIMMIDFALEAERNHGLSPREAILEACMMRFRPIMMTTLAALLGALPLIFGIGGDAALRRPLGITIVGGLIGSQLLTLYTTPVVYLYLDRLRHWVNQKRGVRTDGALETPL"}}}}}}}, "1807": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1806": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1044": {"$update": {"dna_sequence": {"$update": {"sequence": "TATCGCGTGTCTTTCGAGTACGGCATTAGCTGGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTCTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATGACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAACGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAGCAATGGGAAAGAGACTTGACCTTAAGAGGGGCAATACAAGTTTCAGCTGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATACCTTAAAAAATTTTCCTATGGCAACCAGAATATCAGTGGTGGCATTGACAAATTCTGGTTGGAAGACCAGCTTAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATATTTAAATAAATTGTCAGCATCTAAAGAAAACCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCGGCACCTGAATATCTAGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGGTGGGTTGAGAAGGAGACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAGTAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGAAAGTGAGGGCATCATTGGTGGCTA"}}}}}}}}}}, "1805": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1804": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1803": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"483": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGAAAAATCAAAGCAATTATATAATCAAGTGAACTTCTCACATCAGGACTTGCAAGAACATATCTTTAGCAATTGTACTTTTATACATTGTAATTTTAAGCGCTCAAACCTCCGAGATACACAGTTCATTAACTGTACTTTCATAGAGCAGGGGGCATTGGAAGGGTGCGATTTTTCTTATGCTGATCTTCGAGATGCTTCATTTAAAAACTGTCAGCTTTCAATGTCCCATTTTAAGGGGGCAAATTGCTTTGGTATTGAACTGAGAGATTGTGATCTTAAAGGAGCAAATTTTACTCAAGTTAGTTTTGTAAATCAGGTTTCGAATAAAATGTACTTTTGTTCTGCATACATAACAGGTTGTAACTTATCCTATGCCAATTTTGAGCAGCAGCTTATTGAAAAATGTGACCTGTTCGAAAATAGATGGATTGGTGCAAATCTTCGAGGCGCTTCATTTACAGAATCATATTTAAGCCGTGGTGATTTTTCGGAAGACTGCTGGGAACAGTTTAGAGTACAAGGCTGTGATTTAAGCCATTCAGAGCTTTATGGTTTAGATCCTCGAAAGATTGATCTTACGGGTGTAAAAATATGCTCGTGGCAACAGGAACAGTTACTGGAGCAATTAGGGGTAATCATTGTTCCTGACTAA"}}}}}}}}}}, "1802": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1801": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"366": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAAACACAATACATATCAACAGCAACGATTCCGTCACACTGCGCCTCATGACTGAGCATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGAGTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAACAGTACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTCACTCCATACATTGCAATGCTGAATGGAGAGCCGATTGGGTATGCCCAGTCGTACGTTGCTCTTGGAAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCAGGAGTACGCGGAATAGACCTGTCACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGAACCAAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCACCAAGATCCAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCTACGAGAAAGCGGGGTTTGAGAGGCAAGGTACCGTAACCACCCCAGATGGTCCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGCGAACACGCAGTGATGCCTAA"}}}}}}}}}}, "1800": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1809": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1808": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4693": {"dna_sequence": {"fmax": "42743", "fmin": "41537", "accession": "NC_002134.1", "strand": "+", "sequence": "ATGAATAGTTCGACAAAGATCGCATTGGTAATTACGTTACTCGATGCCATGGGGATTGGCCTTATCATGCCAGTCTTGCCAACGTTATTACGTGAATTTATTGCTTCGGAAGATATCGCTAACCACTTTGGCGTATTGCTTGCACTTTATGCGTTAATGCAGGTTATCTTTGCTCCTTGGCTTGGAAAAATGTCTGACCGATTTGGTCGGCGCCCAGTGCTGTTGTTGTCATTAATAGGCGCATCGCTGGATTACTTATTGCTGGCTTTTTCAAGTGCGCTTTGGATGCTGTATTTAGGCCGTTTGCTTTCAGGGATCACAGGAGCTACTGGGGCTGTCGCGGCATCGGTCATTGCCGATACCACCTCAGCTTCTCAACGCGTGAAGTGGTTCGGTTGGTTAGGGGCAAGTTTTGGGCTTGGTTTAATAGCGGGGCCTATTATTGGTGGTTTTGCAGGAGAGATTTCACCGCATAGTCCCTTTTTTATCGCTGCGTTGCTAAATATTGTCACTTTCCTTGTGGTTATGTTTTGGTTCCGTGAAACCAAAAATACACGTGATAATACAGATACCGAAGTAGGGGTTGAGACGCAATCGAATTCGGTATACATCACTTTATTTAAAACGATGCCCATTTTGTTGATTATTTATTTTTCAGCGCAATTGATAGGCCAAATTCCCGCAACGGTGTGGGTGCTATTTACCGAAAATCGTTTTGGATGGAATAGCATGATGGTTGGCTTTTCATTAGCGGGTCTTGGTCTTTTACACTCAGTATTCCAAGCCTTTGTGGCAGGAAGAATAGCCACTAAATGGGGCGAAAAAACGGCAGTACTGCTCGGATTTATTGCAGATAGTAGTGCATTTGCCTTTTTAGCGTTTATATCTGAAGGTTGGTTAGTTTTCCCTGTTTTAATTTTATTGGCTGGTGGTGGGATCGCTTTACCTGCATTACAGGGAGTGATGTCTATCCAAACAAAGAGTCATCAGCAAGGTGCTTTACAGGGATTATTGGTGAGCCTTACCAATGCAACCGGTGTTATTGGCCCATTACTGTTTGCTGTTATTTATAATCATTCACTACCAATTTGGGATGGCTGGATTTGGATTATTGGTTTAGCGTTTTACTGTATTATTATCCTGCTATCGATGACCTTCATGTTAACCCCTCAAGCTCAGGGGAGTAAACAGGAGACAAGTGCTTAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Proteobacteria", "NCBI_taxonomy_id": "1224", "NCBI_taxonomy_cvterm_id": "40546"}, "protein_sequence": {"accession": "WP_001089072.1", "sequence": "MNSSTKIALVITLLDAMGIGLIMPVLPTLLREFIASEDIANHFGVLLALYALMQVIFAPWLGKMSDRFGRRPVLLLSLIGASLDYLLLAFSSALWMLYLGRLLSGITGATGAVAASVIADTTSASQRVKWFGWLGASFGLGLIAGPIIGGFAGEISPHSPFFIAALLNIVTFLVVMFWFRETKNTRDNTDTEVGVETQSNSVYITLFKTMPILLIIYFSAQLIGQIPATVWVLFTENRFGWNSMMVGFSLAGLGLLHSVFQAFVAGRIATKWGEKTAVLLGFIADSSAFAFLAFISEGWLVFPVLILLAGGGIALPALQGVMSIQTKSHQQGALQGLLVSLTNATGVIGPLLFAVIYNHSLPIWDGWIWIIGLAFYCIIILLSMTFMLTPQAQGSKQETSA"}}}}}}}, "1524": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1948": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1949": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1525": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1942": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4669": {"dna_sequence": {"fmax": "2173201", "fmin": "2172316", "accession": "AP012279.1", "strand": "-", "sequence": "ATGAAGAAGCTCACGGCCGCGCTGTGTGCGCTGGCGTTTTTCGCAACGGGCGCGCAGGCGCAGACGGTCAAGGATTTCATTGCGGCGGTCACCAAGAAATGGACCACGCCGTTCGAGCCGTTCCAGCTGATCGACAACATCTATTATGTCGGCACCGACGGCATCGCCGTCTACGTCATCAAGACCTCGCAAGGCCTGATCCTGATGGACACGGCGCTTCCACAGTCTACCGGCATGATCAAGGACAACATCACGAAGCTCGGCCTGAAGGTCGCCGACATCAAGATCATCCTCAACACGCACGCGCATTTCGATCACACCGGCGGCTTCGCCGAGGTCAAGAAGGAGACCGGCGCGCAGCTCATCGCCGGCGAGCGCGACAAGCCGCTGCTCGAAGGCGGCTACTATCCCGGCGACGAGAAGAACGAGGATCTCGCCTTCCCCGCGGTCAAGGTCGATCGCACCGTGAAGGAAGGCGATAAGGTCACGCTTGGTGAGACCACGCTGACGGCGCACGCCACTCCCGGCCACTCGCCGGGCTGCACGAGCTGGGAGATGACCGTCAAGGACGGCGGCCAGGACCGCCAGGTGCTGTTCTTCTGCAGCGGCACGGTGGCGCTAAACCGGCTGGTCGGCCAGCCAACCCACGCCGGCATCGTCGACGACTATCGCGCGACCTATGCCAAGGTGAAGGCGATGAAGATCGACGTCCTGCTCGGACCGCATCCCGAAGTCTACGGCATGCAGGCCAAGCGCGCGGCAATGAAGGACGGCGCACCGAACCCGTTCGTCAAGCCCGGCGAGCTCGCGACCTACGCGACCAGCCTGTCGGAGGACTTCGACAAGCAGCTCGCCAAGCAGACAGCGGCGCTAGAGAAGAAATAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Bradyrhizobium sp. S23321", "NCBI_taxonomy_id": "335659", "NCBI_taxonomy_cvterm_id": "39673"}, "protein_sequence": {"accession": "BAL75272.1", "sequence": "MKKLTAALCALAFFATGAQAQTVKDFIAAVTKKWTTPFEPFQLIDNIYYVGTDGIAVYVIKTSQGLILMDTALPQSTGMIKDNITKLGLKVADIKIILNTHAHFDHTGGFAEVKKETGAQLIAGERDKPLLEGGYYPGDEKNEDLAFPAVKVDRTVKEGDKVTLGETTLTAHATPGHSPGCTSWEMTVKDGGQDRQVLFFCSGTVALNRLVGQPTHAGIVDDYRATYAKVKAMKIDVLLGPHPEVYGMQAKRAAMKDGAPNPFVKPGELATYATSLSEDFDKQLAKQTAALEKK"}}}}}}}, "1943": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"$update": {"2084": {"$update": {"dna_sequence": {"$update": {"sequence": "GTGAGTCAGCCTTCCACCGCTAATGGCGGTTTCCCCAGCGTTGTGGTGACCGCCGTCACAGCGACGACGTCGATCTCGCCGGACATCGAGAGCACGTGGAAGGGTCTGTTGGCCGGCGAGAGCGGCATCCACGCACTCGAAGACGAGTTCGTCACCAAGTGGGATCTAGCGGTCAAGATCGGCGGTCACCTCAAGGATCCGGTCGACAGCCACATGGGCCGACTCGACATGCGACGCATGTCGTACGTCCAGCGGATGGGCAAGTTGCTGGGCGGACAGCTATGGGAGTCCGCCGGCAGCCCGGAGGTCGATCCAGACCGGTTCGCCGTTGTTGTCGGCACCGGTCTAGGTGGAGCCGAGAGGATTGTCGAGAGCTACGACCTGATGAATGCGGGCGGCCCCCGGAAGGTGTCCCCGCTGGCCGTTCAGATGATCATGCCCAACGGTGCCGCGGCGGTGATCGGTCTGCAGCTTGGGGCCCGCGCCGGGGTGATGACCCCGGTGTCGGCCTGTTCGTCGGGCTCGGAAGCGATCGCCCACGCGTGGCGTCAGATCGTGATGGGCGACGCCGACGTCGCCGTCTGCGGCGGTGTCGAAGGACCCATCGAGGCGCTGCCCATCGCGGCGTTCTCCATGATGCGGGCCATGTCGACCCGCAACGACGAGCCTGAGCGGGCCTCCCGGCCGTTCGACAAGGACCGCGACGGCTTTGTGTTCGGCGAGGCCGGTGCGCTGATGCTCATCGAGACGGAGGAGCACGCCAAAGCCCGTGGCGCCAAGCCGTTGGCCCGATTGCTGGGTGCCGGTATCACCTCGGACGCCTTTCATATGGTGGCGCCCGCGGCCGATGGTGTTCGTGCCGGTAGGGCGATGACTCGCTCGCTGGAGCTGGCCGGGTTGTCGCCGGCGGACATCGACCACGTCAACGCGCACGGCACGGCGACGCCTATCGGCGACGCCGCGGAGGCCAACGCCATCCGCGTCGCCGGTTGTGATCAGGCCGCGGTGTACGCGCCGAAGTCTGCGCTGGGCCACTCGATCGGCGCGGTCGGTGCGCTCGAGTCGGTGCTCACGGTGCTGACGCTGCGCGACGGCGTCATCCCGCCGACCCTGAACTACGAGACACCCGATCCCGAGATCGACCTTGACGTCGTCGCCGGCGAACCGCGCTATGGCGATTACCGCTACGCAGTCAACAACTCGTTCGGGTTCGGCGGCCACAATGTGGCGCTTGCCTTCGGGCGTTACTGA"}}}}}}}}}}, "1940": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1941": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1946": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1947": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1944": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1351": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATAGCGGTCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGCGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA"}}}}}}}}}}, "1945": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "818": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "819": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1274": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTATTAGGAAGTGTGCCGCTGCATGCGCAAACGGTGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGAAGGCTGGGTGTGGCATTGATTAACACGGCGGATAATTCGCAAATACTTTATCGTGCTGATGAGCGTTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTAAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTCGAGATCAAAAAATCTGACCTGGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTCAGCGCGGCCGCGCTACAGTACAGCGATAATGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGATGACACGTTCCGTCTCGACCGCACCGAGCCGACGTTAAACACCGCCATTCCTGGCGATCCGCGTGATACCACTTCACCTCGGGCGATGGCGCAAACGCTGCGTAATCTGACGCTGGGTAAAGCGTTGGGCGACAGCCAACGGGCGCAGCTGGTGACGTGGATGAAAGGCAATACTACCGGTGCCGCGAGTATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGACTATGGTACCACCAACGATATCGCGGTGATTTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA"}}}}}}}}}}, "1527": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "810": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4590": {"dna_sequence": {"fmax": "37678", "fmin": "35680", "accession": "NC_017349.1", "strand": "-", "sequence": "ATGAAAAAAATTTATATTAGTGTGCTAGTTCTTTTACTAATTATGATTATAATAACTTGGTTATTCAAAGATGACGATATTGAGAAAACAATTAGTTCTATTGAAAAAGGAAACTATAACGAAGTATATAAAAATAGTTCAGAAAAATCTAAACTGGCATATGGAGAAGAAGAAATTGTAGATAGGAATAAAAAAATTTACAAAGATTTAAGTGTCAATAACTTAAAAATTACTAATCATGAAATTAAAAAAACTGGAAAAGATAAAAAGCAAGTTGATGTTAAATATAACATATATACAAAATATGGAACTATACGACGTAATACACAATTAAACTTTATTTATGAAGATAAGCATTGGAAATTAGATTGGAGACCAGACGTAATAGTACCTGGTTTGAAAAATGGACAGAAAATTAATATAGAAACATTAAAATCAGAGCGAGGCAAAATAAAAGATAGAAATGGTATAGAATTAGCTAAAACTGGAAATACATATGAAATCGGTATTGTCCCTAACAAAACACCCAAAGAAAAATATGATGATATTGCTCGTGACTTACAAATTGATACAAAAGCTATAACCAATAAAGTTAATCAAAAATGGGTTCAGCCAGATTCATTTGTACCAATTAAAAAGATAAATAAACAAGATGAATATATAGACAAATTAATTAAATCATACAATTTACAAATAAACACTATAAAAAGCCGTGTTTATCCATTGAACGAAGCAACAGTACACCTTTTAGGTTATGTGGGTCCAATTAATTCTGACGAGTTAAAAAGTAAGCAATTTAGAAACTATAGCAAAAATACTGTTATTGGAAAAAAAGGCTTAGAACGCCTCTATGATAAACAATTGCAAAACACTGATGGTTTTAAGGTATCCATTGCAAATACTTATGACAATAAACCTTTAGACACATTATTGGAGAAAAAGGCTGAAAACGGAAAAGATCTTCATTTAACTATAGATGCTAGAGTACAAGAAAGTATTTATAAACATATGAAAAATGACGATGGATCTGGTACAGCATTACAACCAAAAACTGGAGAAATTTTAGCTTTGGTAAGTACCCCATCGTACGATGTTTATCCATTCATGAATGGATTAAGCAATAATGACTACCGTAAATTAACTAACAATAAAAAAGAGCCTTTGCTCAACAAATTTCAAATCACTACATCACCAGGTTCAACCCAAAAAATATTAACATCTATTATAGCCTTAAAAGAAAATAAACTAGACAAAAATACTAATTTTGATATTTATGGTAAGGGTTGGCAAAAAGATGCATCATGGGGGAATTATAATATCACAAGATTTAAAGTAGTAGACGGCAATATCGATTTAAAGCAAGCAATAGAATCATCAGACAACATATTTTTTGCCCGCATTGCATTAGCATTAGGAGCCAAAAAATTTGAGCAAGGTATGCAAGATTTGGGAATCGGTGAAAATATCCCGAGTGATTATCCCTTTTATAAAGCACAAATCTCAAATAGTAATTTAAAAAATGAAATATTATTAGCAGATTCAGGATATGGCCAAGGCGAGATACTAGTAAACCCTATACAAATTTTATCAATATACAGTGCTTTAGAAAATAACGGAAATATACAAAATCCTCATGTTTTACGTAAAACAAAATCTCAAATATGGAAAAAAGATATTATACCTAAAAAAGACATAGATATATTAACTAATGGTATGGAACGTGTAGTTAATAAAACACATAGGGATGATATATACAAAAATTATGCCCGAATTATTGGTAAATCTGGCACAGCAGAATTAAAAATGAATCAAGGGGAAACTGGAAGACAAATAGGTTGGTTTGTTTCATATAATAAAAATAATCCTAATATGTTAATGGCGATTAATGTTAAAGACGTTCAAAATAAAGGGATGGCCAGCTATAATGCTACTATATCTGGAAAAGTTTATGATGATTTGTATGATAATGGAAAAACTCAATTTGATATAGATCAGTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Staphylococcus", "NCBI_taxonomy_id": "1279", "NCBI_taxonomy_cvterm_id": "37074"}, "protein_sequence": {"accession": "WP_000725529.1", "sequence": "MKKIYISVLVLLLIMIIITWLFKDDDIEKTISSIEKGNYNEVYKNSSEKSKLAYGEEEIVDRNKKIYKDLSVNNLKITNHEIKKTGKDKKQVDVKYNIYTKYGTIRRNTQLNFIYEDKHWKLDWRPDVIVPGLKNGQKINIETLKSERGKIKDRNGIELAKTGNTYEIGIVPNKTPKEKYDDIARDLQIDTKAITNKVNQKWVQPDSFVPIKKINKQDEYIDKLIKSYNLQINTIKSRVYPLNEATVHLLGYVGPINSDELKSKQFRNYSKNTVIGKKGLERLYDKQLQNTDGFKVSIANTYDNKPLDTLLEKKAENGKDLHLTIDARVQESIYKHMKNDDGSGTALQPKTGEILALVSTPSYDVYPFMNGLSNNDYRKLTNNKKEPLLNKFQITTSPGSTQKILTSIIALKENKLDKNTNFDIYGKGWQKDASWGNYNITRFKVVDGNIDLKQAIESSDNIFFARIALALGAKKFEQGMQDLGIGENIPSDYPFYKAQISNSNLKNEILLADSGYGQGEILVNPIQILSIYSALENNGNIQNPHVLRKTKSQIWKKDIIPKKDIDILTNGMERVVNKTHRDDIYKNYARIIGKSGTAELKMNQGETGRQIGWFVSYNKNNPNMLMAINVKDVQNKGMASYNATISGKVYDDLYDNGKTQFDIDQ"}}}}}}}, "811": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "812": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1114": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCAACAACGACAATCCATCCTGTGGGGGGCCGTGGCCACCCTGATGTGGGCCGGTCTGGCCCATGCAGGTGAGGCTTCACCGGTCGATCCCCTGCGCCCCGTGGTGGATGCCAGCATCCAGCCGCTGCTCAAGGAGCACAGGATCCCGGGCATGGCGGTGGCCGTGCTCAAGGATGGCAAGGCCCACTACTTCAATTACGGGGTGGCCAACCGGGAGAGCGGGGCCGGCGTCAGCGAGCAGACCCTGTTCGAGATAGGATCCGTGAGCAAGACCCTGACTGCGACCCTGGGGGCCTATGCGGTGGTCAAGGGAGCGATGCAGCTGGATGACAAGGCGAGCCGGCACGCGCCCTGGCTCAAGGGATCCGCCTTTGACAGCATCACCATGGGGGAGCTTGCCACCTACAGCGCCGGAGGCCTGCCACTGCAATTCCCCGAGGAGGTGGATTCATCCGAGAAGATGCGCGCCTACTACCGCCAGTGGGCCCCTGTCTATTCGCCGGGCTCCCATCGCCAGTACTCCAACCCCAGCATAGGGCTGTTCGGCCACCTGGCGGCGAGCAGCCTGAAGCAGCCGTTTGCCCCCTTGATGGAGCAGACCCTGCTGCCCGGGCTCGGCATGCACCACACCTATGTCAATGTGCCGAAGCAGGCCATGGCGAGTTATGCCTATGGCTATTCGAAAGAGGACAAGCCCATCCGTGTCAACCCTGGCATGCTGGCGGACGAGGCCTATGGCATCAAGACCAGCTCGGCGGATCTGCTGCGTTTTGTGAAGGCCAACATCGGCGGGGTTGATGACAAGGCGTTGCAGCAGGCCATCTCCCTGACCCACCAAGGGCATTACTCGGTAGGCGGGATGACCCAGGGGCTGGGTTGGGAGAGTTACGCCTATCCCGTCACCGAGCAGACATTGCTGGCGGGCAATTCGGCCAAGGTGATCCTCGAAGCCAATCCGACGGCGGCGCCCCGGGAGTCGGGGAGCCAGGTGCTCTTCAACAAGACCGGCTCGACCAATGGCTTTGGCGCCTATGTGGCCTTCGTGCCGGCCAGGGGGATCGGCATCGTCATGCTGGCCAATCGCAACTACCCCATCGAGGCGCGCATCAAGGCGGCCCACGCCATCCTGGCGCAGTTGGCCGGTTGA"}}}}}}}}}}, "813": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "814": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "815": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1110": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGAAATTTTGCTACACTGTTTTTCATGTTCATTTGCTTGGGCTTGAATGCTCAGGTAGTAAAAGAACCTGAAAATATGCCCAAAGAATGGAACCAGGCTTATGAACCATTCAGAATTGCAGGTAATTTATATTACGTAGGAACCTATGATTTGGCTTCTTACCTTATTGTGACAGACAAAGGCAATATTCTCATTAATACAGGAACGGCAGAATCGCTTCCAATAATAAAAGCAAATATCCAAAAGCTCGGGTTTAATTATAAAGACATTAAGATCTTGCTGCTTACTCAGGCTCACTACGACCATACAGGTGCATTACAGGATTTTAAAACAGAAACCGCTGCAAAATTCTATGCCGATAAAGCAGATGTTGATGTCCTGAGAACAGGGGGGAAGTCCGATTATGAAATGGGAAAATATGGTGTGACATTTAAACCTGTTACTCCGGATAAAACATTGAAAGATCAGGATAAAATAAAACTGGGAAATATAACCCTGACTTTGCTTCATCATCCGGGACATACAAAAGGTTCCTGTAGTTTTATTTTTGAAACAAAAGACGAGAAGAGAAAATATAGAGTTTTGATAGCTAATATGCCCTCCGTTATTGTTGATAAGAAATTTTCTGAAGTTACCGCATATCCAAATATTCAGTCCGATTATGCTTATACCTTTGGTGTTATGAAAAAGCTGGATTTTGATATTTGGGTGGCCTCCCATGCAAGTCAGTTCGATCTCCATGAAAAACGTAAAGAAGGAGATCCGTACAATCCGCAATTGTTTATGGATAAGCAAAGCTATTTCCAAAACCTTAATGATTTGGAAAAAAGCTATCTCGACAAAATAAAAAAAGATTCCCAAGATAAATAA"}}}}}}}}}}, "816": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1051": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGCAATCCGAATCTTTGCAATACTTTTCTCCACTTTTGTTTTTGGCACGTTCGCGCATGCACAAGAAGGCATGCGCGAACGTTCTGACTGGCGGAAGTTTTTCAGCGAATTTCAAGCCAAAGGCACGATAGTTGTGGCAGACGAACGCCAAACAGATCGTGTCATATTGGTTTTTGATCAGGTGCGGTCAGAGAAACGCTACTCGCCGGCCTCGACATTCAAGATTCCACATACACTTTTTGCACTTGACGCAGGCGCTGCACGTGATGAGTTTCAAGTTTTCCGATGGGACGGCATCAAAAGAAGCTTTGCAGCTCACAACCAAGACCAAGACTTGCGATCAGCAATGCGGAATTCTACTGTCTGGATTTATGAGCTATTTGCAAAAGAGATCGGTGAAGACAAGGCTCGACGCTATTTGAAGCAAATCGACTATGGCAACGCCGATCCTTCGACAAGTAATGGCGATTACTGGATAGATGGCAATCTTGCTATCGCGGCACAAGAACAGATTGCATTTCTCAGGAAGCTCTATCATAACGAGTTGCCCTTTCGGGTAGAACATCAGCGCTTGGTCAAGGACCTCATGATTGTGGAAGCCGGTCGCAACTGGATACTGCGCGCAAAGACGGGCTGGGAAGGCCGCATTGGTTGGTGGGTAGGATGGGTTGAGTGGCCGACTGGCCCCGTATTCTTCGCACTGAATATTGATACGCCAAACAGGATGGATGACCTTTTCAAAAGGGAGGCAATAGTGCGGGCAATCCTTCGCTCTATCGAAGCGTTGCCGCCCAACCCGGCAGTCAACTCGGACGCAGCGCGATAA"}}}}}}}}}}, "817": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2859": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1991": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1522": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1990": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"905": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCTTCGTTCTCCACGTTTGCCGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCGCTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCGATTATCTATCAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCGTCCAGTCACTCAACAAACGCTGTTTGAACTCGGATCGGTCAGTAAAACGTTCAACGGCGTGCTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGCATTACTGGCCTGAACTGACTGGTAAGCAGTGGCAGGGTATCAGCCTGCTGCACTTAGCCACCTACACGGCAGGCGGCCTGCCGCTTCAGGTTCCGGACGACGTTACGGATAAAGCCGCGTTACTACGCTTTTATCAAAACTGGCAGCCGCAATGGGCCCCAGGCGCTAAACGTCTTTATGCTAACTCCAGCATTGGTCTGTTTGGTGCCCTGGCGGTCAAACCCTCAGGCATGAGCTACGAAGAGGCGATGACCAAACGCGTCCTGCGCCCCTTAAAACTGGCGCATACCTGGATTACGGTTCCGCAGAGCGAACAAAAAGATTATGCCTGGGGTTATCGCGAAGGAAAGCCAGTGCATGTATCCCCTGGCCAACTTGATGCCGAAGCCTACGGGGTGAAATCGAGCGTTATCGATATGACCCGTTGGGTTCAGGCCAACATGGACGCCAGCCAGGTTCAGGAGAAAACGCTCCAGCAGGGCATCGAGCTTGCGCAGTCACGTTACTGGCGTATTGGCGATATGTACCAGGGCCTGGGCTGGGAGATGCTGAACTGGCCGGTGAAGGCCGACTCGATAATTAGCGGTAGCGACAGCAAAGTGGCACTGGCAGCGCTTCCTGCCGTTGAGGTAAACCCGCCCGCGCCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGCTCCACTGGCGGATTCGGCAGCTACGTTGCGTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAGAGCTACCCAAACCCTGTTCGCGTCGAGGCCGCCTGGCGCATTCTTGAAAAACTGCAGTAA"}}}}}}}}}}, "2851": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"4469": {"dna_sequence": {"fmax": "2339420", "fmin": "2336792", "accession": "U00096.3", "strand": "-", "sequence": "ATGAGCGACCTTGCGAGAGAAATTACACCGGTCAACATTGAGGAAGAGCTGAAGAGCTCCTATCTGGATTATGCGATGTCGGTCATTGTTGGCCGTGCGCTGCCAGATGTCCGAGATGGCCTGAAGCCGGTACACCGTCGCGTACTTTACGCCATGAACGTACTAGGCAATGACTGGAACAAAGCCTATAAAAAATCTGCCCGTGTCGTTGGTGACGTAATCGGTAAATACCATCCCCATGGTGACTCGGCGGTCTATGACACGATCGTCCGCATGGCGCAGCCATTCTCGCTGCGTTATATGCTGGTAGACGGTCAGGGTAACTTCGGTTCTATCGACGGCGACTCTGCGGCGGCAATGCGTTATACGGAAATCCGTCTGGCGAAAATTGCCCATGAACTGATGGCCGATCTCGAAAAAGAGACGGTCGATTTCGTTGATAACTATGACGGCACGGAAAAAATTCCGGACGTCATGCCAACCAAAATTCCTAACCTGCTGGTGAACGGTTCTTCCGGTATCGCCGTAGGTATGGCAACCAACATCCCGCCGCACAACCTGACGGAAGTCATCAACGGTTGTCTGGCGTATATTGATGATGAAGACATCAGCATTGAAGGGCTGATGGAACACATCCCGGGGCCGGACTTCCCGACGGCGGCAATCATTAACGGTCGTCGCGGTATTGAAGAAGCTTACCGTACCGGTCGCGGCAAGGTGTATATCCGCGCTCGCGCAGAAGTGGAAGTTGACGCCAAAACCGGTCGTGAAACCATTATCGTCCACGAAATTCCGTATCAGGTAAACAAAGCGCGCCTGATCGAGAAGATTGCGGAACTGGTAAAAGAAAAACGCGTGGAAGGCATCAGCGCGCTGCGTGACGAGTCTGACAAAGACGGTATGCGCATCGTGATTGAAGTGAAACGCGATGCGGTCGGTGAAGTTGTGCTCAACAACCTCTACTCCCAGACCCAGTTGCAGGTTTCTTTCGGTATCAACATGGTGGCATTGCACCATGGTCAGCCGAAGATCATGAACCTGAAAGACATCATCGCGGCGTTTGTTCGTCACCGCCGTGAAGTGGTGACCCGTCGTACTATTTTCGAACTGCGTAAAGCTCGCGATCGTGCTCATATCCTTGAAGCATTAGCCGTGGCGCTGGCGAACATCGACCCGATCATCGAACTGATCCGTCATGCGCCGACGCCTGCAGAAGCGAAAACTGCGCTGGTTGCTAATCCGTGGCAGCTGGGCAACGTTGCCGCGATGCTCGAACGTGCTGGCGACGATGCTGCGCGTCCGGAATGGCTGGAGCCAGAGTTCGGCGTGCGTGATGGTCTGTACTACCTGACCGAACAGCAAGCTCAGGCGATTCTGGATCTGCGTTTGCAGAAACTGACCGGTCTTGAGCACGAAAAACTGCTCGACGAATACAAAGAGCTGCTGGATCAGATCGCGGAACTGTTGCGTATTCTTGGTAGCGCCGATCGTCTGATGGAAGTGATCCGTGAAGAGCTGGAGCTGGTTCGTGAACAGTTCGGTGACAAACGTCGTACTGAAATCACCGCCAACAGCGCAGACATCAACCTGGAAGATCTGATCACCCAGGAAGATGTGGTCGTGACGCTCTCTCACCAGGGCTACGTTAAGTATCAGCCGCTTTCTGAATACGAAGCGCAGCGTCGTGGCGGGAAAGGTAAATCTGCCGCACGTATTAAAGAAGAAGACTTTATCGACCGACTGCTGGTGGCGAACACTCACGACCATATTCTGTGCTTCTCCAGCCGTGGTCGCGTCTATTCGATGAAAGTTTATCAGTTGCCGGAAGCCACTCGTGGCGCGCGCGGTCGTCCGATCGTCAACCTGCTGCCGCTGGAGCAGGACGAACGTATCACTGCGATCCTGCCAGTGACCGAGTTTGAAGAAGGCGTGAAAGTCTTCATGGCGACCGCTAACGGTACCGTGAAGAAAACTGTCCTCACCGAGTTCAACCGTCTGCGTACCGCCGGTAAAGTGGCGATCAAACTGGTTGACGGCGATGAGCTGATCGGCGTTGACCTGACCAGCGGCGAAGACGAAGTAATGCTGTTCTCCGCTGAAGGTAAAGTGGTGCGCTTTAAAGAGTCTTCTGTCCGTGCGATGGGCTGCAACACCACCGGTGTTCGCGGTATTCGCTTAGGTGAAGGCGATAAAGTCGTCTCTCTGATCGTGCCTCGTGGCGATGGCGCAATCCTCACCGCAACGCAAAACGGTTACGGTAAACGTACCGCAGTGGCGGAATACCCAACCAAGTCGCGTGCGACGAAAGGGGTTATCTCCATCAAGGTTACCGAACGTAACGGTTTAGTTGTTGGCGCGGTACAGGTAGATGACTGCGACCAGATCATGATGATCACCGATGCCGGTACGCTGGTACGTACTCGCGTTTCGGAAATCAGCATCGTGGGCCGTAACACCCAGGGCGTGATCCTCATCCGTACTGCGGAAGATGAAAACGTAGTGGGTCTGCAACGTGTTGCTGAACCGGTTGACGAGGAAGATCTGGATACCATCGACGGCAGTGCCGCGGAAGGGGACGATGAAATCGCTCCGGAAGTGGACGTTGACGACGAGCCAGAAGAAGAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli str. K-12 substr. MG1655", "NCBI_taxonomy_id": "511145", "NCBI_taxonomy_cvterm_id": "36849"}, "protein_sequence": {"accession": "AAC75291.1", "sequence": "MSDLAREITPVNIEEELKSSYLDYAMSVIVGRALPDVRDGLKPVHRRVLYAMNVLGNDWNKAYKKSARVVGDVIGKYHPHGDSAVYDTIVRMAQPFSLRYMLVDGQGNFGSIDGDSAAAMRYTEIRLAKIAHELMADLEKETVDFVDNYDGTEKIPDVMPTKIPNLLVNGSSGIAVGMATNIPPHNLTEVINGCLAYIDDEDISIEGLMEHIPGPDFPTAAIINGRRGIEEAYRTGRGKVYIRARAEVEVDAKTGRETIIVHEIPYQVNKARLIEKIAELVKEKRVEGISALRDESDKDGMRIVIEVKRDAVGEVVLNNLYSQTQLQVSFGINMVALHHGQPKIMNLKDIIAAFVRHRREVVTRRTIFELRKARDRAHILEALAVALANIDPIIELIRHAPTPAEAKTALVANPWQLGNVAAMLERAGDDAARPEWLEPEFGVRDGLYYLTEQQAQAILDLRLQKLTGLEHEKLLDEYKELLDQIAELLRILGSADRLMEVIREELELVREQFGDKRRTEITANSADINLEDLITQEDVVVTLSHQGYVKYQPLSEYEAQRRGGKGKSAARIKEEDFIDRLLVANTHDHILCFSSRGRVYSMKVYQLPEATRGARGRPIVNLLPLEQDERITAILPVTEFEEGVKVFMATANGTVKKTVLTEFNRLRTAGKVAIKLVDGDELIGVDLTSGEDEVMLFSAEGKVVRFKESSVRAMGCNTTGVRGIRLGEGDKVVSLIVPRGDGAILTATQNGYGKRTAVAEYPTKSRATKGVISIKVTERNGLVVGAVQVDDCDQIMMITDAGTLVRTRVSEISIVGRNTQGVILIRTAEDENVVGLQRVAEPVDEEDLDTIDGSAAEGDDEIAPEVDVDDEPEEE"}}}}}}}, "2850": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"4476": {"dna_sequence": {"fmax": "2376346", "fmin": "2373709", "accession": "NC_003197.2", "strand": "-", "sequence": "ATGAGCGACCTTGCGAGAGAAATTACACCGGTCAACATTGAGGAGGAGCTGAAGAGCTCCTATCTGGATTATGCGATGTCGGTCATTGTTGGCCGTGCGCTGCCGGATGTCCGAGATGGCCTGAAGCCGGTACACCGTCGCGTACTTTACGCCATGAACGTATTGGGCAATGACTGGAACAAAGCCTATAAAAAATCTGCCCGTGTCGTTGGTGACGTAATCGGTAAATACCATCCCCACGGCGATTCCGCAGTGTATGACACCATCGTTCGTATGGCGCAGCCATTCTCGCTGCGTTACATGCTGGTGGATGGTCAGGGTAACTTCGGTTCTATTGACGGCGACTCCGCGGCGGCAATGCGTTATACGGAGATCCGTCTGGCGAAAATCGCCCACGAACTGATGGCCGATCTCGAAAAAGAGACGGTGGATTTCGTGGATAACTATGACGGTACGGAAAAAATTCCGGACGTCATGCCGACCAAAATTCCGAATCTGCTGGTGAACGGTTCTTCCGGTATCGCAGTAGGTATGGCGACGAATATCCCGCCGCACAACCTGACGGAAGTGATTAACGGCTGCCTGGCGTATATCGACAACGAAGACATCAGCATTGAAGGGCTGATGGAACATATTCCGGGGCCGGACTTCCCGACCGCCGCGATCATCAACGGTCGTCGTGGTATCGAAGAAGCCTACCGCACCGGTCGTGGCAAAGTGTACATTCGCGCCCGCGCGGAAGTTGAAGCTGACGCCAAAACGGGCCGTGAAACCATCATCGTCCATGAAATTCCCTATCAGGTGAACAAAGCGCGCCTGATCGAGAAAATCGCCGAGCTGGTGAAAGATAAACGCGTGGAAGGCATCAGCGCGCTGCGTGACGAATCCGACAAAGACGGGATGCGCATCGTGATTGAAGTGAAACGCGATGCGGTGGGCGAGGTGGTGCTTAATAATCTCTACTCCCAGACCCAGCTACAGGTTTCCTTCGGTATTAACATGGTGGCGCTGCATCACGGCCAGCCGAAGATCATGAACCTGAAAGATATCATTTCAGCGTTCGTGCGCCACCGCCGTGAAGTGGTGACGCGTCGGACTATTTTTGAACTGCGTAAAGCCCGTGACCGTGCGCATATCCTTGAAGCTCTGGCGATTGCGCTGGCCAACATCGACCCGATTATCGAACTGATTCGCCGCGCGCCAACGCCGGCGGAAGCAAAAGCGGCGCTGATTTCGCGTCCGTGGGATCTGGGCAACGTTGCTGCGATGCTGGAGCGCGCTGGTGATGACGCCGCGCGTCCGGAATGGCTGGAGCCAGAATTTGGCGTGCGTGACGGTCAGTACTACCTGACTGAACAGCAGGCGCAGGCGATTCTGGATCTGCGTTTGCAGAAACTGACCGGCCTGGAGCATGAAAAACTGCTCGACGAATACAAAGAGCTGCTGGAGCAGATTGCTGAATTGCTGCACATTCTGGGCAGCGCCGATCGCCTGATGGAAGTGATCCGCGAAGAGATGGAGTTAATTCGCGATCAGTTCGGCGATGAGCGTCGTACCGAAATCACCGCCAACAGCGCCGATATTAATATCGAAGATCTGATTAGCCAGGAAGATGTTGTCGTGACGCTGTCTCACCAGGGTTACGTCAAATATCAACCGCTGACAGATTACGAAGCGCAACGTCGTGGTGGGAAAGGTAAATCTGCCGCGCGTATTAAAGAAGAAGACTTTATCGACCGCCTGCTGGTGGCTAACACCCATGACACCATCCTCTGCTTCTCCAGCCGGGGCCGTCTGTACTGGATGAAGGTCTATCAGCTGCCGGAAGCCAGCCGCGGCGCGCGCGGTCGTCCGATCGTCAACCTGCTGCCGCTGGAAGCCAACGAACGTATCACCGCGATTCTGCCGGTTCGTGAGTATGAAGAAGGCGTCAACGTCTTTATGGCGACCGCCAGCGGTACCGTGAAGAAAACGGCGCTGACCGAATTCAGCCGTCCGCGTTCCGCCGGTATTATCGCGGTGAACCTCAACGACGGCGACGAGCTGATTGGCGTTGACCTGACTTCTGGTTCTGACGAAGTCATGCTGTTCTCGGCCGCGGGTAAAGTGGTGCGCTTCAAAGAAGACGCCGTCCGTGCGATGGGGCGTACCGCGACCGGTGTGCGCGGTATTAAGCTGGCGGGAGACGATAAAGTCGTCTCTCTGATCATCCCACGCGGCGAAGGCGCTATTCTGACCGTAACGCAAAACGGCTACGGGAAGCGTACCGCAGCGGACGAGTACCCGACCAAGTCTCGTGCGACGCAGGGCGTTATCTCTATCAAAGTGACCGAGCGCAACGGTTCCGTTGTCGGTGCGGTACAGGTAGACGATTGCGACCAGATCATGATGATCACGGATGCCGGTACTCTGGTGCGTACCCGTGTGTCCGAGATCAGCGTAGTGGGACGTAATACCCAGGGCGTTATCCTTATCCGCACGGCGGAAGATGAAAACGTGGTGGGTCTGCAACGCGTTGCTGAACCGGTAGATGACGAAGAACTCGACGCTATCGACGGCAGCGTGGCGGAAGGGGATGAGGATATCGCCCCGGAAGCGGAAAGCGATGACGACGTTGCGGATGACGCTGACGAGTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Salmonella enterica subsp. enterica serovar Typhimurium str. LT2", "NCBI_taxonomy_id": "99287", "NCBI_taxonomy_cvterm_id": "35734"}, "protein_sequence": {"accession": "NP_461214.1", "sequence": "MSDLAREITPVNIEEELKSSYLDYAMSVIVGRALPDVRDGLKPVHRRVLYAMNVLGNDWNKAYKKSARVVGDVIGKYHPHGDSAVYDTIVRMAQPFSLRYMLVDGQGNFGSIDGDSAAAMRYTEIRLAKIAHELMADLEKETVDFVDNYDGTEKIPDVMPTKIPNLLVNGSSGIAVGMATNIPPHNLTEVINGCLAYIDNEDISIEGLMEHIPGPDFPTAAIINGRRGIEEAYRTGRGKVYIRARAEVEADAKTGRETIIVHEIPYQVNKARLIEKIAELVKDKRVEGISALRDESDKDGMRIVIEVKRDAVGEVVLNNLYSQTQLQVSFGINMVALHHGQPKIMNLKDIISAFVRHRREVVTRRTIFELRKARDRAHILEALAIALANIDPIIELIRRAPTPAEAKAALISRPWDLGNVAAMLERAGDDAARPEWLEPEFGVRDGQYYLTEQQAQAILDLRLQKLTGLEHEKLLDEYKELLEQIAELLHILGSADRLMEVIREEMELIRDQFGDERRTEITANSADINIEDLISQEDVVVTLSHQGYVKYQPLTDYEAQRRGGKGKSAARIKEEDFIDRLLVANTHDTILCFSSRGRLYWMKVYQLPEASRGARGRPIVNLLPLEANERITAILPVREYEEGVNVFMATASGTVKKTALTEFSRPRSAGIIAVNLNDGDELIGVDLTSGSDEVMLFSAAGKVVRFKEDAVRAMGRTATGVRGIKLAGDDKVVSLIIPRGEGAILTVTQNGYGKRTAADEYPTKSRATQGVISIKVTERNGSVVGAVQVDDCDQIMMITDAGTLVRTRVSEISVVGRNTQGVILIRTAEDENVVGLQRVAEPVDDEELDAIDGSVAEGDEDIAPEAESDDDVADDADE"}}}}}}}, "2853": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1523": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"335": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGTCCGAATTCTTCATCAAGCGGCCGAACTTCGCCTGGGTGGTGGCCCTGTTCATCTCCCTGGGCGGCCTGCTGGTCATTTCCAAATTGCCGGTAGCGCAGTACCCCAATGTCGCGCCGCCACAGATCACCATCACCGCCACCTATCCCGGCGCCTCGGCGAAGGTGCTGGTGGACTCCGTCACCAGTGTGCTCGAGGAGTCGCTGAACGGCGCCAAGGGCCTGCTCTACTTCGAGTCGACCAACAACTCCAACGGCACCGCCGAGATCGTCGTCACCTTCGAGCCGGGCACCGATCCGGACCTGGCCCAGGTGGACGTGCAGAACCGCCTGAAGAAAGCCGAGGCGCGCATGCCGCAGGCGGTGCTGACCCAGGGCCTGCAGGTCGAGCAGACCAGCGCCGGTTTCCTGCTGATCTATGCGCTCAGCTACAAGGAAGGCGCTCAGCGCAGCGACACCACCGCCCTCGGCGACTACGCCGCGCGCAATATCAACAACGAGCTGCGGCGCCTGCCGGGCGTCGGCAAGCTGCAATTCTTCTCTTCCGAGGCGGCCATGCGGGTCTGGATCGATCCGCAGAAGCTGGTGGGCTTCGGCCTCTCCATCGACGACGTGAGCAATGCCATCCGCGGGCAGAACGTGCAGGTGCCGGCCGGCGCCTTCGGCAGCGCACCGGGCAGTTCCGCGCAGGAGCTGACGGCGACCCTGGCGGTGAAGGGCACCCTGGACGATCCGCAGGAGTTCGGCCAGGTAGTGCTGCGCGCCAACGAGGACGGCTCGCTGGTCCCGGCTCGCCGATGTCGCGCGCCTGGAACTCGGCAAGGAGAGCTACAACATTTCCTCGCGACTGAACGGCACGCCCACCGTGGGCGGGGCTATCCAGCTGTCGCCCGGGGCCAACGCGATCCAGACCCTACCCTGGTGAAACAGCGTCTCGCCGAACTGTCGGCGTTCTTCCCCGAGGACATGCAGTACAGCGTGCCCTACGACACCTCGCGCTTCGTCGACGTGGCCATCGAGAAGGTGATCCACACCCTGATCGAAGCGATGGTCCTGGTGTTCCTGGTGATGTTCCTGTTCCTGGAGAACGTCCGCTACACCCTGATCCCGTCCATCGTGGTGCCGGTGTGCCTGCTGGGTACGCTGATGGTGATGTACCTGCTGGGGTTCTCGGTGAACATGATGACCATGTTCGGCATGGTCCTGGCGATCGGCATCCTGGTGGACGACGCCATCGTGGTGGTGGAGAACGTCGAGCGGATCATGGCGGAGGAGGGGATTTCCCCGGCCGAGGCCACGGTCAAGGCGATGAAGCAGGTATCCGGCGCCATCGTCGGCATCACCCTGGTGCTCTCGGCGGTGTTCCTGCCGCTGGCTTTCATGGCCGGTTCGGTGGGGGTGATCTACCAGCAGTTCTCGGTGTCGCTGGCGGTCTCGATCCTGTTCTCCGGCTTCCTCGCCCTGACCTTCACCCCGGCGCTGTGCGCCACGCTGTTCAAGCCCATTCCCGAAGGGCACCACGAGAAGCGCGGCTTCTTCGGCGCCTTCAACCGTGGCTTCGCCCGCGTCACCGAGCGCTATTCGCTGCTCAACTCGAAGCTGGTGGCGCGCGCCGGACGCTTCATGCTGGTGTACGCCGGCCTGGTGGCCATGCTCGGCTACTTCTACCTGCGCCTGCCGGAAGCCTTCGTGCCGGCGGAAGACCTCGGCTACATGGTGGTCGACGTGCAACTGCCGCCTGGCGCTTCGCGCGTGCGCACCGATGCCACCGGCGAGGAGCTCGAGCGCTTCCTCAAGTCCCGCGAGGCGGTGGCTTCGGTGTTCCTGATCTCGGGCTTCAGCTTCTCCGGCCAGGGCGACAATGCCGCGCTGGCCTTCCCAACCTTCAAGGACTGGTCCGAGCGAGGCGCCGAGCAGTCGTCCGCCGCCGAGATCGCCGCGCTGAACGAGCATTTCGCGCTGCCCGACGATGGCACGGTCATGGCCGTGTCGCCGCCACCGATCAACGGTCTGGGTAACTCCGGCGGCTTCGCATTGCGCCTGATGGACCGTAGCGGGGTCGGCCGCGAAGCGCTGCTGCAGGCTCGCGATACTCTTCTTGGCGAGATCCAGACCAACCCGAAATTCCTTTACGCGATGATGGAAGGACTGGCCGAAGCGCCGCAACTGCGCCTGTTGATCGACCGGGAGAAGGCCCGTGCCCTGGGGGTGAGCTTCGAGACCATCAGCGGCACGCTGTCCGCTGCCTTCGGCTCGGAGGTGATCAACGACTTCACCAATGCGGGGCGCCAACAGCGGGTGGTGATCCAGGCCGAACAGGGCAACCGGATGACCCCGGAAAGCGTGCTCGAGCTATACGTGCCTAACGCTGCTGGCAACCTGGTACCGCTCAGCGCCTTCGTCAGCGTGAAATGGGAAGAGGGACCGGTGCAATTGGTGCGCTATAACGGCTACCCGTCGATCCGCATCGTCGGTGACGCCGCGCCCGGCTTCAGTACCGGCGAAGCCATGGCGGAAATGGAGCGCCTGGCCTCGCAGCTGCCGGCCGGCATCGGCTACGAGTGGACCGGCCTGTCCTATCAGGAGAAGGTCTCCGCCGGGCAGGCCACCAGCCTGTTCGCCCTCGCCATCCTGGTGGTGTTCCTGTTGCTGGTGGCGCTCTACGAGAGCTGGTCGATCCCGCTGTCGGTGATGCTGATCGTGCCGATCGGCGCCATCGGCGCGGTGCTCGCGGTGATGGTCAGCGGTATGTCCAACGACGTGTATTTCAAGGTCGGCCTGATCACCATCATCGGTCTTTCGGCGAAGAACGCGATCCTCATCGTCGAGTTCGCCAAGGAACTCTGGGAACAGGGACATAGCCTGCGCGACGCCGCCATCGAGGCCGCGCGCCTGCGCTTCCGGCCGATCATCATGACTTCCATGGCGTTCATCCTCGGCGTGATACCCCTGGCCCTGGCCAGCGGTGCCGGCGCGGCGAGCCAGCGTGCCATCGGCACCGGAGTGATCGGCGGGATGCTCAGCGCCACCTTCCTCGGCGTGCTGTTCGTACCTATCTGTTTCGTCTGGCTGCTGTCGCTGCTGCGCAGCAAGCCGGCACCCATCGAACAGGCCGCTTCGGCCGGGGAGTGA"}}}}}}}}}}, "2855": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1993": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2857": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2856": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1490": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "421": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1492": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1493": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1494": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1988": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAAAATCGTTATGCTCCGCTCTGCTGCTGACAGCCTCTTTCTCCACATTTGCTGCCGCAAAAACAGAACAACAGATTGCCGATATCGTTAACCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCCGTTATCTACCAGGGGAAACCCTATTATTTCACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGATCGGTTAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACTGTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAAAAGTGGCAGGGTATCCGCCTGCTGCACTTAGCCACCTATACGGCAGGCGGCCTACCGCTGCAGATCCCCGATGACGTTAGGGATAAAGCCGCATTACTGCATTTTTATCAAAACTGGCAGCCGCAATGGACTCCGGGCGCTAAGCGACTTTACGCTAACTCCAGCATTGGTCTGTTTGGCGCGCTGGCGGTGAAACCTTCAGGAATGAGTTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAGAACGAACAAAAAGATTATGCCTGGGGCTATCGCGAAGGGAAGCCCGTACACGTTTCTCCGGGACGACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATTGATATGGCCCGCTGGGTTCAGGCCAACATGGATGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGCGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCCGCCCCCGCAGTGAAAGCCTCATGGGTGCATAAAACGGGCTCCACTGGTGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGCGGCCTGGCGCATTCTTGAAAAGCTGCAATAA"}}}}}}}}}}, "1495": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1813": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGACTAAATCCCTTTGCTGCGCCCTGCTGCTCAGCACCTCCTGCTCGGTATTGGCTGCACCGATGTCAGAAAAACAGCTGGCTGAGGTGGTGGAACGGACCGTTACGCCGCTGATGAAAGCGCAGGCCATTCCGGGTATGGCGGTGGCGGTGATTTATCAGGGCCAGCCGCACTACTTTACCTTCGGTAAAGCCGATGTTGCGGCGAACAAACCTGTCACCCCACAAACCTTGTTCGAACTGGGTTCTATAAGTAAAACCTTTACCGGCGTACTGGGTGGCGATGCCATTGCTCGGGGTGAAATATCGCTGGGCGATCCGGTGACAAAATACTGGCCTGAGCTGACGGGCAAGCAGTGGCAGGGGATCCGCATGCTGGATCTGGCAACCTATACCGCAGGCGGTCTGCCGTTACAGGTACCGGATGAGGTCGCGGATAACGCCTCTCTGCTGCGCTTTTATCAAAACTGGCAGCCGCAGTGGAAGCCGGGTACCACGCGTCTTTACGCCAATACCAGCATCGGCCTTTTTGGCGCGCTGGCGGTCAAACCTTCCGGCATGAGCTATGAACAGGCCATAACGACGCGGGTCTTTAAGCCGCTCAAGCTGGACCATACGTGGATTAACGTTCCGAAAGCGGAAGAGGCGCATTACGCCTGGGGATACCGCGACGGTAAAGCGGTACACGTTTCGCCAGGCATGCTGGACGCTGAAGCCTATGGCGTAAAAACCAACGTGCAGGATATGGCAAGCTGGGTGATGGTCAACATGAAGCCGGACTCCCTTCAGGATAATTCACTCAGGCAAGGCATTGCCCTGGCGCAGTCTCGCTACTGGCGCGTAGGGGCCATGTATCAGGGGTTAGGCTGGGAAATGCTTAACTGGCCGGTCGATGCCAAAACCGTGGTTGAAGGTAGCGACAATAAGGTGGCACTGGCACCGCTGCCCGCAAGAGAAGTGAATCCTCCGGCGCCTCCGGTCAACGCGTCCTGGGTCCATAAAACAGGCTCTACCGGCGGGTTTGGCAGCTACGTGGCCTTTATTCCTGAAAAGCAGCTCGGCATTGTGATGCTGGCGAATAAAAGCTATCCCAACCCAGCACGCGTTGAGGCGGCTTACCGTATTTTGAGCGCGCTGTAG"}}}}}}}}}}, "1496": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1758": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAAACACAATACATATCAACTTCGCTATTTTTTTAATAATTGCAAATATTATCTACAGCAGCGCCAGTGCATCAACAGATATCTCTACTGTTGCATCTCCATTATTTGAAGGAACTGAAGGTTGTTTTTTACTTTACGATGTATCCACAAACACTGAAATTGCTCAATTCAATAAAGCAAAGTGTGCAACGCAAATGGCACCAGATTCAACTTTCAAGATCGCATTATCACTTATGGCATTTGATGCGGAAATAATAGATCAGAAAACCATATTCAAATGGGATAAAACCCCCAAAGGAATGGAGATCTGGAACAGCAATCATACACCAAAGACGTGGATGCAATTTTCTGTTGTTTGGGTTTCGCAAGAAATAACCCAAAAAATTGGATTAAATAAAATCAAGAATTATCTCAAAGATTTTGATTATGGAAATCAAGACTTCTCTGGAGATAAAGAAAGAAACAACGGATTAACAGAAGCATGGCTCGAAAGTAGCTTAAAAATTTCACCAGAAGAACAAATTCAATTCCTGCGTAAAATTATTAATCACAATCTCCCAGTTAAAAACTCAGCCATAGAAAACACCATAGAGAACATGTATCTACAAGATCTGGAGAATAGTACAAAACTGTATGGGAAAACTGGTGCAGGATTCACAGCAAATAGAACCTTACAAAACGGATGGTTTGAAGGGTTTATTATAAGCAAATCAGGACATAAATATGTTTTTGTGTCCGCACTTACAGGAAACTTGGGGTCGAATTTAACATCAAGCATAAAAGCCAAGAAAAATGCGATCACCATTCTAAACACACTAAATTTATAA"}}}}}}}}}}, "1497": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"686": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAATATATCACTTATCTTTGCCAATGAATTAATTACCAGAGCATTCGGTAATCAAGGCAAATTACCTTGGCAATTCATTAAAGAAGATATGCAGTTCTTCCAGAAGACTACAGAAAATTCTGTAGTCGTTATGGGATTAAATACATGGAGATCTCTACCTAAGATGAAGAAGCTTGGTAGAGACTTCATTGTCATATCTTCAACTATCACAGAGCACGAAGTGCTCAACAATAATATCCAAATATTCAAATCATTTGAGAGCTTCTTAGAAGCATTCAGAGACACAACCAAACCAATCAATGTCATTGGTGGTGTTGGTTTATTATCTGAAGCGATAGAACATGCTAGCACTGTTTACATGAGTTCTATTCATATGGTTAAACCTGTTCATGCTGATGTGTATGTACCGGTAGAACTAATGAATAAACTCTATAGTGATTTCAAATATCCAGAAAATATTCTATGGGTAGGTGATCCAATAGATTCTGTGTATAGCTTGTCTATTGATAAGTTTGTTAGACCAGCTTCGCTGGTTGGGGTGCCAAATGATATTAATACGTGA"}}}}}}}}}}, "1498": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1499": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4701": {"dna_sequence": {"fmax": "7311", "fmin": "6411", "accession": "EU259884.2", "strand": "-", "sequence": "ATGAAAATCGTAAAAAGGATATTATTAGTATTGTTAAGTTTATTTTTTACAGTTGTGTATTCAAATGCTCAAGCTGACAACTTAACTTTGAAAATTGAGAATGTTTTAAAGGCAAAAAATGCCAGAATAGGAGTAGCAATATTCAACAGCAATGAGAAGGATACTTTGAAGATTAATAACGACTTCCATTTCCCGATGCAAAGCGTTATGAAATTTCCGATTGCTTTAGCCGTTTTGTCTGAGATAGATAAAGGGAATCTTTCTTTTGAACAAAAAATAGAGATTACCCCTCAAGACCTTTTGCCTAAAATGTGGAGTCCGATTAAAGAGGAATTCCCTAATGGAACAACTTTGACGATTGAACAAATACTAAATTATACAGTATCAGAGAGCGACAATATTGGTTGTGATATTTTGCTAAAATTAATCGGAGGAACTGATTCTGTTCAAAAATTCTTGAATGCTAATCATTTCACTGATATTTCAATCAAAGCAAACGAAGAACAAATGCACAAGGATTGGAATACCCAATATCAAAATTGGGCAACCCCAACAGCGATGAACAAACTGTTAATAGATACTTATAATAATAAGAACCAATTACTTTCTAAAAAAAGTTATGATTTTATTTGGAAAATTATGAGAGAAACAACAACAGGAAGTAACCGATTAAAAGGACAATTACCAAAGAATACAATTGTTGCTCATAAAACAGGGACTTCCGGAATAAATAATGGAATTGCAGCAGCCACTAATGATGTTGGGGTAATTACTTTACCGAATGGACAATTAATTTTTATAAGCGTATTTGTTGCAGAGTCCAAAGAAACTTCGGAAATTAATGAAAAGATTATTTCAGACATTGCAAAAATAACGTGGAATTACTATTTGAATAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Proteus mirabilis", "NCBI_taxonomy_id": "584", "NCBI_taxonomy_cvterm_id": "36771"}, "protein_sequence": {"accession": "ACA34904.1", "sequence": "MKIVKRILLVLLSLFFTVVYSNAQADNLTLKIENVLKAKNARIGVAIFNSNEKDTLKINNDFHFPMQSVMKFPIALAVLSEIDKGNLSFEQKIEITPQDLLPKMWSPIKEEFPNGTTLTIEQILNYTVSESDNIGCDILLKLIGGTDSVQKFLNANHFTDISIKANEEQMHKDWNTQYQNWATPTAMNKLLIDTYNNKNQLLSKKSYDFIWKIMRETTTGSNRLKGQLPKNTIVAHKTGTSGINNGIAAATNDVGVITLPNGQLIFISVFVAESKETSEINEKIISDIAKITWNYYLNK"}}}}}}}, "1395": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"$update": {"54": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGATGTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATACAAAAGGCAAGGTAAGTAAAGTGGAAACCGGCAGCGAAATCGCCGACTTCGGTTCAAAAATCGGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAGGCCGTTTGGCAGTTGGAACAAGGTGCCTCCGTCGCCGGCACTAACACCGGCTGGGGCAACAAACAATCCTTCGTCGGCTTGAAGGGCGGCTTCGGTACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCGGCGCCAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGAATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGCTTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGCTCAAACGGCGAATCTTACCACGTTGGTTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAAAGATACGGCGAAGGCACTAAAAAAATCGAATACGAACATCAAGTTTATAGTATCCCCAGCCTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTAGGCGGTTACGACAATAATGCCCTGTACGTTTCCGTAGCCGCGCAACAACAAGATGCCAAATTGTATGGAGCAAGGAGGGCTAATTCGCACAACTCTCAAACCGAAGTTGCCGCTACCGCGGCATACCGTTTCGGCAATGTAACGCCCCGCGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATAGTGCAGACCACGACAATACTTATGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTGGTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGCGCCGTCGTTCTGCGCCACAAATTCTAA"}}}}}}}}}}, "1994": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"626": {"$update": {"dna_sequence": {"$update": {"sequence": "GTGAGAAGAGGTGATTTGCACGAGACGTATCGTCTTGATTACGCTCCGCACATGCACGATCCCGCTCATATCGCGATGTTCTCCATCGCCGCGCACGGTCACGTGAACCCCAGCCTGGAAGTGATCCGGGAACTCGTCGCGCGAGGGCACCGGGTGACCTACGCGATCCCGCCGCTCTTCGCCGAGAAGGTCGCCGAGACGGGCGCCGAACCCAAGCTGTGGAACAGCACGCTGCCCGGCCCCGACGCCGACCCGGACGCGTGGGGGACCACACCGCTGGACAACGTCGAGCCGTTCCTCGACGACGCGATCCAGGCGCTCCCGCAGCTCATCGCGGCGTACGAGGGCGACGAGCCGGACCTGGTCCTGCACGACATCACCTCCTACCCGGCCCGCGTCCTCGCCCATCGCTGGGGCGTTCCCGCCGTCTCGCTCTCGCCGAACCTGGTCGCCTGGGAGGGGTACGAGGAGGAGGTCGGCCGGCCGACGTGGGAGGAGCCGCTGAAGACCGAGCGCGGCCGGGCGTACGACGCCCGCTTCCGTGGCTGGCTGAAGGAGAACGGGATCACCGAGGACCCCGACCCCTTCGTCGGCCGTCCCGACCGGTCGCTGGTCCTCATCCCGAAGGCGCTCCAGCCGCACGCCGACCGGGTCGACGAGAAGACGCACACCTTCGTCGGTGCCTGCCAGGGCGACCGCGCCGCCGAGGGCGACTGGCGGCGTCCGGAGGGCGCGGAGAAGGTCGTCCTCGTCTCGCTCGGGTCCTCGTTCACCAAGCGGCCGGCGTTCTACCGGGCGTGCGTCGAGGCGTTCGGCGCGCTGCCCGGCTGGCACGTGGTGCTCCAGGTCGGCCGGCACGTCGACCCCGCCGAGCTGGGCGACGTACCGGAGAACGTGGAGGTCCGCTCCTGGGTGCCGCAGCTGGCGATCCTGAAGCAGGCTGACCTGTTCGTCACGCACGCGGGCGCGGGCGGCAGCCAGGAGGGCCTCGCCACCGCCACGCCGATAGTGGCGGTACCGCAGGCGGTGGACCAGTTCGGCAACGCGGACATGCTCCAGGGGCTCGGCGTGGGCCGCCACCTGCCCACCGAGGAAGCCACCGCCGAGGCGCTGCGCGCCGCCGGGCTCGCCCTGGTCGAGGACCCGGAGGTGGCCCGGCGGCTGAAGGAGATCCAGGCCGGGATGGCCCGGGAGGGCGGCACCCGGCGGGCCGCCGACCTGATCGAGGCGGAGCTGGCGGCGGCGAGGACCTGA"}}}}}}}}}}, "1700": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1018": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAGACAAAATCCCTTTGCTGTGCCCTGCTGCTCAGCACCTCCTGCTCTGTTCTCGCCGCGCCGATGTCAGAGAAACAGCTGTCTGACGTGGTGGAACGTACCGTTACCCCCCTGATGAAAGCGCAAGCCATTCCGGGCATGGCGGTAGCGGTGATTTATCAGGGTCAGCCGCACTACTTTACCTTCGGAAAGGCCGATGTTGCGGCGAACAAACCTGTCACCCCGCAAACCCTGTTTGAGCTGGGCTCTATAAGTAAAACCTTCACCGGCGTATTAGGTGGCGATGCGATTGCGCGCGGAGAAATATCGCTGGGCGACCCCGTGACAAAGTACTGGCCCGAGCTAACAGGCAAGCAGTGGCAGGGTATTCGCATGTTGGATCTGGCGACCTACACCGCGGGTGGCCTGCCGCTACAGGTGCCGGATGAGGTCACGGATAACGCCTCCCTGCTGCGTTTCTATCAACACTGGCAACCGCAGTGGAAACCAGGCGCAACGCGTCTTTATGCGAACGCCAGCATCGGGCTTTTTGGCGCCCTCGCGGTTAAACCCTCCGGCATGAGCTTTGAACAGGCCATGACGAAGCGGGTCTTCAAGCCACTCAAACTGGACCATACATGGATTAACGTTCCGAAAGAAGAAGAGGCGCATTACGCCTGGGGATACCGTGATGGTAAAGCAATCCACGTTTCACCGGGAATGCTGGATGCCGAAGCGTATGGTGTCAAAACCAACATCCAGGATATGGCGAGCTGGCTGAAGGCCAACATGAACCCTGACGCCCTTCCGGATTCAACGTTGAAACAGGGTATTGCCCTGGCACAGTCTCGCTACTGGCGCGTGGGTGCCATGTATCAGGGTCTGGGCTGGGAGATGCTCAACTGGCCGGTAGAAGCCAAAACCGTCGTGGAGGGCAGCGATAACAAGGTGGCTCTTGCACCGTTACCGGTGGCAGAAGTGAACCCTCCAGCTCCGCCAGTAAAAGCATCATGGGTACATAAAACAGGCTCGACGGGTGGATTCGGCAGCTATGTCGCATTTATTCCTGAAAAGGAACTCGGCATTGTTATGCTGGCGAACAAGAGCTACCCGAACCCGGCGCGCGTGGAAGCGGCATACCGTATTCTGAGCGCTCTGCAGTAA"}}}}}}}}}}, "1701": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"274": {"$update": {"dna_sequence": {"$update": {"sequence": "GTGTCTTCAGTTCATCACGGCCGGCATGAGAACGGCCAGAATTTTCTGCGCGACCGTCGAGTGGTCGGCGACATCGTGAGGATGGTCTCGCACACAGCGGGTCCCATCGTCGAGATCGGGGCCGGAGACGGCGCCCTCACCCTGCCGTTACAGCGGCTGGGCCGACCGTTGACCGCCATCGAGATCGACCTCCACCGTGCCCGACGGCTCGCCGACCGAACCACTGCCGAGGTGATCGCAACCGACTTCCTGCGGTACCGGCTGCCGCGCACGCCGCACGTGGTGGTGGGCAACCTGCCGTTCCATCTGACCACCGCCATCCTCCGGCGCCTACTGCACGAGAACGGCTGGACCGATGCGATCCTGTTGGTGCAGTGGGAGGTGGCTCGACGGCGGGCCGGTGTCGGCGGCGCCACCATGATGACCGCCCAGTGGTGGCCGTGGTTCGAATTCGGCCTGGCGCGAAAGGTTTCGGCCGACGCGTTCCGGCCGCGGCCGAGTGTGGATGCCGGGCTGCTGACCATTCAGCGCCGAGCTGAGCCGCTACTCCCGTGGGCCGACCGTCGTGCGTATCAGGCGCTGGTCCACAGGGTTTTCACCGGGCGCGGGCGTGGTCTGGCCCAGATTCTGCGGCCCCACGTGCACCCACGGTGGCTGTCTGCCAACGGAATTCACCCGTCGGCTCTGCCCAGAGCGCTGACGGCTCGACAGTGGGTGGCGTTGTTCGATGCCGCCGGCTAG"}}}}}}}}, "ARO_category": {"$insert": {"37021": {"category_aro_name": "virginiamycin S2", "category_aro_cvterm_id": "37021", "category_aro_accession": "3000677", "category_aro_class_name": "Antibiotic", "category_aro_description": "Virginiamycin S2 is a streptogramin B antibiotic."}, "37023": {"category_aro_name": "vernamycin C", "category_aro_cvterm_id": "37023", "category_aro_accession": "3000679", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin C is a streptogramin B antibiotic."}, "37026": {"category_aro_name": "ostreogrycin B3", "category_aro_cvterm_id": "37026", "category_aro_accession": "3000682", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid."}}}}}, "1702": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1024": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGACAAAATCCCTAAGCTGTGCCCTGCTGCTCAGCGTCGCCAGTTCTGCATTCGCCGCACCGATGTCCGAAAAACAGCTGGCTGAGGTGGTGGAACGTACCGTTACGCCGCTGATGAACGCGCAGGCCATTCCGGGTATGGCGGTGGCGGTAATTTATCAGGGTCAGCCACACTACTTTACCTTCGGTAAAGCCGATGTTGCGGCGAACAAACCCGTCACCCCGCAAACCCTGTTTGAGCTGGGCTCTATAAGTAAAACCTTCACCGGCGTACTGGGCGGCGATGCCATTGCCCGGGGTGAAATAGCGCTGGGCGATCCGGTAGCAAAATACTGGCCTGAGCTCACGGGCAAGCAGTGGCAGGGCATTCGCATGCTGGATCTGGCAACCTATACCGCAGGCGGTCTGCCGTTACAGGTGCCGGATGAGGTCACGGATACCGCCTCTCTGCTGCGCTTTTATCAAAACTGGCAGCCGCAGTGGAAGCCGGGCACCACGCGTCTTTACGCTAACGCCAGCATCGGTCTTTTTGGTGCGCTGGCGGTTAAACCTTCCGGCATGAGCTATGAGCAGGCCATGACGACGCGGGTCTTTAAACCCCTCAAGCTGGACCATACCTGGATTAACGTCCCGAAAGCGGAAGAGGCGCATTTCGCCTGGGGATACCGTGAGGGTAAAGCGGTCCACGTTTCGCCAGGGATGCTGGACGCGGAAGCCTATGGCGTAAAAACTAACGTGAAGGATATGGCGAGCTGGCTGATAGCCAACATGAAGCCGGATTCTCTTCAGGCTCCCTCACTCAAGCAAGGCATTGCTCTGGCGCAGTCTCGCTACTGGCGCGTGGGGGCTATGTATCAGGGGTTAGGCTGGGAGATGCTCAACTGGCCGGTCGATGCCAAAACCGTCGTCGGAGGCAGTGATAACAAGGTGGCGCTGGCACCATTGCCCGTGGCAGAAGTGAATCCACCCGCGCCGCCGGTCAAGGCCTCCTGGGTCCATAAAACAGGCTCGACGGGCGGGTTTGGCAGCTACGTGGCATTTATTCCTGAAAAGCAGCTCGGCATTGTGATGCTGGCGAATAAAAGCTATCCGAACCCGGCACGCGTTGAGGCGGCATACCGTATCCTCGACGCGCTGCAGTAA"}}}}}}}}, "ARO_category": {"$delete": ["35962"]}}}, "1703": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1704": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1705": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1230": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGTGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTTCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGGATTGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA"}}}}}}}}}}, "1706": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1204": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAACATTTGCCGCATATGTAATTATCGCGTGTCTTTCGAGTACGGCATTAGCTGGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTCTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATGACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAGCGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAGCAATGGGAAAGAGACTTGACCTTAAGAGGGGCAATACAAGTTTCAGCTGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATACCTTAAAAAATTTTCCTATGGCAACCAGAATATCAGTGGTGGCATTGACAAATTCTGGTTGGAAGACCAGCTTAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATATTTAAATAAATTGTCAGCATCTAAAGAAAACCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCGGCACCTGAATATCTAGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGGTGGGTTGAGAAGGAGACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAGTAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGAAAGTGAGGGCATCATTGGTGGCTAA"}}}}}}}}}}, "1707": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1708": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1709": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1996": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"717": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGAAAAAGGATTTACCTTTTTAGATGAAATATTAAACGATGTTCGTTGGGACGCTAAATATGCTACGTGGGACAACTTCACTGGAAAACCAATTGATGGATATGAAGTAAATCGAATTATAGGAACATATGAGTTAGCCGATGCGCTATTGAAGGTTCAAGAATTAGCTTTTAACCAAGGTTATGGATTGCTTTTATGGGACGGTTACCGTCCCCAACAAGCTGTAAATTGTTTTTTGCAATGGGCGGCACAGCCGGAAGATAATCGAACAAAGGCAAAATATTATCCCAATATTGACCGAACTGAGATGGTTTCAAAAGGATACGTGGCTTCAAAATCAAGTCATAGCCGCGGAAGTGCAATTGATCTTACACTTTATCGATTAGACACGGACGAACTTGTTCCGATGGGGAGCGGATTTGATTTTATGGATGAGCGCTCTCATCATGAGGCAAAAGGAATTACGAGCAATGAAGCGCAAAACCGTAGATTTTTGCGTTCCATTATGGAAAACAGTGGGTTTGAAGCGTATAGTTTCGAATGGTGGCACTATGTATTGATAAACGAACCTTATCCCTATAGCTGCTTTGATTTTCCTGTCAAATAA"}}}}}}}}}}, "424": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1391": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "426": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4533": {"dna_sequence": {"fmax": "2736536", "fmin": "2735681", "accession": "AL009126", "strand": "-", "sequence": "ATGCGAAGTGAGCAGGAAATGATGGACATTTTTTTGGACTTTGCTTTGAACGATGAGAGAATCCGATTGGTCACTTTGGAAGGGTCACGTACAAACAGAAATATCCCTCCTGACAACTTCCAAGATTATGACATCTCGTATTTTGTAACTGATGTAGAATCTTTTAAAGAAAATGATCAGTGGCTCGAAATCTTTGGGAAGCGCATTATGATGCAAAAACCAGAAGATATGGAGCTTTTTCCTCCCGAATTAGGTAATTGGTTTTCATACATTATTCTTTTTGAGGATGGCAACAAATTAGATCTAACCCTTATTCCAATTCGTGAAGCAGAAGATTATTTTGCTAATAACGATGGTTTGGTTAAGGTATTGCTTGATAAGGATTCGTTCATCAACTATAAAGTGACCCCAAATGATCGCCAATACTGGATAAAAAGGCCGACTGCAAGGGAATTTGATGATTGCTGTAATGAGTTCTGGATGGTTTCGACTTACGTAGTAAAAGGACTAGCAAGAAATGAAATCCTTTTTGCCATTGACCATTTAAATGAAATTGTACGTCCTAATTTATTGAGAATGATGGCCTGGCATATCGCATCTCAGAAAGGGTATTCATTTAGTATGGGGAAGAACTATAAATTTATGAAGCGGTACCTTTCAAATAAAGAATGGGAGGAACTCATGTCTACATATTCTGTGAATGGGTATCAGGAAATGTGGAAGTCTTTATTTACTTGCTATGCATTATTTAGAAAGTATTCAAAAGCTGTATCAGAAGGTCTTGCATATAAGTATCCTGATTACGATGAAGGTATTACTAAGTATACGGAAGGTATTTATTGCTCAGTAAAGTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Bacillus subtilis subsp. subtilis str. 168", "NCBI_taxonomy_id": "224308", "NCBI_taxonomy_cvterm_id": "39579"}, "protein_sequence": {"accession": "CAB14620.1", "sequence": "MRSEQEMMDIFLDFALNDERIRLVTLEGSRTNRNIPPDNFQDYDISYFVTDVESFKENDQWLEIFGKRIMMQKPEDMELFPPELGNWFSYIILFEDGNKLDLTLIPIREAEDYFANNDGLVKVLLDKDSFINYKVTPNDRQYWIKRPTAREFDDCCNEFWMVSTYVVKGLARNEILFAIDHLNEIVRPNLLRMMAWHIASQKGYSFSMGKNYKFMKRYLSNKEWEELMSTYSVNGYQEMWKSLFTCYALFRKYSKAVSEGLAYKYPDYDEGITKYTEGIYCSVK"}}}}}}}, "1128": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1129": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1120": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1121": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"368": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGAATTGCCCAATATTATTCAACAATTTATCGGAAACAGCGTTTTAGAGCCAAATAAAATTGGTCAGTCGCCATCGGATGTTTATTCTTTTAATCGAAATAATGAAACTTTTTTTCTTAAGCGATCTAGCACTTTATATACAGAGACCACATACAGTGTCTCTCGTGAAGCGAAAATGTTGAGTTGGCTCTCTGAGAAATTAAAGGTGCCTGAACTCATCATGACTTTTCAGGATGAGCAGTTTGAATTCATGATCACTAAAGCGATCAATGCAAAACCAATTTCAGCGCTTTTTTTAACAGACCAAGAATTGCTTGCTATCTATAAGGAGGCACTCAATCTGTTAAATTCAATTGCTATTATTGATTGTCCATTTATTTCAAACATTGATCATCGGTTAAAAGAGTCAAAATTTTTTATTGATAACCAACTCCTTGACGATATAGATCAAGATGATTTTGACACTGAATTATGGGGAGACCATAAAACTTACCTAAGTCTATGGAATGAGTTAACCGAGACTCGTGTTGAAGAAAGATTGGTTTTTTCTCATGGCGATATCACGGATAGTAATATTTTTATAGATAAATTCAATGAAATTTATTTTTTAGATCTTGGTCGTGCTGGGTTAGCAGATGAATTTGTAGATATATCCTTTGTTGAACGTTGCCTAAGAGAGGATGCATCGGAGGAAACTGCGAAAATATTTTTAAAGCATTTAAAAAATGATAGACCTGACAAAAGGAATTATTTTTTAAAACTTGATGAATTGAATTGA"}}}}}}}}}}, "1122": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1123": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1124": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1883": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACAACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA"}}}}}}}}}}, "1125": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1126": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1127": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "524": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"49": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGCTGCAAGAGCGAAAAATGGCGTAATCGGTTGCGGTCCTGACATTCCTTGGTCTGCCAAAGGGGAACAGCTTCTTTTCAAAGCACTGACCTATAACCAATGGCTTTTGGTAGGGCGCAAAACATTTGAGTCTATGGGGCCGCTGCCCAATAGGAAATACGCGGTTGTTACCCGCTCAAACTGGACAGCGGCTAATGAAAACGTAGTGGTTTTCCCGTCGATTGACGAAGCGATGGGTAGATTAGGCGAGATCACTGACCATGTCATCGTCGCCGGTGGTGGAGAAATCTACCATGAAACGATACCCATGGCCTCTACTCTGCATGTGTCGACAATCGACGTTGAGCCAGAGGGAGACGTTTTCTTTCCGAACATTCCTGGGAAGTTTGATGTCGTTTTTGAGCAACAATTTACATCAAACATTAACTATTGCTATCAAATCTGGCAAAAGGGTTAA"}}}}}}}}}}, "525": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4561": {"dna_sequence": {"fmax": "4786", "fmin": "3640", "accession": "AY339625", "strand": "-", "sequence": "ATGATGAAAAAATCGTTATGCTGCGCTCTGCTGCTGACAGCCTCTTTCTCCACGTTTGCCTCCGCCAAAACAGAACAACAGATTGCCGATATCGTTAATCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCCATTATCTACCAGGGAAAACCCTATTATTTCACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCAGGGTATCAGCCTGCTGCACTTAGCCACCTATACGGCAGGCGGCCTACCGCTGCAGATCCCCGATGACGTTACTGATAAAGCCGCATTACTGCGTTTTTATCAAAACTGGCAGCCGCAATGGGCCCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGCGCGCTGGCGGTGAAACCCTCAGGAATGAGTTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACAGTTCCGCAGAACGAACAAAAAGATTATGCCTGGGGCTATCGCGAAGGGAAACCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAACGTTACCGATATGGCACGCTGGGTTCAGGTCAACATGGACGCCAGCCGCGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGCGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGTAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCCGCCCCGGCAGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACTGGAGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGCGGCCTGGCGCATTCTTGAAAAGCTGCAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli", "NCBI_taxonomy_id": "562", "NCBI_taxonomy_cvterm_id": "35914"}, "protein_sequence": {"accession": "AAQ16660.2", "sequence": "MMKKSLCCALLLTASFSTFASAKTEQQIADIVNRTITPLMQEQAIPGMAVAIIYQGKPYYFTWGKADIANNHPVTQQTLFELGSVSKTFNGVLGGDAIARGEIKLSDPVTKYWPELTGKQWQGISLLHLATYTAGGLPLQIPDDVTDKAALLRFYQNWQPQWAPGAKRLYANSSIGLFGALAVKPSGMSYEEAMTRRVLQPLKLAHTWITVPQNEQKDYAWGYREGKPVHVSPGQLDAEAYGVKSNVTDMARWVQVNMDASRVQEKTLQQGIALAQSRYWRIGDMYQGLGWEMLNWPLKADSIINGSDSKVALAALPAVEVNPPAPAVKASWVHKTGSTGGFGSYVAFVPEKNLGIVMLANKSYPNPVRVEAAWRILEKLQ"}}}}}}}, "526": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "527": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1561": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGTGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGTAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGGATTGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA"}}}}}}}}}}, "1018": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"194": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGGAAGCTTCCAATCCCTTCACTGATGGCCTGCGGCTGCCGCGCGCATGGCAGGAAGCGTTGGCCGATGCGCACATCGAGCGGCAGTCGATCGGCGTGTCGCGCGCGGATGTCGCGCGGGTGCATCGTCCCGGGCAGACCGACGCCTTCCTGAAATCGGAAGTGATCGATGCCTTCAGTGAACTGGGTGATGAGATCGCCCGGCTGCGTTGGCTGCAGGCGCAGGGGCAGTCGGCGCCGACGGTGATTGCCACGACCGAGGAGGGCGGTCGGCGCTGGTTGTTGATGAGCGCGTTGCCCGGCCGCGACTTGGCCTCCTCGCCGGAGCTCGCGCCGAGACGGGTGGCAGAACTGCTGGCTGACGCACTGCGTGGCCTGCATGCCGTGCCTGTAGCCAACTGCCCGTTCGACCAGCAGTTGGCATCGCGCCTGCAGGCCGCACAGGCACGCGTCGAGGCGGGGCTGGTCGATGCCGATGACTTCGACGACGAGCGGCTGGGCCAGAGCCCGCAGCAGGTTTTCGCCGAGCTGCGCGCTACCCGGCCCGCTCATGAAGACCTGGTGGTCAGTCAGGGCGATGCCTGCCTGCCCAACCTGACGGTGACCGATGGGCGGTTCACTGGCTTCATCGATTGTGGCCGGTTGGGCGTGGCCGACCGCTATCAGGACCTGGCCCTGGCCGCGCGCAGCCTGGTCCACAATTTCGGGGAGAGCCGCTGTGTCGCCGCGCTGTTCCAGCGCTACGGTGCGGTCCCTGATGAGCGGCGGCTTGCATTCTATCGGTTGCTTGACGAGTTTTTCTGA"}}}}}}}}}}, "521": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4559": {"dna_sequence": {"fmax": "859", "fmin": "34", "accession": "KF986254", "strand": "-", "sequence": "ATGAAGATTAAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGTCTGCTAATCCAAATCACAGTGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACTACAGAAGTATTTAAGTGGGACGGGCAAAAAAGGCTATTCCCAGAATGGGAAAAGAACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAATGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTAGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAATTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAAACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGCTTAGAACAATTAGGTATTTTATAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "AHL30273.1", "sequence": "MKIKALLLITSAIFISACSPYIVSANPNHSASKSDEKAEKIKNLFNEAHTTGVLVIQQGQTQQSYGNDLARASTEYVPASTFKMLNALIGLEHHKATTTEVFKWDGQKRLFPEWEKNMTLGDAMKASAIPVYQDLARRIGLELMSNEVKRVGYGNADIGTQVDNFWLVGPLKITPQQEAQFAYKLANKTLPFSQKVQDEVQSMLFIEEKNGNKIYAKSGWGWDVNPQVGWLTGWVVQPQGNIVAFSLNLEMKKGIPSSVRKEITYKSLEQLGIL"}}}}}}}, "522": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"101": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGACCACCACACGCCCCGCGTGGGCCTATACGCTGCCGGCAGCACTGCTGCTGATGGCTCCTTTCGACATCCTCGCTTCACTGGCGATGGATATTTATCTCCCTGTCGTTCCAGCGATGCCCGGCATCCTGAACACGACGCCCGCTATGATCCAACTCACGTTGAGCCTCTATATGGTGATGCTCGGCGTGGGCCAGGTGATTTTTGGTCCGCTCTCAGACAGAATCGGGCGACGGCCAATTCTACTTGCGGGCGCAACGGCTTTCGTCATTGCGTCTCTGGGAGCAGCTTGGTCTTCAACTGCACCGGCCTTTGTCGCTTTCCGTCTACTTCAAGCAGTGGGCGCGTCGGCCATGCTGGTGGCGACGTTCGCGACGGTTCGCGACGTTTATGCCAACCGTCCTGAGGGTGTCGTCATCTACGGCCTTTTCAGTTCGGTGCTGGCGTTCGTGCCTGCGCTCGGCCCTATCGCCGGAGCATTGATCGGCGAGTTCTTGGGATGGCAGGCGATATTCATTACTTTGGCTATACTGGCGATGCTCGCACTCCTAAATGCGGGTTTCAGGTGGCACGAAACCCGCCCTCTGGATCAAGTCAAGACGCGCCGATCTGTCTTGCCGATCTTCGCGAGTCCGGCTTTTTGGGTTTACACTGTCGGCTTTAGCGCCGGTATGGGCACCTTCTTCGTCTTCTTCTCGACGGCTCCCCGTGTGCTCATAGGCCAAGCGGAATATTCCGAGATCGGATTCAGCTTTGCCTTCGCCACTGTCGCGCTTGTAATGATCGTGACAACCCGTTTCGCGAAGTCCTTTGTCGCCAGATGGGGCATCGCAGGATGCGTGGCGCGTGGGATGGCGTTGCTTGTTTGCGGAGCGGTCCTGTTGGGGATCGGCGAACTTTACGGCTCGCCGTCATTCCTCACCTTCATCCTACCGATGTGGGTTGTCGCGGTCGGTATTGTCTTCACGGTGTCCGTTACCGCGAACGGCGCTTTGGCAGAGTTCGACGACATCGCGGGATCAGCGGTCGCGTTCTACTTCTGCGTTCAAAGCCTGATAGTCAGCATTGTCGGGACATTGGCGGTGGCACTTTTAAACGGTGACACAGCGTGGCCCGTGATCTGTTACGCCACGGCGATGGCGGTACTGGTTTCGTTGGGGCTGGTGCTCCTTCGGCTCCGTGGGGCTGCCACCGAGAAGTCGCCAGTCGTCTAA"}}}}}}}}}}, "523": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1382": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAACATTCAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATTACAGTGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATAGGCCTTGAGCACCATAAGGCAACCACTACAGAAGTATTTAAGTGGGACGGGCAAAAAAGGCTATTCCCAGAATGGGAAAAGAACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAATGAAGTGAAGCGTATTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAACAAGAGGCACAATTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAAACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATATCTAGCTCTGTTCGAAAAGAGATTACTTATAGAGGTTTAGAACAATTAGGTATTTTATAG"}}}}}}}}}}, "1014": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1015": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"208": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAACGCAATAATTATTGATGACCATCCTCTTGCTATCGCAGCAATTCGTAATTTATTGATCAAAAACGATATTGAAATCTTAGCAGAGTTGACTGAAGGCGGAAGTGCCGTTCAGCGGGTGGAAACACTTAAGCCTGATATCGTCATCATTGATGTCGATATCCCCGGAGTTAACGGTATCCAGGTGTTAGAAACGCTGAGGAAGCGCCAATATAGCGGAATTATTATTATCGTCTCCGCTAAAAATGACCATTTTTACGGGAAACATTGTGCTGATGCTGGCGCTAATGGTTTCGTGAGTAAAAAAGAAGGCATGAACAATATCATTGCGGCTATTGAAGCTGCAAAAAATGGCTACTGCTATTTCCCCTTCTCTCTCAACCGGTTTGTTGGAAGTTTAACGTCCGACCAGCAAAAACTCGACTCCTTATCGAAACAAGAAATTAGTGTCATGCGGTATATTCTTGATGGCAAGGATAATAATGACATTGCTGAAAAAATGTTCATCAGCAACAAAACTGTCAGCACTTATAAAAGTCGCCTGATGGAAAAATTAGAATGTAAATCACTGATGGATCTTTACACATTCGCACAACGTAACAAAATCGGCTAA"}}}}}}}}}}, "1016": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1608": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAAAAATTTATACTTCCTATCTTCAGCATTTCTACTCTACTTTCTCTCAGTGCATGCTCAACTATTCAAAATAAATTTGAAAAAACTTCTGATATTTCTGATCAGCAACATGAAAAAGCCATTAAAAGCTATTTTGATGAAGCTCAAACACAAGGTGTAATAATTATTAAAGAGGGAAAGAATATTAGAATCTATGGTAATAACCTGGTACGAGCACATACAGAATATGTCCCTGCGTCAACATTTAAGATGCTAAATGCCTTAATTGGATTAGAAAATCATAAAGCTACAACAACTGAGATTTTCAAATGGGATGGTAAAAAAAGATCTTATCCTATGTGGGAAAAAGATATGACTTTAGGTGATGCCATGGCACTTTCAGCAGTTCCTGTATATCAAGAACTTGCAAGACGGACTGGCTTAGATCTAATGCAAAAAGAAGTTAAACGGGTTGGTTTTGGTAATATGAGCATCGGGACACAAGTTAATAACTTCTGGTTAGTTGGCCCCCTCAAGATTACACCAATACAAGAGGCTAATTTTGCCGATGATCTTGCGAATAATCGATTACCCTTTAAATTAGAAACTCAAGAAGAAGTAAAAAAAATGCTTCTGATTAAAGAAGTCAATGGTAGTAAAATTTATGCGAAAAGTGGATGGGGAATGGATGTGACCCCTCAAGTAGGTTGGTTAACAGGTTGGGTAGAAAAATCTAATGGCGAAAAAGTTCCCTTTTCTCTAAACCTAGAAATGAAGCAAGGAATGTCTGGTTCTATTCGTAATGAAATTACTTATAAATCATTAGAAAATTTAGGGATTATATAA"}}}}}}}}}}, "1017": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "528": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1979": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGAAAATCTACGACACTTTTGATCGGTTTCCTCACCACTGCCGCTATTATCCCGAATAATGGCGCGCTGGCTACGAGCAAGGCGAATGATGGCGACTTGCGCCGTATTGTCGATGAAACGGTGCGCCCGCTCATGGCCGAGCAGAAAATCCCCGGCATGGCGGTTGCCATAACCATCGACGGCAAGAGCCACTTCTTCGGTTATGGTGTGGCATCGAAAGAAAGCGGGCAAAAAGTCACTGAAGACACGATTTTCGAGATCGGTTCGGTCAGCAAGACCTTCACTGCAATGCTTGGCGGTTACGGGCTGGCGACAGGCGCGTTCTCCCTGTCCGATCCCGCGACCAAATGGGCTCCTGAACTGGCAGGCAGCAGCTTCGACAAGATCACCATGCTTGATCTTGGGACCTACACGCCGGGCGGATTGCCCCTCCAGTTTCCCGATGCTGTCACCGATGACAGTTCGATGCTGGCATATTTCAAGAAATGGAAACCCGATTATCCGGCAGGGACGCAGCGTCGTTATTCGAATCCCAGCATCGGCCTGTTCGGCTATCTGGCGGCACGAAGCATGGACAAGCCGTTCGACGTTTTGATGGAGCAAAAGCTTCTGCCTGCATTCGGCCTGAAGAACACCTTCATCAATGTGCCGGAAAGCCAGATGAAGAACTACGCCTACGGCTATTCCAAAGCCAACAAGCCGATCCGGGTATCGGGCGGGGCGCTGGATGCACAAGCCTATGGCATCAAGACCACCGCGCTTGATCTTGCCCGCTTCGTCGAACTGAACATCGACAGCTCATCTCTGGAGCCTGATTTCCAGAAAGCCGTCGCCGCAACGCATACCGGTTACTACCATGTCGGAGCGAACAATCAGGGACTTGGCTGGGAGTTCTACAACTATCCGACTGCGCTCAAGACACTTCTTGCCGGCAATTCGTCGGACATGGCGCTGAAGTCGCACAAAATCGAGAAATTCGATACACCTCGCCAACCGTCAGCTGATGTGCTGATCAATAAGACAGGCTCAACCAACGGCTTTGGCGCTTATGCGGCCTTTATTCCTGCGAAGAAGATCGGAATTGTTCTGCTTGCCAACCGGAATTATCCGATCGATGAGCGCGTAAAGGCTGCCTATCGGATATTGCAGGCGCTCGACAACAAGCAATAG"}}}}}}}}}}, "529": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1012": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1358": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGTCACTGTATCGCCGTCTAGTTCTGCTGTCTTGTCTCTCATGGCCGCTGGCTGGCTTTTCTGCCACCGCGCTGACCAACCTCGTCGCGGAACCATTCGCTAAACTCGAACAGGACTTTGGCGGCTCCATCGGTGTGTACGCGATGGATACCGGCTCAGGCGCAACTGTAAGTTACCGCGCTGAGGAGCGCTTCCCACTGTGCAGCTCATTCAAGGGCTTTCTTGCTGCCGCTGTGCTGGCTCGCAGCCAGCAGCAGGCCGGCTTGCTGGACACACCCATCCGTTACGGCAAAAATGCGCTGGTTCGGTGGTCACCCATCTCGGAAAAATATCTGACAACAGGCATGACGGTGGCGGAGCTGTCCGCGGCCGCCGTGCAATACAGTGATAACGCCGCCGCCAATTTGTTGCTGAAGGAGTTGGGCGGCCCGGCCGGGCTGACGGCCTTCATGCGCTCTATCGGCGATACCACGTTCCGTCTGGACCGCTGGGAGCTGGAGCTGAACTCCGCCATCCCAGGCGATGCGCGCGATACCTCATCGCCGCGCGCCGTGACGGAAAGCTTACAAAAACTGACACTGGGCTCTGCACTGGCTGCGCCGCAGCGGCAGCAGTTTGTTGATTGGCTAAAGGGAAACACGACCGGCAACCACCGCATCCGCGCGGCGGTGCCGGCAGACTGGGCAGTCGGAGACAAAACCGGAACCTGCGGAGTGTATGGCACGGCAAATGACTATGCCGTCGTCTGGCCCACTGGGCGCGCACCTATTGTGTTGGCCGTCTACACCCGGGCGCCTAACAAGGATGACAAGCACAGCGAGGCCGTCATCGCCGCTGCGGCTAGACTCGCGCTCGAGGGATTGGGCGTCAACGGGCAGTAA"}}}}}}}}}}, "1013": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1234": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_category": {"$delete": ["35962"]}}}, "1235": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4753": {"dna_sequence": {"fmax": "676", "fmin": "121", "accession": "AY660529.1", "strand": "+", "sequence": "GTGACCAACAGCAACGATTCCGTCACACTGCGCCTCATGACTGAGCATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGAGTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAACAGTACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTCACTCCATACATTGCAATGCTGAATGGAGAGCCGATTGGGTATGCCCAGTCGTACGTTGCTCTTGGAAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCAGGAGTACGCGGAATAGACCAGTCACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGAACCAAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCACCAAGATCCAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCTACGAGAAAGCGGGGTTTGAGAGGCAAGGTACCGTAACCACCCCAGATGGTCCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGCGAACACGCAGTGTTGCCTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AAT74613.1", "sequence": "MTNSNDSVTLRLMTEHDLAMLYEWLNRSHIVEWWGGEEARPTLADVQEQYLPSVLAQESVTPYIAMLNGEPIGYAQSYVALGSGDGWWEEETDPGVRGIDQSLANASQLGKGLGTKLVRALVELLFNDPEVTKIQTDPSPSNLRAIRCYEKAGFERQGTVTTPDGPAVYMVQTRQAFERTRSVA"}}}}}}}, "1236": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1237": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model."}}, "1230": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4724": {"dna_sequence": {"fmax": "888", "fmin": "12", "accession": "AY238472.1", "strand": "-", "sequence": "ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAGTCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGGCTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli", "NCBI_taxonomy_id": "562", "NCBI_taxonomy_cvterm_id": "35914"}, "protein_sequence": {"accession": "AAO88912.1", "sequence": "MVKKSLRQFTLMATATVTLLLGSVPLYAQTADVQQKLAELERQSGGRLGVALINTADNSQILYRADERFAMCSTSKVMAAAAVLKKSESEPNLLNQRVEIKKSDLVNYSPIAEKHVNGTMSLAELSAAALQYSDNVAMNKLIAHVGGPASVTAFARQLGDETFRLDRTEPTLNTAIPGDPRDTTSPRAMAQTLRNLTLGKALGDSQRAQLVTWMKGNTTGAASIQAGLPASWVVGDKTGSGGYGTTNDIAVIWPKDRAPLILVTYFTQPQPKAESRRDVLASAAKIVTDGL"}}}}}}}, "1231": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4723": {"dna_sequence": {"fmax": "1802391", "fmin": "1800927", "accession": "NC_012469.1", "strand": "-", "sequence": "ATGGAATTAATATTAAAAGCAAAAGACATTCGTGTGGAATTCAAAGGACGCGATGTTTTAGATATAAATGAATTAGAAGTATATGATTATGACCGTATTGGTTTAGTAGGAGCAAATGGTGCTGGAAAAAGCACTTTACTCAGGGTACTTTTAGGAGAATTAACTCCCCCAGGATGTAAAATGAATCGTCTGGGTGAACTTGCCTATATTCCCCAGTTGGACGAAGTAACTCTGCAGGAGGAAAAAGATTTTGCACTTGTAGGCAAGCTAGGTGTTGAGCAATTAAATATACAGACTATGAGCGGTGGTGAAGAAACAAGGCTTAAAATAGCACAGGCCTTATCGGCACAGGTTCATGGTATTTTAGCGGATGAACCTACGAGCCATTTAGACCGTGAAGGAATTGATTTTCTAATAGGACAGCTAAAATATTTTACAGGTGCACTGTTAGTTATTAGCCATGACCGCTATTTTCTTGATGAAATAGTAGATAAAATATGGGAACTGAAAGATGGCAAAATCACTGAGTATTGGGGAAACTATTCTGATTATCTTCGTCAGAAAGAGGAAGAACGTAAGAGCCAAGCTGCAGAATACGAACAATTTATTGCGGAACGTGCCCGATTGGAAAGGGCTGCGGAGGAAAAGCGAAAACAGGCTCGTAAAATAGAACAGAAGGCAAAAGGTTCTTCAAAGAAAAAAAGTACTGAAGACGGAGGGCGTTTAGCTCATCAAAAATCAATAGGAAGTAAGGAAAAAAAGATGTATAATGCTGCTAAAACCCTAGAGCACAGGATTGCGGCCTTAGGAAAAGTAGAAGCTCCGGAAGGCATTCGCAGAATTCGTTTCAGGCAAAGTAAAGCATTGGAGCTCCATAATCCATACCCTATAGTCGGTGCAGAAATTAATAAAGTATTTGGGGATAAGGCTCTGTTTGAAAATGCATCTTTTCAAATTCCGTTAGGAGCAAAAGTGGCGTTAACTGGTGGTAATGGAATCGGAAAAACAACTTTAATCCAAATGATCTTAAACCATGAAGAAGGAATTTCTATTTCGCCTAAGGCAAAAATAGGTTACTTTGCACAGAATGGTTACAAGTACAACAGTAATCAGAATGTTATGGAGTTTATGCAGAAGGATTGTGACTACAATATATCAGAAATTCGTTCAGTGCTAGCATCTATGGGGTTCAAACAGAACGATATTGGAAAAAGTTTATCTGTTTTAAGCGGTGGAGAAATTATAAAATTGTTGCTTGCTAAAATGCTCATGGGTAGATATAACATCCTAATAATGGATGAACCCAGTAACTTCCTTGACATACCAAGTTTAGAGGCTTTGGAAATACTAATGAAGGAGTACACCGGAACTATCGTGTTTATCACCCACGATAAACGATTACTCGAAAATGTAGCAGATGTAGTTTATGAAATTAGAGATAAGAAAATAAATCTGAAACATTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Bacteria", "NCBI_taxonomy_id": "2", "NCBI_taxonomy_cvterm_id": "35506"}, "protein_sequence": {"accession": "WP_000420313.1", "sequence": "MELILKAKDIRVEFKGRDVLDINELEVYDYDRIGLVGANGAGKSTLLRVLLGELTPPGCKMNRLGELAYIPQLDEVTLQEEKDFALVGKLGVEQLNIQTMSGGEETRLKIAQALSAQVHGILADEPTSHLDREGIDFLIGQLKYFTGALLVISHDRYFLDEIVDKIWELKDGKITEYWGNYSDYLRQKEEERKSQAAEYEQFIAERARLERAAEEKRKQARKIEQKAKGSSKKKSTEDGGRLAHQKSIGSKEKKMYNAAKTLEHRIAALGKVEAPEGIRRIRFRQSKALELHNPYPIVGAEINKVFGDKALFENASFQIPLGAKVALTGGNGIGKTTLIQMILNHEEGISISPKAKIGYFAQNGYKYNSNQNVMEFMQKDCDYNISEIRSVLASMGFKQNDIGKSLSVLSGGEIIKLLLAKMLMGRYNILIMDEPSNFLDIPSLEALEILMKEYTGTIVFITHDKRLLENVADVVYEIRDKKINLKH"}}}}}, "ARO_category": {"$delete": ["36001", "36002", "36298"], "$insert": {"41687": {"category_aro_name": "ABC-F ATP-binding cassette ribosomal protection protein", "category_aro_cvterm_id": "41687", "category_aro_accession": "3004469", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}}}}}, "1232": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4722": {"dna_sequence": {"fmax": "337548", "fmin": "336915", "accession": "NC_002163.1", "strand": "-", "sequence": "ATGAACTCAAATAGAACACCATCACAAAAAGTTTTAGCCAGACAAGAAAAAATCAAAGCAGTGGCCTTAGAGCTTTTTTTAACAAAAGGATACCAAGAAACAAGTTTGAGTGATATTATTAAATTATCTGGAGGATCTTATTCTAATATTTATGATGGTTTTAAAAGTAAAGAAGGGCTATTCTTTGAAATTTTAGATGACATATGTAAAAAACACTTTCATCTTATTTATTCCAAAACACAAGAAATTGAAAATGGCACTTTAAAAGAAATTTTAACTTCTTTTGGTTTAGCTTTTATAGAAATTTTCAATCAACCAGAAGCTGTAGCTTTTGGTAAAATTATCTATTCTCAAGTTTATGACAAAGATAGACATCTTGCCAATTGGATAGAAAATAATCAACAAAATTTTTCCTATAACATACTTATGGGTTTTTTCAAGCAACAAAATAATTCTTATATGAAAAAAAATGCAGAAAAACTTGCTGTTCTTTTTTGCACTATGTTAAAAGAACCTTATCATCATCTTAATGTTTTAATTAACGCTCCTTTGAAAAATAAAAAAGAACAAAAAGAACATGTTGAATTTGTTGTAAATGTTTTTCTAAATGGAATCAATAGCTCCAAAGCTTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Campylobacter jejuni subsp. jejuni NCTC 11168", "NCBI_taxonomy_id": "192222", "NCBI_taxonomy_cvterm_id": "36956"}, "protein_sequence": {"accession": "YP_002343805.1", "sequence": "MNSNRTPSQKVLARQEKIKAVALELFLTKGYQETSLSDIIKLSGGSYSNIYDGFKSKEGLFFEILDDICKKHFHLIYSKTQEIENGTLKEILTSFGLAFIEIFNQPEAVAFGKIIYSQVYDKDRHLANWIENNQQNFSYNILMGFFKQQNNSYMKKNAEKLAVLFCTMLKEPYHHLNVLINAPLKNKKEQKEHVEFVVNVFLNGINSSKA"}}}}}}}, "1233": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1238": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1239": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "_version": "2.0.3", "438": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"936": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGTTCAAACTTTTGAGTAAGTTATTGGTCTATTTGACCGCGTCTATCATGGCTATTGCGAGTCCGCTCGCTTTTTCCGTAGATTCTAGCGGTGAGTATCCGACAGTCAGCGAAATTCCGGTCGGGGAGGTCCGGCTTTACCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCGGTCGTTTGATGGCGCAGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAGAAGCAAATTGGACTTCCTGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCCGAGGTAGAGGGGAGCGAGATTCCCACGCACTCTCTAGAAGGACTCTCATCGAGCGGGGACGCAGTGCGCTTCGGTCCAGTAGAACTCTTCTATCCTGGTGCTGCGCATTCGACCGACAACTTAGTTGTGTACGTCCCGTCTGCGAGTGTGCTCTATGGTGGTTGTGCGATTTATGAGTTGTCACGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCATTGAGCGGATTCAACAACACTACCCGGAAGCACAGTTCGTCATTCCGGGGCACGGCCTGCCGGGCGGTCTAGACTTGCTCAAGCACACAACGAATGTTGTAAAAGCGCACACAAATCGCTCAGTCGTTGAGTAG"}}}}}}}}}}, "439": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "436": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1939": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGTTGAAAAGTTCGTGGCGTAAAAGCGCCCTGATGGCCGCCGCCGTTCCGCTACTGCTGGCGAGCGGTTCATTATGGGCCAGTGCCGATACTCTCCAGCAGAAGCTGGCTGATTTAGAAAAACGTTCCGGCGGTCGGCTGGGCGTGGCGCTGATTAACACGGCAGATGATTCGCAGACCCTCTATCGCGGCGACGAACGTTTTGCCATGTGCAGCACCGGTAAAGTGATGGCCGCCGCCGCGGTGTTAAAACAGAGCGAAAGCCATCCCGATGTGGTGAATAAAAGGCTGGAGATTAAAAAATCGGATTTAGTGGTCTGGAGCCCGATTACCGAAAAACATCTGCAAAGCGGAATGACCCTGGCGGAACTCAGCGCTGCGGCGCTGCAGTATAGCGACAATACCGCGATGAATAAGATTATCGGTTACCTTGGCGGGCCGGAAAAAGTCACCGCATTCGCCCAGAGCATCGGTGACGTTACTTTTCGTCTCGATCGGATGGAGCCGGCGCTGAACAGCGCGATTCCCGGTGATAAGCGCGATACCACCACCCCATTGGCGATGGCCGAAAGTCTGCGTAAGCTGACGCTGGGCAATGCGCTGGGCGAACAGCAGCGCGCCCAGTTAGTGACATGGCTGAAAGGCAATACCACCGGCGGGCAAAGCATTCGTGCAGGCCTGCCCGCAAGCTGGGCGGTCGGGGATAAAACCGGCGGCGGAGATTACGGCACCACCAACGATATCGCGGTGATCTGGCCGGAAAATCATGCTCCGCTGGTGCTAGTGACCTATTTTACCCAACCGCAGCAGGATGCGAAAAGCCGCAAAGAGGTGCTAGCCGCGGCGGCGAAAATCGTGACCGAAGGGCTTTAA"}}}}}}}}}}, "437": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "434": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1347": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCGTTATGTTCGCCTGTGTGTTATCTCCCTGTTAGCCACCCTGCCACTGGCGGTATACGCCGGTCCACAGCCGCTTGAGCAGATTAAACAAAGCGAAAGCCAGCTGTCGGGCCGCGTGGGGATGGTGGAAATGGATCTGGCCAGCGGCCGCACGCTGGCGGCCTGGCGCGCCGATGAACGCTTTCCCATGGTGAGCACCTTTAAAGTGCTGCTGTGCGGCGCGGTGCTGGCGCGGGTGGATGCCGGGCTCGAACAACTGGATCGGCGGATCCACTACCGCCAGCAGGATCTGGTGGACTACTCCCCGGTCAGCGAAAAACACCTTACCGACGGGATGACGATCGGCGAACTCTGCGCCGCCGCCATCACCCTGAGCGATAACAGCGCTGGCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCGGGATTAACTGCCTTTCTGCGCCAGATCGGTGACAACGTCACCCGTCTTGACCGCTGGGAAACGGCACTGAATGAGGCGCTTCCCGGCGACGCGCGCGACACCACCACCCCGGCCAGCATGGCCGCCACGCTGCGCAAACTACTGACCGCGCAGCATCTGAGCGCCCGTTCGCAACAGCAACTCCTGCAGTGGATGGTGGACGATCGGGTTGCCGGCCCGCTGATCCGCGCCGTGCTGCCGCCGGGCTGGTTTATCGCCGACAAAACCGGGGCTGGCGAACGGGGTGCGCGCGGCATTGTCGCCCTGCTCGGCCCGGACGGCAAACCGGAGCGCATTGTGGTGATCTATCTGCGGGATACCCCGGCGAGTATGGCCGAGCGTAATCAACATATCGCCGGGATCGGCGCAGCGCTGATCGAGCACTGGCAACGCTAA"}}}}}}}}}}, "435": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "433": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"861": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAAAATCCCTTTGCTGCGCCCTGCTGCTGGGCCTCTCTTGCTCTGCTCTCGCCGCGCCAGTATCAGAAAAACAGCTGGCGGAGGTGGTCGCGAATACGGTTACCCCGCTGATGAAAGCCCAGTCTGTTCCAGGCATGGCGGTGGCCGTTATTTATCAGGGAAAATCGCACTATTACACGTTTGGCAAGGCCGATATCGCGGCGAATAAACCCGTTACGCCTCAGACCCTGTTCGAGCTGGGTTCTATAAGTAAAACCTTCACCGGCGTTTTAGGTGGGGATGCCATTGCTCGCGGTGAAATTTCGCTGGACGATCCGGTGACCAGATACTGGCCACAGCTGACAGGCAAGCAGTGGCAGGGTATTCGTATGCTGGATCTCGCCACCTACACCGCTGGCGGCCTGCCGCTACAGGTACCGGATGAGGTCACGGATAACGCCTCCCTGCTGCGCTTTTATCAAAACTGGCAGCCGCAGTGGAAGCCTGGCACAACGCGTCTTTACGCCAACGCCAGCATCGGTCTTTTTGGCGCGCTGGCGGTCAAACCTTCTGGCATGCCCTATGAGCAGGCCATGACGACGCGGGTCCTTAAGCCGCTCAAGCTGGACCATACCTGGATTAACGTTCCGAAAGCGGAAGAGGCGCATTACGCCTGGGGCTATCGTGACGGTAAAGCGGTGCGCGTTTCGCCGGGAATGCTGGATGCACAAGCCTATGGCGTGAAAACCAACGTGCAGGATATGGCGAACTGGGTCATGGCAAACATGGCGCCGGAGAAGGTTGCCGATGCCTCACTTAAGCAGGGCATCGCGCTGGCGCAGTCGCGCTACTGGCGTATCGGGTCAATGTATCAGGGTCTGGGCTGGGAGATGCTCAACTGGCCCGTGGAGGCCAACACGGTGGTCGAAGGCAGCGACAGTAAGGTAGCGCTGGCGCCATTACCCGTGGCAGAAGTGAATCCACCGGCTCCCCCGGTCAAAGCGTCCTGGGTCCATAAAACGGGTTCTACTGGCGGATTTGGCAGCTACGTGGCCTTTATTCCTGAAAAGCAGATCGGTATTGTGATGCTCGCGAATAAAAGCTATCCGAACCCGGCACGCGTTGAGGCGGCATACCATATCCTCAAGGCGCTTCAGTAA"}}}}}}}}}}, "430": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "431": {"$update": {"model_sequences": {"$update": {"sequence": {"$update": {"2097": {"$update": {"dna_sequence": {"$update": {"sequence": "GTGAAAAGTACCAGCGATCTGTTCAATGAAATTATTCCATTGGGTCGCTTAATCCATATGGTTAATCAGAAGAAAGATCGCCTGCTTAACGAGTATCTGTCTCCGCTGGATATTACCGCGGCACAGTTTAAGGTGCTCTGCTCTATCCGCTGCGCGGCGTGTATTACTCCGGTTGAACTGAAAAAGGTATTGTCGGTCGACCTGGGAGCACTGACCCGTATGCTGGATCGCCTGGTCTGTAAAGGCTGGGTGGAAAGGTTGCCGAACCCGAATGACAAGCGCGGCGTACTGGTAAAACTTACCACCGGCGGCGCGGCAATATGTGAACAATGCCATCAATTAGTTGGCCAGGACCTGCACCAAGAATTAACAAAAAACCTGACGGCGGACGAAGTGGCAACACTTGAGTATTTGCTTAAGAAAGTCCTGCCGTAA"}}}}}}}}}}, "2864": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2865": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1967": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2868": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2869": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1961": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1071": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAATGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA"}}}}}}}}}}, "238": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1388": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACATCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGCATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGCATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATACCCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA"}}}}}}}}}}, "239": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "234": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "235": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1371": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCGTGTATTAGCCTTATCGGCTGTGTTTTTGGTGGCATCGATTATCGGAATGCCAGCGGTAGCAAAGGAATGGCAAGAAAACAAAAGTTGGAATGCTCACTTTACTGAACATAAATCACAGGGCGTAGTTGTGCTCTGGAATGAGAATAAGCAGCAAGGATTTACCAATAATCTTAAACGGGCGAACCAAGCATTTTTACCCGCATCTACCTTTAAAATTCCCAATAGCTTGATCGCCCTCGATTTGGGCGTGGTTAAGGATGAACACCAAGTCTTTAAGTGGGATGGACAGACGCGTGATATCGCCGCTTGGAATCGTGACCATGACTTAATTACCGCGATGAAGTACTCAGTTGTGCCTGTTTATCAAGAATTTGCCCGCCAAATTGGTGAGGCACGTATGAGTAAAATGCTGCACGCCTTCGATTATGGCAATGAGGATATCTCGGGCAATGTAGACAGTTTTTGGCTCGATGGTGGTATTCGCATTTCGGCTACCCAGCAAATCGCTTTTTTACGCAAGCTGTATCACAACAAGCTGCACGTTTCTGAGCGTAGTCAGCGCATCGTGAAACAAGCCATGCTGACCGAAGCCAATGGCGACTATATTATTCGGGCTAAAACGGGATACTCGACTAGAATCGAACCTAAGATTGGCTGGTGGGTTGGTTGGGTTGAACTTGATGATAATGTGTGGTTTTTTGCGATGAATATGGATATGCCCACATCGGATGGTTTAGGGCTGCGCCAAGCCATCACAAAAGAAGTGCTCAAACAGGAGAAAATTATTCCCTAG"}}}}}}}}}}, "236": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1583": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAAAATCCTTTTGCTGCGCCCTGCTGCTCGCCATCTCTGGCTCTGCTCTCGCCGCGCCAGTGTCAGAAAAACAGCTGGCGGAGGTGGTCGCGAATACGGTTACCCCGCTGATGAAAACCCAGGCTATTCCAGGCATGGCGGTGGCCGTTATCTATCAGGGAAAACCGCACTATTACACGTTTGGCGAAGCCGATATTGCGGCCAAAAAACCTGTTACGCCACAGACCCTGTTCGAGCTGGGTTCTATAAGTAAAACCTTCACCGGCGTTTTAGGTGGGGATGCCATTGCTCGCGGTGAAATTTCCCTGGACGATCCGGTGACCAAATTCTGGCCTGAACTGACGGGCAAGCAGTGGCAGGGTATTCGTATGCTGGATCTCGCAACCTACACCGCGGGCGGCCTGCCGCTACAGGTACCGGAAGAGGTCACGGATAACGCCTCCCTGCTGCGCTTTTATCAACACTGGCAACCGCAGTGGAAGCCTGGCACAACGCGTCTTTACGCCAATGCCAGCATCGGACTTTTTGGCGCGCTGGCGGTCAAACCTTCCGGCATGCGCTATGAGCAGGCCATGACGAAGCGGGTCTTCAAGCCGCTCAGGCTGAACCATACCTGGATTAACGTTCCGAAAGCGGAAGCGGCGCATTACGCCTGGGGTTATCGTGACGGTAAAGCGGTCCACATTTCACCGGGTATGCTGGACGCAGAGGCCTATGGCGTGAAAACTAACGTGCAGGATATGGCGAACTGGGTGATGGCGAACATGGCGCCGGAGAACATTGCTGATGCCTCACTCAAGCAGGGCATCGCGCTGGCGCAGTCGCGCTACTGGCGCATCGGGTCAATGTATCAGGGCCTGGGCTGGGAAATGCTCAACTGGCCCGTGGAGGCCAAAATGGTGATCGAGGGCAGCGACAATAAGGTGGCACTGGCGCCGTTGCCCGTGGCAGAAGTGAATCCACCGGCTCCCCCGGTCAAAGCGTCCTGGGTCCATAAAACAGGCTCTACTGGCGGGTTTGGCAGCTACGTGGCATTTATTCCTGAAAAGCAGATCGGTATTGTGATGCTCGCGAATAAAAGCTATCCGAATCCGGCACGCGTTGAGGCGGCATACCATATCCTCGACGCACTACAGTAA"}}}}}}}}}}, "237": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4474": {"dna_sequence": {"fmax": "3054321", "fmin": "3053571", "accession": "NZ_CP007547.1", "strand": "-", "sequence": "ATGTTGAAAAAAATAAAAATAAGCTTGATTCTTGCTCTTGGGCTTACCAGTTTGAAGGCATTTGGACAGGAGAATCCTGATGTCAAAATTGAAAAGCTAAAAGATAATCTGTATGTATACACAACCTACAATACATTTAACGGGACTAAATATGCCGCAAATGCAGTATATCTGGTAACTGATAAGGGTGTTGTGGTTATAGACTGTCCGTGGGGAGAAGACAAATTTAAAAGCTTTACGGACGAGATTTATAAAAAACACGGAAAGAAAGTTATTATGAATATTGCAACACATTCTCATGATGATCGTGCCGGAGGTCTTGAATATTTTGGTAAAATAGGTGCAAAAACTTATTCTACTAAAATGACAGATTCTATTTTAGCAAAAGAGAATAAGCCAAGAGCACAATATACTTTTGACAATAATAAATCTTTCAAAGTAGGAAAATCCGAGTTTCAGGTTTACTATCCCGGAAAAGGGCACACAGCAGATAATGTGGTGGTATGGTTTCCAAAAGAAAAAGTATTGGTTGGAGGTTGTATTATAAAAAGTGCTGATTCAAAGGACCTGGGGTATATTGGAGAAGCATATGTAAACGACTGGACGCAGTCTGTACACAATATTCAACAAAAGTTTTCCGGTGCTCAGTACGTTGTTGCAGGGCATGATGATTGGAAAGATCAAAGATCAATACAACATACACTAGACTTAATCAATGAATATCAACAAAAACAAAAGGCTTCAAATTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Elizabethkingia anophelis", "NCBI_taxonomy_id": "1117645", "NCBI_taxonomy_cvterm_id": "41081"}, "protein_sequence": {"accession": "WP_029728367.1", "sequence": "MLKKIKISLILALGLTSLKAFGQENPDVKIEKLKDNLYVYTTYNTFNGTKYAANAVYLVTDKGVVVIDCPWGEDKFKSFTDEIYKKHGKKVIMNIATHSHDDRAGGLEYFGKIGAKTYSTKMTDSILAKENKPRAQYTFDNNKSFKVGKSEFQVYYPGKGHTADNVVVWFPKEKVLVGGCIIKSADSKDLGYIGEAYVNDWTQSVHNIQQKFSGAQYVVAGHDDWKDQRSIQHTLDLINEYQQKQKASN"}}}}}}}, "230": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "231": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "232": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "233": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2462": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"4442": {"dna_sequence": {"fmax": "1007265", "fmin": "1004589", "accession": "CP003084.1", "strand": "+", "sequence": "ATGGCTGACGACGAGAAGCCCGACGAGCAGAACCAGGCCGACCGTCAAGGATTGGTGACCGGCCGTCACGTCGGAATCCAGCCGGTCGAGATTCGTGACGAGATCCAGAACGCGTACCTCGACTACGCGATGAGCGTCATCGTCGGGCGTGCCCTGCCCGATGTGCGCGACGGCCTCAAACCGGTACACCGTCGGGTCATCTACGCGATGTACGACGGCGGTTACCGCCCCGACCGTGGCTGGAATAAGTGTTCCCGCGTCGTCGGTGACGTCATGGGTAAGTACCACCCTCACGGCGACTCGGCCATTTACGACACCTTGGTGCGTCTGGCTCAGCCATGGGCTATGCGATACAAGCTTGTCCAGGGTCAGGGTAACTTCGGGTCCCAGGGCAACGATGGTGCGGCTGCCATGCGATATACCGAGTGCAAGATGGCGCCGCTGGCCATGGAGATGGTGCGCGACATCGACCAGGACACTGTCGATTTCCAGCCCAATTATGACAACAAGGAGACCGAACCGGTCGTCTTGCCGTCGAGGTTCCCCAACCTGCTTGTCAATGGTTCTTCAGGTATCGCGGTGGGCATGGCCACCAACATCCCGACCCATAATCTGCGCGAGGTCAACGAGGCCGTGCAGTGGTCTTTGGCTCATCCCAATGCTTCCCACGAGGAACTGCTCGAGGCGTGCATGGAGCGCATTAAGGGTCCGGATTTCCCCGGCGGCGCCCTCATCGTGGGTCGGCAGGGCATCGAGGACGCCTACCGCACCGGCCGCGGTTCGGTGACGATGCGTGCCGTCATCGACATGGAAGAGGACAAGAAGGGACGCCAGTGCCTGGTCGTCACCGAGTTGCCTTATATGTGCAACCCGGACAACCTCGCCACCAAGATCGCCGACCTGGTGAACTCCGGTCGCATCAACGGTATCGCCGACATCCGTGACGACTCCTCAGCCCGTACTGGTCAGCGTTTAGTCATCGTCCTCAAGCGTGACGCTCAGCCGCGTGTCGTCATGAACAACCTGTACAAGCACACGGCTTTGCAGGACACCTTCGGCTGCAACATGCTGGCTCTGGTGGACAACGTGCCGCGCACTTTGCGTCTGGACCAATTCATCAGCTACTGGATTGACCACCAGATGGAGGTCATCCGCAGGCGTACCGAGTACCGCCTGGCTCAGGCCGAAAAAGACGCCCATATCCAGCGGGCTCTCGTTAAAGCCCTCGATATGCTCGACGAGGTCATCGCGCTCATCCGTCGCTCCCCGAACACTGAGGCCGCCAGCACCGGCCTACAGGAACTGCTCGATATCGACGAGATTCAGGCTCGCGCCATCCTCGATATGCAGTTGCGTCGTCTGGCTGCCCTGGAGCGTCAAAAGATCATCGACCGACTTGAGGAACTCGAGCGCCTCATCGCTGATTACAAAGCAATTCTGGCTAGCGAGGACCGCCAGCGCGAGATCATCTCTACCGAGCTTGCCGAGATCGTCGATAAGTACGGTGACGAGCGTCGCACCCGCATTATCGCCGCCGATGGGGACTTTTCTGAGGAAGACTTCATCCCCGACGATGACGTCGTCGTCACCATTACCCGGGGCGGCTACGCCAAGCGCACCCGCACTGACCTGTACCGGGTCCAGAAACGCGGTGGCAAGGGTGTTCGCGGCGCCAGCCTGCGCACTGACGATGAGGTGGCACAGCTATTCACTACCACGAACCACCAGTGGATCCTCTTCTTCACGAATATGGGTCGGGTCTATCGCACCAAGGTATGGCAGCTGCCGGAGGCTGGTCGTGACGCCAGGGGGGGTCACGTCGCTGGGTTGCTGAGCTTCCTGCCTGACGAGAAGATCGCCCAAGTCATGACCCTACGGTCCTACGACGACGCCGAGTACCTCCTCCTGGCCACTCGCAAGGGTATGGTCAAGAAGACGGCGCTCAAGGCTTATGACTCGTCTCGTCAGGCCGGCGTTATTGCCGTTAATTTCCGTACCGAGGACGATGAGCTTATCGGCGCCGAGCAGTGCTCCGCCGCTGACGACGTGCTGCTTATCAGCCGTAAGGGGCAGGCGATCCGGTTCTCTGCCGGCGACGACCAGTTGCGCCCGATGGGGCGTGCGACTTCGGGCGTTACCGGCATGAAGTTCCGTGGTGATGACGAGTTGCTGTCAATGTCGATTATTCACTCCGACATGCCTGAGGATGATCGGTTCGTTTTCACAGCAACCGGTGGCGGCTACGCCAAGCGCACTGCTGTGTCGGAGTACCGTCAGCAGAGGCGTGGGGGAGTCGGCATCAAAGCGATGGCCCTCAGTGAGGAGCGCGGCTCCCTGGTTGGTGGCCTGGTGGTCAGCGAGGCTGACGAAATCATCGCGATTAAGACGTCAGGTCAGATCACCCGATCGGCCGTGTCTGAGGTGCCCGCCAAGGGACGCTCCACGATGGGGGTGAAGTTCGTCTCCGTACGCGGTGACGACGCTGTCTCAATCATCGCTGTCAACCCCGAACATACCGTCGAGGAGGAAGTCGCTGACGAATCGGTGGAAACTGTTGAAGGCGATGCCACGAAGGCCCAATCGGGAGATGTGGTTCGGCGAAGCGATACTGTGGATGACGACCGTGCCGTCGATACGGCGGGAAACGACATGAAGCCGGAGGACAACGGTGAGTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Cutibacterium acnes subsp. defendens ATCC 11828", "NCBI_taxonomy_id": "1091045", "NCBI_taxonomy_cvterm_id": "41684"}, "protein_sequence": {"accession": "AER05434.1", "sequence": "MADDEKPDEQNQADRQGLVTGRHVGIQPVEIRDEIQNAYLDYAMSVIVGRALPDVRDGLKPVHRRVIYAMYDGGYRPDRGWNKCSRVVGDVMGKYHPHGDSAIYDTLVRLAQPWAMRYKLVQGQGNFGSQGNDGAAAMRYTECKMAPLAMEMVRDIDQDTVDFQPNYDNKETEPVVLPSRFPNLLVNGSSGIAVGMATNIPTHNLREVNEAVQWSLAHPNASHEELLEACMERIKGPDFPGGALIVGRQGIEDAYRTGRGSVTMRAVIDMEEDKKGRQCLVVTELPYMCNPDNLATKIADLVNSGRINGIADIRDDSSARTGQRLVIVLKRDAQPRVVMNNLYKHTALQDTFGCNMLALVDNVPRTLRLDQFISYWIDHQMEVIRRRTEYRLAQAEKDAHIQRALVKALDMLDEVIALIRRSPNTEAASTGLQELLDIDEIQARAILDMQLRRLAALERQKIIDRLEELERLIADYKAILASEDRQREIISTELAEIVDKYGDERRTRIIAADGDFSEEDFIPDDDVVVTITRGGYAKRTRTDLYRVQKRGGKGVRGASLRTDDEVAQLFTTTNHQWILFFTNMGRVYRTKVWQLPEAGRDARGGHVAGLLSFLPDEKIAQVMTLRSYDDAEYLLLATRKGMVKKTALKAYDSSRQAGVIAVNFRTEDDELIGAEQCSAADDVLLISRKGQAIRFSAGDDQLRPMGRATSGVTGMKFRGDDELLSMSIIHSDMPEDDRFVFTATGGGYAKRTAVSEYRQQRRGGVGIKAMALSEERGSLVGGLVVSEADEIIAIKTSGQITRSAVSEVPAKGRSTMGVKFVSVRGDDAVSIIAVNPEHTVEEEVADESVETVEGDATKAQSGDVVRRSDTVDDDRAVDTAGNDMKPEDNGE"}}}}}}}, "2228": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2229": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2227": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2224": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"4650": {"dna_sequence": {"fmax": "1045314", "fmin": "1043982", "accession": "NC_002516.2", "strand": "-", "sequence": "ATGAAAGTGATGAAGTGGAGCGCCATTGCACTGGCGGTTTCCGCAGGTAGCACTCAGTTCGCCGTGGCCGACGCATTCGTCAGCGATCAGGCCGAAGCGAAGGGGTTCATCGAAGACAGCAGCCTCGACCTGCTGCTCCGCAACTACTATTTCAACCGTGACGGCAAGAGCGGCAGCGGGGACCGCGTCGACTGGACCCAAGGCTTCCTCACCACCTATGAATCCGGCTTCACCCAAGGCACTGTGGGCTTCGGCGTCGATGCCTTCGGCTACCTGGGCCTGAAGCTCGACGGCACCTCCGACAAGACCGGCACCGGCAACCTGCCGGTGATGAACGACGGCAAGCCGCGCGATGACTACAGCCGCGCCGGCGGCGCCGTGAAGGTGCGCATCTCCAAGACCATGCTGAAGTGGGGCGAGATGCAACCGACCGCCCCGGTCTTCGCCGCTGGCGGCAGCCGCCTGTTCCCGCAGACCGCGACCGGCTTCCAGCTGCAGAGCAGCGAATTCGAAGGGCTCGACCTCGAGGCAGGCCACTTCACCGAGGGCAAGGAGCCGACCACCGTCAAATCGCGTGGCGAACTCTATGCCACCTACGCAGGCGAGACCGCCAAGAGCGCCGATTTCATTGGGGGCCGCTACGCAATCACCGATAACCTCAGCGCCTCCCTGTACGGCGCCGAACTCGAAGACATCTATCGCCAGTATTACCTGAACAGCAACTACACCATCCCACTGGCATCCGACCAATCGCTGGGCTTCGATTTCAACATCTACCGCACAAACGATGAAGGCAAGGCCAAGGCCGGCGACATCAGCAACACCACTTGGTCCCTGGCGGCAGCCTACACTCTGGATGCGCACACTTTCACCTTGGCCTACCAGAAGGTCCATGGCGATCAGCCGTTTGATTATATCGGCTTCGGCCGCAACGGCTCTGGCGCAGGTGGCGACTCGATTTTCCTCGCCAACTCTGTCCAGTACTCCGACTTCAACGGCCCTGGCGAGAAATCCTGGCAGGCTCGCTACGACCTGAACCTAGCCTCCTATGGCGTTCCCGGCCTGACTTTCATGGTCCGCTATATCAATGGCAAGGACATCGATGGCACCAAGATGTCTGACAACAACGTCGGCTATAAGAACTACGGCTACGGCGAGGATGGCAAGCACCACGAAACCAACCTCGAAGCCAAGTACGTGGTCCAGTCCGGTCCGGCCAAGGACCTGTCGTTCCGCATCCGCCAGGCCTGGCACCGTGCCAACGCCGACCAGGGCGAAGGCGACCAGAACGAGTTCCGCCTGATCGTCGACTATCCGCTGTCGATCCTGTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa PAO1", "NCBI_taxonomy_id": "208964", "NCBI_taxonomy_cvterm_id": "36804"}, "protein_sequence": {"accession": "NP_249649.1", "sequence": "MKVMKWSAIALAVSAGSTQFAVADAFVSDQAEAKGFIEDSSLDLLLRNYYFNRDGKSGSGDRVDWTQGFLTTYESGFTQGTVGFGVDAFGYLGLKLDGTSDKTGTGNLPVMNDGKPRDDYSRAGGAVKVRISKTMLKWGEMQPTAPVFAAGGSRLFPQTATGFQLQSSEFEGLDLEAGHFTEGKEPTTVKSRGELYATYAGETAKSADFIGGRYAITDNLSASLYGAELEDIYRQYYLNSNYTIPLASDQSLGFDFNIYRTNDEGKAKAGDISNTTWSLAAAYTLDAHTFTLAYQKVHGDQPFDYIGFGRNGSGAGGDSIFLANSVQYSDFNGPGEKSWQARYDLNLASYGVPGLTFMVRYINGKDIDGTKMSDNNVGYKNYGYGEDGKHHETNLEAKYVVQSGPAKDLSFRIRQAWHRANADQGEGDQNEFRLIVDYPLSIL"}}}}}}}, "2222": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2221": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "146": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "147": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "144": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1824": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAGAAATTATTTGTTTTATGCATTTTTTTGTTTTTAAGTATTACTGCCTCAGGTGAGGTTTTGCCTGATTTGAAAATTGAGAAGCTTGAAGAGGGTGTTTATCTTCATACATCTTTTGAAGAGGTTAGCGGTTGGGGTGTTGTTACTAAACATGGTTTGGTAGTTCTTGTAAATAATGACGCCTATCTAATTGACACTCCATTTACAAATAAAGATACTGAAAAATTAGTTGCTTGGTTTGTAGGGCGCGGCTTTACAATAAAGGGAAGTGTTTCCTCACATTTTCATAGCGACAGTACGGGTGGAATAGAGTGGCTTAATTCTCAATCTATTCCCACGTATGCATCTGAGTTAACAAATGAACTTCTGAAAAAGAACGGTAAGGTGCAAGCTACAAATTCATTTAGCGGGGTTAGTTATTGGCTAGTTAAAAATAAAATTGAAATTTTTTATCCCGGCCCAGGACATACTCAAGATAACGTAGTGGTTTGGCTACCTGAAAACAAAATTTTATTCGGTGGTTGTTTTGTTAAACCGGACGGTCTTGGTAATTTGGATGACGCAAATTTAAAAGCTTGGCCAAAGTCCGCAAAAATATTAATGTCTAAATATGGTAAAGCAAAGTTAGTTGTTTCAGGTCATAGTGAAATTGGGAACGCATCACTCTTGAAACTTACTTGGGAGCAGGCTGTTAAAGGGCTAAAAGAAAGTAAAAAACCATTACTGCCAAGTAACTAA"}}}}}}}}}}, "145": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"804": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAAGTTTAAAATGAAAGGTTTATTTTGTGTCATCCTCAGTAGTTTGGCATTTTCAGGTTGTGTTTATGATTCAAAACTACAACGCCCAGTCATATCAGAGCGAGAAACTGAGATTCCTTTATTATTTGATCAAGCACAGACTCAAGCTGTGTTTGTTACTTATGATGGGATTCATCTAAAAAGTTATGGTAATGATCTAAGCCGAGCAAAGACTGAATATATTCCTGCATCTACATTTAAGATGTTGAATGCTTTAATTGGCTTGCAAAATGCAAAAGCAACCAATACTGAAGTATTTCATTGGAATGGTGAAAAGCGCGCTTTTTCAGCATGGGAAAAAGATATGACTTTGGCAGAAGCGATGCAGGCTTCAGCTGTTCCCGTATATCAGGAGCTTGCTCGACGTATTGGCTTGGAATTGATGCGTGAAGAAGTGAAGCGTGTAGGTTTTGGCAATGCGGAGATTGGTCAGCAAGTCGATAATTTTTGGTTGGTGGGGCCTTTAAAAATCTCTCCTGAACAAGAAGTTCAATTTGCCTATCAACTGGCAATGAAGCAATTGCCTTTTGATTCAAATGTACAGCAACAAGTCAAAGATATGCTTTATATCGAGAGACGTGGTGACAGTAAACTGTATGCTAAAAGTGGTTGGGGAATGGATGTTGAACCTCAAGTGGGTTGGTATACGGGATGGGTTGAACAACCCAATGGCAAGGTGACTGCATTTGCGTTAAATATGAACATGCAAGCAGGTGATGATCCAACTGAACGTAAACAATTAACCTTAAGTATTTTGGACAAATTGGGTCTATTTTTTTATTTAAGATAA"}}}}}}}}}}, "142": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "143": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1656": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATGAAAGGTTGGATGAAGTGTGGATTGGCCGGCGCCGTGGTGCTGATGGCGAGTTTCTGGGGTGGCAGCGTGCGGGCGGCGGGGATGTCGCTGACGCAGGTGAGCGGCCCTGTGTATGTGGTAGAGGACAACTACTACGTGCAGGAAAATTCCATGGTCTATTTCGGGGCCAAGGGCGTGACTGTGGTGGGGGCGACCTGGACGCCGGACACCGCCCGCGAGCTGCACAAGCTGATCAAACGGGTCAGCCGCAAGCCGGTGCTGGAGGTGATCAACACCAACTACCACACCGACCGGGCTGGCGGTAACGCCTACTGGAAGTCCATCGGTGCCAAGGTGGTGTCGACCCGCCAGACCCGGGATCTGATGAAGAGCGACTGGGCCGAGATTGTTGCCTTTACCCGCAAGGGGCTGCCGGAGTACCCGGATCTGCCGCTGGTGCTGCCCAACGTGGTGCACGATGGCGACTTCACGCTGCAAGAGGGCAAGGTGCGCGCCTTCTACGCGGGCCCGGCCCATACGCCGGACGGCATCTTTGTCTACTTCCCCGACGAGCAGGTGCTCTATGGCAACTGCATTCTCAAGGAGAAGCTGGGCAACCTGAGCTTTGCCGATGTGAAGGCCTATCCACAGACGCTTGAGCGGCTGAAAGCGATGAAGCTGCCGATCAAGACGGTGATCGGCGGTCACGACTCACCGCTGCACGGCCCCGAGCTGATTGATCACTACGAAGCGCTGATCAAGGCCGCACCCCAGTCATAA"}}}}}}}}}}, "140": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"497": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCATCCCGGCGTTGTTACTCTGCGTCCGATGACCGAAGACGACATCGGTATGCTTCACGAATGGTTGAATCGGCCGCACATTGTCGAATGGTGGGGTGGTGAGCGGCCCTCGCTCGAAGAGGTGAAAGAGGACTATCGGCCCAGCGCGTTGGCCGAAGAAGGAGTGACGCCGTACATCGGTTTGCTTGACGGAACTCCATTCGCGTTCGCACAGTCGTACGTTGCGCTCGGGTCGGGTGGTGGATGGTGGGAGGAAGAGACCGATCCTGGTGTCCGCGGAATCGATCAATCAATCGCCGATTCCGGGCTTCTCGGAAGAGGTTACGGCACTCGGCTGGTGCAGGCGCTTGTTGATTTGCTGTTCGCCGACCCGCAGGTATCCAAGGTTCAGACGGACCCCTCCCCGAACAACATGCGCGCGATACGCTGCTATGAGAAGGCAGGCTTCCGGAAGGTCAAGGTCGTTTCAACACCGGATGGGCCGGCCATGTACATGTTGCACGAGCGTCCGTTGGTGAACGGTTTGCGCAGTGCGGCCTAA"}}}}}}}}}}, "141": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "148": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "149": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"57": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAGGGTAGCGGTGACCATCGAAATTTCGAACCAACTATCAGAGGTGCTAAGCGTCATTGAGCGCCATCTGGAATCAACGTTGCTGGCCGTGCATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCATACAGCGATATTGATTTGCTGGTTACGGTGACCGTAAGGCTTGATGAAACAACGCGGCGAGCTTTGATCAACGACCTTTTGGAAACTTCGGCTTCCCCTGGAGAGAGCGAGATTCTCCGCGCTGTAGAAGTCACCATTGTTGTGCACGACGACATCATTCCGTGGCGTTATCCAGCTAAGCGCGAACTGCAATTTGGAGAATGGCAGCGCAATGACATTCTTGCAGGTATCTTCGAGCCAGCCACGATCGACATTGATCTGGCTATCTTGCTGACAAAAGCAAGAGAACATAGCGTTGCCTTGGTAGGTCCAGCGGCGGAGGAACTCTTTGATCCGGTTCCTGAACAGGATCTATTTGAGGCGCTAAATGAAACCTTAACGCTATGGAACTCGCCGCCCGACTGGGCTGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAATAACCGGCAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATAAAACGCCTACCTGCCCAGTATCAGCCCGTCTTACTTGAAGCTAAGCAAGCTTATCTGGGACAAAAAGAAGATCACTTGGCCTCACGCGCAGATCACTTGGAAGAATTTATTCGCTTTGTGAAAGGCGAGATCATCAAGTCAGTTGGTAAATGA"}}}}}}}}}}, "2083": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"4658": {"dna_sequence": {"fmax": "663064", "fmin": "660262", "accession": "CP011538.1", "strand": "-", "sequence": "ATGAAAAAAGATAGAAAAGAAGAAATACAAGAAGTTACTGAAAACATTATTGAAAAAAATATGGCCGATATAATGTCTGATAGATTCGGACGTTATTCAAAATACATTATTCAACAAAGAGCAATTCCTGATGCTCGTGATGGACTAAAACCTGTTCAACGTCGGATTTTATATTCAATGTGAAATTTACATTTAAAAAATAGCGAGCCTTTTAAAAAATCAGCTAGAATCGTTGGGGATGTTATCGGACGTTATCACCCTCATGGAGATAGTTCAATATACGAGGCATTAGTCAGAATGGCTCAAGATTGAAAAAGCAATTTCCCATTAATTGAAATGCATGGTAATAAAGGTTCAATTGATGATGACCCTGCCGCTGCAATGCGTTACACTGAATCAAGACTTGAAAAAATTAGTGAACTGATGTTGAGAGATTTAGACAGAAAAGTTGTAAAAATGGCTCCAAACTTTGATGACTCTGAATACGAACCAATTGTTTTGCCGGCCTTATTTCCTAATTTATTAGTTAACGGTGCTAAAGGAATTGCTGCTGGTTTTGCTACAGAAATCCCACCACATAATCTAGGCGAAGTTATTGATGCAACAATTGCATTAATCAAAAATCCTACAATATCAATTGAAGAATTAAGTGAAATAGTTAAAGGCCCAGATTTCCCAACAGGAGCAATTATTAATGGTATAAATGAAATAAAAAAAGCTCTTTCAAGTGGGCAAGGTAGAATTACAATTTCTTCGAAATATCATTACGTTTATGATAAAAAAGATGAATCGAAAATTATTGGTATTGAAATAATTGAAATTCCTTTTGGGGTTGTTAAATCAAAATTAGTTGCCGACATTGATGCAATTGCAATAGATAAAAAAATTTCTGGTATTAAAGAAGTTTTGGACCAAACAGATAGAAATGGAATTTCAATATTTATTCAATTAGAAGATGGTGCAAATGCTGACGCAATAATTGCATACTTAATGAATAAAACCGAACTAAGCATCTCGTATAGTTATAACATGGTTGCAATTGACAATAACCGTCCAGTAATTTTGAATCTCTATAGTGCCTTAATTGCTTATTTAAGTCATTTAAAAGAAGTTAATATAAATGGTATTAATTATGATTTAAAGAAGTTTAAATTGAGACTAGAAATAGTTGAAGGGTTCATTAAAGTAGCCGAAATTTCTGATGAAGTTATACATTTGATTAAAGAAAGCGATAACTCAAAAAAAGGTGTTATCCTTGCATTGATGAATAAATTTAAATTTAGTGAATTGCAAGCAACAGCGATTGCTGAATTAAGATTGTATAAGCTTTCAAGAATGGATCAAATCGAATTTCAAGAAGAAAAGAAAAACCTTGAAATTCAAATTGAAAATTGCAATAAATTATTAAATGATAAATGAGAATTTAATCAATATTTAATAAAGCAATTGCTTGAAATAAAAAATCAATATTCAAAGCCAAGATTAACGGAAATTTCAGATCAAAAAATCGATAAAGAAATTGATCATAAATTATTGACAAAAAATGAAGATTTTTATTTATATATAACCAAAGATGGATATTATAAAAAAATAAGTTTAAAAGTTTATACTAGCAATGAATTAAACACATTCAAATTAAAAGAAGAAGATAATGTTTTCTATTTTGATAAAGTAAACTCATTATCAAAGATATTATTCTTTACAAATTTAGGGAATTATTTTATTATTGATTGCCATTTGTTTAAAGATTGCAATTGAAAAGATCTTGGTCAACATATTTCATCAATAGTAGCTCTAGAAAGCTCAGAAAAAATTATTAGAGTTATAGAAATTACGTCATTCAATAGTTATGCAAACTTTATTTTAATGTCAAAATTAGGATATGCCAAAAAAGTTAATTTAAGAGATTTTGAAAATAAATCTTCTCTTAAAACAAAAACTTGCATGTCGTTTAAGGATGATAATGATGAATTAATAGATGCCCAAATTTCTAATGATGAAAAAATGCTATTTATTTTACTAAATAATGGTATGTATCATTTAGTTTCAGAAAACGAACTAAAGGTTGGAATTTCTTTGAAAGCAAGAGGCATTAGACTTCTTTTAAACTTATATAAACATCCTCAACTTCAAGTAAGTGGTTTTATAACAGTTTCAAAATACAACAATATAATTTATTTAACGCAAGGTGGTTATATAAAATGTTGGGATACTAGCAAATTAGAATTGACCACACGCAATACTCCAAAAATGTTGTTTACGCCACTAAAAAATAATATTTTAGGTCTTCAATCACTTGCTGTTACATTGAGCAATTTAAAAATGTTATACACTGATAATAATGGTAATTTGGCAGAATATGATTGAAAATTTATATTAAAAGATAAGACTAAGGAAAGTAAACTTCTTAAATTAGATTATTCATTTACTAACCCTGGGTATTTTATTACGCCAATAAAAATTAATGAATTAATTGAAGCTGATGAAATAGAGCAGGAAAAAATAAGACAAGAATATCAAGGATATATTGATAAAAATATTGAATTGACCGCTGAACATGCTTTGATTAAAAAATCCTATGATCAAGATATTCAACATTTAAATAATGAAGAACAAGAAGAACTATTTCAAATATCTACAGAAGATATTGAATTACCAAATGTTTCAAATAATGTTAATGACAACCAAAAAGATAAAAAAAATATAGCAACAAAAGAAAGCGTTAGTCAGAAAATACAAGAAATTGAAAAAATAGATCTTGAAACAATAATGCAAAAAATTAAACAAATTAAGAAAAAATAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Mycoplasma hominis", "NCBI_taxonomy_id": "2098", "NCBI_taxonomy_cvterm_id": "40311"}, "protein_sequence": {"accession": "AKJ52802.1", "sequence": "MKKDRKEEIQEVTENIIEKNMADIMSDRFGRYSKYIIQQRAIPDARDGLKPVQRRILYSMWNLHLKNSEPFKKSARIVGDVIGRYHPHGDSSIYEALVRMAQDWKSNFPLIEMHGNKGSIDDDPAAAMRYTESRLEKISELMLRDLDRKVVKMAPNFDDSEYEPIVLPALFPNLLVNGAKGIAAGFATEIPPHNLGEVIDATIALIKNPTISIEELSEIVKGPDFPTGAIINGINEIKKALSSGQGRITISSKYHYVYDKKDESKIIGIEIIEIPFGVVKSKLVADIDAIAIDKKISGIKEVLDQTDRNGISIFIQLEDGANADAIIAYLMNKTELSISYSYNMVAIDNNRPVILNLYSALIAYLSHLKEVNINGINYDLKKFKLRLEIVEGFIKVAEISDEVIHLIKESDNSKKGVILALMNKFKFSELQATAIAELRLYKLSRMDQIEFQEEKKNLEIQIENCNKLLNDKWEFNQYLIKQLLEIKNQYSKPRLTEISDQKIDKEIDHKLLTKNEDFYLYITKDGYYKKISLKVYTSNELNTFKLKEEDNVFYFDKVNSLSKILFFTNLGNYFIIDCHLFKDCNWKDLGQHISSIVALESSEKIIRVIEITSFNSYANFILMSKLGYAKKVNLRDFENKSSLKTKTCMSFKDDNDELIDAQISNDEKMLFILLNNGMYHLVSENELKVGISLKARGIRLLLNLYKHPQLQVSGFITVSKYNNIIYLTQGGYIKCWDTSKLELTTRNTPKMLFTPLKNNILGLQSLAVTLSNLKMLYTDNNGNLAEYDWKFILKDKTKESKLLKLDYSFTNPGYFITPIKINELIEADEIEQEKIRQEYQGYIDKNIELTAEHALIKKSYDQDIQHLNNEEQEELFQISTEDIELPNVSNNVNDNQKDKKNIATKESVSQKIQEIEKIDLETIMQKIKQIKKK"}}}}}}}, "2081": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2087": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2716": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4519": {"dna_sequence": {"fmax": "2847779", "fmin": "2846282", "accession": "NC_002516.2", "strand": "-", "sequence": "ATGAAACACACCCCCTCGTTGCTCGCCCTGGCCCTGGTCGCCGCCCTCGGCGGCTGCGCCATCGGCCCCGACTACCAGCGACCGGACCTGGCGGTGCCCGCCGAATTCAAGGAAGCCGAAGGCTGGCGCCGCGCCGAGCCGCGCGACGTGTTCCAGCGCGGCGCCTGGTGGGAGCTGTACGGCGACCAGACCCTGAACGACCTGCAGATGCACCTGGAACGTTCCAACCAGACCCTGGCCCAGTCGGTGGCGCAGTTCCGCCAGGCCGAGGCGCTGGTGCGCGGCGCGCGGGCGGCGTTCTTCCCGTCGATCACCGGCAACGTGGGCAAGACCCGCAGCGGCCAGGGCGGCGGCGACAGCACCGTGTTGCTGCCGGGAGGCTCGACGGTGAGCAGCGGCGGCTCTGGCGCGATCAGCACCAGCTACTCGACCAACCTCAGTGTCAGCTGGGAGGTCGACCTCTGGGGCAAGCTGCGCCGGCAACTGGAGGCCAACCAGGCGAGCCTGCATGCCAGCGCCGCCGACCTCGCCGCGGTGCGCCTCAGCCAGCAGTCGCAACTGGCGCAGAACTACCTGCAACTGCGGGTGATGGACGAACAGATCCGCCTGCTCAACGACACGGTGACGGCCTACGAGCGTTCGCTGAAGGTGGCCGAGAACAAATACCGCGCCGGCATCGTCACCAGGGCCGACGTGGCCCAGGCCCGCACCCAGTTGAAAAGCACCCAGGCCCAGGCCATCGACCTGAAGTACCAGCGTGCCCAGCTGGAGCACGCCATCGCCGTGCTGGTCGGCCTGCCGCCGGCGCAATTCAACCTGCCGCCGGTGGCGAGCGTGCCGAAGCTGCCGGACCTGCCGGCAGTGGTGCCGTCGCAATTGCTCGAACGACGGCCGGACATCGCCTCGGCGGAACGCAAGGTGATTTCCGCCAACGCCCAGATCGGCGTGGCCAAGGCCGCCTATTTCCCCGACCTCACCCTGAGCGCCGCCGGCGGCTACCGCAGCGGCAGCCTGAGCAACTGGATCAGCACGCCGAACCGCTTCTGGTCGATCGGCCCGCAGTTCGCCATGACCCTGTTTGACGGCGGCCTGATCGGCTCCCAGGTGGACCAGGCCGAGGCTACCTACGACCAGACCGTGGCGACCTACCGGCAGACCGTGCTCGACGGTTTCCGCGAGGTGGAGGACTACCTGGTGCAATTGAGCGTCCTCGACGAGGAGAGCGGGGTGCAGCGCGAAGCCCTGGAGTCGGCCCGCGAGGCACTGCGCCTGGCCGAGAACCAGTACAAGGCCGGCACCGTCGACTACACCGACGTGGTCACCAACCAGGCCACCGCGCTGAGCAACGAACGCACCGTGCTGACCCTGCTCGGCAGCCGCCTGACCGCCAGCGTCCAGTTGATCGCGGCAATGGGCGGCGGCTGGGACAGCGCCGACATCGAGCGGACCGACGAGCGGCTCGGCCGGGTCGAAGAGGGCCTGCCGCCTTCGCCCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa PAO1", "NCBI_taxonomy_id": "208964", "NCBI_taxonomy_cvterm_id": "36804"}, "protein_sequence": {"accession": "NP_251215.1", "sequence": "MKHTPSLLALALVAALGGCAIGPDYQRPDLAVPAEFKEAEGWRRAEPRDVFQRGAWWELYGDQTLNDLQMHLERSNQTLAQSVAQFRQAEALVRGARAAFFPSITGNVGKTRSGQGGGDSTVLLPGGSTVSSGGSGAISTSYSTNLSVSWEVDLWGKLRRQLEANQASLHASAADLAAVRLSQQSQLAQNYLQLRVMDEQIRLLNDTVTAYERSLKVAENKYRAGIVTRADVAQARTQLKSTQAQAIDLKYQRAQLEHAIAVLVGLPPAQFNLPPVASVPKLPDLPAVVPSQLLERRPDIASAERKVISANAQIGVAKAAYFPDLTLSAAGGYRSGSLSNWISTPNRFWSIGPQFAMTLFDGGLIGSQVDQAEATYDQTVATYRQTVLDGFREVEDYLVQLSVLDEESGVQREALESAREALRLAENQYKAGTVDYTDVVTNQATALSNERTVLTLLGSRLTASVQLIAAMGGGWDSADIERTDERLGRVEEGLPPSP"}}}}}}}, "2717": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4518": {"dna_sequence": {"fmax": "2855291", "fmin": "2854010", "accession": "NC_002516.2", "strand": "-", "sequence": "ATGACTCCAACGACCGGTAAATCCAAGTTCCGTACCCTGCGCCCGTGGCTGATCACCGCCCTGGCCTTCGCCGCCGTGATCGGCCTGGTGATGTGGCTGGCGGCGCCCGCCTCGGCACCGTCCTCCGACGGGCGACCCGGTCGCGGCGGCAAGCCGGGCGCCGCGCTGCCCAAGGCCAACGCGCTCACCGTCGGCGTGGCCAGGGTGGAGCAGGGCGACCTGGCGCTGCATTTCAACGCGCTTGGCACCGTCACCGCCTTCAACACGGTGAACGTCAAGCCGCGGGTCAACGGCGAGCTGGTCAAGGTGCTGTTCCAGGAGGGGCAGGAGGTCAAGGCCGGCGACCTGCTGGCGGTGGTCGACCCGCGCACCTACAAGGCGGCGCTGGCCCAGGCCGAGGGCACGCTGATGCAGAACCAGGCGCAACTGAAGAACGCCGAGATCGACCTGCAGCGCTACAAGGGGCTGTATGCCGAGGACTCGATAGCCAAGCAGACCCTGGATACCCAGGAAGCCCAGGTCCGCCAGTTGCAGGGCACCATCCGTACCAACCAGGGCCAGGTCGACGACGCCCGCCTCAACCTGACCTTCACCGAGGTCCGCGCACCGATTTCCGGGCGCCTCGGCCTGCGCCAGGTGGACATCGGCAACCTGGTCACCAGCGGCGATACCACGCCGCTGGTGGTGATCACCCAGGTCAAGCCGATCTCGGTGGTGTTCAGCCTGCCGCAGCAGCAGATCGGCACCGTCGTCGAGCAGATGAACGGCCCCGGCAAGCTGACGGTCACCGCGCTGGACCGCAACCAGGACAAGGTTCTCGCCGAAGGCACCCTGACCACCCTGGACAACCAGATCGACACCACCACCGGCACGGTCAAGCTCAAGGCGCGCTTCGAGAACGCCGACGGCAAGCTGTTCCCCAACCAGTTCGTCAACGTGCGCCTGCTGGCGCAGACCCTCAAAGGCGTGCTGACCATTCCGGCCAACGCCGTGCAGCGCGGCACCAACGGTATCTATGTCTACGTGGTCGGCGCCGACAACAAGGTCAGCCAGCGCAGCGTCGCCATCGGCACCAGCGAGAACGAGCGGGTGGTGGTGGAAAGCGGCCTGAAGGCCGGCGAGCAGGTGGTGGTGGAAGGCACCGACCGCCTGCGCGACGGTATGGAAGTGCGTGTCGCCGAGGCCTCCCCGCAGGTCCTCGAGGGCGAGCCGCAGAAACCGCAGACTGGCCGCCCCAGCGGCCTCCAGGGCGACTCGGTGGGTAGCGGGAGCGCTGAATGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa PAO1", "NCBI_taxonomy_id": "208964", "NCBI_taxonomy_cvterm_id": "36804"}, "protein_sequence": {"accession": "NP_251218.1", "sequence": "MTPTTGKSKFRTLRPWLITALAFAAVIGLVMWLAAPASAPSSDGRPGRGGKPGAALPKANALTVGVARVEQGDLALHFNALGTVTAFNTVNVKPRVNGELVKVLFQEGQEVKAGDLLAVVDPRTYKAALAQAEGTLMQNQAQLKNAEIDLQRYKGLYAEDSIAKQTLDTQEAQVRQLQGTIRTNQGQVDDARLNLTFTEVRAPISGRLGLRQVDIGNLVTSGDTTPLVVITQVKPISVVFSLPQQQIGTVVEQMNGPGKLTVTALDRNQDKVLAEGTLTTLDNQIDTTTGTVKLKARFENADGKLFPNQFVNVRLLAQTLKGVLTIPANAVQRGTNGIYVYVVGADNKVSQRSVAIGTSENERVVVESGLKAGEQVVVEGTDRLRDGMEVRVAEASPQVLEGEPQKPQTGRPSGLQGDSVGSGSAE"}}}}}}}, "2718": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4517": {"dna_sequence": {"fmax": "2854014", "fmin": "2850882", "accession": "NC_002516.2", "strand": "-", "sequence": "ATGAACCCGTCCCGCCCGTTCATCCTGCGGCCGGTCGCGACCACCCTGCTGATGGTGGCGATCCTGCTCTCGGGCCTGATCGCCTACCGCTTCCTGCCGATCTCGGCGTTGCCGGAAGTGGACTACCCGACCATCCAGGTGGTCACCCTGTACCCCGGCGCCAGCCCGGAGATCATGACCTCGTCGATCACCGCGCCGCTGGAGAACCAGCTCGGGCAGATTCCGGGGCTCAACGAGATGTCTTCCAGCAGTTCCGGCGGCGCCTCGGTGATCACCCTGCAATTCAGCCTGCAGAGCAACCTCGATGTCGCCGAGCAGGAAGTCCAGGCGGCGATCAACGCCGCGCAGAGCCTGCTGCCCAACGACCTGCCGAACCAGCCGGTGTTCAGCAAGGTGAATCCGGCGGACGCACCGATCCTGACCCTGGCGGTGATGTCCGACGGCATGCCGCTGCCGCAGATCCAGGACCTGGTGGATACCCGCCTGGCACAGAAGATCTCGCAGATCTCCGGGGTCGGCCTGGTCAGCATCAGCGGCGGCCAGCGCCCGGCGGTGCGGGTGCGCGCCAACCCGACGGCGCTGGCGGCGGCGGGGCTGAGCCTGGAGGACCTGCGCAGCACGGTGACCAGCAACAACCTCAACGGCCCCAAGGGCAGCTTCGACGGCCCGACCCGTGCCTCGACCCTGGACGCCAACGACCAGTTGCGCTCGGCCGACGCCTACCGCGACCTGATCATCGCCTACAAGAACGGCTCGCCGCTGCGCATCCGCGACGTCGCCAGCGTCGAGGACGACGCCGAGAACGTGCGCCTGGCCGCCTGGGCCAACAACCTGCCGGCGGTGGTGCTGAACATCCAGCGCCAGCCGGGGGCCAACGTGATCGAGGTGGTCGACCGGATCAAGGCGCTGCTGCCGCAGCTGCAATCGACCCTGCCGGGCAATCTCGACGTGCAGGTGCTGACCGACCGCACCACCACCATCCGCGCCTCGGTCAAGGACGTGCAGTTCGAGCTGGCGCTGGCGGTGGCGCTGGTGGTGATGGTCACCTTCCTGTTCCTGCGCAACGTCTACGCCACCCTGATTCCCAGCTTCGCCGTGCCGCTGTCGCTGATCGGTACCTTCGGCGTGATGTACCTGTCCGGCTTCTCGATCAACAACCTGACCCTGATGGCGCTGACCATCGCCACCGGCTTCGTGGTCGACGACGCGATCGTCATGGTGGAGAACATCGCCCGCTACCTGGAGCAGGGCGACTCGCCGCTGGAAGCGGCGCTCAAGGGCTCGAAGCAGATCGGCTTCACCATCATCTCGCTGACTTTCTCGCTGATCGCCGTGCTGATCCCGCTGCTGTTCATGGGCGACGTCGCCGGGCGGCTGTTCCGCGAGTTCGCCATCACCCTGGCGGTGGCGATCCTGATTTCCGGCTTCGTCTCCCTGACCCTTACGCCGATGCTCAGCGCCAAGCTGCTGCGCCACATCGACGAGGACCAGCAGGGCCGCTTCGCGCGCGCCGCGGGGCGGGTCATCGATGGCCTGATCGCACAGTACGCCAAGGCCCTGCGGGTGGTCCTGCGGCACCAGCCGCTGACCCTGCTGGTGGCCATCGCCACCCTGGCGCTGACCGCGCTACTCTACCTGGCCATGCCCAAGGGCTTCTTCCCGGTGCAGGACACCGGGGTGATCCAGGGCGTCGCCGAAGCGCCGCAGTCGATCTCCTTCCAGGCCATGTCCGAGCGCCAGCGCGCCCTTGCCGAGGTGGTGCTGAAGGACCCGGCGGTGGCCAGCCTGTCCTCCTACATCGGCGTCGACGGCAGCAACCCGACCCTCAACACCGGCCGCCTGCTGATCAACCTCAAGCCGCACAGCGAGCGCGACGTCACCGCCAGCGAAGTGATCCAGCGCCTGCAGCCCGAACTCGACCACCTGCCCGGGATCAAGCTGTACATGCAGCCGGTGCAGGACCTGACCATCGAGGACCGGGTCGCCCGCACCCAGTACCAGTTCACCTTGCAGGACGCCGACCCGGACGTGCTCGCCGAGTGGGTGCCGAAGCTGGTGGCGCGGCTGCAGGAGTTGCCGCAGCTCGCCGACGTCGCCAGCGACTGGCAGGACAAGGGCTTGCAGGCCTACCTGAACATCGACCGCGACACCGCCTCGCGCCTCGGCGTGAAGCTCTCCGACATCGACAGCGTGCTCTACAACGCCTTCGGCCAGCGGCTGATCTCGACCATCTTCACCCAGGCCACCCAGTACCGCGTGGTGCTGGAGGTGGCGCCGCAGTTCCAGCTCGGCCCGCAGGCCCTGGAGCAGCTCTACGTGCCGTCCAGCGACGGCACCCAGGTGCGCCTGTCGAGCCTGGCGAAGGTGGAGGAGCGGCATACCCTGCTGGCGATCAACCATATCGCCCAGTTCCCCTCGGCGACCCTGTCGTTCAACCTGGCCAAGGGTTACTCCCTGGGCGAGGCGGTCGAGGCGATCCGTGGCGTCGAGGCCAGCCTGGAGCTGCCGCTGAGCATGCAGGGCAGCTTCCGCGGCGCGGCGCTGGCCTTCGAGGCCTCGCTGTCGAACACGCTGCTGCTGATCCTCGCCTCGGTGGTGACCATGTACATCGTCCTGGGCATCCTCTACGAGAGCTTCATCCATCCGGTGACCATCCTCTCGACCCTGCCCTCGGCCGGGGTCGGCGCGCTGCTGGCGCTGATGCTGGCGGGGCAGGAGATCGGCATCGTGGCGATCATCGGCATCATCCTGCTGATCGGCATCGTCAAGAAGAACGCGATCATGATGATCGATTTCGCCCTCGACGCCGAGCGCAACGAAGGCAAGCCGCCCCATGAGGCGATCTACCAGGCCTGCCTGCTGCGCTTCCGGCCGATCCTGATGACCACCATGGCCGCGCTGCTCGGCGCGCTGCCGCTGATGCTCGCCGGCGGCGCCGGCGCCGAGCTGCGCCAGCCGCTGGGCATCACCATGGTCGGTGGCCTGCTGCTGAGCCAGGTCCTGACCCTGTTCACCACCCCGGTGATCTATCTCTACTTCGACCGCCTGGCCCGTCGCTGGGCGGCCTGGCGCAAGCAGCGCGGGCTGGACCTGAACACCGAGGCCGGGTTCGACGGGGACGCCGGGCGATGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa PAO1", "NCBI_taxonomy_id": "208964", "NCBI_taxonomy_cvterm_id": "36804"}, "protein_sequence": {"accession": "NP_251217.1", "sequence": "MNPSRPFILRPVATTLLMVAILLSGLIAYRFLPISALPEVDYPTIQVVTLYPGASPEIMTSSITAPLENQLGQIPGLNEMSSSSSGGASVITLQFSLQSNLDVAEQEVQAAINAAQSLLPNDLPNQPVFSKVNPADAPILTLAVMSDGMPLPQIQDLVDTRLAQKISQISGVGLVSISGGQRPAVRVRANPTALAAAGLSLEDLRSTVTSNNLNGPKGSFDGPTRASTLDANDQLRSADAYRDLIIAYKNGSPLRIRDVASVEDDAENVRLAAWANNLPAVVLNIQRQPGANVIEVVDRIKALLPQLQSTLPGNLDVQVLTDRTTTIRASVKDVQFELALAVALVVMVTFLFLRNVYATLIPSFAVPLSLIGTFGVMYLSGFSINNLTLMALTIATGFVVDDAIVMVENIARYLEQGDSPLEAALKGSKQIGFTIISLTFSLIAVLIPLLFMGDVAGRLFREFAITLAVAILISGFVSLTLTPMLSAKLLRHIDEDQQGRFARAAGRVIDGLIAQYAKALRVVLRHQPLTLLVAIATLALTALLYLAMPKGFFPVQDTGVIQGVAEAPQSISFQAMSERQRALAEVVLKDPAVASLSSYIGVDGSNPTLNTGRLLINLKPHSERDVTASEVIQRLQPELDHLPGIKLYMQPVQDLTIEDRVARTQYQFTLQDADPDVLAEWVPKLVARLQELPQLADVASDWQDKGLQAYLNIDRDTASRLGVKLSDIDSVLYNAFGQRLISTIFTQATQYRVVLEVAPQFQLGPQALEQLYVPSSDGTQVRLSSLAKVEERHTLLAINHIAQFPSATLSFNLAKGYSLGEAVEAIRGVEASLELPLSMQGSFRGAALAFEASLSNTLLLILASVVTMYIVLGILYESFIHPVTILSTLPSAGVGALLALMLAGQEIGIVAIIGIILLIGIVKKNAIMMIDFALDAERNEGKPPHEAIYQACLLRFRPILMTTMAALLGALPLMLAGGAGAELRQPLGITMVGGLLLSQVLTLFTTPVIYLYFDRLARRWAAWRKQRGLDLNTEAGFDGDAGR"}}}}}}}, "1832": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1833": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"1379": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGAACATTAAAGCCCTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGCGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTCTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGACAACCACCACAGAAGTATTTAAGTGGGACGGGCAAAAAAGGCTATTCCCAGAATGGGAAAAGGACATGACCCTAGGCGACGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAAGGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAATTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCCAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAGACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTAAAGGAAATATTGTAGCATTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGTTTAGAACAATTAGGTATTTTATAG"}}}}}}}}}}, "1830": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"545": {"$update": {"dna_sequence": {"$update": {"sequence": "TTGAATCGAACTAATATTTTTTTTGGTGAATCGCATTCTGACTGGTTGCCTGTCAGAGGCGGAGAATCTGGTGATTTTGTTTTTCGACGTGGTGACGGGCATGCCTTCGCGAAAATCGCACCTGCTTCCCGCCGCGGTGAGCTCGCTGGAGAGCGTGACCGCCTCATTTGGCTCAAAGGTCGAGGTGTGGCTTGCCCCGAGGTGATCAACTGGCAGGAGGAACAGGAGGGTGCATGCTTGGTGATAACGGCAATTCCGGGAGTACCGGCGGCTGATCTGTCTGGAGCGGATTTGCTCAAAGCGTGGCCGTCAATGGGGCAGCAACTTGGCGCTGTTCACAGCCTATTGGTTGATCAATGTCCGTTTGAGCGCAGGCTGTCGCGAATGTTCGGACGCGCCGTTGATGTGGTGTCCCGCAATGCCGTCAATCCCGACTTCTTACCGGACGAGGACAAGAGTACGCCGCAGCTCGATCTTTTGGCTCGTGTCGAACGAGAGCTACCGGTGCGGCTCGACCAAGAGCGCACCGATATGGTTGTTTGCCATGGTGATCCCTGCATGCCGAACTTCATGGTGGACCCTAAAACTCTTCAATGCACGGGTCTGATCGACCTTGGGCGGCTCGGAACAGCAGATCGCTATGCCGATTTGGCACTCATGATTGCTAACGCCGAAGAGAACTGGGCAGCGCCAGATGAAGCAGAGCGCGCCTTCGCTGTCCTATTCAATGTATTGGGGATCGAAGCCCCCGACCGCGAACGCCTTGCCTTCTATCTGCGATTGGACCCTCTGACTTGGGGTTGA"}}}}}}}}}}, "1831": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"207": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGATTATCAGTGAGTTTGATCGTGAGAATATTGTCTTGCGAGATCAGCTTGCAGATCTTTTAAGATTGACTTGGCCTGATGAGTATGGAACAGAGCCGATGAAAGAAGTCGAACAGTTGATGGCTCCAGAACGGATTGCTGTATCGGCGATTGAAGGGGAGGAATTGGTCGGTTTTGTTGGAGCGATCCCTCAATATGGCAAAACAGGGTGGGAGTTACATCCTTTGGTAGTAGCAAGCACACATCGCAAACAACAAATCGGGACACGATTGGTTTCCTACCTGGAAAAAGAAGTCGCTTCATATGGTGGCCTGGTCATCTATCTAGGGACAGATGATGTTGAAGGACAAACAAATTTAGTTGAAACGGATTTATTTGAAGATACCTTTGCAAAGTTACAAGAAATCAAAAATATCAATCATCATCCCTATACATTTTATGAGAAACTTGGCTATCAGATCATCGGTGTGATCCCAGATGCGAATGGGTGGAACCAGCCTGATATTTGGTTAGCAAAACGAGTGGCCAAACGAGAGCCAACGGAATAA"}}}}}}}}}}, "1836": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1837": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1834": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1835": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1838": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "1839": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"4676": {"dna_sequence": {"fmax": "1325", "fmin": "539", "accession": "AJ884726.1", "strand": "-", "sequence": "ATGACTAATAAGCCCCCTGAGTCGATTGCAGAACAAGTATCCGAGGCTCGATCAATTTTAGAAAATCATCTTGAAACTATTCAGGCGATTCACTTGTTTGGTTCCGCAGTAGATGGTGGATTAAAGCCATTTAGTGATATCGACCTGTTGGTTACGGTGGGCACTCCTTTAAACGAGTCAACCAGAGCTGCATTGATGTCCGATTTGTTGGCGGTATCCGCTTTCCCTGGCACCGATTCAAAACGCCGTGCACTTGAGGTGACGGTGCTGACTCAGGAAGACGTAGTGCCGTGGCGATATCCAGCGAAACGGCAAATGCAATTTGGTGAATGGTTGCGTGATGATATCAATGCGAGGATTTTCGAGCCCGCACTGATGGATCATGACCTCGCCATCTTGCTGACGAAAGTGCGGCGACATAGCGTTGCCTTGTACGGCCCAGCTGCTCACGAATTTTTCGATGAAATTCCTGTCGTCGATGTGCAGCGTTCGTTACTGGAAACATTGACACTCTGGACTACAGAGGCGGATTGGAAAGGGGATGAGAGAAACATCGTTCTCGCCTTGGTGCGTATCTGGTACACCGCAATGACCGGAGAGATTACTTCTAAAGTTGCTGCAGCAGACTGGGCGCTTCAGCGTCTGCCTCGTGAGATCAAAAGCGTTGTTATTGCCGCAAGGGATGCGTATCTGGGGCTGGAAGCCGCAGATCTGGCAGCTTATCCGAAAGAACGGGCAGACCTTCGGAACCATATCCATTCTAGCGTGACGGCGAAACTGCAATAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pasteurella multocida", "NCBI_taxonomy_id": "747", "NCBI_taxonomy_cvterm_id": "36867"}, "protein_sequence": {"accession": "CAI57696.1", "sequence": "MTNKPPESIAEQVSEARSILENHLETIQAIHLFGSAVDGGLKPFSDIDLLVTVGTPLNESTRAALMSDLLAVSAFPGTDSKRRALEVTVLTQEDVVPWRYPAKRQMQFGEWLRDDINARIFEPALMDHDLAILLTKVRRHSVALYGPAAHEFFDEIPVVDVQRSLLETLTLWTTEADWKGDERNIVLALVRIWYTAMTGEITSKVAAADWALQRLPREIKSVVIAARDAYLGLEAADLAAYPKERADLRNHIHSSVTAKLQ"}}}}}}}, "2406": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"4609": {"dna_sequence": {"fmax": "1807670", "fmin": "1807358", "accession": "NC_002946.2", "strand": "-", "sequence": "ATGGCAAACCAAAAAATCCGTATCCGCCTGAAAGCTTATGATTACGCCCTGATTGACCGTTCTGCACAAGAAATCGTTGAAACTGCAAAACGTACCGGTGCTGTTGTAAAAGGCCCGATTCCTTTGCCGACCAAAATCGAGCGTTTCAACATTTTGCGTTCTCCGCACGTGAACAAAACTTCCCGTGAACAATTGGAAATCCGCACCCATTTGCGCCTGATGGACATCGTGGATTGGACCGATAAAACTACCGATGCGCTGATGAAGCTGGATTTGCCGGCCGGTGTTGATGTAGAAATTAAAGTCCAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Neisseria gonorrhoeae FA 1090", "NCBI_taxonomy_id": "242231", "NCBI_taxonomy_cvterm_id": "40638"}, "protein_sequence": {"accession": "YP_208874.1", "sequence": "MANQKIRIRLKAYDYALIDRSAQEIVETAKRTGAVVKGPIPLPTKIERFNILRSPHVNKTSREQLEIRTHLRLMDIVDWTDKTTDALMKLDLPAGVDVEIKVQ"}}}}}}}, "2407": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model."}}, "2156": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2405": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model."}}, "2402": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model."}}, "2403": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "model_sequences": {"$update": {"sequence": {"4611": {"dna_sequence": {"fmax": "2376346", "fmin": "2373709", "accession": "NC_003197.2", "strand": "-", "sequence": "ATGAGCGACCTTGCGAGAGAAATTACACCGGTCAACATTGAGGAGGAGCTGAAGAGCTCCTATCTGGATTATGCGATGTCGGTCATTGTTGGCCGTGCGCTGCCGGATGTCCGAGATGGCCTGAAGCCGGTACACCGTCGCGTACTTTACGCCATGAACGTATTGGGCAATGACTGGAACAAAGCCTATAAAAAATCTGCCCGTGTCGTTGGTGACGTAATCGGTAAATACCATCCCCACGGCGATTCCGCAGTGTATGACACCATCGTTCGTATGGCGCAGCCATTCTCGCTGCGTTACATGCTGGTGGATGGTCAGGGTAACTTCGGTTCTATTGACGGCGACTCCGCGGCGGCAATGCGTTATACGGAGATCCGTCTGGCGAAAATCGCCCACGAACTGATGGCCGATCTCGAAAAAGAGACGGTGGATTTCGTGGATAACTATGACGGTACGGAAAAAATTCCGGACGTCATGCCGACCAAAATTCCGAATCTGCTGGTGAACGGTTCTTCCGGTATCGCAGTAGGTATGGCGACGAATATCCCGCCGCACAACCTGACGGAAGTGATTAACGGCTGCCTGGCGTATATCGACAACGAAGACATCAGCATTGAAGGGCTGATGGAACATATTCCGGGGCCGGACTTCCCGACCGCCGCGATCATCAACGGTCGTCGTGGTATCGAAGAAGCCTACCGCACCGGTCGTGGCAAAGTGTACATTCGCGCCCGCGCGGAAGTTGAAGCTGACGCCAAAACGGGCCGTGAAACCATCATCGTCCATGAAATTCCCTATCAGGTGAACAAAGCGCGCCTGATCGAGAAAATCGCCGAGCTGGTGAAAGATAAACGCGTGGAAGGCATCAGCGCGCTGCGTGACGAATCCGACAAAGACGGGATGCGCATCGTGATTGAAGTGAAACGCGATGCGGTGGGCGAGGTGGTGCTTAATAATCTCTACTCCCAGACCCAGCTACAGGTTTCCTTCGGTATTAACATGGTGGCGCTGCATCACGGCCAGCCGAAGATCATGAACCTGAAAGATATCATTTCAGCGTTCGTGCGCCACCGCCGTGAAGTGGTGACGCGTCGGACTATTTTTGAACTGCGTAAAGCCCGTGACCGTGCGCATATCCTTGAAGCTCTGGCGATTGCGCTGGCCAACATCGACCCGATTATCGAACTGATTCGCCGCGCGCCAACGCCGGCGGAAGCAAAAGCGGCGCTGATTTCGCGTCCGTGGGATCTGGGCAACGTTGCTGCGATGCTGGAGCGCGCTGGTGATGACGCCGCGCGTCCGGAATGGCTGGAGCCAGAATTTGGCGTGCGTGACGGTCAGTACTACCTGACTGAACAGCAGGCGCAGGCGATTCTGGATCTGCGTTTGCAGAAACTGACCGGCCTGGAGCATGAAAAACTGCTCGACGAATACAAAGAGCTGCTGGAGCAGATTGCTGAATTGCTGCACATTCTGGGCAGCGCCGATCGCCTGATGGAAGTGATCCGCGAAGAGATGGAGTTAATTCGCGATCAGTTCGGCGATGAGCGTCGTACCGAAATCACCGCCAACAGCGCCGATATTAATATCGAAGATCTGATTAGCCAGGAAGATGTTGTCGTGACGCTGTCTCACCAGGGTTACGTCAAATATCAACCGCTGACAGATTACGAAGCGCAACGTCGTGGTGGGAAAGGTAAATCTGCCGCGCGTATTAAAGAAGAAGACTTTATCGACCGCCTGCTGGTGGCTAACACCCATGACACCATCCTCTGCTTCTCCAGCCGGGGCCGTCTGTACTGGATGAAGGTCTATCAGCTGCCGGAAGCCAGCCGCGGCGCGCGCGGTCGTCCGATCGTCAACCTGCTGCCGCTGGAAGCCAACGAACGTATCACCGCGATTCTGCCGGTTCGTGAGTATGAAGAAGGCGTCAACGTCTTTATGGCGACCGCCAGCGGTACCGTGAAGAAAACGGCGCTGACCGAATTCAGCCGTCCGCGTTCCGCCGGTATTATCGCGGTGAACCTCAACGACGGCGACGAGCTGATTGGCGTTGACCTGACTTCTGGTTCTGACGAAGTCATGCTGTTCTCGGCCGCGGGTAAAGTGGTGCGCTTCAAAGAAGACGCCGTCCGTGCGATGGGGCGTACCGCGACCGGTGTGCGCGGTATTAAGCTGGCGGGAGACGATAAAGTCGTCTCTCTGATCATCCCACGCGGCGAAGGCGCTATTCTGACCGTAACGCAAAACGGCTACGGGAAGCGTACCGCAGCGGACGAGTACCCGACCAAGTCTCGTGCGACGCAGGGCGTTATCTCTATCAAAGTGACCGAGCGCAACGGTTCCGTTGTCGGTGCGGTACAGGTAGACGATTGCGACCAGATCATGATGATCACGGATGCCGGTACTCTGGTGCGTACCCGTGTGTCCGAGATCAGCGTAGTGGGACGTAATACCCAGGGCGTTATCCTTATCCGCACGGCGGAAGATGAAAACGTGGTGGGTCTGCAACGCGTTGCTGAACCGGTAGATGACGAAGAACTCGACGCTATCGACGGCAGCGTGGCGGAAGGGGATGAGGATATCGCCCCGGAAGCGGAAAGCGATGACGACGTTGCGGATGACGCTGACGAGTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Salmonella enterica subsp. enterica serovar Typhimurium str. LT2", "NCBI_taxonomy_id": "99287", "NCBI_taxonomy_cvterm_id": "35734"}, "protein_sequence": {"accession": "NP_461214.1", "sequence": "MSDLAREITPVNIEEELKSSYLDYAMSVIVGRALPDVRDGLKPVHRRVLYAMNVLGNDWNKAYKKSARVVGDVIGKYHPHGDSAVYDTIVRMAQPFSLRYMLVDGQGNFGSIDGDSAAAMRYTEIRLAKIAHELMADLEKETVDFVDNYDGTEKIPDVMPTKIPNLLVNGSSGIAVGMATNIPPHNLTEVINGCLAYIDNEDISIEGLMEHIPGPDFPTAAIINGRRGIEEAYRTGRGKVYIRARAEVEADAKTGRETIIVHEIPYQVNKARLIEKIAELVKDKRVEGISALRDESDKDGMRIVIEVKRDAVGEVVLNNLYSQTQLQVSFGINMVALHHGQPKIMNLKDIISAFVRHRREVVTRRTIFELRKARDRAHILEALAIALANIDPIIELIRRAPTPAEAKAALISRPWDLGNVAAMLERAGDDAARPEWLEPEFGVRDGQYYLTEQQAQAILDLRLQKLTGLEHEKLLDEYKELLEQIAELLHILGSADRLMEVIREEMELIRDQFGDERRTEITANSADINIEDLISQEDVVVTLSHQGYVKYQPLTDYEAQRRGGKGKSAARIKEEDFIDRLLVANTHDTILCFSSRGRLYWMKVYQLPEASRGARGRPIVNLLPLEANERITAILPVREYEEGVNVFMATASGTVKKTALTEFSRPRSAGIIAVNLNDGDELIGVDLTSGSDEVMLFSAAGKVVRFKEDAVRAMGRTATGVRGIKLAGDDKVVSLIIPRGEGAILTVTQNGYGKRTAADEYPTKSRATQGVISIKVTERNGSVVGAVQVDDCDQIMMITDAGTLVRTRVSEISVVGRNTQGVILIRTAEDENVVGLQRVAEPVDDEELDAIDGSVAEGDEDIAPEAESDDDVADDADE"}}}}}}}, "2400": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2401": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model."}}, "933": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "932": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "model_sequences": {"$update": {"sequence": {"$update": {"790": {"$update": {"dna_sequence": {"$update": {"sequence": "ATGCGCTTCATTCACGCACTATTACTGGCAGGGATCGCTCACTCTGCATATGCATCGGAAAAATTAACCTTCAAGACCGATCTTGAGAAGCTAGAGCGCGAAAAAGCAGCTCAGATCGGTGTTGCGATCGTCGATCCCCAAGGAGAGATCGTCGCGGGCCACCGAATGGCGCAGCGTTTTGCAATGTGCTCAACGTTCAAGTTTCCGCTAGCCGCGCTGGTCTTTGAAAGAATTGACTCAGGCACCGAGCGGGGGGATCGAAAACTTTCATATGGGCCGGACATGATCGTCGAATGGTCTCCTGCCACGGAGCGGTTTCTAGCATCGGGACACATGACGGTTCTCGAGGCAGCGCAACTGGCGGTGCAGCTTAGCGACAATGGGGCTACTAACCTCTTACTGAGAGAAATTGGCGGACCTGCTGCAATGACGCAGTATTTTCGTAAAATTGGCGACTCTGTGAGTCGGCTAGACCGGAAAGAGCCGGAGATGGGCGACAACACACCTGGCGACCTCAGAGATACAACTACGCCTATTGCTATGGCACGTACTGTGGCTAAAGTCCTCTATGGCGGCGCACTGACGTCCACCTCGACCCACACCATTGAGAGGTGGCTGATCGGAAACCAAACGGGAGACGCGACACTACGAGCGGGTTTTCCTAAAGATTGGGTTGTTGGAGAGAAAACTGGTACCTGCGCCAACGGGGGCCGGAACGACATTGGTTTTTTTAAAGCCCAGGAGAGAGATTACGCTGTAGCGGTGTATACAACGGCCCCGAAACTATCGGCCGTAGAACGTGACGAATTAGTTGCCTCTGTCGGTCAAGTTATTACACAACTCATCCTGAGCACGGACAAATAG"}}}}}}}}}}, "931": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "937": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "936": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "935": {"$update": {"model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore."}}, "2409": {"$update": {"model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistan