Model_id Action ARO_name ARO_category Changes To Summary 344 UPDATE SHV-188 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 345 UPDATE bcrA peptide antibiotic; ATP-binding cassette (ABC) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; antibiotic efflux; bacitracin B; bacitracin F; bacitracin A; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TTGAGCACAATTATTAAAACGACGGATCTCACGAAAATGTACGGGTCGCAAAAGTCTGTAGACCATCTCAATATCAATGTAAAACAAGGAGATATATACGGCTTTTTGGGACGGAACGGCGCCGGCAAAACGACGACGATCAGAATGCTGCTGGGTCTGATCAAACCGACCAGTGGGCAGATAGAAATTTTCGGAGAAAATTTTTTCAAGAATAAAAAAGAAATTTTAAGAAGAATCGGATCTATCGTGGAAGTGCCCGGCTTTTACGCGAACTTGACGGCGAGGGAAAACCTGCTGATCAATGCGAAAATCATAGGTATCCATAAAAAAAATGCGATCGATGAAGTATTGGAGATCGTGGGCCTGCAGCATGAAACGAAAAAGCTCGTCGGCAAGTTTTCCTTGGGCATGAAACAAAGGCTGGGAATTGCAAGAGCCTTGCTTCACTATCCGGAGCTGTTGATACTGGACGAGCCGACAAACGGCTTGGACCCGATCGGGATCAAAGAAATGAGAAGACTCATTCATTCTCTCGCCAAAGAAAGAAACATCACCATCTTTATATCAAGCCACATTTTGTCTGAAATCGAACAGCTCGTCGATCATGTCGGGATCATTCATGAAGGAAAACTGCTTGAAGAAATTCCGTTTGACCATCTTAAAAAAAGAAACCGCAAATATCTGGAATTTCAATTATCCGATCAAAATAAAGCGGTCGTTCTGATGGAACAGCATTTTGATATTCATGACTACGAAGTTCACCAGGACGGGATCATCCGGGTATACTCCCATTTGGGCCAGCAGGGAAAGCTCAATAAATTGTTTGTCGAAAACGGAATAGACGTATTGAAGATTACGATGAGCGAAGACAGTCTTGAAGACTACTTCGTGAAGTTGATAGGGGGCGGGACGATTGGCTAA " 346 UPDATE QnrB23 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 347 UPDATE SFH-1 SFH beta-lactamase; carbapenem; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 340 UPDATE CMY-51 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGCATGGCCGTGGCAATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGTTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAACGACCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTACACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATGACGTTACGGATAAAGCCGCATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGCGGTGCAACCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAATTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACAGGTGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATAGTGATGCTGGCAAACAAAAGCTATCCTAACCCGGCTCGCGTAGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA " 341 UPDATE IMP-1 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGCAAGTTATCTGTATTCTTTATATTTTTGTTTTGCAGCATTGCTACCGCAGCAGAGTCTTTGCCAGATTTAAAAATTGAAAAGCTTGATGAAGGCGTTTATGTTCATACTTCGTTTGAAGAAGTTAACGGGTGGGGCGTTGTTCCTAAACATGGTTTGGTGGTTCTTGTAAATGCTGAGGCTTACCTAATTGACACTCCATTTACGGCTAAAGATACTGAAAAGTTAGTCACTTGGTTTGTGGAGCGTGGCTATAAAATAAAAGGCAGCATTTCCTCTCATTTTCATAGCGACAGCACGGGCGGAATAGAGTGGCTTAATTCTCGATCTATCCCCACGTATGCATCTGAATTAACAAATGAACTGCTTAAAAAAGACGGTAAGGTTCAAGCCACAAATTCATTTAGCGGAGTTAACTATTGGCTAGTTAAAAATAAAATTGAAGTTTTTTATCCAGGCCCGGGACACACTCCAGATAACGTAGTGGTTTGGTTGCCTGAAAGGAAAATATTATTCGGTGGTTGTTTTATTAAACCGTACGGTTTAGGCAATTTGGGTGACGCAAATATAGAAGCTTGGCCAAAGTCCGCCAAATTATTAAAGTCCAAATATGGTAAGGCAAAACTGGTTGTTCCAAGTCACAGTGAAGTTGGAGACGCATCACTCTTGAAACTTACATTAGAGCAGGCGGTTAAAGGGTTAAACGAAAGTAAAAAACCATCAAAACCAAGCAACTAA " 342 UPDATE smeS penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; cephamycin; aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2441 UPDATED strand with - UPDATED accession with AF173226 UPDATED fmin with 1037 UPDATED sequence with ATGGCCTTCGCGATGGCGAAGTTCCAACTCAAATTCGGCCTGACCGCGAAGACCTTCCTCGCGATCTTCACCGCCTGCCTGCTGGTGCTGGCAGTGAACGGTATTGCCAGCCGCGTGGCCTTCCAGACCGGCTTCCTGGACTACCTCAACGACCAGGGCGACCTGCGCATGCAGCGGCTGATGCCACACCTGCAGCGCGAGTACCGCGAGCACGGTGGCTGGGAGCATCTGCACGGTGATGGCGACCGCTGGGCGCGGCTGCTGCGCCCGGACCTGGCCCATGGGCACGAAGGACCGGTGCCGTCGCTGTCCGACCAGACCGGCGTGCCGTCGCGCCTGGGCCTGTTCGACGCGCAGCACCGTTTCGTGGCCGGCAACCCCGACGCCACCAGCGATGACGAGCCGCATGCGGTGCAGGTGGACGGGCAGACCGTCGGTTGGCTGGGCATGGTGCCGTTCCAGACCGTCATCGCCACCAACGACCTGAATTTCTACAACACCCAGGTGCGCGCCTGGTGGGTGATCGGCATCGCGCTACTGCTGGTGACGGTACTGCTGGCCTGGCTGGTATCGCGTGCGCTGCGCCAGCGCCTTGCCAAGCTGGCCGCTGCCACCCACCGGTTGGCCGCCGGTGACTACGCCACCCGCATCGAGCGCACCAGTGACGATGAGCTGGACGCGCTGGTCAACGACTTCAACCGGATGGCGCAGGCGCTGGACGATACCGAACGCAACCGCCGCGCCTTCATTGCCGACATCTCGCATGAGCTGCGCACGCCATTGGCCGTGGTGCGGGCCGAGCTGGAGGCGATCGAAGATGGCATCCGTCCGCTGGACCGGGCCAACCTGGTGGGCCTGCAGGGCGAGATCCGCCAGCTGGGCAAGCTGATCGACGACCTGCACGACCTGTCGATGACCCAGTCCGGCGGCCTGGCGTACCGCTTCGCGCCACTGGACCTGGTGGCGCTGCTGCGCAGCGAACTCAATGGCATGCGCGTGCGCTTCGCCAATGCAGGCCTGGCGTTGGAAGAAGACCTGCCCGCCACGCCGTTGCAGGTGTCCGGTGACGAGCGGCGCCTGCAGCAGGTGCTGGCCAACCTGCTGGAAAACGCACTGCGCTACACCCATGCCGGTGGCCGCGTACGCGTGCAGGCGGCGCGCGTGCCTGCCGGCGTGCAGCTGGTCGTGGAAGACACCGCGCCGGGCGTTCCGCCCGACAAGTGTGCACTGGTGTTCGAACGCTTCTACCGCGTGGAAAGTTCGCGCAACCGCGCCAGTGGCGGCAGCGGGCTGGGCCTGGCCATCAGCCACAACATCATCCTCGCCCACCACGGCGTCATCCACGCCGCGCCCTCGCCGCTGGGCGGGCTGCGCGTGGTCATCACCCTGCCGGAGCCTGCATGA UPDATED NCBI_taxonomy_name with Stenotrophomonas maltophilia UPDATED NCBI_taxonomy_id with 40324 UPDATED NCBI_taxonomy_cvterm_id with 37076 UPDATED accession with AAD51347.1 UPDATED sequence with MAFAMAKFQLKFGLTAKTFLAIFTACLLVLAVNGIASRVAFQTGFLDYLNDQGDLRMQRLMPHLQREYREHGGWEHLHGDGDRWARLLRPDLAHGHEGPVPSLSDQTGVPSRLGLFDAQHRFVAGNPDATSDDEPHAVQVDGQTVGWLGMVPFQTVIATNDLNFYNTQVRAWWVIGIALLLVTVLLAWLVSRALRQRLAKLAAATHRLAAGDYATRIERTSDDELDALVNDFNRMAQALDDTERNRRAFIADISHELRTPLAVVRAELEAIEDGIRPLDRANLVGLQGEIRQLGKLIDDLHDLSMTQSGGLAYRFAPLDLVALLRSELNGMRVRFANAGLALEEDLPATPLQVSGDERRLQQVLANLLENALRYTHAGGRVRVQAARVPAGVQLVVEDTAPGVPPDKCALVFERFYRVESSRNRASGGSGLGLAISHNIILAHHGVIHAAPSPLGGLRVVITLPEPA " 343 UPDATE OXA-31 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAACACAATACATATCAACTTCGCTATTTTTTTAATAATTGCAAATATTATCTACAGCAGCGCCAGTGCATCAACAGATATCTCTACTGTTGCATCTCCATTATTTGAAGGAACTGAAGGTTGTTTTTTACTTTACGATGTATCCACAAACGCTGAAATTGCTCAATTCAATAAAGCAAAGTGTGCAACGCAAATGCCACCAGATTCAACTTTCAAGATCGCATTATCACTTATGGCATTTGATGCGGAAATAATAGATCAGAAAACCATATTCAAATGGGATAAAACCCCCAAAGGAATGGAGATCTGGAACAGCAATCATACACCAAAGACGTGGATGCAATTTTCTGTTGTTTGGGTTTCGCAAGAAATAACCCAAAAAATTGGATTAAATAAAATCAAGAATTATCTCAAAGATTTTGATTATGGAAATCAAGACTTCTCTGGAGATAAAGAAAGAAACAACGGATTAACAGAAGCATGGCTCGAAAGTAGCTTAAAAATTTCACCAGAAGAACAAATTCAATTCCTGCGTAAAATTATTAATCACAATCTCCCAGTTAAAAACTCAGCCATAGAAAACACCATAGAGAACATGTATCTACAAGATCTGGAGAATAGTACAAAACTGTATGGGAAAACTGGTGCAGGATTCACAGCAAATAGAACCTTACAAAACGGATGGTTTGAAGGGTTTATTATAAGCAAATCAGGACATAAATATGTTTTTGTGTCCGCACTTACAGGAAACTTGGGGTCGAATTTAACATCAAGCATAAAAGCCAAGAAAAATGCGATCACCATTCTAAACACACTAAATTTATAA " 348 UPDATE OXY-3-1 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATTAAAACTTCGTGGCGTAAAAGCGCCCTGATTGCCGCCGCCCTGCCTTTATTGCTCTGTAGCAGTTCATTATGGGCCAATGCTATTCAGCAGAAGCTGGCCGATTTGGAAAAAAGTACCGGCGGGCGACTGGGCGTCGCGCTGATTGACACCACAGATAACTCTCAAATTCTATATCGCGGTGACGAGCGTTTTGCTATGTGCAGTACCGGTAAAGTGATGGCTGCCGCCGCGGTGTTAAAACAGAGCGAAAGCAATAAAGATGTGGTGAATAAAAGGCTGGAGATTAAAGCATCGGATCTGGTGGTCTGGAGCCCGGTGACTGAAAAACATCTGCAGAGCGGAATGACGTTGGCGGAATTAAGCGCCGCCGCGCTGCAATATAGCGACAATACCGCGATGAATAAGATGATTGGTTATCTTGGCGGACCGGAAAAAGTGACCGCCTTCGCCCGCAGTATCGGCGATGTCACTTTTCGTCTCGATCGTACGGAGCCTGCACTAAACACCGCGATCCCGGGTGACGAACGCGATACCACCACGCCGCTGGCGATGGCCGAAAGCCTGCACAAGCTGACGCTGGGTAATGCGCTGGGTGAACAACAGCGCGCACAGTTAGTGACATGGTTGAAAGGCAACACCACCGGCGGGCAGAGTATTCGTGCGGGGCTGCCTGCAAGCTGGGTCGTGGGAGATAAAACCGGAGCTGGTGATTACGGCACCACCAATGATATCGCCGTTATCTGGCCGGAAAATCATGCTCCGCTGGTATTAGTCACTTATTTCACCCAACCGCTGCAGGATGCGAAAAGCCGCAAAGATGTGCTAGCCGCAGCGGCAAAAATCGTGACCGAAGGGCTTTAA " 349 UPDATE vanL glycopeptide antibiotic; glycopeptide resistance gene cluster; van ligase; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAATTGAAAAAGATAGCCATAATATTCGGAGGTCAATCTTCGGAATATGAAGTCTCACTTAAATCAACAGTAAGTGTACTAGAAACTCTATCAACTTGTAATTTTGAAATTATAAAAATAGGAATTGATTTAGGCGGAAAGTGGTATCTCACCACAAGCAACAACAAAGATATTGAATATGATGTTTGGCAAACTGATCCTTCATTACAAGAAATAATCCCATGTTTCAATAATCGAGGCTTTTATAACAAAACTACAAATAAATATTTCAGACCAGATGTACTCTTTCCAATTCTTCATGGGGGGACTGGAGAAGATGGAACCCTCCAAGGTGTATTTGAATTAATGAATATTCCTTACGTTGGATGTGGGGTGACGCCTTCGGCTATTTGTATGGACAAATACTTATTGCATGAGTTTGCTCAGAGTGTGGGTGTAAAAAGTGCCCCTACGCTCATAATTCGCACTAGAAACTGCAAAGATGAAATTGACAAGTTCATAGAAAAAAATGACTTCCCTATTTTTGTAAAGCCTAACGAAGCGGGCTCATCAAAAGGAATAAACAAAGTAAATGAGCCAGATAAGCTAGAGGATGCTTTAACAGAAGCGTTTAAGTATAGTAAAAGTGTTATCATTCAGAAAGCTATAATTGGAAGAGAAATTGGCTGTGCTGTCTTAGGTAATGAAAAACTCCTAGTAGGAGAATGTGATGAAGTTTCCCTTAATAGCGATTTTTTTGATTATACCGAGAAATACCAAATGATCTCAGCAAAGGTAAATATACCTGCTTCTATATCTGTAGAATTTTCTAATGAAATGAAGAAACAAGCTCAGCTGTTATATAGGTTACTAGGCTGTTCAGGACTAGCACGAATTGATTTCTTCTTATCAGATAATAACGAAATACTATTAAACGAAATTAATACTTTGCCTGGTTTTACTGAGCATTCCAGATATCCCAAAATGATGGAAGCTGTAGGTGTTACCTATAAAGAGATTATCACGAAGTTAATCAATTTAGCGGAGGAAAAATATTATGGATAA " 2314 UPDATE Acinetobacter baumannii gyrA conferring resistance to fluoroquinolones nybomycin; grepafloxacin; trovafloxacin; ofloxacin; norfloxacin; nalidixic acid; lomefloxacin; gatifloxacin; fluoroquinolone resistant gyrA; levofloxacin; sparfloxacin; antibiotic target alteration; enoxacin; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2992755 UPDATED strand with - UPDATED accession with CP010781.1 UPDATED fmin with 2990040 UPDATED sequence with ATGAGCGTATCGGAAATCCGACCGATTGCCATTGAGGACGAACTCAAGCATTCATATTTAGATTACGCGATGAGTGTAATTGTATCTCGTGCATTGCCGGATGTGAGAGACGGTCTTAAACCTGTTCACCGTCGTGTGCTTTATGCCATGCACGAATTGGGCAATGACTATAACAAAGCCTACAAGAAATCTGCTCGTGTCGTTGGGGACGTAATCGGTAAATATCACCCGCATGGTGACTCAGCTGTTTATGAAACCATTGTTCGTATGGCTCAAGACTTTAGCTTACGTTATTTATTGGTTGATGGTCAGGGTAACTTCGGTTCGATCGATGGTGATAGCGCTGCGGCAATGCGTTATACCGAAGTCCGTATGACTAAGCTGGCACATGAGCTTCTTGCAGATTTAGAAAAAGACACAGTTGACTGGGAAGATAACTACGACGGTTCGGAACGTATCCCTGAAGTACTTCCGACACGTGTTCCAAACTTATTAATTAACGGTGCTGCTGGTATTGCTGTAGGTATGGCAACTAACATGGCACCACACAACATGACAGAAGTTGTGAATGCTTGTTTGGCTTATGCTGACAATCCGAATATCTCGATTGAAGGATTGATGGAATACATTACTGGTCCTGACTTCCCTACAGGCGGTATTATTTACGGTAAATCAGGTATTGTTGATGCCTACCGTACCGGTAAAGGTCGTTTACACATTCGTGGTAAATACCATTTCGAAGAAGATGAAAAGACAGGTCGTACAACCATCGTCTTTACTGAAATTCCATATCAAGTAAACAAAGCAAGAGTTATTGAACGTATTGCCGAGTTAGTAAAAGAGAAAAAGCTTGAAGGTATTTCAGAACTTCGTGATGAGTCTGATAAAGAAGGTATGCGTATTGCAATTGACTTGAAACGCGGTGAAAACGCAGAAGTCGTTGTAAATAACTTATTCTTAAATACCCAGCTTGAAAACTCATTCAGCATCAACATGGTTTGTCTAGACAATGGACAACCAAAATTGATGAATCTAAAAGATATTATTGCGGCATTTATTCGTCACCGCCAAGAAGTTGTGACACGCCGTACCATGTTCGAATTACGTAAAGCACGTGAACGTGGTCATATCTTGGAAGGCTTGACAGTTGCCTTAGCCAATATTGATGAAATTATTGAAACCATCAAAACTTCTGCAAACCCTGCTGAAGCGCGTGAGCGTTTACTTGCGGGTGAGTGGGCAGGTGGTGGCGTTGTTGCACTACTTGAAAAAGCTGGTGCAATTTCTGTTCGCCCAGATGAAATTGAAGGTGAAGATCCAAATCGTCCATTTGGTTTAAGTGATTCAATTTATCGTCTGTCACCAACACAAGTAGGCGCAATTTTAGAATTACGTTTACACCGTTTAACTGGTCTTGAACAAGACAAGTTACATGCGGAATATACTGAAATTTTAGGTCAAATTGCTGAACTTACTGCAATTTTAAATGACTTTAACTTGTTAATGGGTGTTATTCGCGAAGAGTTGGCACAAGTTTTACAACAATATGGCGATGCACGTCGTACCGAAATTGTTGAATCTCGTGTGGATTTCTGCCGTGAAGATTTAATTCCTGAAGAGCAAGTGGTATTAACGGTTTCGCAAACGGGTTATGCAAAAACTCAACCTCTTTCAGACTATCAGGCACAGCGCCGTGGTGGACGTGGTAAGTCTGCAACCTCAATGAAAGATGATGACTTTATTCAACATCTGATTGTGGCATCGAACCATGCGACCGTACTTTGCTTTACCAATGTGGGTAAAGTGTACCGTCTGAAAGTATTTGAAGTTCCTCAAGCATCACGTGGGGCAAAAGGCCGTCCAATCGTGAACTTGTTACCTCTAGATGCAACAGAAACCGTAACCGCAATCTTGCCGTTAACCGAGTTCCCGGAAAACCACTATGTGTTTATGGCGACAGCTTCTGGTACGGTTAAGCGTGTTGAGTTAGAGCAATTTGCAAACATTCGTTCAAATGGTCTACGTGCTATTGAACTTAATGAAGAAGATACTTTAATTGGTGTTGCGATTACTGATGGTAATCAGCAAATCATGTTGTTCTCTAACGAAGGTAAGGCAATTCGTTTTGCTGAAACTGACGTACGTGCAATGGGTCGTACAGCGAAAGGTGTACGCGGTATGCGCGTGAGTTTTGCAAGCAGCACCTTAAGTGAAGAAGATGCAGATGTTGAAAATGATGATTCAGATGATAATGATGATTCAACAGATTCAAGTCTAGTAAGTCGCATCGTATCGCTTGTTGTTGTACCTGAGACAGGCGAAGTACTGTGTGCGAGTGCCAACGGTTATGGTAAACGTACTCCAGTAAATGACTTCCCGACCAAGAAACGTGGTGGTAAGGGTGTTATTGCGATCAAGACAAGTGAACGTAACGGTGAGCTAGTTGGTGCAGTTTCTATTGATGAAACCAAAGAGTTATTATTAATTTCTGATGGTGGTACGCTTGTTCGTACGCGTGCTGCAGAAGTTGCAATGACAGGCCGTAATGCTCAAGGTGTTCGTCTGATCCGTTTAAGCGAAGAAGAAACGCTCGTTGGCGTAGTTTCAATTGAAGCTGTAGAAGACGAAGAAGAACTTCTTGAAGGTGAAGTAGATACGACTGAAACTGATAGCGAAGAAGCTGTATCTAATAATGAAGATACTTCTGAAGAGTAA UPDATED NCBI_taxonomy_name with Acinetobacter baumannii UPDATED NCBI_taxonomy_id with 470 UPDATED NCBI_taxonomy_cvterm_id with 35507 UPDATED accession with AJF82744.1 UPDATED sequence with MSVSEIRPIAIEDELKHSYLDYAMSVIVSRALPDVRDGLKPVHRRVLYAMHELGNDYNKAYKKSARVVGDVIGKYHPHGDSAVYETIVRMAQDFSLRYLLVDGQGNFGSIDGDSAAAMRYTEVRMTKLAHELLADLEKDTVDWEDNYDGSERIPEVLPTRVPNLLINGAAGIAVGMATNMAPHNMTEVVNACLAYADNPNISIEGLMEYITGPDFPTGGIIYGKSGIVDAYRTGKGRLHIRGKYHFEEDEKTGRTTIVFTEIPYQVNKARVIERIAELVKEKKLEGISELRDESDKEGMRIAIDLKRGENAEVVVNNLFLNTQLENSFSINMVCLDNGQPKLMNLKDIIAAFIRHRQEVVTRRTMFELRKARERGHILEGLTVALANIDEIIETIKTSANPAEARERLLAGEWAGGGVVALLEKAGAISVRPDEIEGEDPNRPFGLSDSIYRLSPTQVGAILELRLHRLTGLEQDKLHAEYTEILGQIAELTAILNDFNLLMGVIREELAQVLQQYGDARRTEIVESRVDFCREDLIPEEQVVLTVSQTGYAKTQPLSDYQAQRRGGRGKSATSMKDDDFIQHLIVASNHATVLCFTNVGKVYRLKVFEVPQASRGAKGRPIVNLLPLDATETVTAILPLTEFPENHYVFMATASGTVKRVELEQFANIRSNGLRAIELNEEDTLIGVAITDGNQQIMLFSNEGKAIRFAETDVRAMGRTAKGVRGMRVSFASSTLSEEDADVENDDSDDNDDSTDSSLVSRIVSLVVVPETGEVLCASANGYGKRTPVNDFPTKKRGGKGVIAIKTSERNGELVGAVSIDETKELLLISDGGTLVRTRAAEVAMTGRNAQGVRLIRLSEEETLVGVVSIEAVEDEEELLEGEVDTTETDSEEAVSNNEDTSEE " 2315 UPDATE Acinetobacter baumannii parC conferring resistance to fluoroquinolone grepafloxacin; trovafloxacin; ofloxacin; norfloxacin; nalidixic acid; lomefloxacin; gatifloxacin; sparfloxacin; levofloxacin; fluoroquinolone resistant parC; antibiotic target alteration; enoxacin; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 3863522 UPDATED strand with - UPDATED accession with CP012952.1 UPDATED fmin with 3861302 UPDATED sequence with ATGACCAGCCTTGCGCATCATGCGACAGAAAACCGCTCTGTAGCCGAATTTACTGAACAGGCTTACTTGAATTATGCCATGTACGTCATTATGGACCGTGCATTACCGCATATCAGTGATGGCTTAAAGCCCGTACAGCGCCGTATTGTCTATGCCATGAGCGAGCTAGGCTTAAAAAGCAGTGGCAAGCCAAAAAAATCAGCGCGTACAGTGGGTGATGTACTTGGTAAATACCACCCACATGGTGACTTGGCATGTTATGAAGCCATGGTACTCATGGCTCAGCCATTTAGTTACCGCTATCCTTTAATCGAAGGTCAGGGGAACTGGGGCTCACCTGATGATCCTAAGTCTTTTGCTGCGATGCGTTATACCGAAGCAAAACTCTCGGCTTATAGTGAATTATTGCTGAGCGAATTAGGTCAGGGCACTAGCGAATGGCAAGATAACTTTGATGGTTCTTTAAAAGAACCGATCACTTTACCTGCGCGTGTACCTAATATTCTTCTTAATGGTACGACAGGTATTGCTGTTGGGATGGCAACTGATATCCCGCCACATAATTTGCGTGAAGTTGTAAAAGGCACAATTGCTTTAATCCGTAATCCGCAAACCTCGGACGAAAAATTAGCTGAATATATTCCGGCTCCGGATTTACCAACCAAAGCTGAAATTATTACCCCGCCAGAAGAATTACTCAAAATCCAGACCACTGGTCGTGGTAGTTATCGTATGCGAGCGGTATATACCATTGAGAAAAATGAAATTGTAATTACTGAGCTGCCATATCAAGTCTCTGGTTCTAAGGTAATTACTCAAATTGCTGACCAGATGCAGGCTAAAAAGCTGCCATTAGTTGTCGACGTGCGTGATGAATCGGATCATGAAAACCCGACACGACTCGTGATTGTACTGCGCTCTAACCGTATTGATGCGGAAGCAGTGATGAGCCACTTATTTGCGACCACCGATTTAGAATCAAGCTATCGTGTCAATTTGAACATGATTGGCGAAGATGGCCGTCCTCAGGTGAAATCAATTCGTCGTATTTTGCTTGAATGGATCGAGATCCGTAAAAAAACGGTAACTCGTCGTTTGCAGTACCATTTAAACCGTATTGAAAAGCGCCTGCATATTTTGGCAGGTCTTTTAATTGCTTATCTCGATATTGATACAGTCATTCGTATTATTCGTGAAGAAGACCAGCCTAAGCCAGTCTTGATGGAACACTTTAATATTGATGAGATACAGGCCGAGGCGATTTTAGAGCTTAAATTACGTCATTTGGCAAAGCTTGAAGAGATGGAAATCCGTCATGAACAAGATGAACTTTCTGCGAAAGCTGCCATTATTCGTGAACAACTCGAAAATCCTGAATCTTTAAAAAACCTAATTATCAGTGAATTAAAAGAAGATGCGAAAAAGTTCGGTGATGAGCGCCGTTCTCCAATTGTTGCACGTGCTGAAGCAGTTCAAATTAAAGAACAGGATTTAATGCCAGCTGAAACGGTAACGGTGGTTTTGTCTGAAGCAGGCTGGGTTCGTGCGGCAAAAGGTGCGGATGTGGATGCCGAAAATCTCAACTACCGTGCTGGGGACCAATATTTAAGTCATGCTGTCGGGAAAACCAATCAGCGAGTTTACTTCCTTGATGAAACAGGGCGCAGCTATGCCTTGCCAATTAGTAACTTACCTTCAGCGAGAGGCTTGGGGGATCCATTAAGTTCTAAATTATCACCAGCAAGTGGCGTATCGTTTATTCAGGTTTATTTAGATGATGATGAGTCTGAATTGATTGCTGCAAGTTCGGCAGGTTATGGTTTTAAAACGCAAACCAAGCAATTAGATACCAATGCGAAAGCCGGTAAGACATTCTTAACGGTTCCGGATAAGGCAAAGGCTTTACCACTCATTTCTGCCCAAAACATGACGCATTTGGCTGTACTGAGCTCAGCAGGGCGTTTGTTAATTTTAGATTTGGCAGAACTACCAAATTTAAATAAAGGTAAAGGTAATAAGTTGATACAACTTGAAGGCAAAGAGCAAATTTTATCCATGACAACCCTGAACTTAGATGAAATAATTCAGGTGGTTGCAGGTCAACAACATCTCAAATTAAAAGGTGATGATCTACAAAAATACATGGGTAAACGTGCTTCGAAAGGTCAGCTCTTACCACGTGGATATCAAAAAGCAAATAAACTGTTGATTCAGAGATAA UPDATED NCBI_taxonomy_name with Acinetobacter baumannii UPDATED NCBI_taxonomy_id with 470 UPDATED NCBI_taxonomy_cvterm_id with 35507 UPDATED accession with ALJ89624.1 UPDATED sequence with MTSLAHHATENRSVAEFTEQAYLNYAMYVIMDRALPHISDGLKPVQRRIVYAMSELGLKSSGKPKKSARTVGDVLGKYHPHGDLACYEAMVLMAQPFSYRYPLIEGQGNWGSPDDPKSFAAMRYTEAKLSAYSELLLSELGQGTSEWQDNFDGSLKEPITLPARVPNILLNGTTGIAVGMATDIPPHNLREVVKGTIALIRNPQTSDEKLAEYIPAPDLPTKAEIITPPEELLKIQTTGRGSYRMRAVYTIEKNEIVITELPYQVSGSKVITQIADQMQAKKLPLVVDVRDESDHENPTRLVIVLRSNRIDAEAVMSHLFATTDLESSYRVNLNMIGEDGRPQVKSIRRILLEWIEIRKKTVTRRLQYHLNRIEKRLHILAGLLIAYLDIDTVIRIIREEDQPKPVLMEHFNIDEIQAEAILELKLRHLAKLEEMEIRHEQDELSAKAAIIREQLENPESLKNLIISELKEDAKKFGDERRSPIVARAEAVQIKEQDLMPAETVTVVLSEAGWVRAAKGADVDAENLNYRAGDQYLSHAVGKTNQRVYFLDETGRSYALPISNLPSARGLGDPLSSKLSPASGVSFIQVYLDDDESELIAASSAGYGFKTQTKQLDTNAKAGKTFLTVPDKAKALPLISAQNMTHLAVLSSAGRLLILDLAELPNLNKGKGNKLIQLEGKEQILSMTTLNLDEIIQVVAGQQHLKLKGDDLQKYMGKRASKGQLLPRGYQKANKLLIQR " 2310 UPDATE Streptomyces cinnamoneus EF-Tu mutants conferring resistance to elfamycin kirromycin; pulvomycin; elfamycin resistant EF-Tu; GE2270A; kirromycin self resistant EF-Tu; LFF571; elfamycin antibiotic; enacyloxin IIa; antibiotic target alteration; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 298 UPDATE vanYG1 glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanY; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACCATATGAATATGAAACACAGACGCAGAAAACGCAGACGTAACCAATCTTTTTTGTTCACAGGAATTTTACTCTTAGTTGTAGTATCTGCAAGCAGTTTTTTATGGTACGGTTTTGGCAATGCGGCAAAAAAAGACAGTGTTATTGAAGAAATGCCATTTACCATTACACAGGACGGAATGCAGGCAAAGGAAGAAATAAAGAAAACGGTACTGGAAACTTCCTATGGCGGCAAACAGCAGGTAGCGGAAGAAAATCACGGCAATACACAAAATGCAGGGACAGACGAAGCGTGGAATTTAATGCTTGTCAACAGAGATAATGCGATTCCAGACAATTACGAAGTAAATCTGGTCGAAGTAGAGGGCGGGGAGCGTGTAGATGAGCGTATCTATGAACCTCTTATGGAAATGCTTAATGCGGCAAGGGAGGAAAACTGGGGCGAATTGCCGATGGTAGTATCTGGCTATCGGACGCAGGAAAAACAGCAGAGCCTTTATGATGAAAAGATTGCAAAGTTCAAAAAAGAGGGGTATTCAGACAGTGAAGCCGTAAGGCAGGCAGAACAATGGGTTGCAGTGCCAGGTCACAGTGAGCATCAGCTCGGTTTTGCAGTGGATATTAACGGGGCAACTTATGATGTTTATCTATGGTTGCAGGAAAACAGCTATAAATACGGCTTTATCTTCAGATATCCCGGCAGTAAAACGGATATTACCGGGACTGCTGAAGAAGTATGGCATTACCGTTATGTTGGAGTGGAAGCGGCAACTGAAATGTATGAAAATGGATTATGTCTTGAGGAATATCTTGAGAAAAAGCAATCAGAAAACTAA " 299 UPDATE CepS CepS beta-lactamase; antibiotic inactivation; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 296 UPDATE VIM-23 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTCAAACTTTTGAGTAAGTTATTGGTCTATTTGACCGCGTCTATCATGGCTATTGCGAGTCCGCTCGCTTTTTCCGTAGATTCTAGCGGTGAGTATCCGACAGTCAGCGAAATTCCGGTCGGGGAGGTCCGGCTTTACCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTTTGATGGCGCAGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAGAAGCAAATTGGACTTCCTGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCCGAGGTAGAGGGGAACGAGATTCCCACGCACTCTCTAGAAGGACTCTCATCGAGCGGGGACGCAGTGCGCTTCGGTCCAGTAGAACTCTTCTATCCTGGTGCTGCGCATTCGACCGACAACTTAGTTGTGTACGTCCCGTCTGCGAGTGTGCTCTATGGTGGTTGTGCGATTTATGAGTTGTCAAGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCATTGAGCGGATTCAACAACACTACCCGGAAGCACAGTTCGTCATTCCGGGGCACGGCCTGCCGGGCGGTCTAGACTTGCTCAAGCACACAACGAATGTTGTAAAAGCGCACACAAATCGCTCAGTCGTTGAGTAG " 297 UPDATE CMY-98 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 294 UPDATE CfxA4 antibiotic inactivation; cephamycin; CfxA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAAAAAAACAGAAAAAAACAAATCGTAGTTTTGAGTATAGCTTTAGTTTGCATTTTCATCTTGGTATTTTCATTGTTCCATAAATCAGCGACAAAAGATAGCGCAAATCCTCCTTTAACAAATGTTTTGACTGATAGCATTTCTCAAATTGTCTCAGCTTGTCCTGGCGAAATTGGTGTGGCGGTTATTGTTAATAACAGAGATACGGTTAAGGTCAATAATAAGAGTGTTTATCCTATGATGAGTGTGTTTAAGGTTCATCAGGCATTAGCTCTTTGTAATGACTTTGACAATAAAGGAATTTCACTTGATACCTTAGTAAATATAAATAGGGATAAACTTGACCCAAAGACTTGGAGTCCTATGCTGAAAGATTATTCAGGGCCAGTCATATCATTGACAGTGAGAGATTTGCTGCGTTATACTCTTACTCAGAGTGACAACAATGCAAGCAACCTTATGTTTAAGGATATGGTTAATGTCGCTCAAACAGATAGTTTTATAGCCACACTCATTCCTCGTTCAAGTTTTCAGATAGCTTATACGGAAGAGGAAATGTCGGCTGACCATAACAAGGCTTACTCTAACTATACATCTCCTCTTGGTGCTGCAATGTTGATGAATCGTTTGTTTACTGAAGGTCTTATCGATGATGAGAAACAAAGTTTCATTAAGAATACGTTAAAAGAATGCAAAACAGGTGTAGATAGGATAGCAGCTCCACTTCTTGATAAAGAAGGGGTTGTTATAGCGCATAAGACAGGTTCAGGTAATGTTAATGAAAATGGTGTTCTTGCAGCTCACAATGATGTTGCCTATATATGTCTGCCTAATAATATCAGTTATACCTTAGCGGTATTTGTTAAGGATTTCAAGGGAAATGAATCACAAGCGTCACAATATGTTGCGCATATATCAGCTGTAGTATATTCTTTATTAATGCAAACTTCAGTAAAATCTTAA " 295 UPDATE OXA-145 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAACATTTGCCGCATATGTAATTACTGCGTGTCTTTCAAGTACGGCATTAGCTAGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTTTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATAACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAACGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAACAATGGGAAAGAGACTTGAGCTTAAGAGGGGCAATACAAGTTTCAGCGGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATACCTTAAAAAATTTTCATATGGCAACCAGAATATCAGTGGTGGCATTGACAAATTCTGGGAGGGTCAGCTAAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATTTTTAAATAAATTGTCAGCATCAAAAGAAAATCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCTGCGCCTGAATATCTTGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGTTGGGTTGAGAAGGGAACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAATAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGCAAGTGAGGGCATCATTGGTGGCTAA " 292 UPDATE TEM-17 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 293 UPDATE SHV-180 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 290 UPDATE vatD dalfopristin; antibiotic inactivation; streptogramin vat acetyltransferase; pristinamycin IIA; madumycin II; griseoviridin; streptogramin antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAATGTATCCTATAGAAGGAAACAAATCAGTACAATTTATCAAACCTATTTTAGAAAAATTAGAAAATGTTGAGGTTGGAGAATACTCATATTATGATTCTAAGAATGGAGAAACTTTTGATAAGCAAATTTTATATCATTATCCAATCTTAAACGATAAGTTAAAAATAGGTAAATTTTGCTCAATAGGACCAGGTGTAACTATTATTATGAATGGAGCAAATCATAGAATGGATGGCTCAACATATCCATTTAATTTATTTGGTAATGGATGGGAGAAACATATGCCAAAATTAGATCAACTACCTATTAAGGGGGATACAATAATAGGTAATGATGTATGGATAGGAAAAGATGTTGTAATTATGCCAGGAGTAAAAATCGGGGATGGTGCAATAGTAGCTGCTAATTCTGTTGTTGTAAAAGATATAGCGCCATACATGTTAGCTGGAGGAAATCCTGCTAACGAAATAAAACAAAGATTTGATCAAGATACAATAAATCAGCTGCTTGATATAAAATGGTGGAATTGGCCAATAGACATTATTAATGAGAATATAGATAAAATTCTTGATAATAGCATCATTAGAGAAGTCATATGGAAAAAATGA " 291 UPDATE APH(3')-Ia antibiotic inactivation; aminoglycoside antibiotic; paromomycin; kanamycin A; APH(3'); lividomycin B; ribostamycin; G418; neomycin; lividomycin A; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 103833 UPDATED strand with - UPDATED accession with BX664015.1 UPDATED fmin with 103017 UPDATED sequence with ATGAGCCATATTCAACGGGAAACGTCTTGCTCGAGGCCGCGATTAAATTCCAACCTGGATGCTGATTTATATGGGTATAGATGGGCTCGCGATAATGTCGGGCAATCAGGTGCGACAATCTATCGATTGTATGGGAAGCCCAATGCGCCAGAGTTGTTTCTGAAACATGGCAAAGGTAGCGTTGCCAATGATGTTACAGATGAGATGGTCAGACTAAACTGGCTGACGGCATTTATGCCTCTTCCGACCATCAAGCATTTTATCCGTACTCCTGATGATGCATGGTTACTCACCACTGCGATCCCCGGGAAAACAGCATTCCAGGTATTAGAAGAATATCCTGATTCAGGTGAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGCATTCGATTCCTGTTTGTAATTGTCCTTTTAACAGCGATCGCGTATTTCGTCTCGCTCAGGCGCAATCACGAATGAATAACGGTTTGGTTGATGCTAGTGATTTTGATGACGAGCGTAATGGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCATAAGCTTTTGCCATTCTCACCGGATTCAGTCGTCACTCATGGTGATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATGTTGGACGAGTCGGAATCGCAGACCGATACCAGGATCTTGCCATCCTATGGAACTGCCTCGGTGAGTTTTCTCCTTCATTACAGAAACGGCTTTTTCAAAAATATGGTATTGATAATCCTGATATGAATAAATTGCAGTTTCATTTGATGCTCGATGAGTTTTTCTGA UPDATED NCBI_taxonomy_name with Serratia marcescens UPDATED NCBI_taxonomy_id with 615 UPDATED NCBI_taxonomy_cvterm_id with 36783 UPDATED accession with CAE51638.1 UPDATED sequence with MSHIQRETSCSRPRLNSNLDADLYGYRWARDNVGQSGATIYRLYGKPNAPELFLKHGKGSVANDVTDEMVRLNWLTAFMPLPTIKHFIRTPDDAWLLTTAIPGKTAFQVLEEYPDSGENIVDALAVFLRRLHSIPVCNCPFNSDRVFRLAQAQSRMNNGLVDASDFDDERNGWPVEQVWKEMHKLLPFSPDSVVTHGDFSLDNLIFDEGKLIGCIDVGRVGIADRYQDLAILWNCLGEFSPSLQKRLFQKYGIDNPDMNKLQFHLMLDEFF " 270 UPDATE LEN-20 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 271 UPDATE CMY-4 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 272 UPDATE QnrB36 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 273 UPDATE VEB-7 antibiotic inactivation; monobactam; cephalosporin; VEB beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 274 UPDATE OXA-174 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 275 UPDATE OKP-B-2 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 276 UPDATE tetR antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; tigecycline; glycylcycline; tetracycline antibiotic; antibiotic target alteration; tetracycline; model_sequences "UPDATED sequence with ATGATGTCTAGATTAGATAAAAGTAAAGTGATTAACAGCGCATTAGAGCTGCTTAATGAGGTCGGAATCGAAGGTTTAACAACCCGTAAACTCGCCCAGAAGCTAGGTGTAGAGCAGCCTACATTGTATTGGCATGTAAAAAATAAGCGGGCTTTGCTCGACGCCTTAGCCATTGAGATGTTAGATAGGCACCATACTCACTTTTGCCCTTTAGAAGGGGAAAGCTGGCAAGATTTTTTACGTAATAACGCTAAAAGTTTTAGATGTGCTTTACTAAGTCATCGCGATGGAGCAAAAGTACATTTAGGTACACGGCCTACAGAAAAACAGTATGAAACTCTCGAAAATCAATTAGCCTTTTTATGCCAACAAGGTTTTTCACTAGAGAATGCATTATATGCACTCAGCGCTGTGGGGCATTTTACTTTAGGTTGCGTATTGGAAGATCAAGAGCATCAAGTCGCTAAAGAAGAAAGGGAAACACCTACTACTGATAGTATGCCGCCATTATTACGACAAGCTATCGAATTATTTGATCACCAAGGTGCAGAGCCAGCCTTCTTATTCGGCCTTGAATTGATCATATGCGGATTAGAAAAACAACTTAAATGTGAAAGTGGGTCTTAA " 277 UPDATE TEM-91 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 278 UPDATE imiS carbapenem; CphA beta-lactamase; antibiotic inactivation; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAGGGTTGGATAAAGTGCGGGCTGGCCGGGGCCGTGGTGCTGATGGCGAGTTTTTGGGGGGGCAGCGTGCGGGCGGCGGGGATGTCGCTGACGCAGCAGGTGAGCGGCCCTGTTTACGTCGTAGAGGACAACTACTACGTGCAGGAAAATTCCATGGTCTATTTCGGGGCCAAGGGAGTGACTGTGGTGGGGGCGACCTGGACGCCGGATACCGCCCGCGAGCTGCACAAGCTGATCAAACGGGTCAGCCGCAAGCCGGTGCTGGAGGTGATCAACACCAACTACCACACCGACCGGGCAGGCGGTAACGCCTACTGGAAGTCCATCGGTGCCAAGGTGATATCGACCCGCCAGACCCGGGATCTGATGAAGAGCGACTGGGCCGAGATTGTCGCCTTTACCCGCAAGGGGCTGCCGGAGTACCCGGACTTGCCGCTGGTGCTGCCCAACGTGGTGCACGAAGGCGACTTCACGCTGCAAGAAGGCAAGCTGCGCGCCTTCTACCTGGGCCCGGCTCACAGCCCGGACGGCATCTTTGTTTACTTCCCCGACCAGCAGGTGCTTTATGGCAACTGCATCCTCAAGGAGAAGCTGGGCAACCTGAGCTTTGCCGATGTGAAGGCTTATCCGCAGACACTTGAGCGGCTGAAAGCGATGAAGCTGCCGATCAAGACGGTGGTGGGCGGTCACGACTCACCGCTGCACGGCCCGGAGCTTATCGATCACTACGAAGCGCTGATCAAGGCGGCTTCACAATCATAA " 279 UPDATE CTX-M-107 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2268 UPDATE eatAv pleuromutilin; pleuromutilin antibiotic; ABC-F ATP-binding cassette ribosomal protection protein; antibiotic target protection; streptogramin antibiotic; lincosamide antibiotic; model_description; ARO_category "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. DELETED 36001 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. " 2262 UPDATE mefC efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; macrolide antibiotic; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 145536 UPDATED strand with - UPDATED accession with AB571865.1 UPDATED fmin with 144312 UPDATED sequence with ATGGAAAACCGTAAATGGTTTAAGACCTATATGTTTATATGGGCTGGACAGTTTGCTTCAATGCTTACAAGTTATGCTGTTCAGTTTGCTATTGTTATATGGCTTAGTCTGGAGTACAAGTCAGCCGAAGTTTTAGCCTACGCAGGAATAGCAGCTATGTTGCCTCAAGCATTGATAGGCTTAATAGCAGGTGTATATGTTGACCGTCTCAATCGTAAATATGTAATGATTTTTTCGGATGCTTTTATAGCTCTCTGTGCCCTTTTGTTACTCGTCATTTTACAAAATGAAAATGTTAATCTTATATGGATATACATTTTATTGGGTTTACGCTCTGTTGGTAATGCTTTTCACGCTCCGGCACTACAGGCAATTGCTCCGCTGATTGTACCCCAAAATGAATTGATAAAGGTAGCAGGAATTAATCAGGTGTTACATTCGGTTTGCAGGATTGGTGGTCCTGCCATTGGCACATTAGCCATTGCTTATCTTCCTATTTCAAAAGTATTGTACTTGGATTTGATTGGAGCATTGCTGGCTATTCTTTCACTCGTGATGGTGAAAATTCCCAATGTGGTTGCGAAGTCAAAATCGTCTGCACATTCTATTGCTACAGAATTTTCGGAAGGGTTTCAGACTGTTTCAAAAAACAAAGGTTTGCGTTATCTTTTTCTTTATGCAATGGCGATAACCTTTGTTATAATGCCAGCTGCCATTATGTTTCCGTTGCTCACAACAGGGCATTTTGCAGGAGGAAAATGGGAGATAGGAATTGTAGAAGTGGTTTGGGGCGGAGGTATGCTTATTGGCGGTGTCATCCTGAGTATTTTCAAATTGAAAGGCTCAAAAGTAGTCGCAGTCAATGTTATGTATGTATTATTGGGACTTACATTTATTTTGAGTGGTGTATTACCTGCAAGTTGGTTTGTAGGATTTGTGATGGTAACAGCCATTGGCGGTATCAGCCTGTCTGTTTTCAATGGCTGTTTTACAGCAATTGTACAAACAGAGGTAAGTCCTGAAAAATTAGGACGTGTATTTTCACTTTATTATAGTTTGGCAGTTTTGCCAAGTGTAATCGGTTTATTATTCACAGGCCTGATTGCAGAAGTTATTGGTGTAAACATTACGTTTATCATAAGCGGTTGTTTGGCAATCCTTGTGGGTATTCTTTCGTTTAGCACTCGCAACTTAATGCAATTAGGTAAAATCAAAAATATTTAA UPDATED NCBI_taxonomy_name with Photobacterium damselae subsp. damselae UPDATED NCBI_taxonomy_id with 85581 UPDATED NCBI_taxonomy_cvterm_id with 40398 UPDATED accession with BAL43360.1 UPDATED sequence with MENRKWFKTYMFIWAGQFASMLTSYAVQFAIVIWLSLEYKSAEVLAYAGIAAMLPQALIGLIAGVYVDRLNRKYVMIFSDAFIALCALLLLVILQNENVNLIWIYILLGLRSVGNAFHAPALQAIAPLIVPQNELIKVAGINQVLHSVCRIGGPAIGTLAIAYLPISKVLYLDLIGALLAILSLVMVKIPNVVAKSKSSAHSIATEFSEGFQTVSKNKGLRYLFLYAMAITFVIMPAAIMFPLLTTGHFAGGKWEIGIVEVVWGGGMLIGGVILSIFKLKGSKVVAVNVMYVLLGLTFILSGVLPASWFVGFVMVTAIGGISLSVFNGCFTAIVQTEVSPEKLGRVFSLYYSLAVLPSVIGLLFTGLIAEVIGVNITFIISGCLAILVGILSFSTRNLMQLGKIKNI " 2263 UPDATE optrA oxazolidinone antibiotic; ABC-F ATP-binding cassette ribosomal protection protein; antibiotic target protection; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 36001 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. " 2260 UPDATE vatF dalfopristin; antibiotic inactivation; streptogramin vat acetyltransferase; pristinamycin IIA; madumycin II; griseoviridin; streptogramin antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2261 UPDATE lnuE antibiotic inactivation; lincosamide nucleotidyltransferase (LNU); lincosamide antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2267 UPDATE Escherichia coli nfsA mutations conferring resistance to nitrofurantoin antibiotic target alteration; nitrofuran antibiotic; nitrofurantoin; antibiotic resistant nfsA; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2264 UPDATE oleC efflux pump complex or subunit conferring antibiotic resistance; ATP-binding cassette (ABC) antibiotic efflux pump; macrolide antibiotic; oleandomycin; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2265 UPDATE salA pleuromutilin; pleuromutilin antibiotic; ABC-F ATP-binding cassette ribosomal protection protein; antibiotic target protection; streptogramin antibiotic; lincosamide antibiotic; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 36001 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. " 1781 UPDATE AAC(2')-Ia antibiotic inactivation; AAC(2'); arbekacin; gentamicin B; gentamicin C; amikacin; aminoglycoside antibiotic; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGGCATAGAATACCGCAGTCTGCATACCAGCCAATTGACACTGAGTGAAAAAGAAGCGCTTTACGATTTATTAATTGAAGGTTTTGAAGGCGATTTTTCGCATGACGATTTCGCGCACACTTTAGGTGGAATGCACGTCATGGCTTTTGATCAACAAAAATTGGTTGGTCATGTTGCAATTATTCAACGCCATATGGCCCTAGATAATACGCCTATCTCTGTAGGGTATGTTGAAGCGATGGTAGTTGAACAAAGTTATCGTCGCCAAGGTATTGGGCGGCAATTGATGCTGCAAACCAATAAAATTATAGCTTCGTGTTATCAATTAGGGCTGCTGTCGGCTTCAGATGATGGACAAAAATTGTATCATTCGGTTGGATGGCAAATCTGGAAAGGTAAGTTGTTTGAATTGAAACAAGGGAGCTATATCCGTTCTATTGAAGAAGAAGGCGGAGTCATGGGCTGGAAAGCGGATGGTGAGGTTGATTTTACCGCTTCGCTTTACTGTGATTTTCGTGGCGGTGATCAGTGGTAA " 2445 UPDATE Erm(44) antibiotic target alteration; streptogramin antibiotic; Erm 23S ribosomal RNA methyltransferase; macrolide antibiotic; lincosamide antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 108 UPDATE PDC-8 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 109 UPDATE ErmE antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGAGCAGTTCGGACGAGCAGCCGCGCCCGCGTCGCCGCAACCAGGATCGGCAGCACCCCAACCAGAACCGGCCGGTGCTGGGCCGTACCGAGCGGGACCGCAACCGGCGCCAGTTCGGGCAGAACTTCCTCCGCGACCGCAAGACCATCGCGCGCATCGCCGAGACAGCCGAGCTGCGGCCCGATCTGCCGGTGCTGGAAGCCGGCCCCGGCGAAGGGCTGCTCACCAGGGAACTCGCCGACCGCGCGCGTCAGGTGACGTCGTACGAGATCGACCCCCGGCTGGCGAAGTCGTTGCGGGAGAAGCTTTCCGGCCACCCGAACATCGAAGTCGTCAACGCCGACTTCCTCACCGCCGAACCGCCGCCCGAGCCGTTCGCCTTCGTCGGCGCGATCCCCTACGGCATCACCTCGGCGATCGTGGACTGGTGCCTGGAGGCGCCGACGATCGAGACGGCGACGATGGTCACGCAGCTGGAGTTCGCCCGGAAGCGGACCGGCGATTACGGCCGCTGGAGCCGCCTCACGGTGATGACCTGGCCGCTGTTCGAGTGGGAGTTCGTCGAGAAGGTCGACCGCCGGCTGTTCAAGCCGGTGCCCAAGGTCGACTCGGCGATCATGCGGCTGCGCAGGCGCGCCGAACCGCTGCTGGAAGGCGCGGCGCTCGAACGCTACGAGTCGATGGTCGAGCTGTGCTTCACCGGCGTCGGCGGCAACATCCAGGCGTCGCTTCTGCGCAAGTACCCGAGGCGCCGCGTCGAGGCGGCGCTCGACCACGCGGGGGTCGGGGGCGGCGCCGTGGTCGCCTACGTCCGGCCGGAGCAGTGGCTCCGGCTGTTCGAGCGGCTGGATCAGAAGAACGAACCGAGGGGTGGGCAGCCCCAGCGGGGCAGGCGAACCGGCGGACGGGACCACGGGGACCGGCGAACCGGCGGGCAGGATCGCGGCGATCGGCGAACCGGCGGCCGCGACCACAGGGACCGGCAAGCCAGCGGCCACGGCGATCGTCGCAGCAGCGGACGCAATCGCGACGACGGACGAACCGGCGAGCGCGAGCAGGGGGACCAAGGCGGGCGGCGGGGGCCGTCCGGGGGTGGACGGACCGGCGGACGTCCAGGGCGACGCGGCGGACCCGGGCAGCGGTAG UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 102 UPDATE TLA-2 antibiotic inactivation; monobactam; fluoroquinolone antibiotic; cephalosporin; TLA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 15417 UPDATED strand with - UPDATED accession with AJ698325.1 UPDATED fmin with 14502 UPDATED sequence with ATGAATATAAAATATTTTAAATTTGCAGAAAAATTCATTTTATTAGTTCTTATAATGTCTTTTTCTTCTTTAGCTTTCTGCAAGTCTGATGATTCTCTCGAACAGCGCATCAATTCAATCATATCAGGAAAAAAAGCATCAGTCGGTGTTGCTGTTGCGGGCATAGAAGATAATTTTTCGCTGAGCATAAACGGAAAGAAAAATTTTCCGATGATGAGCGTTTATAAATTGCATATCGTGCTTGCTGTTTTGAACAAAGTTGACGGCGGCAGTTTGAAGCTTGATGAAAAAATTCCGCTTAATAAAAAAGATCTTCATCCCGGAACTTGGAGTCCTCTGCGCGACAAATATCCGAATGGCGGAGTGAGCATTCCGCTTTCAGAAATTATAGAATATACAATCACTCAAAGCGACAACAACGGCTGTGATATTTTGATTGCTCTTGCGGGCGGAACTGAAGCTGTTAAGAGATATATTATATCAAAAGGAATTTCTGATTTTGATATCAGAGCAACAGAGAAAGAATGCCACGAGTCATGGAATGTTCAGTATTCGAACTGGTCAACGCCGGTTTCTGCGGTGGCTCTTCTAAAGAAGTTTAATGACAGAAAAATCCTTTCTTCTGTATCAACTGAATATCTGATGAATGTAATGATTCATACTTCAACCGGCAATAAAAGAATAAAGGGTCTGATTCCGCCAAGTGCTGATGTTGCGCATAAAACCGGAACATCTGGAATTCGAAACGGAATTACTCCAGGAACTAATGATATCGGAATAGTCACGCTGCCGAACGGGAAGCATTTTGCGATTGCAGTTTTTGTGTCGGATTCCCGCGAGAACAATGCGGCAAATGAAAGAATAATTGCTGAAATATCAAAGGCTGCTTGGGATTATTTTGTTAAAATGAATTGA UPDATED NCBI_taxonomy_name with uncultured bacterium UPDATED NCBI_taxonomy_id with 77133 UPDATED NCBI_taxonomy_cvterm_id with 36791 UPDATED accession with CAG27800.1 UPDATED sequence with MNIKYFKFAEKFILLVLIMSFSSLAFCKSDDSLEQRINSIISGKKASVGVAVAGIEDNFSLSINGKKNFPMMSVYKLHIVLAVLNKVDGGSLKLDEKIPLNKKDLHPGTWSPLRDKYPNGGVSIPLSEIIEYTITQSDNNGCDILIALAGGTEAVKRYIISKGISDFDIRATEKECHESWNVQYSNWSTPVSAVALLKKFNDRKILSSVSTEYLMNVMIHTSTGNKRIKGLIPPSADVAHKTGTSGIRNGITPGTNDIGIVTLPNGKHFAIAVFVSDSRENNAANERIIAEISKAAWDYFVKMN " 103 UPDATE SHV-12 penam; antibiotic inactivation; cephalosporin; carbapenem; ceftazidime; cefalotin; ceftriaxone; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 100 UPDATE Mycobacterium tuberculosis ethA with mutation conferring resistance to ethionamide isoniazid; antibiotic target alteration; ethionamide; ethionamide resistant ethA; model_description; model_sequences; model_param "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 4319797 UPDATED strand with - UPDATED accession with AE000516.2 UPDATED fmin with 4318327 UPDATED sequence with ATGACCGAGCACCTCGACGTTGTCATCGTGGGCGCTGGAATCTCCGGTGTCAGCGCGGCCTGGCACCTGCAGGACCGTTGCCCGACCAAGAGCTACGCCATCCTGGAAAAGCGGGAATCCATGGGCGGCACCTGGGATTTGTTCCGTTATCCCGGAATTCGCTCCGACTCCGACATGTACACGCTAGGTTTCCGATTCCGTCCCTGGACCGGACGGCAGGCGATCGCCGACGGCAAGCCCATCCTCGAGTACGTCAAGAGCACCGCGGCCATGTATGGAATCGACAGGCATATCCGGTTCCACCACAAGGTGATCAGTGCCGATTGGTCGACCGCGGAAAACCGCTGGACCGTTCACATCCAAAGCCACGGCACGCTCAGCGCCCTCACCTGCGAATTCCTCTTTCTGTGCAGCGGCTACTACAACTACGACGAGGGCTACTCGCCGAGATTCGCCGGCTCGGAGGATTTCGTCGGGCCGATCATCCATCCGCAGCACTGGCCCGAGGACCTCGACTACGACGCTAAGAACATCGTCGTGATCGGCAGTGGCGCAACGGCGGTCACGCTCGTGCCGGCGCTGGCGGACTCGGGCGCCAAGCACGTCACGATGCTGCAGCGCTCACCCACCTACATCGTGTCGCAGCCAGACCGGGACGGCATCGCCGAGAAGCTCAACCGCTGGCTGCCGGAGACCATGGCCTACACCGCGGTACGGTGGAAGAACGTGCTGCGCCAGGCGGCCGTGTACAGCGCCTGCCAGAAGTGGCCACGGCGCATGCGGAAGATGTTCCTGAGCCTGATCCAGCGCCAGCTACCCGAGGGGTACGACGTGCGAAAGCACTTCGGCCCGCACTACAACCCCTGGGACCAGCGATTGTGCTTGGTGCCCAACGGCGACCTGTTCCGGGCCATTCGTCACGGGAAGGTCGAGGTGGTGACCGACACCATTGAACGGTTCACCGCGACCGGAATCCGGCTGAACTCAGGTCGCGAACTGCCGGCTGACATCATCATTACCGCAACGGGGTTGAACCTGCAGCTTTTTGGTGGGGCGACGGCGACTATCGACGGACAACAAGTGGACATCACCACGACGATGGCCTACAAGGGCATGATGCTTTCCGGCATCCCCAACATGGCCTACACGGTTGGCTACACCAATGCCTCCTGGACGCTGAAGGCCGACCTGGTGTCGGAGTTTGTCTGTCGCTTGTTGAATTACATGGACGACAACGGTTTTGACACCGTGGTCGTCGAGCGACCGGGCTCAGATGTCGAAGAGCGGCCCTTCATGGAGTTCACCCCAGGTTACGTGCTGCGCTCGCTGGACGAGCTGCCCAAGCAGGGTTCGCGTACACCGTGGCGCCTGAATCAGAACTACCTACGTGACATCCGGCTCATCCGGCGCGGCAAGATCGACGACGAGGGTCTGCGGTTCGCCAAAAGGCCTGCCCCGGTGGGGGTTTAG UPDATED NCBI_taxonomy_name with Mycobacterium tuberculosis CDC1551 UPDATED NCBI_taxonomy_id with 83331 UPDATED NCBI_taxonomy_cvterm_id with 37081 UPDATED accession with AAK48336.1 UPDATED sequence with MTEHLDVVIVGAGISGVSAAWHLQDRCPTKSYAILEKRESMGGTWDLFRYPGIRSDSDMYTLGFRFRPWTGRQAIADGKPILEYVKSTAAMYGIDRHIRFHHKVISADWSTAENRWTVHIQSHGTLSALTCEFLFLCSGYYNYDEGYSPRFAGSEDFVGPIIHPQHWPEDLDYDAKNIVVIGSGATAVTLVPALADSGAKHVTMLQRSPTYIVSQPDRDGIAEKLNRWLPETMAYTAVRWKNVLRQAAVYSACQKWPRRMRKMFLSLIQRQLPEGYDVRKHFGPHYNPWDQRLCLVPNGDLFRAIRHGKVEVVTDTIERFTATGIRLNSGRELPADIIITATGLNLQLFGGATATIDGQQVDITTTMAYKGMMLSGIPNMAYTVGYTNASWTLKADLVSEFVCRLLNYMDDNGFDTVVVERPGSDVEERPFMEFTPGYVLRSLDELPKQGSRTPWRLNQNYLRDIRLIRRGKIDDEGLRFAKRPAPVGV DELETED 4146 UPDATED 8346 with Y84D DELETED 4146 UPDATED 8346 with Y84D " 101 UPDATE TEM-109 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 106 UPDATE catB9 antibiotic inactivation; thiamphenicol; chloramphenicol acetyltransferase (CAT); azidamfenicol; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACTTCTTTACGTCTCCATTTTCTGGGATTCCCTTAGATCAGCAAGTAACAAATCCGAACATTATTGTGGGAAAACACAGTTATTATTCTGGTTATTATCACGGGCACAGTTTCGATGATTGTGTGCGATATTTACATCCAGAAAGAGATGACGTTGATAAGTTAGTCATAGGGAGTTTTTGTTCTATAGGCTCTGGTGCTGTATTTATGATGGCCGGTAATCAAGGGCATCGCAGTGATTGGATAAGTACATTCCCATTTTTCTATCAGGATAATGATAATTTTGCAGATGCACGCGATGGTTTTACGCGTTCAGGAGACACAATTATTGGTCATGATGTGTGGATTGGCACTGAGGCTATGATAATGCCTGGGGTTAAAATTGGACATGGAGCGATAATCGCCAGTCGTTCAGTAGTGACTAAGGATGTTGCACCTTATGAAGTGGTCGGTTCAAATCCTGCTAAACATATCAAGTTTAGATTTTCTGATGTGGAAATAGCGATGTTACTTGAAATGGCATGGTGGAATTGGCCAGAATCGTGGTTGAAAGAGAGTATGCAGTCTCTGTGTTCATCAGACATTGAAGGGCTTTATCTCAATTGGCAGTCAAAAGCACGCACATAA " 107 UPDATE TEM-43 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 104 UPDATE OXA-61 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 105 UPDATE CARB-4 penam; antibiotic inactivation; CARB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGCTTTTACTGGTATTTTCGCTTTTAATACCGTCTATGGTGTTTGCAAATAGTTCAAAGTTTCAACAGGTTGAACAAGATGCTAAGGTAATTGAAGCATCTCTTTCTGCGCATATAGGGATTTCTGTTCTTGATACTCAAACTGGAGAGTATTGGGATTACAATGGCAATCAGCGTTTTCCTTTGACAAGTACTTTTAAAACAATAGCTTGTGCTAAATTATTATATGATGCTGAGCAAGGGGAAATAAACCCTAAGAGTACAATTGAGATCAAAAAAGCAGATCTTGTGACCTATTCTCCCGTAATAGAAAAGCAAGTAGGACAAGCAATAACGCTCGATGATGCGTGTTTTGCAACTATGACGACAAGTGATAATGCAGCAGCAAATATCATCCTAAATGCCCTAGGAGGTCCTGAAAGCGTGACGGATTTTCTAAGACAAATCGGAGATAAAGAAACCCGTCTAGACCGTATTGAACCTGAATTAAATGAAGGCAAGCTTGGTGATTTGAGGGATACGACAACTCCTAATGCAATAGTGAATACTTTAAATGAATTATTATTTGGTTCCACATTGTCTCAAGATGGCCAGAAAAAATTAGAGTATTGGATGGTGAATAATCAAGTCACTGGTAATTTATTGCGGTCAGTATTGCCAGAGGGATGGAATATTGCGGATCGTTCAGGTGCTGGCGGATTTGGTGCTCGGAGTATTACAGCCGTTGTTTGGAGTGAAGCTCAATCCCCAATCATAGTTAGTATCTATCTAGCGCAAACAGAGGCTTCAATAGCAGATCGAAATGATGCAATTGTTAAAATTGGTCGTTCAATTTTTGAAGTTTATTCATCACAATCGCGTTGA " 2046 UPDATE tet(33) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2047 UPDATE OXA-322 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2044 UPDATE QnrB31 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2045 UPDATE OXY-2-3 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATAAAAAGTTCGTGGCGTAAAATTGCAATGCTAGCCGCCGTTCCGCTGCTGCTGGCGAGCGGCGCACTGTGGGCCAGTACCGATGCTATCCATCAGAAGCTGACAGATCTCGAGAAGCGTTCAGGCGGCAGGTTGGGCGTGGCGCTAATCAACACGGCAGATAATTCTCAAATCTTATATCGCGGCGACGAGCGTTTTGCCATGTGCAGCACCAGTAAAGTGATGGCCGCCGCCGCGGTATTAAAACAGAGCGAAAGCAATAAAGAGGTGGTAAATAAAAGGCTGGAGATTAACGCAGCCGATTTGGTGGTCTGGAGTCCGATTACCGAAAAACATCTCCAGAGCGGAATGACGCTGGCTGAGCTAAGCGCGGCGACGCTGCAATATAGCGACAATACGGCGATGAATCTGATCATCGGCTACCTTGGCGGGCCGGAAAAAGTCACCGCCTTCGCCCGCAGTATCGGCGATGCCACCTTTCGTCTCGATCGTACGGAGCCCACGCTGAATACCGCCATCCCGGGCGATGAGCGTGATACCAGCACGCCGCTGGCGATGGCTGAAAGCCTACGCAAGCTGACGCTTGGCGATGCGCTGGGCGAACAGCAACGCGCCCAGTTAGTCACCTGGCTGAAAGGCAATACCACCGGCGGGCAAAGCATTCGCGCGGGCCTGCCTGAAAGCTGGGTGGTCGGCGATAAAACCGGCGGCGGAGATTACGGCACCACCAATGATATTGCGGTTATCTGGCCGGAAGATCACGCTCCGCTGGTATTAGTCACCTACTTTACCCAGCCGCAGCAGGATGCGAAAAACCGCAAAGAGGTGTTAGCCGCAGCGGCAAAAATCGTGACCGAAGGGCTTTAA " 2042 UPDATE IND-8 carbapenem; antibiotic inactivation; IND beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAAAGCATTCAATTTTTTATTGTTTCCATGTTGTTGAGCCCTTTTGCCAATTCACAGGTAAAAGATTTTGTAATTGAGCCACCTATTAAATCCAATCTATATATTTACAAGACTTTTGGAGTATTCGGAGGTAAAGAATATTCTGCCAATGCAGCCTATCTTAAGACTAAAAAAGGTGTAATTCTGTTTGATGTACCCTGGGAAAAAGTACAGTATCAAAGCCTGATGGATACCATCAAAAAACGTCATAACTTACCGGTAATTGCCGTATTTGCTACGCATTCCCATGATGACCGTGCAGGAGACTTAAGCTTTTTCAATAATAAAGGCATTAAGACGTATGCTACCCTGAAAACCAATGAGTTTCTGAAGAAAGATGGAAAAGCAACATCCACAGAGATCATCCAAACCGGAAAACCTTATCACATTGGCGGAGAAGAATTTGTGGTCGATTTTCTTGGTGAAGGACATACTGCTGATAATGTAGTGGTATGGTTTCCAAAATATAATGTTTTGGATGGCGGATGTCTTGTAAAAAGTAATTCTGCTACTGACTTAGGATACATTAAAGAAGCCAATGTAGAACAATGGCCCAAGACGATGAATAAATTAAAAACCAAATATTCAAAAGCCACATTAATTATTCCCGGGCATGATGAATGGAAAGGGGGTGGACATGTTGAACACACTTTAGAGCTTTTGAACAAAAAATAA " 2043 UPDATE aadA8 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGGGTAGCGGTGACCATCGAAATTTCGAACCAACTATCAGAGGTGCTAAGCGTCATTGAGCGCCATCTGGAATCAACGTTGCTGGCCGTGCATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCATACAGCGATATTGATTTGTTGGTTACTGTGGCCGTAAAGCTTGATGAAACGACGCGGCGAGCATTGCTCAATGACCTTATGGAGGCTTCGGCTTTCCCTGGCGAGAGCGAGACGCTCCGCGCTATAGAAGTCACCCTTGTCGTGCATGACGACATCATCCCGTGGCGTTATCCGGCTAAGCGCGAGCTGCAATTTGGAGAATGGCAGCGCAATGACATTCTTGCGGGTATCTTCGAGCCAGCCATGATCGACATTGATCTGGCTATCCTGCTTACAAAAGCAAGAGAACATAGCGTTGCCTTGGTAGGTCCGGCAGCGGAGGAATTCTTTGACCCGGTTCCTGAACAGGATCTATTCGAGGCGCTGAGGGAAACCTTGAAGCTATGGAACTCGCAGCCCGACTGGGCCGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAATAACCGGCAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATGGAGCGCCTGCCGGCCCAGTATCAGCCCGTCATACTTGAAGCTAGACAGGCTTATCTTGGACAAGAAGAAGATCGCTTGGCCTCGCGCGCAGATCAGTTGGAAGAATTTGTTCACTACGTGAAAGGCGAGATCACCAAGGTAGTCGGCAAATAA " 2040 UPDATE TEM-60 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATAAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCCTAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTAAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATAGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGCGAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTGCGCCCTTCCGGCTGGCTGGTTAATTGCTGATAAATCTGGAGCCGGTGAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 2041 UPDATE OXA-424 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2048 UPDATE OXA-57 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2049 UPDATE QnrB72 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1213 UPDATE nalD sulfonamide antibiotic; penem; panipenem; tetracycline antibiotic; clavulanate; meropenem; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; aztreonam; nalidixic acid; aminocoumarin antibiotic; cephalosporin; macrolide antibiotic; carbapenem; ceftazidime; ciprofloxacin; cephamycin; ceftriaxone; protein(s) and two-component regulatory system modulating antibiotic efflux; peptide antibiotic; diaminopyrimidine antibiotic; ticarcillin; ampicillin; amoxicillin; penam; sulfamethoxazole; novobiocin; phenicol antibiotic; efflux pump complex or subunit conferring antibiotic resistance; trimethoprim-sulfamethoxazole; tetracycline; monobactam; fluoroquinolone antibiotic; erythromycin; trimethoprim; azithromycin; chloramphenicol; model_sequences "UPDATED sequence with ATGCGACGCACAAAGGAAGATTCTGAAAAAACCCGTACGGCCATCCTCCTGGCCGCCGAGGAACTGTTCCTGGAAAAGGGCGTGTCCCATACCAGCCTGGAACAGATCGCCAGGGCCGCCGGGGTGACCCGTGGCGCCGTCTACTGGCACTTCCAGAACAAGGCCCACCTGTTCAACGAGATGCTCAACCAGGTACGCCTGCCGCCGGAGCAACTCACCGAGCGCCTGTCCGGCTGCGATGGCAGCGACCCGCTGCGCTCGCTCTACGACCTCTGCCTGGAGGCCGTGCAATCGTTGCTGACGCAGGAGAAGAAGCGCCGCATCCTGACCATCCTGATGCAACGTTGCGAATTCACCGAGGAACTGCGCGAGGCGCAGGAACGCAACAACGCCTTCGTGCAGATGTTCATCGAACTCTGCGAGCAGTTGTTCGCCCGCGACGAATGCCGTGTGCGGCTGCATCCGGGCATGACCCCGAGGATCGCCTCGCGCGCCTTGCACGCGCTGATCCTGGGCCTGTTCAACGACTGGTTGCGCGACCCGCGCCTGTTCGATCCGGATACGGACGCGGAACACCTGCTGGAGCCGATGTTCCGTGGCCTGGTGCGCGACTGGGGTCAGGCCAGCTCGGCGCCGTAG " 1210 UPDATE novA efflux pump complex or subunit conferring antibiotic resistance; ATP-binding cassette (ABC) antibiotic efflux pump; aminocoumarin antibiotic; novobiocin; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGTCCGCACTCTCGACCTGGAAGCCCTCGGACCGGCCGCCGGATCCGACACTGCCCGAGCCGCCGGCCCAGCTGCGCCGCATCTTCCGGCTCTTCCGCCCGTACCGCGGCAGGCTCGCCGTCGTCGGCCTGCTCGTCGGCGCCTCGTCGCTGGTGGCCGTCGCCTCGCCGTTCATGCTGCGCGAGATCCTCGACACCGCGATCCCGCAGGGCCGCACCGGGCTGCTCAGCCTGCTCGCCCTCGGCATGATCCTGACCGCCGTCCTCAGCAGCGTCTTCGGCGTCGTCCAGACCCTCATCTCCACGACGGTCGGCCAGCGCGTCATGCACGACCTGCGCACCGCCGTCTACGCGCAGCTCCAGCGCATGCCCCTCGCGTTCTTCACCCGCACCCGCACCGGTGAGGTCCAGTCCCGGATAGCCAACGACATCGGCGGCATGCAGGCGACCGTCACCTCAACCGCCACGTCGCTGGTCTCCAACCTCACCGCCGTCATCGCCACCGTCGTCGCGATGCTCGCGCTGGACTGGCGGCTGACCGTCGTCTCGCTGCTCCTGCTGCCGGTGTTCGTCTGGATCAGCCGCCGCGTCGGCCGTGAGCGCAAACGGATCACCCTGCAACGGCAGAAGCAGATGGCCACGATGGCCGCCACGGTCACGGAGTCGCTGTCGGTCAGCGGCATCCTCCTCGGCCGCACGATGGGGCGCGCCGACTCGCTCACCAGATCCTTCGCCGAGGAGTCCGAGCGACTCGTCGACCTGGAGGTCCGCTCCAACATGGCCGGGCGGTGGCGGATGTCCGTCATCGGCATCGTCATGGCCGCCATGCCCGCCGTCATCTACTGGGCGGCCGGCTTCGTCCTCCAGTCCGGCGGCACGGTCGTCTCCATCGGCACACTCGTCGCCTTCGTCTCCCTCCAGCAGGGCCTCTTCCGCCCGGCCGTGAGCCTGCTCGCCACCGGCGTGCAGATGCAGACGTCCCTCGCGCTCTTCCAGCGCATCTTCGAATATCTCGACCTGCCCGTCGACATCACCGAACCCGAGCGTCCGGTGGCCCTCGACAAGGTCCGGGGCGAAGTGCGCTTCGACGGCGTCGACTTCAGTTACGAGGAGAAGGACGGCAACACCCTCCACGGCCTGGATCTGACCGTCCCGGCCGGCGGCAGCCTCGCCGTCGTCGGTCCCACCGGATCGGGCAAGTCGACCCTGAGCTATCTCGTGCCGCGTCTGTACGACGTGACGGGCGGCCGGGTCCTGCTCGACGGCGTCGACGTACGCGACCTGGCCTTCGACACCCTCGCCCGCGCGGTGGGCGTCGTGTCGCAGGAGACGTATCTCTTCCACGCCTCCGTCGCCGACAACCTCCGCTTCGCCAAACCGGACGCGACGGACGAGGAGATCGAGAAGGCGGCCAGGGCCGCCCAGATCCACGAGCACATCGTCACCCTGCCCGACGGGTACGACACACTGGTCGGCGAGCGCGGATACCGGTTCTCCGGCGGCGAGAAACAGCGCCTCGCGATCGCCCGCACCATCCTGCGCGACCCGCCCGTCCTCGTGCTGGACGAGGCGACGAGCGCGCTCGACACCCGTACCGAACACGCGGTCCAGCAGGCCATCGACTCCCTCTCCGAGGGCCGTACGACCATCACCATCGCCCACCGGCTCTCCACGGTGCGCGACGCCGACCAGATCGTCGTCCTCGACGCCGGTCGCATAGCCGAGCGCGGCACGCACGAGGAGCTGATCGACCGGGACGGCAGGTACGCGGCGCTCGTCCGCCGGGACGGCGCGCCGGCGCCCGCGCCCGTGCCCGCCCGGGACGAGCGCGTGGGCGCCGCCTGA " 2688 UPDATE ArmR sulfonamide antibiotic; penem; panipenem; tetracycline antibiotic; clavulanate; meropenem; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; aztreonam; trimethoprim; aminocoumarin antibiotic; cephalosporin; macrolide antibiotic; carbapenem; ceftazidime; ciprofloxacin; cephamycin; ceftriaxone; protein(s) and two-component regulatory system modulating antibiotic efflux; peptide antibiotic; diaminopyrimidine antibiotic; ampicillin; amoxicillin; penam; sulfamethoxazole; novobiocin; efflux pump complex or subunit conferring antibiotic resistance; trimethoprim-sulfamethoxazole; tetracycline; monobactam; fluoroquinolone antibiotic; erythromycin; phenicol antibiotic; azithromycin; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 4165880 UPDATED strand with - UPDATED accession with NC_002516.2 UPDATED fmin with 4165718 UPDATED sequence with ATGTCCCTGAACACTCCGCGCAACAAACCGTCCCGCACCGAGACCGAAGCTGTCGCTGCCAGCTCGGGACGATCCGCCGTCGGCCGGCGGGATTACACCGAGCAGCTGCGCCGGGCAGCCCGGCGCAATGCCTGGGACCTCTACGGCGAGCACTTCTACTGA UPDATED NCBI_taxonomy_name with Pseudomonas aeruginosa PAO1 UPDATED NCBI_taxonomy_id with 208964 UPDATED NCBI_taxonomy_cvterm_id with 36804 UPDATED accession with NP_252408.1 UPDATED sequence with MSLNTPRNKPSRTETEAVAASSGRSAVGRRDYTEQLRRAARRNAWDLYGEHFY " 2689 UPDATE Staphylococcus aureus 23S rRNA with mutation conferring resistance to linezolid antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to linezolid antibiotics; linezolid; oxazolidinone antibiotic; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2685 UPDATE Pseudomonas aeruginosa CpxR sulfonamide antibiotic; penem; panipenem; tetracycline antibiotic; clavulanate; meropenem; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; aztreonam; trimethoprim; aminocoumarin antibiotic; cephalosporin; macrolide antibiotic; carbapenem; ceftazidime; ciprofloxacin; cephamycin; aminoglycoside antibiotic; protein(s) and two-component regulatory system modulating antibiotic efflux; peptide antibiotic; diaminopyrimidine antibiotic; ampicillin; amoxicillin; penam; ceftriaxone; sulfamethoxazole; novobiocin; efflux pump complex or subunit conferring antibiotic resistance; trimethoprim-sulfamethoxazole; tetracycline; monobactam; fluoroquinolone antibiotic; erythromycin; phenicol antibiotic; azithromycin; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1885022 UPDATED strand with - UPDATED accession with LT673656.1 UPDATED fmin with 1884344 UPDATED sequence with ATGAGCGAACTGCTGTTGATCGACGATGACCGGGAGCTCTGCGAGCTGCTCGGTACCTGGCTGGTCCAGGAAGGTTTCTCCGTGCGTGCCAGCCACGACGGCGCCCAGGCCCGTCGCGCCCTCGCCGAGCAGACACCGGATGCCGTGGTGCTCGACGTGATGCTGCCGGACGGTAGCGGCCTGGAACTGCTCAAGCAACTGCGCGGCGACCATCCCGACCTGCCGGTGCTGATGCTGTCCGCCCGCGGCGAGCCGCTGGACCGCATCCTCGGTCTGGAACTGGGCGCCGACGACTACCTGGCCAAGCCCTGCGACCCGCGCGAACTCACCGCACGGCTGCGCGCCGTGCTGCGGCGAACCCACCCGGCGCAACCCAGCGCGCAGATGCAACTGGGCGACCTGTCGCTGAACCTGACGCGCGGCGTGGCGCAGATCGACGGCCAGGAGATCAGCCTGACCCTTTCCGAAAGCCGCATCCTCGAAGCGCTCCTGCGCCAGCCCGGCGAGCCGCTGGACAAGCAGGCCCTGGCGCAACTGGCGCTGGGCCGCAAGCTGACCCTCTACGACCGCAGCCTGGACATGCACGTCAGCAACCTGCGCAAGAAGCTCGGCAGCCACCCCGACGGCAGCCCGCGCATCCTCGCCCTGCGCGGCCGCGGCTACTACTACAGCCACTGA UPDATED NCBI_taxonomy_name with Pseudomonas aeruginosa UPDATED NCBI_taxonomy_id with 287 UPDATED NCBI_taxonomy_cvterm_id with 36752 UPDATED accession with SIP52035.1 UPDATED sequence with MSELLLIDDDRELCELLGTWLVQEGFSVRASHDGAQARRALAEQTPDAVVLDVMLPDGSGLELLKQLRGDHPDLPVLMLSARGEPLDRILGLELGADDYLAKPCDPRELTARLRAVLRRTHPAQPSAQMQLGDLSLNLTRGVAQIDGQEISLTLSESRILEALLRQPGEPLDKQALAQLALGRKLTLYDRSLDMHVSNLRKKLGSHPDGSPRILALRGRGYYYSH " 2681 UPDATE Escherichia coli fabG mutations conferring resistance to triclosan antibiotic target alteration; antibiotic resistance fabG; triclosan; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 99 UPDATE QnrB38 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCTCTGGCATTAATTGGCGAAAAAATTGACAGAAACCGCTTCACCGGTGAAAAAGTTGAAAATAGCACTTTTTTTAACTGTGATTTTTCGGGTGCCGACCTTAGCGGTACTGAATTTATCGGCTGTCAGTTCTATGATCGAGAAAGCCAGAAAGGGTGCAATTTCAGTCGCGCAATACTGAAAGATGCCATTTTTAAAAGCTGTGATTTATCCATGGCGGATTTTCGCAACGTCAGTGCGTTGGGCATAGAAATTCGCCACTGCCGCGCACAGGGTGCAGATTTTCGCGGCGCAAGTTTCATGAATATGATCACCACGCGCACCTGGTTTTGCAGCGCATATATCACTAATACCAATCTAAGCTACGCCAACTTTTCGAAGGCCGTGCTTGAAAAGTGCGAATTGTGGGAAAATCGCTGGATGGGAACTCAGGTACTGGGTGCGACGTTGAGTGGTTCCGATCTCTCCGGTGGCGAGTTTTCGTCGTTCGACTGGCGGACGGCAAATTTCACGCACTGTGATTTGACCAATTCAGAACTGGGTGATTTAGATATTCGGGGCGTCGATTTACAAGGTGTCAAATTGGACAGCTATCAGGCCGCATTGCTCATGGAACGTCTTGGCATCGCTGTCATTGGCTAA " 98 UPDATE CMY-48 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTGGCGATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATGACGTTACGGATAAAGCCGCATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGCGGTGAAACCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAATTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGTTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACAGGTGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATAGTGATGCTGGCAAACAAAAGCTATCCTAACCCGGCTCGCGTAGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA " 91 UPDATE gadX penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; norfloxacin; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; oxacillin; cloxacillin; fluoroquinolone antibiotic; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAATCACTACATGGGAATTGTCTAATTGCGTATGCAAGACATAAATATATTCTCACCATGGTTAATGGTGAATATCGCTATTTTAATGGCGGTGACCTGGTTTTTGCGGATGCAAGCCAAATTCGAGTAGATAAGTGTGTTGAAAATTTTGTATTCGTGTCAAGGGACACGCTTTCATTATTTCTCCCGATGCTCAAGGAGGAGGCATTAAATCTTCATGCACATAAAAAAGTTTCTTCATTACTCGTTCATCACTGTAGTAGAGATATTCCTGTTTTTCAGGAAGTTGCGCAACTATCGCAGAATAAGAATCTTCGCTATGCAGAAATGCTACGTAAAAGAGCATTAATCTTTGCGTTGTTATCTGTTTTTCTTGAGGATGAGCACTTTATACCGCTGCTTCTGAACGTTTTACAACCGAACATGCGAACACGAGTTTGTACGGTTATCAATAATAATATCGCCCATGAGTGGACACTAGCCCGAATCGCCAGCGAGCTGTTGATGAGTCCAAGTCTGTTAAAGAAAAAATTGCGCGAAGAAGAGACATCATATTCACAGTTGCTTACTGAGTGTAGAATGCAACGTGCTTTGCAACTTATTGTTATACATGGTTTTTCAATTAAGCGAGTTGCAGTATCCTGTGGATATCACAGCGTGTCGTATTTCATTTACGTCTTTCGAAATTATTATGGGATGACGCCCACAGAGTATCAGGAGCGATCGGCGCAGAGATTGTCGAACCGTGACTCGGCGGCAAGTATTGTTGCGCAAGGGAATTTTTACGGCACTGACCGTTCTGCGGAAGGAATAAGATTATAG " 90 UPDATE Staphylococcus aureus rpoB mutants conferring resistance to rifampicin rifampin; rifapentine; rifabutin; peptide antibiotic; rifamycin-resistant beta-subunit of RNA polymerase (rpoB); antibiotic target replacement; antibiotic target alteration; rifamycin antibiotic; rifaximin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with TTGGCAGGTCAAGTTGTCCAATATGGAAGACATCGTAAACGTAGAAACTACGCGAGAATTTCAGAAGTATTAGAATTACCAAACTTAATAGAAATTCAAACTAAATCTTACGAGTGGTTCCTAAGAGAAGGTTTAATCGAAATGTTTAGAGACATTTCTCCAATTGAAGATTTTACTGGTAATTTGTCATTAGAGTTTGTGGATTACCGTTTAGGAGAACCAAAATATGATTTAGAAGAATCTAAAAACCGTGACGCTACTTATGCTGCACCTCTTCGTGTAAAAGTGCGTCTAATCATTAAAGAAACAGGAGAAGTTAAAGAACAAGAAGTCTTTATGGGTGATTTCCCATTAATGACTGATACAGGTACGTTCGTTATCAATGGTGCAGAACGTGTAATCGTATCTCAATTAGTTCGTTCACCATCCGTTTATTTCAATGAAAAAATCGACAAAAATGGTCGTGAAAACTATGATGCAACAATTATTCCAAACCGAGGTGCATGGTTAGAATATGAAACAGATGCTAAAGATGTTGTATACGTGCGTATTGATAGAACACGTAAACTACCATTAACAGTATTGTTACGTGCATTAGGTTTCTCAAGTGACCAAGAAATTGTTGACCTTTTAGGTGACAATGAATATTTACGTAATACTTTAGAGAAAGACGGCACTGAAAACACTGAACAAGCGTTATTAGAAATCTATGAACGTTTACGTCCAGGTGAACCACCAACTGTTGAAAATGCTAAAAGTCTATTGTATTCACGTTTCTTTGATCCAAAACGCTATGACTTAGCAAGCGTGGGTCGTTATAAAACAAACAAAAAATTACATTTAAAACATCGTTTATTCAATCAAAAATTAGCTGAGCCAATTGTGAATACTGAAACTGGTGAAATTGTAGTTGAAGAAGGTACAGTGCTTGATCGTCGTAAAATCGACGAAATCATGGATGTACTTGAATCAAACGCAAACAGCGAAGTGTTTGAATTGCATGGTAGCGTTATAGACGAGCCAGTAGAAATTCAATCAATTAAAGTATATGTTCCTAACGATGATGAAGGTCGTACGACAACTGTAATTGGTAATGCTTTCCCTGACTCAGAAGTTAAATGTATTACACCGGCAGATATCATCGCTTCAATGAGTTACTTCTTTAACTTATTAAGTGGTATTGGATATACAGATGATATTGACCATTTAGGTAACCGTCGTTTACGTTCTGTAGGTGAATTACTACAAAACCAATTCCGTATCGGTTTATCAAGAATGGAAAGAGTTGTACGTGAAAGAATGTCAATTCAAGATACTGAGTCTATCACACCTCAACAATTAATTAATATTCGACCTGTTATTGCATCTATTAAAGAATTCTTTGGTAGCTCTCAATTATCACAATTCATGGACCAAGCAAATCCATTAGCTGAGTTAACGCATAAACGTCGTCTATCAGCATTAGGACCTGGTGGTTTAACACGTGAACGTGCTCAAATGGAAGTGCGTGACGTTCACTACTCTCACTATGGCCGTATGTGTCCAATTGAAACGCCTGAGGGACCAAACATTGGATTGATTAACTCATTATCAAGTTATGCACGTGTAAATGAATTCGGCTTTATTGAAACACCATATCGTAAAGTTGATTTAGATACACATGCTATCACTGATCAAATTGACTATTTAACAGCTGACGAAGAAGATAGCTATGTTGTAGCACAAGCAAACTCTAAATTAGATGAAAATGGTCGTTTCATGGATGATGAAGTTGTATGTCGTTTCCGTGGTAACAATACAGTTATGGCTAAAGAAAAAATGGATTATATGGATGTATCGCCGAAGCAAGTTGTTTCAGCAGCGACAGCATGTATTCCATTCTTAGAAAATGATGACTCAAACCGTGCATTGATGGGTGCGAACATGCAACGTCAAGCAGTGCCTTTGATGAATCCAGAAGCACCATTTGTTGGTACAGGTATGGAACACGTTGCAGCACGTGATTCTGGTGCAGCTATTACAGCTAAGCACAGAGGTCGTGTTGAACATGTTGAATCTAATGAAATTCTTGTACGTCGTCTAGTTGAAGAGAACGGCGTTGAGCATGAAGGTGAATTAGATCGCTATCCATTAGCTAAATTTAAACGTTCAAACTCAGGTACATGTTACAACCAACGTCCAATCGTTGCAGTTGGAGATGTTGTTGAGTTTAACGAGATTTTAGCAGATGGACCATCTATGGAATTAGGAGAAATGGCATTAGGTAGAAACGTAGTAGTTGGTTTCATGACTTGGGACGGTTACAACTATGAGGATGCCGTTATCATGAGTGAAAGACTTGTGAAAGATGACGTGTATACTTCTATTCATATTGAAGAGTATGAATCAGAAGCACGTGATACTAAGTTAGGACCTGAAGAAATCACAAGAGATATTCCTAATGTTTCTGAAAGTGCACTTAAGAACTTAGACGATCGTGGTATCGTTTATATTGGTGCAGAAGTAAAAGATGGAGATATTTTAGTTGGTAAAGTAACGCCTAAAGGTGTAACTGAGTTAACTGCCGAAGAAAGATTGTTACATGCAATCTTTGGTGAAAAAGCACGTGAAGTTAGAGATACTTCATTACGTGTACCTCACGGCGCTGGCGGTATCGTTCTTGATGTAAAAGTATTCAATCGTGAAGAAGGCGACGACACATTATCACCTGGTGTAAACCAATTAGTACGTGTATATATCGTTCAAAAACGTAAAATTCATGTTGGTGATAAGATGTGTGGTCGACATGGTAACAAAGGTGTCATTTCTAAGATTGTTCCTGAAGAAGATATGCCTTACTTACCAGATGGACGTCCGATTGATATCATGTTAAATCCTCTTGGTGTACCATCTCGTATGAACATCGGACAAGTATTAGAGCTACACTTAGGTATGGCTGCTAAAAATCTTGGTATTCACGTTGCATCACCAGTATTTGACGGTGCAAACGATGACGATGTATGGTCAACAATTGAAGAAGCTGGTATGGCTCGTGATGGTAAAACTGTACTTTATGATGGACGTACAGGTGAACCATTCGATAACCGTATTTCAGTAGGTGTAATGTACATGTTGAAACTTGCGCACATGGTTGATGATAAATTACATGCGCGTTCAACAGGACCATATTCACTTGTTACACAACAACCACTTGGCGGTAAAGCGCAATTCGGTGGACAACGTTTCGGTGAGATGGAGGTATGGGCACTTGAAGCATATGGTGCTGCATACACATTACAAGAAATCTTAACTTACAAATCCGATGATACAGTAGGACGTGTGAAAACATACGAGGCTATTGTTAAAGGTGAAAACATCTCTAGACCAAGTGTTCCAGAATCATTCCGAGTATTGATGAAAGAATTACAAAGTTTAGGTTTAGATGTAAAAGTTATGGATGAGCAAGATAATGAAATCGAAATGACAGACGTTGATGACGATGATGTTGTAGAACGCAAAGTAGATTTACAACAAAATGATGCTCCTGAAACACAAAAAGAAGTTACTGATTAA " 93 UPDATE SHV-105 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATTTTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCAGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGTGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGACGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTAGCAAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGGATTGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 92 UPDATE CTX-M-42 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGACGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGACTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA " 95 UPDATE CMY-56 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 94 UPDATE CMY-79 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCACTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTGGCGATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATGACATTACGGATAAAGCCGCATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGCGGTGAAACCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAACTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTGCACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGATAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGTACCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACAGGTGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATAGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGCGTCGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA " 97 UPDATE vanXYC glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanXY; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACACATTACAATTGATCAATAAAAACCATCCATTGAAAAAAAATCAAGAGCCCCCGCACTTAGTGCTAGCTCCTTTTAGCGATCACGATGTTTACCTGCAGCCAGAAGTGGCAAAACAATGGGAACGACTCGTACGAGCAACCGGACTAGAAAAGGACATTCGTCTGGTAGATGGGTATCGTACGGAAAAAGAACAGCGACGCTTGTGGGAGTATTCTCTAAAAGAAAACGGGTTAGCTTATACCAAACAATTCGTTGCTTTGCCAGGTTGCAGTGAACATCAAATCGGTCTGGCCATTGATGTAGGACTAAAGAAACAAGAAGATGATGATCTTATCTGCCCTCATTTTCGAGATAGTGCTGCTGCTGATTTATTTATGCAGCAGATGATGAATTATGGCTTTATTCTACGCTATCCGGAAGATAAACAAGAGATCACCGGTATCAGTTATGAACCTTGGCATTTTCGTTATGTCGGGCTTCCCCATAGCCAAGTCATCACTGCCCAAAAATGGACTCTGGAAGAATACCATGATTACTTGGCTCAGACAGTGAGGCAGTTCGCATGA " 96 UPDATE OXA-426 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1991 UPDATE otrC tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; ATP-binding cassette (ABC) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1990 UPDATE CMY-82 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCTTCGTTCTCCACGTTTGCCGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCGCTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCGATTATCTATCAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCGTCCAGTCACTCAACAAACGCTGTTTGAACTCGGATCGGTCAGTAAAACGTTCAACGGCGTGCTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGCATTACTGGCCTGAACTGACTGGTAAGCAGTGGCAGGGTATCAGCCTGCTGCACTTAGCCACCTACACGGCAGGCGGCCTGCCGCTTCAGGTTCCGGACGACGTTACGGATAAAGCCGCGTTACTACGCTTTTATCAAAACTGGCAGCCGCAATGGGCCCCAGGCGCTAAACGTCTTTATGCTAACTCCAGCATTGGTCTGTTTGGTGCCCTGGCGGTCAAACCCTCAGGCATGAGCTACGAAGAGGCGATGACCAAACGCGTCCTGCGCCCCTTAAAACTGGCGCATACCTGGATTACGGTTCCGCAGAGCGAACAAAAAGATTATGCCTGGGGTTATCGCGAAGGAAAGCCAGTGCATGTATCCCCTGGCCAACTTGATGCCGAAGCCTACGGGGTGAAATCGAGCGTTATCGATATGACCCGTTGGGTTCAGGCCAACATGGACGCCAGCCAGGTTCAGGAGAAAACGCTCCAGCAGGGCATCGAGCTTGCGCAGTCACGTTACTGGCGTATTGGCGATATGTACCAGGGCCTGGGCTGGGAGATGCTGAACTGGCCGGTGAAGGCCGACTCGATAATTAGCGGTAGCGACAGCAAAGTGGCACTGGCAGCGCTTCCTGCCGTTGAGGTAAACCCGCCCGCGCCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGCTCCACTGGCGGATTCGGCAGCTACGTTGCGTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAGAGCTACCCAAACCCTGTTCGCGTCGAGGCCGCCTGGCGCATTCTTGAAAAACTGCAGTAA " 1993 UPDATE QnrB74 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1620 UPDATE CTX-M-156 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1627 UPDATE CTX-M-95 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1994 UPDATE gimA antibiotic inactivation; methymycin; oleandomycin; chalcomycin; gimA family macrolide glycosyltransferase; macrolide antibiotic; tylosin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGAGAAGAGGTGATTTGCACGAGACGTATCGTCTTGATTACGCTCCGCACATGCACGATCCCGCTCATATCGCGATGTTCTCCATCGCCGCGCACGGTCACGTGAACCCCAGCCTGGAAGTGATCCGGGAACTCGTCGCGCGAGGGCACCGGGTGACCTACGCGATCCCGCCGCTCTTCGCCGAGAAGGTCGCCGAGACGGGCGCCGAACCCAAGCTGTGGAACAGCACGCTGCCCGGCCCCGACGCCGACCCGGACGCGTGGGGGACCACACCGCTGGACAACGTCGAGCCGTTCCTCGACGACGCGATCCAGGCGCTCCCGCAGCTCATCGCGGCGTACGAGGGCGACGAGCCGGACCTGGTCCTGCACGACATCACCTCCTACCCGGCCCGCGTCCTCGCCCATCGCTGGGGCGTTCCCGCCGTCTCGCTCTCGCCGAACCTGGTCGCCTGGGAGGGGTACGAGGAGGAGGTCGGCCGGCCGACGTGGGAGGAGCCGCTGAAGACCGAGCGCGGCCGGGCGTACGACGCCCGCTTCCGTGGCTGGCTGAAGGAGAACGGGATCACCGAGGACCCCGACCCCTTCGTCGGCCGTCCCGACCGGTCGCTGGTCCTCATCCCGAAGGCGCTCCAGCCGCACGCCGACCGGGTCGACGAGAAGACGCACACCTTCGTCGGTGCCTGCCAGGGCGACCGCGCCGCCGAGGGCGACTGGCGGCGTCCGGAGGGCGCGGAGAAGGTCGTCCTCGTCTCGCTCGGGTCCTCGTTCACCAAGCGGCCGGCGTTCTACCGGGCGTGCGTCGAGGCGTTCGGCGCGCTGCCCGGCTGGCACGTGGTGCTCCAGGTCGGCCGGCACGTCGACCCCGCCGAGCTGGGCGACGTACCGGAGAACGTGGAGGTCCGCTCCTGGGTGCCGCAGCTGGCGATCCTGAAGCAGGCTGACCTGTTCGTCACGCACGCGGGCGCGGGCGGCAGCCAGGAGGGCCTCGCCACCGCCACGCCGATAGTGGCGGTACCGCAGGCGGTGGACCAGTTCGGCAACGCGGACATGCTCCAGGGGCTCGGCGTGGGCCGCCACCTGCCCACCGAGGAAGCCACCGCCGAGGCGCTGCGCGCCGCCGGGCTCGCCCTGGTCGAGGACCCGGAGGTGGCCCGGCGGCTGAAGGAGATCCAGGCCGGGATGGCCCGGGAGGGCGGCACCCGGCGGGCCGCCGACCTGATCGAGGCGGAGCTGGCGGCGGCGAGGACCTGA " 1625 UPDATE OXA-179 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1624 UPDATE lmrD efflux pump complex or subunit conferring antibiotic resistance; ATP-binding cassette (ABC) antibiotic efflux pump; antibiotic efflux; lincosamide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GAAAATACCAAATCAACAAGAAAAATGTCTGACACCACACGTGCCATCCGATTTTTTTACCTCTATCTGAAAAGATATAAACTCCAATTTGCTGTAATTATGATTTTCATCATTTTAGCAACTTGGTTACAGGTTGTTTCTCCATCACTTTTGGGGGACGCCATCACTAATTTGACTAAATATGTGACTGACTTCTTTACACATCAACATGCTGGTCAATCCCAAGATGCACTACAACAAATTGCTCAACAATTAAGCCAACAAATGCACCAAACAGTAGATTGGCACAATGTTCCTGAAGTTGTGAAATCTTTGCCACAAGCAGCACAAGACCAAATCACTGCTAATCTTCCTAAAGGAACAACTTTAGAAACACTTAAAACAGTGGCAACTTCACATGCAGCCAGCACTTCTACATTCATGAAAGGAATGTGGCAATTGCTTGCAGTCTATGTAGCAACAGGTGTATCAATGTTGATTTATACCTTGCTCTTTAGTCGTATCGTTGCTCATTCAACAAATCGCATGCGTAAAGGTTTGTTTGGTAAACTTGAACGTTTGACAATTTCATATTTTGACCGTCATCAAGATGGTGATATCCTTGCTCGTTTCACATCTGACTTGGATAACATTCAAAATACTTTAAACCAAGCACTCGTTTCGGTTATTTCAAATGCTGCGGTCTTTGTGGGTGTCATTATCCAGATTTTCAATAAAGATGTGACATTTGCTTGGTTGACAGTTGCTGCTTCTCCAGTTGCCATTTTATCTGCTGTGATTATCATTCGTCAATCGAAAAAAGCAACAGACAAACAACAAGAAGAAGTTTCACAACTTAATGCCTATATGGATGAAAAAATCTCTGGGCAAAAAGCAATTATCGTTGAAGGTTTACAAGAAGATTCTATTAATGGATTCTTGGAACACAATGAAAATGTTAAAAAACGTACCTTTGCTGCTCAAGCATGGTCTGGTATGATTTTCCCATTGATGAATGGTTTCCAACTTTTATCAATTGCCATTGTTATCTTTGGTGGAACGGCCTATGTTCTTAACGATGATAGCATGTCAATTGCCACAGGTTTAGGGCTTTTGGTTGCCTTTGTTCAATACGTTCAAAGTTACTACAACCCAATCATGCAAATTTCATCAAACTTTGGTCAACTTCAACTTGCCATCACAGGGGCAACTCGTCTGAATGTCATGTTTGATGAACCAGAAGAAGTTCGTCCTGAAAATGGTAAGAAATTTGATACGATTAAAGACGGAATTCAAATCGAAAATCTTGATTTTGAATATCTTCCAGGAAAACCAGTCCTCAAAAAAGTTAATATTGATGTTAAAAAAGGACAAATGGTTGCCCTCGTTGGTCCAACTGGTTCAGGTAAAACAACAGTTATGAACTTGATGAACCGTTTCTACGATGTTAATGGTGGAGCAATTAAATTTGATGGAACTGATATTCGTGAATTTGATTTAGATAGCTTGCGTTCAAATGTCGGAATTGTTTTGCAAGAGTCTGTTCTCTTTGATGGAACGATTGCTGATAATATCAAGTTTGGTAAACCAAATGCTACTCAAGAAGAAATTGAAACAGTGGCTAAGACAACTCACATTCATGATTTCATTGATAGCTTACCTGACAAGTACGAAACACATGTTTCAGATGATGAATCAGTCTTCTCAGTTGGTCAAAAACAACAAATTTCTATCGCACGTACCATTTTGACAAATCCAGAACTTTTGATTTTGGATGAAGCAACTTCAAATGTGGATACAGTAACTGAACAACAAATTCAATGGGCGATGGAAGCTGCTATTGCTGGTCGTACTTCATTCGTTATTGCTCACCGTTTGAAAACAATTCTTAATGCAGATAAGATTGTTGTTCTTAAAGATGGTGAAGTTATCGAAGAAGGAAATCACCATGAACTTGTTGCTCAAGGTGGCTTCTACTCTGAACTTTATCACAATCAATTTGTTTTT " 1999 UPDATE TEM-215 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1998 UPDATE CTX-M-83 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1629 UPDATE TEM-197 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1628 UPDATE SHV-154 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2860 UPDATE PDC-81 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2861 UPDATE PDC-82 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2862 UPDATE PDC-83 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2863 UPDATE PDC-84 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2864 UPDATE PDC-85 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2865 UPDATE PDC-86 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2866 UPDATE PDC-87 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2867 UPDATE PDC-88 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2868 UPDATE PDC-89 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2869 UPDATE PDC-90 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 557 UPDATE SHV-9 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTACTCCGGACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAACGTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTAGCAAGCGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATACCCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 556 UPDATE vanYB glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanY; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 551 UPDATE CTX-M-117 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCAGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGGCTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA " 550 UPDATE CMY-71 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGTTATGCTGCGCTCTGCTGCTGACAGCCCCTTTCTCCACGTTTGCCGCAGCCAAAACAGAACAACAGATTGCCGATACCGTTAATCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCCGTTATCTACCAGGGAAAACCCTATTATTTCACCTGGGGTAAAGCCGATATCACCAATAACCACCCAGTCACGCAGCAAACTCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCAGGGTATCAGCCTGCTGCACTTAGCCACCTACACGGCAGGCGGCCTGCCGCTGCAGATCCCCGATGACGTTACGGATAAAGCCGCATTACTGCGTTTTTATCAAAACTGGCAGCCGCAATGGGCCCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGCGCGCTGGCGGTGAAACCCTCAGGAATGAGTTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACAGTTCCGCAGAACGAACAAAAAGATTATGCCTGGGGCTATCGCGAAGGGAAGGCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATTGATATGGCCCGCTGGGTTCAGGTCAACATGGACGCCAGCCGCGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGCGATATGTACCAGGGATTAGGGTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGTAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCCGCCCCCGCAGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACTGGAGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAAACTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGCGGCCTGGCGCATTCTTGAAAAGCTGCAATAA " 553 UPDATE VIM-35 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 552 UPDATE QnrB28 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1199 UPDATE SHV-168 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1198 UPDATE mef(B) efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; macrolide antibiotic; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 12313 UPDATED strand with - UPDATED accession with FJ196385.1 UPDATED fmin with 11083 UPDATED sequence with ATGAACAGAATAAAAAATTGGAAGAAACAATTTGCTGTAATATACACAGGGCAGGCTTTTTCAATCTTGGGTTCTGCCGCAGTGCAGTTCGCTGTTATCTGGTGGCTGACCATCCAGACTGAATCCGCAATCACCTTGACGATTGCATCCTTAGTTGCCTTTCTCCCCAATATGTTAATCGGACCCTTTGCCGGTGTGTGGATCGACCGATACAACCGCCGAACAGTAATGATTTTAGCTGACGGTCTGGTAGCTGTATCCAGCATCATCCTTGGGGCAGCATTTTTACTTGTGGAAACACCCCCTATTTGGTTTATCTACATTGTTTTATTTTTGCGTGGATTGGGGAATACCTTTCACGGTCCAGCTATGCAAGCGGCGATACCCATGTTTGTGCCAGCAGATATGTTGACCAAAGCAGGGGGCTGGGGAAATATGATCCAATCAATATCCAACATGATGGGGCCTGTGCTGGGTGCTGCGCTTATGTCATTTCTACCTATTTCCTCCATTATGATTGTGGATATACTGGGAGCCGCTTTTGCGATAGTTTGCCTCCTATTTGTTATAATTCCAGACATTACGCAAACCAATGAGAAGATGAGTGTATTGTCTGACATGAAGCAGGGCTTTATCGCAATGAAAGCAAATAAACCTTTAATGGCTGTGTTTTCCCCCATGCTGCTGATGACCATACTTTATATGCCATTAGGTTCTCTGTTCCCTCTACTGGCACGCAGCCACTTTATGGGTGAAGCCTGGCACAATAGCATTGTGGAATTTGTCTTTGCAGGTGGATTGCTTCTTTCATCTTTGGTTATCGGTGTATGGGGCGGCATGAAAAGAAGGTTTTTCATGGCATCCTTAGCTATTGGCTTAATGGGTCTGGCTACACTGATTAGCGGAGCGCTACCGACAAGCGGTTTTTGGATATTTGTTATATGCTGCTTCTTCTTGGGCGCCTCTGGCACATTTATGAATGTTCCTGTTATGGCTTATGTTCAAGAAAGCATTGCCCCTGAAATGATGGGCAAGGTGTTTTCCCTTTTGATGACCGCCATGACTCTTTCTATGCCGATAGGCTTACTTGTTGCAGGTCCGGTTGTTGAGGTTATAGGTGTTAATACATGGTTTTTCTGGTCTGGTGTTGCGTTGATAGTAAACGCTGTTCTCTGCCGCATTCTGACACGACGCTATGACAAAGTAACAATGAAACCGCAAGTGGACTGA UPDATED NCBI_taxonomy_name with Escherichia coli UPDATED NCBI_taxonomy_id with 562 UPDATED NCBI_taxonomy_cvterm_id with 35914 UPDATED accession with ACJ63262.1 UPDATED sequence with MNRIKNWKKQFAVIYTGQAFSILGSAAVQFAVIWWLTIQTESAITLTIASLVAFLPNMLIGPFAGVWIDRYNRRTVMILADGLVAVSSIILGAAFLLVETPPIWFIYIVLFLRGLGNTFHGPAMQAAIPMFVPADMLTKAGGWGNMIQSISNMMGPVLGAALMSFLPISSIMIVDILGAAFAIVCLLFVIIPDITQTNEKMSVLSDMKQGFIAMKANKPLMAVFSPMLLMTILYMPLGSLFPLLARSHFMGEAWHNSIVEFVFAGGLLLSSLVIGVWGGMKRRFFMASLAIGLMGLATLISGALPTSGFWIFVICCFFLGASGTFMNVPVMAYVQESIAPEMMGKVFSLLMTAMTLSMPIGLLVAGPVVEVIGVNTWFFWSGVALIVNAVLCRILTRRYDKVTMKPQVD " 1191 UPDATE mdtM antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; norfloxacin; acridine dye; lincomycin; puromycin; acriflavin; nucleoside antibiotic; fluoroquinolone antibiotic; lincosamide antibiotic; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 4568519 UPDATED strand with - UPDATED accession with U00096.3 UPDATED fmin with 4567286 UPDATED sequence with ATGCCACGTTTTTTTACCCGCCATGCCGCCACGCTGTTTTTCCCGATGGCGTTGATTTTGTATGACTTTGCTGCGTATCTGTCGACGGATCTGATCCAGCCTGGGATCATTAATGTGGTACGTGATTTTAATGCCGATGTCAGTCTGGCCCCTGCTGCCGTCAGTCTCTATCTTGCTGGCGGTATGGCGTTACAGTGGCTGCTGGGGCCGCTTTCCGACAGAATTGGCCGCAGGCCGGTGCTGATTACCGGGGCGCTAATTTTTACCCTTGCCTGCGCCGCGACAATGTTCACAACGTCTATGACACAGTTTCTTATCGCGCGTGCAATTCAGGGCACCAGTATCTGTTTTATTGCCACCGTTGGTTATGTCACGGTGCAGGAGGCGTTCGGACAGACAAAAGGGATCAAGTTGATGGCGATTATCACCTCCATCGTACTGATTGCGCCGATTATCGGCCCGCTTTCCGGCGCAGCTCTGATGCACTTTATGCACTGGAAAGTCCTTTTTGCCATCATTGCGGTTATGGGTTTTATCTCATTTGTTGGCTTACTGTTGGCGATGCCAGAGACGGTGAAGCGCGGCGCGGTTCCGTTTAGCGCCAAAAGCGTCTTGCGCGATTTTCGTAATGTCTTTTGCAATCGGCTGTTCCTCTTTGGCGCAGCAACCATCTCTTTAAGCTATATCCCGATGATGAGCTGGGTGGCTGTCTCGCCGGTGATCCTTATCGATGCAGGCAGCTTAACAACTTCGCAGTTCGCCTGGACACAGGTTCCGGTGTTCGGCGCGGTGATTGTTGCGAATGCCATCGTGGCGCGTTTTGTTAAAGATCCGACCGAACCGCGGTTTATCTGGCGTGCCGTACCCATTCAACTGGTCGGCCTCTCGCTGTTGATTGTCGGCAATCTGCTGTCGCCGCACGTCTGGCTGTGGTCGGTGCTGGGCACCAGTCTGTATGCTTTCGGGATTGGTTTGATTTTCCCGACCTTATTCCGCTTTACGCTGTTTTCCAATAAGTTACCGAAAGGGACCGTCTCCGCATCGCTAAATATGGTGATCCTGATGGTGATGTCGGTCTCGGTCGAAATCGGCCGCTGGCTATGGTTTAACGGCGGTCGCTTGCCGTTTCATCTGTTAGCCGTTGTGGCGGGCGTTATCGTCGTTTTCACCCTGGCGGGATTGCTCAATCGCGTGCGCCAGCATCAGGCAGCCGAGCTAGTGGAGGAGCAGTGA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. MG1655 UPDATED NCBI_taxonomy_id with 511145 UPDATED NCBI_taxonomy_cvterm_id with 36849 UPDATED accession with AAC77293.1 UPDATED sequence with MPRFFTRHAATLFFPMALILYDFAAYLSTDLIQPGIINVVRDFNADVSLAPAAVSLYLAGGMALQWLLGPLSDRIGRRPVLITGALIFTLACAATMFTTSMTQFLIARAIQGTSICFIATVGYVTVQEAFGQTKGIKLMAIITSIVLIAPIIGPLSGAALMHFMHWKVLFAIIAVMGFISFVGLLLAMPETVKRGAVPFSAKSVLRDFRNVFCNRLFLFGAATISLSYIPMMSWVAVSPVILIDAGSLTTSQFAWTQVPVFGAVIVANAIVARFVKDPTEPRFIWRAVPIQLVGLSLLIVGNLLSPHVWLWSVLGTSLYAFGIGLIFPTLFRFTLFSNKLPKGTVSASLNMVILMVMSVSVEIGRWLWFNGGRLPFHLLAVVAGVIVVFTLAGLLNRVRQHQAAELVEEQ " 1190 UPDATE OXA-354 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1193 UPDATE ErmH antibiotic target alteration; streptogramin antibiotic; Erm 23S ribosomal RNA methyltransferase; macrolide antibiotic; lincosamide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCTGCGCTCCTGAAGCGCATACTTAGGAGACGCATGGCTGAAAAGAGGTCAGGACGCGGGCGCATGGCCGCAGCGCGTACAACCGGAGCTCAGTCGCGTAAAACGGCACAGCGGTCGGGCCGGAGTGAGGCTGACCGTAGAAGAAGAGTCCACGGGCAGAATTTCCTCGTCGACCGGGAAACAGTACAACGGTTTGTGCGTTTCGCCGATCCGGACCCCGGGGAGGTCGTTCTCGAGGTCGGTGCCGGTAATGGTGCGATCACGCGCGAGCTGGCGCGATTATGCCGACGAGTGGTGGCGTATGAGATCGACCGGCACTTCGCGGACCGATTACGTGAGGCGACCGCCGAGGATCCGCGGATCGAGGTCGTCGCCGGCGACTTCCTGAAGACCTCGCAGCCCAAGGTCCCGTTCTCCGTGGTCGGCAACATCCCGTTCGGCAACACCGCGGACATAGTGGACTGGTGCCTGAACGCGCGGCGGCTGCGTACGACCACCCTGGTCACCCAGCTCGAATACGCCCGCAAGCGCACCGGCGGCTATCGGCGCTGGTCACGGCTCACCGTGGCCACCTGGCCCGAGGTGGAGTGGCGGATGGGCGAGCGGATCAGCCGCCGCTGGTTCCGGCCCGTCCCCGCCGTCGACTCCGCGGTACTGCGACTGGAACGGCGACCGGTGCCGCTGATCCCACCCGGTCTGATGCACGACTTCCGGGACCTGGTGGAGACCGGGTTCACGGGAAAGGGCGGTTCGCTGGACGCCTCGCTGCGCCGGCGCTTCCCGGCCCGGCGGGTGGCCGCCGGGTTCCGCAGGGCCCGCCTGGAGCAGGGCGTGGTCGTCGCCTACGTCACCCCGGGCCAATGGATCACACTCTTCGAGGAACTCCACGGGCGCTGA " 1192 UPDATE VEB-1 antibiotic inactivation; monobactam; cephalosporin; VEB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 3661636 UPDATED strand with - UPDATED accession with NC_010410.1 UPDATED fmin with 3660736 UPDATED sequence with ATGAAAATCGTAAAAAGGATATTATTAGTATTGTTAAGTTTATTTTTTACAATTGTGTATTCAAATGCTCAAACTGACAACTTAACTTTGAAAATTGAGAATGTTTTAAAGGCAAAAAATGCCAGAATAGGAGTAGCAATATTCAACAGCAATGAGAAGGATACTTTGAAGATTAATAACGACTTCCATTTCCCGATGCAAAGCGTTATGAAATTTCCGATTGCTTTAGCCGTTTTGTCTGAGATAGATAAAGGGAATCTTTCTTTTGAACAAAAAATAGAGATTACCCCTCAAGACCTTTTGCCTAAAACGTGGAGTCCGATTAAAGAGGAATTCCCTAATGGAACAACTTTGACGATTGAACAAATACTAAATTATACAGTATCAGAGAGCGACAATATTGGTTGTGATATTTTGCTAAAATTAATCGGAGGAACTGATTCTGTTCAAAAATTCTTGAATGCTAATCATTTCACTGATATTTCAATCAAAGCAAACGAAGAACAAATGCACAAGGATTGGAATACCCAATATCAAAATTGGGCAACCCCAACAGCGATGAACAAACTGTTAATAGATACTTATAATAATAAGAACCAATTACTTTCTAAAAAAAGTTATGATTTTATTTGGAAAATTATGAGAGAAACAACAACAGGAAGTAACCGATTAAAAGGACAATTACCAAAGAATACAATTGTTGCTCATAAAACAGGGACTTCCGGAATAAATAATGGAATTGCAGCAGCCACTAATGATGTTGGGGTAATTACTTTACCGAATGGACAATTAATTTTTATAAGCGTATTTGTTGCAGAGTCCAAAGAAACTTCGGAAATTAATGAAAAGATTATTTCAGACATTGCAAAAATAACGTGGAATTACTATTTGAATAAATAA UPDATED NCBI_taxonomy_name with Gammaproteobacteria UPDATED NCBI_taxonomy_id with 1236 UPDATED NCBI_taxonomy_cvterm_id with 40536 UPDATED accession with WP_000706731.1 UPDATED sequence with MKIVKRILLVLLSLFFTIVYSNAQTDNLTLKIENVLKAKNARIGVAIFNSNEKDTLKINNDFHFPMQSVMKFPIALAVLSEIDKGNLSFEQKIEITPQDLLPKTWSPIKEEFPNGTTLTIEQILNYTVSESDNIGCDILLKLIGGTDSVQKFLNANHFTDISIKANEEQMHKDWNTQYQNWATPTAMNKLLIDTYNNKNQLLSKKSYDFIWKIMRETTTGSNRLKGQLPKNTIVAHKTGTSGINNGIAAATNDVGVITLPNGQLIFISVFVAESKETSEINEKIISDIAKITWNYYLNK " 1195 UPDATE SHV-55 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1194 UPDATE OXA-16 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TATCGCGTGTCTTTCGAGTACGGCATTAGCTGGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTCTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATGACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAACGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAGCAATGGGAAAGAGACTTGACCTTAAGAGGGGCAATACAAGTTTCAGCTGTTCCCGTATTTCAACAAATCACCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATACCTTAAAAAATTTTCCTATGGCAACCAGAATATCAGTGGTGGCATTGACAAATTCTGGTTGGAAGACCAGCTTAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATATTTAAATAAATTGTCAGCATCTAAAGAAAACCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCGGCACCTGAATATCTAGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGGTGGGTTGAGAAGGAGACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAGTAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGAAAGTGAGGGCATCATTGGTGGCTA " 1197 UPDATE Mycobacterium tuberculosis rpsL mutations conferring resistance to Streptomycin antibiotic target alteration; antibiotic resistant rpsL; streptomycin; aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with ATGCCAACCATCCAGCAGCTGGTCCGCAAGGGTCGTCGGGACAAGATCAGTAAGGTCAAGACCGCGGCTCTGAAGGGCAGCCCGCAGCGTCGTGGTGTATGCACCCGCGTGTACACCACCACTCCGAAGAAGCCGAACTCGGCGCTTCGGAAGGTTGCCCGCGTGAAGTTGACGAGTCAGGTCGAGGTCACGGCGTACATTCCCGGCGAGGGCCACAACCTGCAGGAGCACTCGATGGTGCTGGTGCGCGGCGGCCGGGTGAAGGACCTGCCTGGTGTGCGCTACAAGATCATCCGCGGTTCGCTGGATACGCAGGGTGTCAAGAACCGCAAACAGGCACGCAGCCGTTACGGCGCTAAGAAGGAGAAGGGCTGA " 1196 UPDATE OXA-71 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1759 UPDATE vanF glycopeptide antibiotic; glycopeptide resistance gene cluster; van ligase; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TTGAATAGATTAAAAATAGCCATCCTGTTTGGGGGCTGTTCAGAGGAACACGATGTGTCGGTAAAATCGGCGAAAGAGATTGCCAATAACATTGACACGGAAAAATATGAGCCGATATACATCGGAATCACCCGATCCGGCGTCTGGAAAATGTGCGAAAAGCCATGCATGGATTGGGACAACGAAAACTGCCGTTCGGCAGTGCTTTCTCCGGACAAAAAAATGCACGGGCTGCTTGTTATGCGGAATAAAGGATATCAAATCCAACGTATAGACGCGGTATTTTCGGTTTTGCACGGCAAATCGGGTGAAGACGGCGCCATACAAGGTTTATTTGAATTGTCCAGCATCCCCTATGTAGGCTGTGATGTTCAAAGTTCGGCGGTGTGTATGGACAAATCCCTGACATACATTGTGGCCCAAAATGCTGGTTTTGGCACTCCTGAATTTTTGATTTTGAATCATGGCGATATACCGGATTCAAATACCTTAACATATCCTGTTTTTGTTAAACCGGCGCGTTCCGGCTCATCTTTCGGCGTGAATAAAGTCAATAACGAGGACGAATTAGACGCCGCCATTGAAACAGCAAGGCAGTATGACAGTAAAGTCCTGATTGAACAAGCTGTTCCAGGCCTTGAAGTTGGCTGTGCCGTGTTGGGAAACGGTACCGACTTAATCGTTGGCGAAGTGGACCAAATTTCACTTTCGCATGGTATCTTTCGTATTCATCAAGAAGATCAACCAGAAAAAGGCTCCGAAAACGCAGTTGTTTTGGTTCCCGCAAACCTGTCGGCAGAGAAACGCATAAAGATACAAGAGACGGCGAAAGCAATTTATAAGGCGCTCGGCTGTAAAGGTCTTTCTCGTGTTGATATGTTTTTGCAGGAAAACGGACGTATTATACTGAATGAAGTCAATACGTTGCCGGGATTCACGGCATACAGCCGTTATCCCCGTATGATGGCTGCCGCGGGGATGACACTGTCCGGGTTAATTGATCATTGCATCACACTGGCACTCAAAGGATGA " 1758 UPDATE OXA-326 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1757 UPDATE emrA efflux pump complex or subunit conferring antibiotic resistance; nalidixic acid; major facilitator superfamily (MFS) antibiotic efflux pump; fluoroquinolone antibiotic; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGCGCAAATGCGGAGACTCAAACCCCGCAGCAACCGGTAAAGAAGAGCGGCAAACGTAAGCGTCTGCTCCTCCTTCTCACCTTGCTCTTTATAATTATTGCCGTAGCGATAGGGATTTATTGGTTTTTGGTACTGCGTCACTTCGAAGAAACCGATGACGCATACGTGGCAGGGAATCAAATTCAAATTATGTCTCAGGTGTCTGGCAGCGTGACGAAAGTCTGGGCCGATAACACCGATTTTGTAAAAGAAGGCGACGTGCTGGTCACTCTCGACCCGACAGATGCTCGCCAGGCGTTTGAAAAAGCCAAAACTGCACTGGCTTCCAGCGTTCGCCAAACCCACCAGCTGATGATTAACAGCAAGCAGTTGCAGGCGAATATTGAGGTGCAGAAAATCGCCCTCGCGAAAGCACAAAGCGACTACAACCGCCGTGTGCCGCTGGGCAATGCCAACCTGATTGGTCGCGAAGAGCTGCAACACGCCCGCGACGCCGTCACCAGTGCCCAGGCGCAACTGGACGTCGCGATTCAACAATACAATGCCAATCAGGCGATGATTCTGGGGACTAAACTGGAAGATCAGCCAGCCGTGCAACAGGCTGCCACCGAAGTACGTAACGCCTGGCTGGCGCTGGAGCGTACTCGTATTATCAGTCCGATGACCGGTTATGTCTCCCGCCGCGCGGTACAGCCTGGGGCGCAAATTAGCCCAACGACGCCGCTGATGGCGGTCGTTCCAGCCACCAATATGTGGGTGGATGCCAACTTTAAAGAGACGCAGATTGCCAATATGCGTATCGGTCAGCCGGTCACTATCACCACGGATATTTACGGCGATGATGTGAAATACACCGGTAAAGTGGTTGGTCTGGATATGGGCACAGGTAGCGCGTTCTCACTGCTTCCAGCGCAAAATGCGACCGGTAACTGGATCAAAGTCGTTCAGCGTCTGCCTGTGCGTATCGAACTGGACCAGAAACAGCTGGAGCAATATCCGCTGCGTATCGGTTTGTCCACGCTGGTGAGCGTCAATACCACTAACCGTGACGGTCAGGTACTGGCAAATAAAGTACGTTCCACTCCGGTAGCGGTAAGCACCGCGCGTGAAATCAGCCTGGCACCTGTCAATAAACTGATCGACGATATCGTAAAAGCTAACGCTGGCTAA " 1756 UPDATE CMY-93 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCTTCGTTCTCCACGTTTGCCGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCGCTGATGCAGGAGCAGGCAATTCCGGGCATGGCCGTTGCGATTATCTATCAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCGTCCAGTCACTCAACAAACGCTGTTTGAACTCGGATCGGTCAGTAAAACGTTCAACGGTGTGCTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGTTCAGCGATCCGGTCACGCATTACTGGCCTGAACTGACTGGTAAGCAGTGGCAGGGTATCAGCCTGCTGCACTTAGCCACCTACACGGCAGGCGGCCTGCCGCTTCAGGTTCCGGACGACGTTACGGATAAAGCCGCGTTACTACGCTTTTATCAAAACTGGCAGCCGCAATGGGCCCCAGGCGCTAAACGTCTTTATGCTAACTCCAGCATTGGTCTGTTTGGTGCCCTGGCGGTCAAACCCTCAGGCATGAGCTACGAAGAGGCGATGACCAAACGCGTCCTGCGCCCCTTAAAACTGGCGCATACCTGGATTACGGTTCCGCAGAGCGAACAAAAAGATTATGCCTGGGGTTATCGCGAAGGAAAGCCAGTGCATGTATCCCCTGGCCAACTTGATGCCGAAGCCTACGGGGTGAAATCGAGCGTTATCGATATGACCCGTTGGGTTCAGGCCAACATGGACGCCAGCCAGGTTCAGGAGAAAACGCTCCAGCAGGGCATCGAGCTTGCGCAGTCACGTTACTGGCGTGTTGGCGATATGTACCAGGGCCTGGGCTGGGAGATGCTGAACTGGCCGGTGAAAGCCGACTCGATAATTAGCGGTAGCGACAGCAAAGTGGCACTGGCAGCGCTTCCTGCCGTTGAGGTAAACCCGCCCGCGCCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGCTCCACTGGCGGATTCGGCAGCTACGTTGCTTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAGAGCTACCCAAACCCTGTTCGCGTCGAGGCCGCCTGGCGCATTCTTGAAAAACTGCAGTAA " 1755 UPDATE CTX-M-23 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGTCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGACGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGTGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACTTGGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGACGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGGGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGACTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCAACGGTTTGTAA " 1754 UPDATE vanO glycopeptide antibiotic; glycopeptide resistance gene cluster; van ligase; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGCAGATTGAAGGTCGGGGTCATCTTCGGAGGGGCTTCCGAAGAACATCCCGTCTCCATCAAGTCGGCGCGAGAGGTGGCAAGAAGTCTCGACACGGAGAAGTACGAACCGTTCTGGATCGGCATCACGACCGGCGGCGAGTGGAAGCTCTGTGACGGCCCCGACGCGGATTGGGAGAATCGCAGCGCCCGTCCCGCCGTGCTGTCACCCGATCGAAGTGTGCACGGCCTGCTGGTCATGGAGCAGGGGGGCTACGAAACCGTGCGCCTCGACCTCGTCTTCCCCGTACTTCACGGCAAGCTCGGCGAAGACGGCGCGATCCAAGGCCTGTTGGAGCTCGCCGGCATCCCCTACGTCGGCTGCGACATCCAGGGCTCGGCTGTGTGCATGGACAAGGCCCTGGCCTACATCGTGGCCAAGAGCGCGGGAATCGCCACGCCGAGCTTTTGGGTTGTCGCGGAGAACGAGAAGGTCGACGCCGATCACCTTCGCTATCCGGTCTTCGTGAAGCCGGCCCGTTCGGGTTCATCTTTCGGCGTCAGCAAGGTCACCCGAGAAGACGAGCTGCCGAACGCGCTGAGCGCGGCGCGACAGTACGACTCGAAGGTCCTGATCGAAGAAGCCGTGGCCGGCAGCGAGATCGGCTGCGCGGTCATGGGTGAACTATTCGGCCTGATCACTGGGGAGGTGGACCGCGTCGACCTCTCGCACGGATTCTTCAGGATCCACCAGGAGGACTCACCCGAAACCGGATCGGAGAACTCGACGTTCATCGTTCCCGCCGACATCTCCGACGAATCGCGCCGGCTCGTCCAAGAGACCGCCAAGGCCATCTACCGCACCCTGGGCTGCAAGGGACTTGCCCGCGTTGACATGTTCCTCACCGACGACGGACGGGTGGTCCTCAACGAGGTCAACACCATGCCCGGCATGACGTCGTACAGCCGGTACCCGCGGATGATGGCCGCCGCGGGACTGCCGATCTCCGACATGATCGACCGGCTCATCTCGATGACAATGCACGGGAAGAAGCGATGA " 1753 UPDATE SHV-148 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1752 UPDATE MdtK efflux pump complex or subunit conferring antibiotic resistance; fluoroquinolone antibiotic; antibiotic efflux; multidrug and toxic compound extrusion (MATE) transporter; ciprofloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2162750 UPDATED strand with - UPDATED accession with CP014358.1 UPDATED fmin with 2161325 UPDATED sequence with TTGAACGTCTCCACTGCCTTACGCCAGGCTGTCGTCCGTACGCCCTGGTATGCCAAACGCAAGAGCTACAAAGTGTTGTTCTGGCGTGAAATCACCCCACTTGCTATCCCTATTTTTCTGGAAAATACCTGTGTTTTGCTAATGGGCGTGCTCAGTACTTTTCTCGTCAGTTGGCTGGGCAAGGAAGCAATGGCGGGCGTGGGGCTTGCCGACAGTTTTAATATGGTAATTATGGCTTTTTTTGCGGCTATCGATCTTGGTACTACGGTGGTGGTCGCCTTTAGCCTCGGCAAGCGCGACAGGCGACGCGCAAGGGCGGCGGCGCGCCAGTCGCTGGTGATTATGACGCTATTTGCCGTTGTGCTGGCAGTGGTCATTCATTATTTCGGCAGTGAAATTATTAATATTGTCGCAGGCGAGGCGACGCCAGAAGTAAAGGGGCTGGCGTTAACGTACCTTGAACTGACGGTGCTGAGTTATCCGGCTGCGGCAATTGCGCTAATCGGTAGCGGCGCGCTGCGTGGGGCAGGGAATACGAAAATCCCGTTGATGATTAACGGCGGGATGAACATTCTCAATATTATTATCAGCAGCATCCTGATTTACGGGGCTTTCTCCTGGCAAGGGCTGGGTTTTGCCGGCGCGGGGCTGGGATTAACCATTTCGCGCTACATCGGCGCGGTAGCGATTATTTGGGTGCTGATGATTGGTTTTAATCCGGCGCTGCGCATTCCGCTGAAAAGCTATCTGAAGCCGCTGAATTTCGGCATTATCTGGGAAGTGATGGGTATCGGTATTCCGGCGAGCATTGAATCAGTGCTGTTCAACGGTAGCAAGCTACTGACGCAAATGTTTGTCGCCGGAATGGGCACTAACGTTATTGCGGGTAACTTTATTGCCTTTTCCGTGGCGGCGCTTATCAACCTGCCGGGTAACGCCCTTGGTTCGGCGTCGACTATTATCACCGGTAAGCGTCTTGGTACCGGGCAAATTGGTCAGGCAGAGCGTCAACTGCGCCATGTATTCTGGATGTCGACTATCGTACTTACGGCAATTGCCTGGGGGACGGCGCCGTTTGCGGGTCTGTTTGCCTCATTTTATACCCAGGAGCAGGACGTAAAAGAGGTAGTGAAAGTTCTGCTCTGGCTTAATGCTGCCTTTATGCCAATTTGGGCGGCCGCGTGGGTGTTGCCGTCGGGTTTTAAAGGCGCGCGCGATGTGCGATTTGCGATGTGGGTATCGATGCTGGGGATGTGGGGCTGTCGCGTTGTGGCAGGGTATACGCTTGGTATTGTGCTGGGTATGGGGGTTGTAGGGGTTTGGCTGGGGATGTTTCTTGACTGGGCCGTGCGTGGCGCACTGTTTTACTGGCGTCTGATAAGCGGGCGCTGGCTGTGGAGATACCCGCGCGTAAAGAGGGAGTAA UPDATED NCBI_taxonomy_name with Salmonella enterica subsp. enterica serovar Typhimurium UPDATED NCBI_taxonomy_id with 90371 UPDATED NCBI_taxonomy_cvterm_id with 35732 UPDATED accession with AML99881.1 UPDATED sequence with MNVSTALRQAVVRTPWYAKRKSYKVLFWREITPLAIPIFLENTCVLLMGVLSTFLVSWLGKEAMAGVGLADSFNMVIMAFFAAIDLGTTVVVAFSLGKRDRRRARAAARQSLVIMTLFAVVLAVVIHYFGSEIINIVAGEATPEVKGLALTYLELTVLSYPAAAIALIGSGALRGAGNTKIPLMINGGMNILNIIISSILIYGAFSWQGLGFAGAGLGLTISRYIGAVAIIWVLMIGFNPALRIPLKSYLKPLNFGIIWEVMGIGIPASIESVLFNGSKLLTQMFVAGMGTNVIAGNFIAFSVAALINLPGNALGSASTIITGKRLGTGQIGQAERQLRHVFWMSTIVLTAIAWGTAPFAGLFASFYTQEQDVKEVVKVLLWLNAAFMPIWAAAWVLPSGFKGARDVRFAMWVSMLGMWGCRVVAGYTLGIVLGMGVVGVWLGMFLDWAVRGALFYWRLISGRWLWRYPRVKRE " 1751 UPDATE Erm(33) antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACAAAAAAAATATAAAAGACAGTCAAAACTTTATTACTTCGAAACGTAATATAGATAAAATAATGACAAATATAAGCTTAAATGAACATGATAATATCTTTGAAATTGGCTCAGGAAAAGGGCATTTTACCCTTGAATTAGTACAAAGGTGTAATTTCGTAACTGCTATTGAAATAGACCATAAATTATGCAAGACTACAGAAAATAAACTTGTTGATCACGATAATTTTCAAGTTTTAAACAAGGATATATTGCAGTTTAAATTTCCTAAAAACCAATCCTATAATATATTTGGTAATATTCCTTATAACATCAGTACGGATATTGTCAAAAGAATTACCTTTGAAAGTCAGGCTAAATATAGCTATCTTATCGTTGAGAAGGGATTTGCGAAAAGATTGCAAAATCTGCAACGAGCTTTGGGTTTACTATTAATGGTGGAGATGGATATAAAAATGCTCAAAAAAGTACCACCACTATATTTTCATCCTAAGCCAAGTGTAGACTCTGTATTGATTGTTCTTGAACGACATCAACCATTGATTTCAAAGAAGGACTACAAAAAGTATCGATCTTTTGTTTATAAGTGGGTAAACCGTGAATATCGTGTTCTTTTCACTAAAAACCAATTCCGACAGGCTTTGAAGCATGCAAATGTCACTAATATTAATAAACTATCGAAGGAACAATTTCTTTCTATTTTCAATAGTTACAAATTGTTTCACTAA UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 1750 UPDATE OXA-254 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1177 UPDATE KPC-12 antibiotic inactivation; penam; carbapenem; cephalosporin; monobactam; KPC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1176 UPDATE Mycobacterium tuberculosis katG mutations conferring resistance to isoniazid isoniazid; isoniazid resistant katG; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2156111 UPDATED strand with - UPDATED accession with NC_000962.3 UPDATED fmin with 2153888 UPDATED sequence with GTGCCCGAGCAACACCCACCCATTACAGAAACCACCACCGGAGCCGCTAGCAACGGCTGTCCCGTCGTGGGTCATATGAAATACCCCGTCGAGGGCGGCGGAAACCAGGACTGGTGGCCCAACCGGCTCAATCTGAAGGTACTGCACCAAAACCCGGCCGTCGCTGACCCGATGGGTGCGGCGTTCGACTATGCCGCGGAGGTCGCGACCATCGACGTTGACGCCCTGACGCGGGACATCGAGGAAGTGATGACCACCTCGCAGCCGTGGTGGCCCGCCGACTACGGCCACTACGGGCCGCTGTTTATCCGGATGGCGTGGCACGCTGCCGGCACCTACCGCATCCACGACGGCCGCGGCGGCGCCGGGGGCGGCATGCAGCGGTTCGCGCCGCTTAACAGCTGGCCCGACAACGCCAGCTTGGACAAGGCGCGCCGGCTGCTGTGGCCGGTCAAGAAGAAGTACGGCAAGAAGCTCTCATGGGCGGACCTGATTGTTTTCGCCGGCAACTGCGCGCTGGAATCGATGGGCTTCAAGACGTTCGGGTTCGGCTTCGGCCGGGTCGACCAGTGGGAGCCCGATGAGGTCTATTGGGGCAAGGAAGCCACCTGGCTCGGCGATGAGCGTTACAGCGGTAAGCGGGATCTGGAGAACCCGCTGGCCGCGGTGCAGATGGGGCTGATCTACGTGAACCCGGAGGGGCCGAACGGCAACCCGGACCCCATGGCCGCGGCGGTCGACATTCGCGAGACGTTTCGGCGCATGGCCATGAACGACGTCGAAACAGCGGCGCTGATCGTCGGCGGTCACACTTTCGGTAAGACCCATGGCGCCGGCCCGGCCGATCTGGTCGGCCCCGAACCCGAGGCTGCTCCGCTGGAGCAGATGGGCTTGGGCTGGAAGAGCTCGTATGGCACCGGAACCGGTAAGGACGCGATCACCAGCGGCATCGAGGTCGTATGGACGAACACCCCGACGAAATGGGACAACAGTTTCCTCGAGATCCTGTACGGCTACGAGTGGGAGCTGACGAAGAGCCCTGCTGGCGCTTGGCAATACACCGCCAAGGACGGCGCCGGTGCCGGCACCATCCCGGACCCGTTCGGCGGGCCAGGGCGCTCCCCGACGATGCTGGCCACTGACCTCTCGCTGCGGGTGGATCCGATCTATGAGCGGATCACGCGTCGCTGGCTGGAACACCCCGAGGAATTGGCCGACGAGTTCGCCAAGGCCTGGTACAAGCTGATCCACCGAGACATGGGTCCCGTTGCGAGATACCTTGGGCCGCTGGTCCCCAAGCAGACCCTGCTGTGGCAGGATCCGGTCCCTGCGGTCAGCCACGACCTCGTCGGCGAAGCCGAGATTGCCAGCCTTAAGAGCCAGATCCGGGCATCGGGATTGACTGTCTCACAGCTAGTTTCGACCGCATGGGCGGCGGCGTCGTCGTTCCGTGGTAGCGACAAGCGCGGCGGCGCCAACGGTGGTCGCATCCGCCTGCAGCCACAAGTCGGGTGGGAGGTCAACGACCCCGACGGGGATCTGCGCAAGGTCATTCGCACCCTGGAAGAGATCCAGGAGTCATTCAACTCCGCGGCGCCGGGGAACATCAAAGTGTCCTTCGCCGACCTCGTCGTGCTCGGTGGCTGTGCCGCCATAGAGAAAGCAGCAAAGGCGGCTGGCCACAACATCACGGTGCCCTTCACCCCGGGCCGCACGGATGCGTCGCAGGAACAAACCGACGTGGAATCCTTTGCCGTGCTGGAGCCCAAGGCAGATGGCTTCCGAAACTACCTCGGAAAGGGCAACCCGTTGCCGGCCGAGTACATGCTGCTCGACAAGGCGAACCTGCTTACGCTCAGTGCCCCTGAGATGACGGTGCTGGTAGGTGGCCTGCGCGTCCTCGGCGCAAACTACAAGCGCTTACCGCTGGGCGTGTTCACCGAGGCCTCCGAGTCACTGACCAACGACTTCTTCGTGAACCTGCTCGACATGGGTATCACCTGGGAGCCCTCGCCAGCAGATGACGGGACCTACCAGGGCAAGGATGGCAGTGGCAAGGTGAAGTGGACCGGCAGCCGCGTGGACCTGGTCTTCGGGTCCAACTCGGAGTTGCGGGCGCTTGTCGAGGTCTATGGCGCCGATGACGCGCAGCCGAAGTTCGTGCAGGACTTCGTCGCTGCCTGGGACAAGGTGATGAACCTCGACAGGTTCGACGTGCGCTGA UPDATED NCBI_taxonomy_name with Mycobacterium tuberculosis H37Rv UPDATED NCBI_taxonomy_id with 83332 UPDATED NCBI_taxonomy_cvterm_id with 39507 UPDATED accession with NP_216424.1 UPDATED sequence with MPEQHPPITETTTGAASNGCPVVGHMKYPVEGGGNQDWWPNRLNLKVLHQNPAVADPMGAAFDYAAEVATIDVDALTRDIEEVMTTSQPWWPADYGHYGPLFIRMAWHAAGTYRIHDGRGGAGGGMQRFAPLNSWPDNASLDKARRLLWPVKKKYGKKLSWADLIVFAGNCALESMGFKTFGFGFGRVDQWEPDEVYWGKEATWLGDERYSGKRDLENPLAAVQMGLIYVNPEGPNGNPDPMAAAVDIRETFRRMAMNDVETAALIVGGHTFGKTHGAGPADLVGPEPEAAPLEQMGLGWKSSYGTGTGKDAITSGIEVVWTNTPTKWDNSFLEILYGYEWELTKSPAGAWQYTAKDGAGAGTIPDPFGGPGRSPTMLATDLSLRVDPIYERITRRWLEHPEELADEFAKAWYKLIHRDMGPVARYLGPLVPKQTLLWQDPVPAVSHDLVGEAEIASLKSQIRASGLTVSQLVSTAWAAASSFRGSDKRGGANGGRIRLQPQVGWEVNDPDGDLRKVIRTLEEIQESFNSAAPGNIKVSFADLVVLGGCAAIEKAAKAAGHNITVPFTPGRTDASQEQTDVESFAVLEPKADGFRNYLGKGNPLPAEYMLLDKANLLTLSAPEMTVLVGGLRVLGANYKRLPLGVFTEASESLTNDFFVNLLDMGITWEPSPADDGTYQGKDGSGKVKWTGSRVDLVFGSNSELRALVEVYGADDAQPKFVQDFVAAWDKVMNLDRFDVR " 1175 UPDATE Enterococcus faecium cls conferring resistance to daptomycin peptide antibiotic; antibiotic target alteration; daptomycin resistant cls; daptomycin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 1010292 UPDATED strand with - UPDATED accession with CP013009.1 UPDATED fmin with 1008840 UPDATED sequence with GTGGTATCTAGTATTATAACCGCCCTTTATCTATTAAATGCACTTATTGCTTTGGTGGCTATTTTGATCAAACCCCGAGATGTAGCAGCCATTTGGGCATGGCTCTTAGTATTATTTGCCCTTCCTGGGGTGGGCTTTGTATTATATTTATTTTTCGGACGTGGATTAACGGATAAGAAAAAATTCTATCTCCGACAAAGTGACTTGAAAGAATTAGAAAACTTTCAGTCTTTTAGAGGAGATACCATTGAACATTACGATCCTGACATGGGCGATAAAGACAAACAGCAATTTGTTGACTTCTTCTCTTCATTAAATCGTATGCCGCTGACAAGAATGAATTCTGTCACTCTTCTCACAGACGGACAAGAGAAATTGGATTCACTGCTTCAAGATCTAAAAAAAGCCAAACATTCGATCCATATCGAATATTACGCATTTGTGACAGATAATATCGGCCAGCAAGTCTTACATGTTTTAGAAGAAAAAGCCGCAGAAGGCGTGGAAGTTCGAATATTATATGATGCATTTGGCTCTCATGGCACAAAAGCAAAAGATTTCAATCGTCTAATCAAAAATGGTGGACATGTCCATACATTTGTTACCTCACAAAGGGCATTACTTCGTTTCCGATTGAATTACCATGATCACCGAAAAATCGTTGTGATCGATGGAAAGATTAGTTATACCGGTGGTTTCAATATTGCCAATCAATATGTAAATACAACAAAAAAATTCGGCTATTGGCGCGATACGCATATACGGATTTTCGGTGCCGCTTCTTCTTTGCTCCAGCTTCGCTTCTTAACAGACTGGAACGTCTCGGTACCTGAAGAAAAAAAGGTCGGCTATCATTTGAATTATTTCTTTAAAAAAGCAGATCGAGATGAATCTAAGCTTGCTGATACATCCATCCAGCTTGTTTCAAGCGGACCGAATAACGAAAGGGAACAAATCAAGCTTTCATTTATCAAATTGATTACTTCTGCTAAAAAACGTGTTTGGATACAGACACCTTACCTTGTTCCTGATGAAAGTGTCATTGCTGCTTTAAAAATCGCAACTGCCTCTGGTGTAGATGTGAAAATCATGATTCCCAACAAACCGGATCATCCTTTTATTTATCGAGCAACACAATATTATGCTCGGCAGCTGATCAAGGAAAATGTACAAATCCTTGTCTATGAGAACGGCTTCCTCCATGCAAAAACATTGATAATGGATGATGAAATCTGCATGGTAGGTTCAGCAAATCAAGATATTCGTAGCTACCGATTGAATTTTGAAACAAGTGCTGTCATTTACGATCCTGAGTTTTTAGAAGAACTTGCTACTCAGTTCAAAGAAGATGAGACACATTGTTCATCCATGACAACTGAAACAGTCAAGGAAATGTCTAACTGGCTATTATTCAAGCAACAAATTTCTCGATTATTTTCTCCAATCCTATAA UPDATED NCBI_taxonomy_name with Enterococcus faecium UPDATED NCBI_taxonomy_id with 1352 UPDATED NCBI_taxonomy_cvterm_id with 36779 UPDATED accession with ALL09868.1 UPDATED sequence with MVSSIITALYLLNALIALVAILIKPRDVAAIWAWLLVLFALPGVGFVLYLFFGRGLTDKKKFYLRQSDLKELENFQSFRGDTIEHYDPDMGDKDKQQFVDFFSSLNRMPLTRMNSVTLLTDGQEKLDSLLQDLKKAKHSIHIEYYAFVTDNIGQQVLHVLEEKAAEGVEVRILYDAFGSHGTKAKDFNRLIKNGGHVHTFVTSQRALLRFRLNYHDHRKIVVIDGKISYTGGFNIANQYVNTTKKFGYWRDTHIRIFGAASSLLQLRFLTDWNVSVPEEKKVGYHLNYFFKKADRDESKLADTSIQLVSSGPNNEREQIKLSFIKLITSAKKRVWIQTPYLVPDESVIAALKIATASGVDVKIMIPNKPDHPFIYRATQYYARQLIKENVQILVYENGFLHAKTLIMDDEICMVGSANQDIRSYRLNFETSAVIYDPEFLEELATQFKEDETHCSSMTTETVKEMSNWLLFKQQISRLFSPIL " 1174 UPDATE QnrB22 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1173 UPDATE TEM-54 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1172 UPDATE OXA-194 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1171 UPDATE tet44 chlortetracycline; demeclocycline; oxytetracycline; tetracycline antibiotic; tetracycline; antibiotic target protection; minocycline; tetracycline-resistant ribosomal protection protein; doxycycline; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAATAATCAACATTGGTATTCTTGCTCATGTAGATGCAGGAAAGACGACCTTAACGGAAAGTCTGCTTTATACAAGTGGAGCAATTTTAGAATTAGGCAGTGTAGATAAGGGAACAACAAGGACAGATACTATGTTTTTAGAACGTCAGCGTGGAATCACAATTCAGGCAGCAGTTACTTCTTTTAATTGGAATGACTACAAAATCAATATTGTAGATACTCCTGGACATACAGATTTTATAACAGAAGTGTATCGTTCCTTATCTGTTCTTGATGGAGCAATTTTAGTAATTTCTGCTAAAGATGGTGTACAAGCACAAACCCGAATACTATTCCATGCACTTCAAAAAATGAATATACCAACAATTATTTTTATAAATAAAATAGATCAGGATGGAATTAACTTAAATAATATTTATCAAAATATCAAAGAAAAACTTTCAAATGATATTATTGTTATGCAAAATGTAACATTAACTCCAGAAATATCAATTAAAAATATCATTGATTTAGATGATTGGGATCCTGTAATTTCCAAAAATGATAAACTTTTAGAAAAATATATTGTAGGAGAAAAATTGACTATACAAGAATTAATGTATGAAGAATATAGGTGTGTTAAAAAAGGTTCGTTGTTTCCTATATACCATGGAAGTGCTAGAAATAATATAGGGACTCAACAACTTATCGAAGCTATTTCAAATCTTTTTTGTTCTGAAATGAATGAGAATGATTCAGAACTATGTGGAAGAGTTTTTAAAATTGAATATACAGACCATAAGCAAAGATTAGTTTATTTGCGTCTTTATAGTGGAACATTACACTTACGAGATACAATTATATTGCCAGAAAAAAAGAAAGTGAAACTTACAGAAATATATATTCCTTCAAATGGAGAAATGATACAGACAAAAACAGTTTGTTCTGGAGATATTTTTATTATACCTAACAATACATTAAGATTGAACGATATTATAGGAAATGAAAAGCTTTTGCCATGCAATGTATGGAATGACAAGACTGTACCAATACTACGAACAAGAATTGAACCGATAAAAATAGAAGAGAGAGAAAAATTATTGGATGCTCTTACAGAAATTGCAGATACTGATCCTCTTTTACGTTATTATGTTGATACGATAACACATGAAATCATCATTTCTTTTTTAGGAACAGTGCAGTTAGAAGTTATCTGTTCTCTGTTGATTGAAAAATATCACATAAACATAAGAATCGAAGATCCAACCGTAATTTATTTGGAAAAACCATTACAAAAGGCAGATTATACTATTCATATTGAAGTACCACCAAATCCATTTTGGGCATCGATTGGATTATCAATAACTCCACTTCCAATTGGCAGTGGAATACAGTACGAAAGCAAAGTTTCACTCGGTTATTTAAATCAAAGTTTCCAAAATGCAGTAAGAGAAGGTATTAATTATGGACTGGAGCAAGGTTTGTATGGTTGGGAAGTAACAGATTGTAAAATATGTTTTGAATATGGTGTTTATTATAGCCCTGTTAGTACTCCCTCGGATTTTCGCTTTCTTGCCCCAATTGTACTTGAACAAACATTGAAAAAAGCGGGAACGCAATTATTAGAGCCATATCTTTCGTTTATACTTTTTACGCCACAGGGATACTTTTCTCGTGCATATAAAGATGCACAAAAACATTGTGCAATAATTGAAACAAGTCAATCAAAAAATGATGAAGTTATTTTTACAGGACATATTCCTGTACGTTGTATTAATGAATATCGTAATACTTTAACTCTATATACAAATGGGCAAGCAGTTTTTTTGACAGAATTAAAAGATTATCAAATTGCTACTTGTGAACCAGTTATTCAATCACGTAGACCAAATAATCGAATAGATAAAGTACGCCATATGTTTAATAAAAAAGAAAATTAA " 1170 UPDATE CMY-46 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1179 UPDATE IMP-4 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1178 UPDATE CMY-81 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTGGCGATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGTCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATTACGTTACGGATAAAGCCGAATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGTGGTAAAACCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAATTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACAGGATCCACAGGCGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTAATGTTGGCAAACAAAAGCTACCCCAACCCGGCTCGCGTCGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA " 511 UPDATE dfrA3 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 510 UPDATE CTX-M-9 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAGCTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCACAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGCAGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA " 1005 UPDATE Escherichia coli soxR with mutation conferring antibiotic resistance tetracycline antibiotic; antibiotic target alteration; antibiotic efflux; ATP-binding cassette (ABC) antibiotic efflux pump; major facilitator superfamily (MFS) antibiotic efflux pump; resistance-nodulation-cell division (RND) antibiotic efflux pump; norfloxacin; cephalosporin; cefalotin; ciprofloxacin; protein(s) and two-component regulatory system modulating antibiotic efflux; rifampin; ampicillin; penam; triclosan; efflux pump complex or subunit conferring antibiotic resistance; tigecycline; glycylcycline; fluoroquinolone antibiotic; chloramphenicol; phenicol antibiotic; tetracycline; rifamycin antibiotic; model_sequences "UPDATED sequence with ATGGAAAAGAAATTACCCCGCATTAAAGCGCTGCTAACCCCCGGCGAAGTGGCGAAACGCAGCGGTGTGGCGGTATCGGCGCTGCATTTCTATGAAAGTAAAGGGTTGATTACCAGTATCCGTAACAGCGGCAATCAGCGGCGATATAAACGTGATGTGTTGCGATATGTTGCAATTATCAAAATTGCTCAGCGTATTGGCATTCCGCTGGCGACCATTGGTGAAGCGTTTGGCGTGTTGCCCGAAGGGCATACGTTAAGTGCGAAAGAGTGGAAACAGCTTTCGTCCCAATGGCGAGAAGAGTTGGATCGGCGCATTCATACCTTAGTGGCGCTGCGTGACGAACTGGACGGATGTATTGGTTGTGGCTGCCTTTCGCGCAGTGATTGCCCGTTGCGTAACCCGGGCGACCGCTTAGGAGAAGAAGGTACCGGCGCACGCTTGCTGGAAGATGAACAAAACTAA " 644 UPDATE OXY-2-1 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1285 UPDATE SAT-2 streptothricin acetyltransferase (SAT); streptothricin; antibiotic inactivation; nucleoside antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1284 UPDATE IND-15 carbapenem; antibiotic inactivation; IND beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAAAGTATTCAGCTTTTGATGATGTCAATGTTTTTAAGCCCATTGATCAATGCCCAGGTTAAAGATTTTGTAATTGAGCCGCCTGTTAAACCCAACCTGTATCTTTATAAAAGTTTCGGAGTTTTCGGGGGTAAAGAATATTCTGCCAATGCTGTATATCTTACCACTAAGAAAGGAGTGGTCTTATTTGATGTCCCATGGCAAAAGGAACAATATCAAACCCTTATGGACACTATACAAAAGCGTCATCACCTTCCTGTAATTGCTGTATTTGCCACCCACTCTCATGATGACAGAGCGGGCGATCTAAGCTTTTACAATCAAAAAGGAATTAAAACATATGCGACCGCCAAGACCAATGAACTGTTGAAAAAAGACGGAAAAGCAACCTCAACCGAAATTATAAAAACAGGAAAACCTTACAAAATTGGTGGTGAAGAATTTATGGTAGACTTTCTTGGAGAAGGACATACAGTTGATAATGTTGTTGTACGGTTCCCCAAATATAAAGTACTGGACGGAGGATGTCTTGTAAAAAGCAGGACAGCCACTGACCTGGGATATACCGGTGAAGCAAACGTAAAACAATGGCCGGAAACCATGCGAAAACTAAAAATGAAATATGCTCAGGCTACTCTGGTAATCCCGGGACACGACGAATGGAAAGGCGGTGGTCATGTACAGCATACTCTGGATCTTCTGGATAAGAATAAAAAGCCGGAATAA " 1287 UPDATE CTX-M-110 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAGAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGAATCTC " 512 UPDATE CTX-M-82 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTCCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGGCTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA " 1281 UPDATE OXA-110 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1280 UPDATE QnrB12 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGACTCTGGCATTAGTTGGCGAAAAAATTGACAGAAACAGATTCACTGGTGCGAAAGTTGAAAATAGCACATTTTTCAACTGTGATTTTTCGGGTGCCGACCTCAGCGGCACTGAGTTTATTGGCTGTCAGTTCTATGATCGAGAGAGCCAGAAAGGGTGTAATTTTAGTCGCGCTATCCTGAAAGATGCCATTTTCAAAAGTTGTGATCTCTCCATGGCGGATTTCAGGAATGTGAGCGCGCTGGGAATCGAAATTCGCCACTGCCGCGCACAAGGTTCAGATTTTCGCGGCGCAAGCTTTATGAATATGATTACCACACGCACCTGGTTTTGTAGCGCCTATATCACCAATACCAACTTAAGCTACGCCAACTTTTCAAAAGTCGTACTGGAAAAGTGCGAGCTGTGGGAAAACCGTTGGATGGGTACTCAGGTACTGGGGGCGACGTTCAGTGGTTCAGATCTTTCCGGCGGTGAGTTTTCGTCGTTCGACTGGCGGGCCGCAAACTTTACGCACTGTGATTTGACCAATTCAGAACTGGGCGATCTCGATGTCCGGGGTGTTGATTTGCAAGGCGTCAAACTGGACAGCTACCAGGCATCGTTGATCCTGGAACGTCTTGGCATCGCTGTCATTGGTTAA " 1283 UPDATE KPC-6 antibiotic inactivation; penam; carbapenem; cephalosporin; monobactam; KPC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1282 UPDATE SIM-1 carbapenem; penam; cephalosporin; antibiotic inactivation; SIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1003 UPDATE OXA-18 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAACGGAGCCTGTCCATGAGCGGAAAAAGACATTTCATCTTTGCAGTATCATTTGTTATTTCAACGGTTTGCCTTACGTTCTCCCCGGCAAATGCCGCACAAAAACTGTCCTGCACGCTTGTTATCGACGAGGCGAGCGGCGACCTGCTGCACCGGGAAGGCAGTTGCGACAAGGCTTTTGCGCCGATGTCGACGTTCAAACTGCCTTTGGCCATCATGGGCTACGATGCCGATATCCTGCTCGACGCCACCACGCCGCGCTGGGATTACAAGCCGGAATTCAACGGCTACAAATCGCAGCAGAAGCCGACCGATCCGACCATCTGGCTGAAGGATTCCATCGTCTGGTATTCGCAGGAGCTGACGCGCCGCCTCGGCGAAAGCCGCTTTTCCGATTACGTGCAGCGCTTCGATTACGGCAACAAGGATGTTTCCGGCGATCCCGGCAAGCATAACGGCCTGACCCATGCCTGGCTCGCCTCGTCGCTGAAGATCTCGCCGGAGGAGCAGGTGCGTTTCCTGCGTCGTTTCCTGCGCGGCGAATTGCCGGTCTCCGAGGACGCGTTGGAGATGACGAAAGCCGTCGTGCCGCATTTCGAGGCCGGCGATTGGGACGTGCAGGGCAAGACCGGCACCGGTTCGCTTTCCGATGCCAAGGGCGGCAAGGCGCCGATCGGCTGGTTCATCGGCTGGGCGACACGCGACGACCGCCGCGTCGTCTTCGCCCGCCTAACGGTCGGGGCGAGGAAGGGCGAGCAGCCGGCCGGGCCCGCCGCTCGCGACGAGTTCCTCAACACCCTGCCGGCCCTGTCGGAAAACTTCTGA " 879 UPDATE TEM-185 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1289 UPDATE OKP-B-7 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1288 UPDATE OXA-82 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 514 UPDATE LEN-10 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1579 UPDATE QnrB9 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1578 UPDATE SHV-123 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 689 UPDATE CTX-M-123 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGTGGCTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA " 688 UPDATE MOX-2 penam; antibiotic inactivation; MOX beta-lactamase; cephamycin; cephalosporin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAACAACGACAATCCATCCTGTGGGGCGCTCTGGCCACCCTGATGTGGGCCGGTCTGGCCCATGCAGGTGAGACTTCACCGGTCGATCCCCTGCGCCCCGTGGTGGATGCCAGCATCCGGCCGCTGCTCAAGGAGCACAGGATCCCGGGCATGGCGGTGGCCGTGCTCAAGGATGGCAAGGCCCACTATTTCAACTACGGTGTGGCCGATCGGGAGCGCGCAGTCGGTGTCAGCGAGCAGACCCTGTTCGAGATAGGCTCCGTGAGCAAGCCCCTGACCGCGACCCTAGGAGCCTATGCGGTGGTCAAGGGAGCGATGCAACTGGATGACAAGGCGAGCCGGCACGCCCCCTGGCTCAAGGGATCCGCCTTTGACAGCATCACCATGGGGGAGCTGGCTACCTACAGCGCGGGCGGCTTGCCGCTGCAATTCCCCGAGGAGGTGGATTCGCTCGAGAAGATGCAGGCCTACTACCGCCAGTGGACCCCAGCCTACTCGCCGGGTTCCCATCGCCAGTACTCTAACCCCAGCATAGGGCTGTTCGGCCACCTGGCGGCGAGCAGCATGAAGCAGCCGTTTGCCCAGTTGATGGAGCAGACGCTCCTGCCGGGGCTTGGCCTGCACCACACCTATGTCAATGTGCCGAAGCAGGCCATGGCGAGTTATGCCTATGGCTATTCGAAAGAGGACAAGCCCATCAGGGTCAGCCCCGGCATGCTGGCGGACGAGGCCTACGGCATCAAGACCAGCTCGGCGGATCTGCTGCGCTTTGTGAAGGCCAACATCAGCGGGGTTCATGACAAGGCGTTGCAGCAGGCCATCTCCCTGACCCACAAAGGGCACTACTCGGTAGGCGGGATGACCCAGGGACTGGGTTGGGAGAGTTACGCCTATCCCGTCAGCGAGCAGACATTGCTGGCGGGCAATTCGGCCAAGGTGATCCTCGAAGCCAATCCGACGGCGGCGCCCCGGGAGTCGGGGAGCCAGATGCTCTTCAACAAGACCGGCTCGACCAGCGGCTTCGGCGCCTATGTGGCCTTCGTGCCGGCCAAAGGGATCGGCATCGTCATGCTGGCCAACCGCAACTATCCTATCCCGGCCAGGGTGAAAGCGGCCCACGCCATCCTGACGCAACTGGCCAGGTAA " 685 UPDATE OXA-239 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 684 UPDATE SHV-37 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 687 UPDATE APH(3')-Vc antibiotic inactivation; aminoglycoside antibiotic; paromomycin; APH(3'); ribostamycin; G418; neomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTACGCCATGTTGCGCCGGAAATACCAGCACTACGAATGGACCTCCGTGAACGAAGGAGATTCGGGCGCCTCCGTTTACCGCCTCGCCGGACAGCAGCCCGAGCTCTATGTGAAATTCGCTCCGCGCGAACCGGAAAATTCCGCGTTCGACCTGGCGGGCGAGGCCGACCGGCTCACCTGGCTCACCCGCCACGGCATCCCGGTTCCGTGCATTGTCGAGTGCGGCGGCGACGACACCTCGGTTTTCCTCGTCACCGAGGCCGTCACCGGCGTATCGGCCGCCGAGGAGTGGCCGGAGCACCAGCGCTTCGCCGTCGTCGAGGCGATGGCCGACCTCGCCCGCACCCTGCACGAACTGCCCGTTGGTGGCTGCCCCTTCGATCGCAGCCTGGCGGTGACGGTTGCCGAAGCCCGCCACAACCTACGCGAGGGCCTCGTGGACCTGGACGACCTCCAAGAGGAGCACGCCAACTGGTCCGGTGACCAGCTTCTCGCCGAGCTCGACCGAACGCGGCCCGAGAAAGAGGATCTGGTCCTCTGCCACGGGGACCTGTGCCCCAACAACGTGCTGCTCGATCCCGAGACATGCCGAGTCACCGGAATGATCGATGTGGGCCGCCTCGGCCGCGCCGATCGCCACGCCGACCTGGCCCTCGCCGCCCGCGAGCTGGAGATCGACGAGGATCCCTGGTTTGGCCCCGAGTACGCCCAGCGGTTCCTCGAACGCTACGGCGCGCACCACGTCGACGAGAACAAGATGGCCTTTTACCAGCTGCTCGACGAGTTTTTCTAG " 686 UPDATE OXA-162 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTGTATTAGCCTTATCGGCTGTGTTTTTGGTGGCATCGATTATCGGAATGCCTGCGGTAGCAAAGGAATGGCAAGAAAACAAAAGTTGGAATGCTCACTTTACTGAACATAAATCACAGGGCGTAGTTGTGCTCTGGAATGAGAATAAGCAGCAAGGATTTACCAATAATCTTAAACGGGCGAACCAAGCATTTTTACCCGCATCTACCTTTAAAATTCCCAATAGCTTGATCGCCCTCGATTTGGGCGTGGTTAAGGATGAACACCAAGTCTTTAAGTGGGATGGACAGACGCGCGATATCGCCACTTGGAATCGCGATCATAATCTAATCACCGCGATGAAATATTCAGTTGTGCCTGTTTATCAAGAATTTGCCCGCCAAATTGGCGAGGCACGTATGAGCAAGATGCTACATGCTTTCGATTATGGTAATGAGGACATTTCGGGCAATGTAGACAGTTTCTGGCTCGACGGTGGTATTCGAATTTCGGCCACGGAGCAAATCAGCTTTTTAAGAAAGCTGTATCACAATAAGTTACACGTATCGGAGCGCAGCCAGCGTATTGTCAAACAAGCCATGCTGACCGAAGCCAATGGTGACTATATTATTCGGGCTAAAACTGGATACTCGGCTAGAATCGAACCTAAGATTGGCTGGTGGGTCGGTTGGGTTGAACTTGATGATAATGTGTGGTTTTTTGCGATGAATATGGATATGCCCACATCGGATGGTTTAGGGCTGCGCCAAGCCATCACAAAAGAAGTGCTCAAACAGGAAAAAATTATTCCCTAG " 681 UPDATE TEM-120 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 680 UPDATE CMY-54 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 683 UPDATE CMY-75 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGCATGGCCGTGGCAATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAATTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATGACGTTACGGATAAAGCCGAATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTATGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGTGGTAAAACCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAATTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACAGGTGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATAGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGCGTCGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA " 682 UPDATE QnrS4 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1227 UPDATE aadA2 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1226 UPDATE adeG antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; fluoroquinolone antibiotic; tetracycline; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 621 UPDATE ErmF antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 1224 UPDATE Erm(30) antibiotic target alteration; streptogramin antibiotic; Erm 23S ribosomal RNA methyltransferase; macrolide antibiotic; lincosamide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2293 UPDATED strand with - UPDATED accession with AF079138.1 UPDATED fmin with 1282 UPDATED sequence with ATGGCAATGCGCGACTCCATACCGAGGCGAGCGGACCGCGACACCCTTCGCCGCGAATTAGGCCAGAACTTCCTTCAGGACGACAGAGCCGTGCGCAATCTCGTCACGCATGTCGAGGGGGACGGTAGGAACGTTCTCGAAATCGGCCCCGGAAAGGGCGCGATAACCGAGGAGTTGGTGCGCTCCTTCGACACCGTGACGGTCGTGGAGATGGACCCGCACTGGGCCGCGCATGTGCGGCGGAAATTCGAAGGGGAGAGGGTCACCGTATTCCAGGGTGATTTCCTCGACTTCCGCATTCCGCGCGATATCGACACCGTCGTCGGAAACGTTCCCTTCGGCATCACGACCCAGATTCTCCGGAGTCTCCTGGAATCGACGAACTGGCAGTCGGCGGCCCTGATAGTGCAGTGGGAGGTCGCCCGCAAACGCGCCGGTCGCAGCGGCGGATCGCTCCTCACGACCTCCTGGGCCCCCTGGTACGAGTTCGCGGTCCACGACCGCGTCCGCGCCTCGTCGTTCCGTCCGATGCCCCGCGTCGACGGCGGCGTCCTGACGATCAGGCGACGCCCCCAGCCCCTGCTGCCCGAGAGCGCGAGCCGCGCCTTCCAGAACTTCGCCGAAGCCGTCTTCACCGGCCCCGGACGGGGCCTCGCGGAGATCCTCCGGCGCCACATCCCCAAGCGGACCTACCGTTCCCTCGCCGACCGCCACGGAATTCCGGACGGCGGACTGCCGAAGGACCTCACGCTCACCCAATGGATCGCCCTTTTCCAGGCCTCCCAGCCGAGTTACGCGCCGGGGGCGCCCGGCACGCGCATGCCGGGCCAGGGCGGTGGCGCCGGCGGCAGGGACTATGACTCGGAGACGAGCAGGGCCGCCGTGCCCGGGAGCCGCAGATACGGCCCCACGCGCGGCGGCGAACCCTGCGCACCCCGCGCACAGGTCCGGCAGACCAAGGGCCGCCAGGGCGCGCGAGGCTCGTCGTACGGACGCCGCACGGGCCGTTAG UPDATED NCBI_taxonomy_name with Streptomyces venezuelae UPDATED NCBI_taxonomy_id with 54571 UPDATED NCBI_taxonomy_cvterm_id with 36873 UPDATED accession with AAC69328.1 UPDATED sequence with MAMRDSIPRRADRDTLRRELGQNFLQDDRAVRNLVTHVEGDGRNVLEIGPGKGAITEELVRSFDTVTVVEMDPHWAAHVRRKFEGERVTVFQGDFLDFRIPRDIDTVVGNVPFGITTQILRSLLESTNWQSAALIVQWEVARKRAGRSGGSLLTTSWAPWYEFAVHDRVRASSFRPMPRVDGGVLTIRRRPQPLLPESASRAFQNFAEAVFTGPGRGLAEILRRHIPKRTYRSLADRHGIPDGGLPKDLTLTQWIALFQASQPSYAPGAPGTRMPGQGGGAGGRDYDSETSRAAVPGSRRYGPTRGGEPCAPRAQVRQTKGRQGARGSSYGRRTGR " 627 UPDATE Escherichia coli rpoB mutants conferring resistance to rifampicin rifampin; rifapentine; rifabutin; peptide antibiotic; rifamycin-resistant beta-subunit of RNA polymerase (rpoB); antibiotic target replacement; antibiotic target alteration; rifamycin antibiotic; rifaximin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with ATGGTTTACTCCTATACCGAGAAAAAACGTATTCGTAAGGATTTTGGTAAACGTCCACAAGTTCTGGATGTACCTTATCTCCTTTCTATCCAGCTTGACTCGTTTCAGAAATTTATCGAGCAAGATCCTGAAGGGCAGTATGGTCTGGAAGCTGCTTTCCGTTCCGTATTCCCGATTCAGAGCTACAGCGGTAATTCCGAGCTGCAATACGTCAGCTACCGCCTTGGCGAACCGGTGTTTGACGTCCAGGAATGTCAAATCCGTGGCGTGACCTATTCCGCACCGCTGCGCGTTAAACTGCGTCTGGTGATCTATGAGCGCGAAGCGCCGGAAGGCACCGTAAAAGACATTAAAGAACAAGAAGTCTACATGGGCGAAATTCCGCTCATGACAGACAACGGTACCTTTGTTATCAACGGTACTGAGCGTGTTATCGTTTCCCAGCTGCACCGTAGTCCGGGCGTCTTCTTTGACTCCGACAAAGGTAAAACCCACTCTTCGGGTAAAGTGCTGTATAACGCGCGCATCATCCCTTACCGTGGTTCCTGGCTGGACTTCGAATTCGATCCGAAGGACAACCTGTTCGTACGTATCGACCGTCGCCGTAAACTGCCTGCGACCATCATTCTGCGTGCCCTGAACTACACCACAGAGCAGATCCTCGACCTGTTCTTTGAAAAAGTTATCTTTGAAATCCGTGATAACAAGCTGCAGATGGAACTGGTGCCGGAACGCCTGCGTGGTGAAACCGCATCCTTTGACATCGAAGCTAACGGTAAAGTGTACGTAGAAAAAGGCCGCCGTATCACTGCGCGCCACATTCGCCAGCTGGAAAAAGACGACGTCAAACTGATCGAAGTCCCGGTTGAGTACATCGCAGGTAAAGTGGTTGCTAAAGACTATATTGATGAGTCTACCGGCGAGCTGATCTGCGCAGCGAACATGGAGCTGAGCCTGGATCTGCTGGCTAAGCTGAGCCAGTCTGGTCACAAGCGTATCGAAACGCTGTTCACCAATGATCTGGATCACGGCCCGTATATCTCTGAAACCTTACGTGTCGACCCAACTAACGACCGTCTGAGCGCACTGGTAGAAATCTACCGCATGATGCGCCCTGGCGAGCCGCCGACTCGTGAAGCAGCGGAAAGCCTGTTCGAGAACCTGTTCTTCTCCGAAGACCGTTATGACCTGTCTGCGGTTGGTCGTATGAAGTTCAACCGTTCTCTGCTGCGCGAAGAAATCGAAGGTTCTGGTATCCTGAGCAAAGACGACATCATTGATGTTATGAAAAAGCTCATCGATATCCGTAACGGTAAAGGCGAAGTCGATGATATCGACCACCTCGGCAACCGTCGTATCCGTTCCGTTGGCGAAATGGCGGAAAACCAGTTCCGCGTTGGCCTGGTACGTGTAGAGCGTGCGGTGAAAGAGCGTCTGTCTCTGGGCGATCTGGATACCCTGATGCCTCAGGATATGATCAACGCCAAGCCGATTTCCGCAGCAGTGAAAGAGTTCTTCGGTTCCAGCCAGCTGTCTCAGTTTATGGACCAGAACAACCCGCTGTCTGAGATTACGCACAAACGTCGTATCTCCGCACTCGGCCCAGGCGGTCTGACCCGTGAACGTGCAGGCTTCGAAGTTCGAGACGTACACCCGACTCACTACGGTCGCGTATGTCCAATCGAAACCCCTGAAGGTCCGAACATCGGTCTGATCAACTCTCTGTCCGTGTACGCACAGACTAACGAATACGGCTTCCTTGAGACTCCGTATCGTAAAGTGACTGACGGTGTTGTAACTGACGAAATTCACTACCTGTCTGCTATCGAAGAAGGCAACTACGTTATCGCCCAGGCGAACTCCAACCTGGATGAAGAAGGCCACTTCGTAGAAGACCTGGTAACCTGCCGTAGCAAAGGCGAATCCAGCTTGTTCAGCCGTGACCAGGTTGACTACATGGACGTATCCACCCAGCAGGTGGTATCCGTCGGTGCGTCCCTGATCCCGTTCCTGGAACACGATGACGCCAACCGTGCATTGATGGGTGCGAACATGCAACGTCAGGCCGTTCCGACTCTGCGTGCTGATAAGCCGCTGGTTGGTACTGGTATGGAACGTGCTGTTGCCGTTGACTCCGGTGTAACTGCGGTTGCTAAACGTGGTGGTGTCGTTCAGTACGTGGATGCTTCCCGTATCGTTATCAAAGTTAACGAAGACGAGATGTATCCGGGTGAAGCAGGTATCGACATCTACAACCTGACCAAATACACCCGTTCTAACCAGAACACCTGTATTAACCAGATGCCGTGTGTGTCTCTGGGTGAACCGGTTGAACGTGGCGACGTGCTGGCAGACGGTCCGTCCACCGACCTCGGTGAACTGGCGCTTGGTCAGAACATGCGCGTAGCGTTCATGCCGTGGAATGGTTACAACTTCGAAGACTCCATCCTCGTATCCGAGCGTGTTGTTCAGGAAGACCGTTTCACCACCATCCACATTCAGGAACTGGCGTGTGTGTCCCGTGACACCAAGCTGGGGCCAGAAGAGATCACCGCTGACATCCCGAACGTGGGTGAAGCTGCGCTCTCCAAACTGGATGAATCCGGTATCGTTTATATTGGTGCGGAAGTGACCGGTGGCGACATTCTGGTTGGTAAGGTTACGCCGAAAGGTGAAACTCAGCTGACCCCAGAAGAAAAACTGCTGCGTGCGATCTTCGGTGAGAAAGCGTCTGACGTTAAAGACTCTTCTCTGCGCGTACCAAACGGTGTATCCGGTACGGTTATCGACGTTCAGGTCTTTACTCGCGATGGCGTAGAAAAAGACAAACGTGCGCTGGAAATCGAAGAAATGCAGCTCAAACAGGCGAAGAAAGACCTGTCTGAAGAACTGCAGATCCTCGAAGCGGGTCTGTTCAGCCGTATCCGTGCTGTGCTGGTAGCCGGTGGCGTTGAAGCTGAGAAGCTCGACAAATTGCCGCGCGATCGCTGGCTGGAGCTGGGCCTGACCGACGAAGAGAAACAAAATCAGCTGGAACAGCTGGCTGAGCAGTATGACGAACTGAAACACGAGTTCGAGAAGAAACTCGAAGCGAAACGCCGCAAAATCACCCAGGGCGACGATCTGGCACCGGGCGTGCTGAAGATTGTTAAGGTATATCTGGCGGTTAAACGCCGTATCCAGCCTGGTGACAAGATGGCAGGTCGTCACGGTAACAAGGGTGTAATTTCTAAGATCAACCCGATCGAAGATATGCCTTACGATGAAAACGGTACGCCGGTAGACATCGTACTGAACCCGCTGGGCGTACCGTCTCGTATGAACATCGGTCAGATCCTCGAAACCCACTTGGGTATGGCTGCGAAAGGTATCGGCGACAAGATCAACGCCATGCTGAAACAGCAGCAGGAAGTCGCGAAACTGCGTGAATTCATCCAGCGTGCGTACGATCTGGGCGCTGACGTTCGTCAGAAAGTTGACCTGAGTACCTTCAGCGATGAAGAAGTTATGCGTCTGGCTGAAAACCTGCGCAAAGGTATGCCAATCGCAACGCCGGTGTTCGACGGTGCGAAAGAAGCAGAAATTAAAGAGCTGCTGAAACTTGGCGACCTGCCGACTTCTGGTCAGATCCGCCTGTACGACGGCCGCACTGGTGAACAGTTCGAACGTCCGGTAACCGTTGGTTACATGTACATGCTGAAACTGAACCACCTGGTCGACGACAAGATGCACGCGCGTTCCACCGGTTCTTACAGCCTGGTTACTCAGCAGCCGCTGGGTGGTAAGGCACAGTTCGGTGGTCAGCGTTTCGGGGAGATGGAAGTGTGGGCGCTGGAAGCATACGGCGCAGCATACACCCTGCAGGAAATGCTCACCGTTAAGTCTGATGACGTGAACGGTCGTACTAAGATGTATAAAAACATCGTGGACGGCAACCATCAGATGGAGCCGGGCATGCCAGAATCCTTCAACGTATTGTTGAAAGAGATTCGTTCGCTGGGTATCAACATCGAACTGGAAGACGAGTAA " 1222 UPDATE FosA fosfomycin; fosfomycin thiol transferase; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1221 UPDATE OXA-231 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAATTTATACTTCCTATTCTCAGCATTTCTACTCTACTTTCTGTCAGTGCATGCTCATCTATTCAAACTAAATTTGAAGACACTTTTCATACTTCTAATCAGCAACATGAAAAAGCCATTAAAAGCTATTTTGATGAAGCTCAAACACAGGGTGTAATCATTATTAAAAAGGGAAAAAATATTAGTACCTATGGTAATAACCTGACACGAGCACATACAGAATATGTCCCTGCATCAACATTTAAGATGCTAAATGCCTTAATTGGACTAGAAAATCATAAAGCTACAACAACTGAGATTTTCAAATGGGACGGTAAAAAGAGATCTTATCCCATGTGGGAAAAAGATATGACTTTAGGTGATGCCATGGCACTTTCAGCAGTTCCTGTATATCAAGAACTTGCAAGACGGACTGGCTTAGACCTAATGCAAAAAGAAGTTAAACGGGTTGGTTTTGGTAATATGAACATTGGAACACAAGTTGATAACTTCTGGTTGGTTGGCCCCCTCAAGATTACACCAATACAAGAGGTTAATTTTGCCGATGATTTTGCAAATAATCGATTACCCTTTAAATTAGAGACTCAAGAAGAAGTTAAAAAAATGCTTCTGATTAAAGAATTCAATGGTAGTAAAATTTATGCAAAAAGCGGCTGGGGAATGGCTGTAACCCCTCAAGTAGGTTGGTTAACAGGTTGGGTAGAAAAATCTAATGGAGAAAAAGTTGCCTTTTCTCTAAACATAGAAATGAAGCAAGGAATGCCTGGTTCTATTCGTAATGAAATTACTTATAAATCATTAGAGAATTTAGGGATTATATAA " 1243 UPDATE mphA antibiotic inactivation; macrolide phosphotransferase (MPH); oleandomycin; dirithromycin; macrolide antibiotic; telithromycin; roxithromycin; clarithromycin; azithromycin; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2531 UPDATED strand with - UPDATED accession with D16251.1 UPDATED fmin with 1625 UPDATED sequence with ATGACCGTAGTCACGACCGCCGATACCTCCCAACTGTACGCACTTGCAGCCCGACATGGGCTCAAGCTCCATGGCCCGCTGACTGTCAATGAGCTTGGGCTCGACTATAGGATCGTGATCGCCACCGTCGACGATGGACGTCGGTGGGTGCTGCGCATCCCGCGCCGAGCCGAGGTAAGCGCGAAGGTCGAACCAGAGGCGCGGGTGCTGGCAATGCTCAAGAATCGCCTGCCGTTCGCGGTGCCGGACTGGCGCGTGGCCAACGCCGAGCTCGTTGCCTATCCCATGCTCGAAGACTCGACTGCGATGGTCATCCAGCCTGGTTCGTCCACGCCCGACTGGGTCGTGCCGCAGGACTCGGAGGTCTTCGCGGAGAGCTTCGCGACCGCGCTCGCCGCCCTGCATGCCGTCCCCATTTCCGCCGCCGTGGATGCGGGGATGCTCATCCGTACACCGACGCAGGCCCGTCAGAAGGTGGCCGACGACGTTGACCGCGTCCGACGCGAGTTCGTGGTGAACGACAAGCGCCTCCACCGGTGGCAGCGCTGGCTCGACGACGATTCGTCGTGGCCAGATTTCTCCGTGGTGGTGCATGGCGATCTCTACGTGGGCCATGTGCTCATCGACAACACGGAGCGCGTCAGCGGGATGATCGACTGGAGCGAGGCCCGCGTTGATGACCCTGCCATCGACATGGCCGCGCACCTTATGGTCTTTGGTGAAGAGGGGCTCGCGAAGCTCCTCCTCACGTATGAAGCGGCCGGTGGCCGGGTGTGGCCGCGGCTCGCCCACCACATCGCGGAGCGCCTTGCGTTCGGGGCGGTCACCTACGCACTCTTCGCCCTCGACTCGGGTAACGAAGAGTACCTCGCTGCGGCGAAGGCGCAGCTCGCCGCAGCGGAATGA UPDATED NCBI_taxonomy_name with Escherichia coli UPDATED NCBI_taxonomy_id with 562 UPDATED NCBI_taxonomy_cvterm_id with 35914 UPDATED accession with BAA03776.1 UPDATED sequence with MTVVTTADTSQLYALAARHGLKLHGPLTVNELGLDYRIVIATVDDGRRWVLRIPRRAEVSAKVEPEARVLAMLKNRLPFAVPDWRVANAELVAYPMLEDSTAMVIQPGSSTPDWVVPQDSEVFAESFATALAALHAVPISAAVDAGMLIRTPTQARQKVADDVDRVRREFVVNDKRLHRWQRWLDDDSSWPDFSVVVHGDLYVGHVLIDNTERVSGMIDWSEARVDDPAIDMAAHLMVFGEEGLAKLLLTYEAAGGRVWPRLAHHIAERLAFGAVTYALFALDSGNEEYLAAAKAQLAAAE " 1220 UPDATE OCH-5 penam; antibiotic inactivation; penem; cephalosporin; cephamycin; monobactam; OCH beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 407 UPDATE OXA-352 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1370 UPDATE AAC(6')-Ib10 antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTACGCAGCAGCAGTCGCCCTAAAACAAAGTTAGGCATCACAAAGTACAGCATCGTGACCAACAGCAACGATTCCGTCACACTGCGCCTCATGACTGAGCATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGAGTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAACAGTACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTCACTCCATACATTGCAATGCTGAATGGAGAGCCGATTGGGTATGCCCAGTCGTACGTTGCTCTTGGAAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCAGGAGTACGCGGAATAGACCAGTTACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGAACCAAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCACCAAGATCCAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCTACGAGAAAGCGGGGTTTGAGAGGCAAGGTACCGTAACCACCCCAGATGGTCCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGCGAACACGCAGTGATGCCTAA " 1373 UPDATE CMY-26 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1372 UPDATE ANT(2'')-Ia antibiotic inactivation; plazomicin; kanamycin A; ANT(2''); gentamicin B; gentamicin C; aminoglycoside antibiotic; tobramycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGACACAACGCAGGTCACATTGATACACAAAATTCTAGCTGCGGCAGATGAGCGAAATCTGCCGCTCTGGATCGGTGGGGGCTGGGCGATCGATGCACGGCTAGGGCGTGTAACACGCAAGCACGATGATATTGATCTGACGTTTCCCGGCGAGAGGCGCGGCGAGCTCGAGGCAATAGTTGAAATGCTCGGCGGGCGCGTCATGGAGGAGTTGGACTATGGATTCTTAGCGGAGATCGGGGATGAGTTACTTGACTGCGAACCTGCTTGGTGGGCAGACGAAGCGTATGAAATCGCGGAGGCTCCGCAGGGCTCGTGCCCAGAGGCGGCTGAGGGCGTCATCGCCGGGCGGCCAGTCCGTTGTAACAGCTGGGAGGCGATCATCTGGGATTACTTTTACTATGCCGATGAAGTACCACCAGTGGACTGGCCTACAAAGCACATAGAGTCCTACAGGCTCGCATGCACCTCACTCGGGGCGGAAAAGGTTGAGGTCTTGCGTGCCGCTTTCAGGTCGCGATATGCGGCCTAA UPDATED category_aro_name with plazomicin UPDATED category_aro_cvterm_id with 40307 UPDATED category_aro_accession with 3003675 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Plazomicin is a neoglycoside, or next-generation, aminoglycoside, that has been identified as a potentially useful agent to combat drug-resistant bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa. " 1375 UPDATE CMY-11 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAACAACGACAATCCATCCTGTGGGGGGCCGTGGCCACCCTGATGTGGGCCGGTCTGGCCCATGCAGGTGAGGCTTCACCGGTCGATCCCCTGCGCCCCGTGGTGGATGCCAGCATCCAGCCGCTGCTCAAGGAGCACAGGATCCCGGGCATGGCGGTGGCCGTGCTCAAGGATGGCAAGGCCCACTACTTCAATTACGGGGTGGCCAACCGGGAGAGCGGGGCCGGCGTCAGCGAGCAGACCCTGTTCGAGATAGGATCCGTGAGCAAGACCCTGACTGCGACCCTGGGGGCCTATGCGGTGGTCAAGGGAGCGATGCAGCTGGATGACAAGGCGAGCCGGCACGCGCCCTGGCTCAAGGGATCCGCCTTTGACAGCATCACCATGGGGGAGCTTGCCACCTACAGCGCCGGAGGCCTGCCACTGCAATTCCCCGAGGAGGTGGATTCATCCGAGAAGATGCGCGCCTACTACCGCCAGTGGGCCCCTGTCTATTCGCCGGGCTCCCATCGCCAGTACTCCAACCCCAGCATAGGGCTGTTCGGCCACCTGGCGGCGAGCAGCCTGAAGCAGCCGTTTGCCCCCTTGATGGAGCAGACCCTGCTGCCCGGGCTCGGCATGCACCACACCTATGTCAATGTGCCGAAGCAGGCCATGGCGAGTTATGCCTATGGCTATTCGAAAGAGGACAAGCCCATCCGTGTCAACCCTGGCATGCTGGCGGACGAGGCCTATGGCATCAAGACCAGCTCGGCGGATCTGCTGCGTTTTGTGAAGGCCAACATCGGCGGGGTTGATGACAAGGCGTTGCAGCAGGCCATCTCCCTGACCCACCAAGGGCATTACTCGGTAGGCGGGATGACCCAGGGGCTGGGTTGGGAGAGTTACGCCTATCCCGTCACCGAGCAGACATTGCTGGCGGGCAATTCGGCCAAGGTGAGCCTCGAAGCCAATCCGACGGCGGCGCCCCGGGAGTCGGGGAGCCAGGTGCTCTTCAACAAGACCGGCTCGACCAATGGCTTTGGCGCCTATGTGGCCTTCGTGCCGGCCAGGGGGATCGGCATCGTCATGCTGGCCAATCGCAACTACCCCATCGAGGCGCGCATCAAGGCGGCCCACGCCATCCTGGCGCAGTTGGCCGGTTGA " 1374 UPDATE blaI penam; antibiotic inactivation; blaZ beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1440 UPDATED strand with - UPDATED accession with EF540343.1 UPDATED fmin with 1059 UPDATED sequence with ATGTCAAACCAAACACCTAGCATATCGGAAGCAGAATGGGAAGTTATGAAAGTTTTGTGGAAAAAGGGGCCGCAAACAGCCAATCAAGTCATTTCCGCGATCCAAGAGCAAACGGACTGGAAACCAAAAACGATTCGGACGTTACTCGATCGATTAACGAAGAAGAAAGTAGTAGGCGTAGATAAAGAGCAGAAAATCTATGTCTTCTTTCCCCTATACTCAGAAGAAGCGTGTAAGCATGCAGAAGCACAGTCTTTCGTAAAGAGAGTTTACGGGGGAACAGTAAAACCATTGTTGGTCCAGTTCTTGGAGGAAGAGTCACTAACAAAAGAAGAGCTGGATGAACTGTATGCGATCTTAGATCAAAAACGGAAAGAATAA UPDATED NCBI_taxonomy_name with Bacillus clausii UPDATED NCBI_taxonomy_id with 79880 UPDATED NCBI_taxonomy_cvterm_id with 36882 UPDATED accession with ABU39978.1 UPDATED sequence with MSNQTPSISEAEWEVMKVLWKKGPQTANQVISAIQEQTDWKPKTIRTLLDRLTKKKVVGVDKEQKIYVFFPLYSEEACKHAEAQSFVKRVYGGTVKPLLVQFLEEESLTKEELDELYAILDQKRKE " 1377 UPDATE CTX-M-60 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAGCCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCGGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTCGCGATGTGCAGCACCAGTAAAGTGATGGCCGTGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAGTCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTGGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCAGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGACTATGGCACCACCAACGATATCGCGGTGATTTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATATATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA " 400 UPDATE PDC-1 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1379 UPDATE OXA-313 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1378 UPDATE AAC(3)-IIc antibiotic inactivation; AAC(3); paromomycin; kanamycin A; aminoglycoside antibiotic; neomycin; butirosin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCATACGCGGAAGGCAATAACGGAGGCGCTTCAAAAACTCGGAGTCCAAACCGGTGACCTATTGATGGTGCATGCCTCACTTAAAGCGATTGGTCCGGTCGAAGGAGGAGCGGAGACGGTCGTTGCCGCGTTACGCTCCGCGGTTGGGCCGACTGGCACTGTGATGGGATACGCATCGTGGGACCGATCACCCTACGAGGAGACTCGTAATGGCGCTCGGTTGGATGACAAAACCCGCCGTACCTGGCCGCCGTTCGATCCCGCAACGGCCGGGACTTACCGTGGGTTCGGCCTGCTGAATCAGTTTCTGGTTCAAGCCCCCGGCGCGCGGCGCAGCGCGCACCCCGATGCATCGATGGTCGCGGTTGGTCCACTGGCTGAAACGCTGACGGAGCCTCACAAGCTCGGTCACGCCTTGGGGGAAGGGTCGCCCGTCGAGCGGTTCGTTCGCCTTGGCGGGAAGGCCCTGCTGTTGGGTGCGCCGCTAAACTCCGTTACCGCATTGCACTACGCCGAGGCGGTTGCCGATATCCCCAACAAACGGCGGGTGACGTATGAGATGCCGATGCTTGGAAGCAACGGCGAAGTCGCCTGGAAAACGGCATCGGATTACGATTCAAACGGCATTCTCGATTGCTTTGCTATCGAAGGAAAGCCGGATGCGGTCGAAACTATAGCAAATGCTTACGTGAAGCTCGGTCGCCATCGAGAAGGTGTCGTGGGCTTTGCTCAGTGCTACCTGTTCGACGCGCAGGACATCGTGACGTTCGGCGTCACCTATCTTGAGAAGCATTTCGGAACCACTCCGATCGTGCCAGCACACGAAGTCGCCGAGTGCTCTTGCGAGCCTTCAGGTTAG " 452 UPDATE QnrVC4 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGATAAAACAGACCAGTTATATGTACAAGCAGACTTTTCACATCAAGACATGAGTGGTCAGTATTTTAAAAATTGCAAATTTTTCTGCTGTTCCTTTAAACGAGCGAACCTCCGCGATACACAATTTGTAGATTGTTCTTTCATTGAACGAGGTGAATTAGAGGGGTGTGATTTTTCTTACTCGGATCTTAGAGATGCATCTTTTAAAAACTGCAGTCTTTCAATGTCGTATTTCAAAGGTGCAAATTGTTTTGGTATCGAGTTCAGAGAATGCGATTTAAAGGGTGCCAATTTTGCTCAAGCTAGCTTCATGAATCAGGTATCGAACAGAATGTATTTTTGTTCAGCTTATATAACAGGTTGTAATCTTTCATACGCCAACTTTGAAAGGCAGTGTATCGAAAAGTGTGATTTGTTTGAGAATAGATGGATTGGCGCAAATCTGAGTGGTGCATCATTTAAAGAGTCTGATTTAAGTCGGGGAGTATTTTCTGAAGGGTGTTGGAGCCAGTGTAGGTTGCAAGGTTGTGATTTGAGCCACTCGGAGTTGTATGGTTTAGACCCTCGGAAAGTTGACCTTACAGGTGTAAAAATCTGTTCGTGGCAGCAAGAACAACTTTTAGAGCAATTAGGTTTAATAGTAGTTCCTGACTAA " 409 UPDATE vanRL glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanR; vancomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACGGATAGAATAGTTGTTGTGGATGATGAACAAGAGATAGCCAATTTGATTACAACTTTTTTAGAAAATGAAGGGTTTCAAGTAACAACCTTTTATAAAGGAGAAGATTTTTTGACTTATATAGCTAGAGAGTCAATTTCTTTAGCTATATTAGATGTCATGCTACCTGATATTGATGGGTTTCGAATCTTGCAAGAAATTAGAAAGAATTTTTATTTTCCGGTATTAATGCTTACAGCTAAGGAAGAAAATATGGACAAGATTATGGGACTAACCTTGGGAGCGGATGATTATATTACTAAACCATTTAACCCAATAGAAGTAGTTGCCCGGGTAAAAACACAACTAAGACGAGTCCAAAAGTATAACCGGAAAGTGGAAAATGAATCAGTCATAGAGTTTAACAAAGACGGACTAACGCTAAAAAAAGACAGTCATCAAGTATTTTTATTTGATAAAGAAATAACTGTAACACCTATTGAATTCAATTTGCTTTTATATTTATTTGAACACCAAGGAGTGGTTGTTAGTTCAGAAGAACTATTTGAAGCTGTTTGGAAAGAGAAATATTTAGAAAATAATAACACAATCATGGCACACATTGCTCGCTTAAGGGAAAAATTAGACGAACAGCCACGCAAACCTAAATTCATAAAAACCGTATGGGGGGTAGGATATATTATTGAAAAGTAA " 408 UPDATE OXA-380 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 869 UPDATED strand with - UPDATED accession with KF986261 UPDATED fmin with 44 UPDATED sequence with ATGAACATTAAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGTGCTTCAAAATCTGATGACAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCATCAAGGTCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACCACAGAAATATTTAAGTGGGACGGGCAAAAAAGGCTGTTCCCAGAATGGGAAAAGGACATGACCCTAGGTGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAAGGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAGTTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCTAAAAGTCCAAGATGAAGTGCAATCCATGTTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAGACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGAAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGTTTAGAACAATTAGGTATTTTATAG UPDATED NCBI_taxonomy_name with Acinetobacter baumannii UPDATED NCBI_taxonomy_id with 470 UPDATED NCBI_taxonomy_cvterm_id with 35507 UPDATED accession with AHL30280.1 UPDATED sequence with MNIKALLLITSAIFISACSPYIVTANPNHSASKSDDKAEKIKNLFNEAHTTGVLVIHQGQTQQSYGNDLARASTEYVPASTFKMLNALIGLEHHKATTTEIFKWDGQKRLFPEWEKDMTLGDAMKASAIPVYQDLARRIGLELMSKEVKRVGYGNADIGTQVDNFWLVGPLKITPQQEAQFAYKLANKTLPFSLKVQDEVQSMLFIEEKNGNKIYAKSGWGWDVDPQVGWLTGWVVQPQGNIVAFSLNLEMKKGIPSSVRKEITYKSLEQLGIL " 1343 UPDATE OXA-166 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1242 UPDATE aadA6/aadA10 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTAACGCAGTACCCGCCGAGATTTCGGTACAGCTATCACTGGCTCTCAACGCCATCGAGCGTCATCTGGAATCAACGTTGCTGGCCGTGCATTTGTACGGCTCTGCACTGGACGGTGGCCTGAAGCCATACAGTGATATTGATTTGCTGGTTACTGTGGCTGCACGGCTCGATGAGACTGTCCGACAAGCCCTGGTCGTAGATCTCTTGGAAATTTCTGCCTCCCCTGGCCAAAGTGAGGCTCTCCGCGCCTTGGAAGTTACCATCGTCGTGCATGGTGATGTTGTCCCTTGGCGTTATCCGGCCAGACGGGAACTGCAATTCGGGGAGTGGCAGCGTAAGGACATTCTTGCGGGCATCTTCGAGCCCGCCACAACCGATGTTGATCTGGCTATTCTGCTAACTAAAGTAAGGCAGCATAGCCTTGCATTGGCAGGTTCGGCCGCAGAGGATTTCTTTAACCCAGTTCCGGAAGGCGATCTATTCAAGGCATTGAGCGACACTCTGAAACTATGGAATTCGCAGCCGGATTGGGAAGGCGATGAGCGGAATGTAGTGCTTACCTTGTCTCGCATTTGGTACAGCGCAGCAACCGGCAAGATCGCACCGAAGGATATCGTTGCCAACTGGGCAATGGAGCGTCTGCCAGATCAACATAAGCCCGTACTGCTTGAAGCCCGGCAGGCTTATCTTGGACAAGGAGAAGATTGCTTGGCCTCACGCGCGGATCAGTTGGCGGCGTTCGTTCACTTCGTGAAACATGAAGCCACTAAATTGCTTAGTGCCATGCCAGTGATGTCTAAAACAAAGTTAGATGCACTAAGCACATAA " 1344 UPDATE MexH antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; norfloxacin; acridine dye; acriflavin; tetracycline antibiotic; fluoroquinolone antibiotic; tetracycline; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAGAAACCCGTCCTGATCGCCAGTGCCGCGCTCATCTGCGCGGCGGTTATCGGCATCGCCGTCTACGCCACCGGCTCGGCGAAGAAAGACGCCGGCGGTTTCGCCGGCTACCCGCCGGTGAAGGTCGCCCTCGCCTCGGTGGAGCGGCGGGTGGTGCCGCGCGTCTTCGATGGCGTCGGCGAGCTGGAGGCCGGTCGCCAGGTCCAGGTGGCCGCCGAAGCGGCAGGACGGATCACCCGCATCGCCTTCGAATCGGGCCAGCAGGTGCAGCAAGGGCAGTTGCTGGTGCAACTCAACGACGCGGTGGAACAGGCCGAGCTGATCCGTCTCAAGGCGCAGTTGCGCAATGCCGAGATCCTCCATGCCCGTGCGCGCAAGCTGGTAGAGCGCAACGTCGCCTCGCAGGAACAGCTGGACAACGCCGTCGCCGCCCGCGACATGGCGCTCGGCGCGGTGCGCCAGACCCAGGCGCTGATCGACCAGAAGGCGATCCGCGCGCCCTTCTCCGGCCAGCTCGGCATCCGCCGCGTGCACCTCGGCCAGTACCTCGGCGTCGCCGAGCCGGTGGCCAGCCTGGTGGATGCGCGGACCCTGAAAAGCAATTTCTCCCTGGACGAAAGCACCAGTCCCGAGCTGAAGCTCGGCCAGCCCCTCGAGGTCCTGGTCGACGCCTATCCGGGGCGCAGCTTCCCGGCGCGCATCAGCGCCATCGACCCGCTGATCGGCAAGTCGCGCACGGTGCAGGTCCAGGCCTTGCTGGACAACCCCGAAGGCCTGCTCGCCGCCGGCATGTTCGCCAGCATCCGGGTCTCGCGCAAAGCCGACGCGCCGTCGCTGAGCGTGCCGGAAACCGCGGTCACCTATACCGCCTACGGCGACACCGTGTTCGTCGCCCACCAGGACGGCGACCGGCCGCTCAGCGCCAAGCGCGTCTCGGTGCGGATCGGCGAGCGCTGGGACGGTCGCGTGGAAATCCTCCAGGGCCTCGCCGAGGGCGACCGGGTAGTGACTTCCGGACAGATCAACCTGAGCGACGGGATGGCCGTGGAACCGGTCAAGGAAGACACCCTGAGCAGTGCCGCGCCCCCCGTGCCGGTCGCCGGCCGCTGA " 455 UPDATE vanC glycopeptide antibiotic; glycopeptide resistance gene cluster; van ligase; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAAATTGCCGTTTTATTTGGAGGGAATTCTCCAGAATACTCAGTGTCACTAACCTCAGCAGCAAGTGTGATCCAAGCTATTGACCCGCTGAAATATGAAGTAATGACCATTGGCATCGCACCAACAATGGATTGGTATTGGTATCAAGGAAACCTCGCGAATGTTCGCAATGATACTTGGCTAGAAGATCACAAAAACTGTCACCAGCTGACTTTTTCTAGCCAAGGATTTATATTAGGAGAAAAACGAATCGTCCCTGATGTCCTCTTTCCAGTCTTGCATGGGAAGTATGGCGAGGATGGCTGTATCCAAGGACTGCTTGAACTAATGAACCTGCCTTATGTTGGTTGCCATGTCGCTGCCTCCGCATTATGTATGAACAAATGGCTCTTGCATCAACTTGCTGATACCATGGGAATCGCTAGTGCTCCCACTTTGCTTTTATCCCGCTATGAAAACGATCCTGCCACAATCGATCGTTTTATTCAAGACCATGGATTCCCGATCTTTATCAAGCCGAATGAAGCCGGTTCTTCAAAAGGGATCACAAAAGTAACTGACAAAACAGCGCTCCAATCTGCATTAACGACTGCTTTTGCTTACGGTTCTACTGTGTTGATCCAAAAGGCGATAGCGGGTATTGAAATTGGCTGCGGCATCTTAGGAAATGAGCAATTGACGATTGGTGCTTGTGATGCGATTTCTCTTGTCGACGGTTTTTTTGATTTTGAAGAGAAATACCAATTAATCAGCGCCACGATCACTGTCCCAGCACCATTGCCTCTCGCGCTTGAATCACAGATCAAGGAGCAGGCACAGCTGCTTTATCGAAACTTGGGATTGACGGGTCTGGCTCGAATCGATTTTTTCGTCACCAATCAAGGAGCGATTTATTTAAACGAAATCAACACCATGCCGGGATTTACTGGGCACTCCCGCTACCCAGCTATGATGGCGGAAGTCGGGTTATCCTACGAAATATTAGTAGAGCAATTGATTGCACTGGCAGAGGAGGACAAACGATGA " 9 UPDATE ACT-35 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 456 UPDATE adeR antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; tigecycline; glycylcycline; tetracycline antibiotic; tetracycline; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTTGATCATTCTTTTTCTTTTGATTGCCAAGATAAAGTTATTCTTGTGGTAGAAGATGACTACGATATTGGCGACATTATTGAAAATTATTTAAAACGTGAAGGCATGAGTGTTATTCGGGCCATGAATGGAAAGCAAGCGATTGAATTGCACGCTAGCCAACCCATCGATTTAATCTTACTTGATATTAAATTACCCGAATTAAACGGTTGGGAAGTATTAAATAAAATACGCCAAAAAGCTCAGACTCCCGTGATCATGTTGACGGCGCTAGATCAAGATATTGATAAAGTTATGGCATTACGCATAGGTGCAGATGACTTTGTGGTGAAGCCTTTTAACCCAAATGAAGTCGTCGCTAGAGTTCAGGCAGTCCTAAGACGTACTCAGTTTGCAAACAAAGCAACTAATAAAAATAAACTCTATAAAAATATTGAAATTGATACCGACACTCATAGCGTTTATATACACTCTGAGAATAAGAAGATCTTGCTTAATCTGACGCTGACTGAATATAAAATTATTTCATTCATGATTGATCAGCCTCATAAAGTTTTTACGCGCGGAGAGCTTATGAATCACTGCATGAATGATAGCGATGCACTAGAGCGAACCGTAGATAGCCATGTGAGTAAGCTGAGAAAAAAACTAGAAGAACAAGGCATATTTCAAATGTTAATTAATGTGCGTGGCGTGGGATATAGACTAGATAATCCCCTAGCTGTAAAAGATGATGCCTAA " 457 UPDATE OXA-93 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATTAAAGCCCTCTTACTTATAACAAGCACTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGCGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTCTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCAGCCTTGAGCACCATAAGGCAACCACCACAGAAGTATTTAAGTGGGACGGGCAAAAAAGGCTATTCCCAGAATGGGAAAAGGACATGACCCTAGGCGACGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAATGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAATTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAAACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGCTTAGAACAATTAGGTATTTTATAG " 379 UPDATE OXA-148 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 378 UPDATE TEM-214 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 647 UPDATE TEM-89 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 371 UPDATE SHV-8 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 370 UPDATE SHV-112 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 373 UPDATE MIR-3 antibiotic inactivation; monobactam; cephalosporin; MIR beta-lactamase; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGACAAAATCCCTAAGCTGTGCCCTGCTGCTCAGCGTCGCCAGCGCTGCATTCGCCGCACCGATGTCCGAAAAACAGCTGGCTGAGGTGGTGGAACGTACCGTTACGCCGCTGATGAACGCGCAGGCCATTCCGGGTATGGCGGTGGCGGTAATTTATCAGGGTCAGCCACACTACTTTACCTTCGGTAAAGCCGATGTTGCGGCGAACAAACCCGTCACCCCGCAAACCCTGTTTGAGCTGGGCTCTATAAGTAAAACCTTCACCGGCGTACTGGGCGGCGATGCCATTGCCCGGGGTGAAATAGCGCTGGGCGATCCGGTAGCAAAATACTGGCCTGAGCTCACGGGCAAGCAGTGGCAGGGCATTCGCATGCTGGATCTGGCAACCTATACCGCAGGCGGTCTGCCGTTACAGGTGCCGGATGAGGTCACGGATACCGCCTCTCTGCTGCGCTTTTATCAAAACTGGCAGCCGCAGTGGAAGCCGGGCACCACGCGTCTTTACGCTAACGCCAGCATCGGTCTTTTTGGTGCGCTGGCGGTCAAACCTTCCGGCATGAGCTATGAGCAGGCCATGACGACGCGGGTCTTTAAACCCCTCAAGCTGGACCATACCTGGATTAACGTCCCGAAAGCGGAAGAGGCGCATTACGCCTGGGGATACCGTGAGGGTAAAGCGGTCCACGTTTCGCCAGGGATGCTGGACGCGGAAGCCTATGGCGTAAAAACTAACGTGAAGGATATGGCGAGCTGGCTGATAGCCAACATGAAGCCGGATTCTCTTCACGCTCCCTCACTCAAGCAAGGCATTGCTCTGGCGCAGTCTCGCTACTGGCGCGTGGGTGCTATGTATCAGGGGTTAGGCTGGGAGATGCTCAACTGGCCGGTCGATGCCAAAACCGTCGTCGGAGGCAGTGATAACAAGGTGGCGCTGGCACCATTGCCCGTGGCAGAAGTGAATCCACCCGCGCCGCCGGTCAAAGCCTCCTGGGTCCATAAAACAGGCTCGACGGGCGGGTTTGGCAGCTACGTGGCATTTATTCCTGAAAAGCAGCTCGGCATTGTGATGCTGGCGAATAAAAGCTATCCGAACCCGGCACGCGTTGAGGCGGCATACCGTATCCTCGACGCGCTGCAGTAA DELETED 35962 " 372 UPDATE qacA efflux pump complex or subunit conferring antibiotic resistance; fluoroquinolone antibiotic; major facilitator superfamily (MFS) antibiotic efflux pump; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 375 UPDATE mdtH antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; norfloxacin; efflux pump complex or subunit conferring antibiotic resistance; fluoroquinolone antibiotic; enoxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1125326 UPDATED strand with - UPDATED accession with U00096 UPDATED fmin with 1124117 UPDATED sequence with ATGTCCCGCGTGTCGCAGGCGAGGAACCTGGGTAAATATTTCCTGCTCATCGATAATATGCTGGTCGTGCTGGGGTTCTTTGTTGTCTTCCCGCTGATCTCTATCCGCTTCGTTGATCAAATGGGCTGGGCCGCCGTCATGGTCGGTATTGCTCTCGGTCTACGCCAATTTATTCAGCAAGGTCTGGGTATTTTCGGCGGTGCAATTGCCGACCGCTTTGGTGCCAAACCGATGATTGTTACCGGTATGCTGATGCGCGCCGCCGGATTCGCCACAATGGGTATCGCCCACGAACCGTGGCTATTGTGGTTTTCATGCCTGCTCTCGGGACTCGGTGGCACGTTGTTTGATCCGCCGCGTTCGGCGCTGGTGGTGAAATTAATCCGTCCACAGCAGCGTGGTCGTTTTTTCTCGCTGTTGATGATGCAGGACAGTGCCGGTGCGGTCATTGGCGCATTGTTGGGGAGCTGGCTGTTGCAATACGACTTTCGCCTGGTCTGCGCCACAGGGGCAGTTCTATTTGTGCTATGTGCGGCGTTCAATGCGTGGTTGTTACCAGCATGGAAACTCTCCACCGTACGCACGCCCGTTCGCGAAGGCATGACCCGCGTGATGCGTGACAAGCGTTTTGTCACCTATGTTCTGACGCTGGCGGGTTACTACATGCTGGCTGTACAAGTGATGCTGATGCTGCCAATTATGGTCAACGACGTGGCTGGCGCGCCCTCTGCCGTTAAATGGATGTATGCCATTGAAGCGTGTCTGTCGTTAACGTTGCTCTACCCTATCGCCCGCTGGAGTGAAAAGCATTTTCGTCTGGAACACCGGTTGATGGCTGGGCTGTTGATAATGTCATTAAGCATGATGCCGGTGGGCATGGTCAGCGGCCTGCAACAACTTTTCACCCTGATTTGTCTGTTTTATATCGGGTCGATCATTGCCGAGCCTGCGCGTGAAACCTTAAGTGCTTCGCTGGCGGACGCAAGAGCTCGCGGCAGCTATATGGGGTTTAGCCGTCTGGGTCTGGCGATTGGCGGCGCTATTGGTTATATCGGTGGCGGCTGGCTGTTTGACCTGGGCAAATCGGCGCACCAGCCAGAGCTTCCGTGGATGATGCTGGGCATTATTGGCATCTTCACTTTCCTTGCGCTGGGTTGGCAGTTTAGCCAGAAACGCGCCGCGCGTCGTTTGCTTGAACGCGACGCCTGA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. MG1655 UPDATED NCBI_taxonomy_id with 511145 UPDATED NCBI_taxonomy_cvterm_id with 36849 UPDATED accession with AAC74149.2 UPDATED sequence with MSRVSQARNLGKYFLLIDNMLVVLGFFVVFPLISIRFVDQMGWAAVMVGIALGLRQFIQQGLGIFGGAIADRFGAKPMIVTGMLMRAAGFATMGIAHEPWLLWFSCLLSGLGGTLFDPPRSALVVKLIRPQQRGRFFSLLMMQDSAGAVIGALLGSWLLQYDFRLVCATGAVLFVLCAAFNAWLLPAWKLSTVRTPVREGMTRVMRDKRFVTYVLTLAGYYMLAVQVMLMLPIMVNDVAGAPSAVKWMYAIEACLSLTLLYPIARWSEKHFRLEHRLMAGLLIMSLSMMPVGMVSGLQQLFTLICLFYIGSIIAEPARETLSASLADARARGSYMGFSRLGLAIGGAIGYIGGGWLFDLGKSAHQPELPWMMLGIIGIFTFLALGWQFSQKRAARRLLERDA " 374 UPDATE SHV-21 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 377 UPDATE mepA antibiotic efflux; multidrug and toxic compound extrusion (MATE) transporter; efflux pump complex or subunit conferring antibiotic resistance; tigecycline; glycylcycline; tetracycline antibiotic; tetracycline; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 376 UPDATE lnuC antibiotic inactivation; lincosamide nucleotidyltransferase (LNU); lincosamide antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1244 UPDATE OXY-5-1 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 393 UPDATE QnrS5 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 392 UPDATE TUS-1 carbapenem; antibiotic inactivation; TUS beta-lactamase; cephamycin; cephalosporin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTACCACTACTTTAGCAGTTTATTTGTACTGATTTTTTCTACTTTGGTCTATCCTCAATCGGATAAATTAAAAATTGAGCCGTTGAACGATCATATGTATGTCTATACGACCTACCAAGTATTTCAAGGCGTCGAATATTCTTCCAATGCTTTATATGTAGTGACGGATGAAGGAGTAATTCTCATTGATACCCCTTGGGATAAAGATCAGTACGCCCCTTTAGTAGAACACATCAGACGTGAACATAACAAAGAAATAAAATGGGTCATTACCACTCACTTCCACGAAGATCGTTCGGGTGGACTTGATTACTTCAATAAAGCTGGAGCAGAAACCTATACTTATGCTTTGACCAACGAAATCTTAAAACAGCGCAATGAACCACAAGCGACTTTTACTTTTGGTTCAACAAAGCAGTTCAACTTGGGCAAAGAAAAAATAGAGGTCTATTTCTTAGGAGAAGGTCATAGTAAAGATAATACGGTGGTTTGGTTTCCAGAAGAAGCGATTTTATACGGTGGTTGTTTGATTAAAAGTGCAGAGGCAACGACTATCGGCAATATCGTCGATGGCAATGTAGAGGCTTGGCCTACGACAATCAAAGCCGTAAAGCGCAAATTCAAAAAGGCCAAAGTGATTATTCCAGGGCATGATGCCTGGAATCAATCCGGTCATCTTGAAAATACAGCCCGTATCTTATCGGCTTATCAGGCACAAAAATTAAAGAACAACAAGCAATTATAA " 391 UPDATE VIM-2 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTCAAACTTTTGAGTAAGTTATTGGTCTATTTGACCGCGTCTATCATGGCTATTGCGAGTCCGCTCGCTTTTTCCGTAGATTCTAGCGGTGAGTATCCGACAGTCAGCGAAATTCCGGTCGGGGAGGTCCGGCTTTACCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTTTGATGGCGCAGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAGAAGCAAATTGGACTTCCTGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCCGAGGTAGAGGGGAACGAGATTCCCACGCACTCTCTAGAAGGACTCTCATCGAGCGGGGACGCAGTGCGCTTCGGTCCAGTAGAACTCTTCTATCCTGGTGCTGCGCATTCGACCGACAACTTAGTTGTGTACGTCCCGTCTGCGAGTGTGCTCTATGGTGGTTGTGCGATTTATGAGTTGTCACGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCATTGAGCGGATTCAACAACACTACCCGGAAGCACAGTTCGTCATTCCGGGGCACGGCCTGCCGGGCGGTCTAGACTTGCTCAAGCACACAACGAATGTTGTAAAAGCGCACACAAATCGCTCAGTCGTTGAGTAG " 390 UPDATE vanSG glycopeptide antibiotic; vanS; antibiotic target alteration; vancomycin; glycopeptide resistance gene cluster; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGACAGTGACTATACACAGCTCCAGACAAAAATATTAATAAGGACAGCGGTTGTGCTATTCGGGGCGTTTGCTCTGATTTCCGCATCTCTTAGTTTATTAAGCGGGCATTTTTCAAGGGCTGTTGTGGGGATTTTGGAAATATTCTATAAAGATTATGAAAAGGCTTTGGTGGTATACACCTATGTGTTTCGGGACAATAAAGAATGGTTTGTGATGATAGCTGCATTTGTGTCGTTTCTAATTGTATTACGATTGTATCTGAAAGGCTTCACAAAGTATTTTAATGAAATAAACAGAGGTATTAATGCCTTGAAAGAGGAAAGTTCAGAAGATGTTGTATTATCTTCTGAGCTTGCGGCGACTGAAAAAACAATCAATACAATTAAGCATACCCTTGAACAGCAGAAAACTGCGGCGCTGGTTGCAGAGCAAAGGAAGAACGACCTTGTAGTGTATCTTGCTCATGATTTAAAGACTCCGCTTACATCTGTGATTGGATATTTGACATTGCTTAGGGACGAGAAGCAAATTTCAGATGAATTAAGGGAAAAGTATATATGTATTTCACTGGAAAAAGCAGAACGATTGGAAAATCTGATCAATGAATTTTTTGAGATTACACGTTTTAATCTTTCCAACATAATACTTGAATATAGTGTGGTAAATTTAACTCGTATGTTGGAGCAGTTGGTTTTTGAATTCAATCCAATGCTTGCGGAAAAAAAATTAAATTGTGTTCTTAAGACGATGCCGAATAAAATGATACGCTGCGACGCCAATAAAATGCAGAGGGTATTCGATAATTTATTGAGAAATGCAGTGAATTATAGTTTTGAGAATACAGAGATTTCTATTACAGTCACACAAAATGAAAATATGGTTCATATTAAATTTGTAAATCATGGAAATACAATTCCAAAAGAGAAACTGGAACGTATTTTTGAACAGTTTTATCGTCTGGATACTTCCAGAAGCACAGGGAATGGCGGCGCAGGCTTAGGGCTTGCTATTGCAAGGGAAATCGTAATGCTGCATGGAGGGACAATAACCGCCCGCAGTGAAGATGAAAAGATTGAATTTGAAGTGACGATTCTTTCATCGTAG " 397 UPDATE OXA-357 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 396 UPDATE sul3 sulfadiazine; sulfadoxine; sulfacetamide; sulfadimidine; mafenide; sulfamethoxazole; sulfisoxazole; sulfonamide resistant sul; sulfone antibiotic; sulfamethizole; sulfasalazine; sulfonamide antibiotic; antibiotic target replacement; dapsone; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 9323 UPDATED strand with - UPDATED accession with FJ196385 UPDATED fmin with 8531 UPDATED sequence with ATGAGCAAGATTTTTGGAATCGTAAATATAACCACCGATAGTTTTTCCGATGGAGGACTTTATTTAGATACAGATAAGGCAATTGAGCATGCTCTGCATTTGGTTGAAGATGGAGCAGATGTGATTGATTTGGGAGCCGCTTCCAGTAATCCTGATACAACTGAAGTGGGCGTTGTGGAAGAAATCAAAAGACTCAAACCTGTCATTAAGGCTTTAAAAGAAAAAGGCATTTCTATTTCTGTTGATACATTTAAACCTGAGGTTCAGAGTTTTTGCATAGAACAAAAGGTTGATTTTATTAATGATATTCAAGGTTTTCCTTATCCTGAGATTTATTCAGGCTTGGCAAAGTCAGATTGCAAACTTGTGTTGATGCACTCCGTTCAGCGAATTGGTGCAGCTACTAAAGTTGAAACGAATCCGGAAGAGGTTTTTACTTCCATGATGGAATTTTTTAAAGAAAGAATTGCTGCTTTAGTTGAGGCTGGTGTAAAGCGTGAACGAATTATTCTTGATCCGGGTATGGGCTTCTTTTTAGGCTCTAATCCAGAAACATCTATTCTTGTTTTGAAGCGTTTCCCTGAAATTCAAGAAGCTTTTAATTTGCAAGTAATGATTGCAGTGTCACGGAAATCATTCTTAGGTAAAATAACTGGAACCGATGTGAAATCTCGTTTAGCACCAACTCTTGCAGCAGAAATGTATGCATACAAAAAAGGTGCAGATTATCTCCGCACCCATGATGTTAAGTCTTTATCAGATGCCTTGAAAATATCCAAAGCCCTAGGTTAG UPDATED NCBI_taxonomy_name with Escherichia coli UPDATED NCBI_taxonomy_id with 562 UPDATED NCBI_taxonomy_cvterm_id with 35914 UPDATED accession with ACJ63260.1 UPDATED sequence with MSKIFGIVNITTDSFSDGGLYLDTDKAIEHALHLVEDGADVIDLGAASSNPDTTEVGVVEEIKRLKPVIKALKEKGISISVDTFKPEVQSFCIEQKVDFINDIQGFPYPEIYSGLAKSDCKLVLMHSVQRIGAATKVETNPEEVFTSMMEFFKERIAALVEAGVKRERIILDPGMGFFLGSNPETSILVLKRFPEIQEAFNLQVMIAVSRKSFLGKITGTDVKSRLAPTLAAEMYAYKKGADYLRTHDVKSLSDALKISKALG " 395 UPDATE blaF penam; amoxicillin; antibiotic inactivation; blaF family beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 394 UPDATE OXA-130 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 399 UPDATE MIR-16 antibiotic inactivation; monobactam; cephalosporin; MIR beta-lactamase; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 35962 " 398 UPDATE TEM-71 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCAGTAAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 2301 UPDATE Enterococcus faecalis YybT with mutation conferring daptomycin resistance peptide antibiotic; antibiotic target alteration; daptomycin; daptomycin resistant YybT; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2300 UPDATE Acinetobacter baumannii ampC beta-lactamase penam; antibiotic inactivation; cephalosporin; cefepime; piperacillin; ampC-type beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2303 UPDATE bcr-1 antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; bicyclomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 5980365 UPDATED strand with - UPDATED accession with CP012901.1 UPDATED fmin with 5979156 UPDATED sequence with GTGCCTGCGAGTGCATCGAGGATTCAGGTCGGAAGCGGCGAACGACGCCTGTTGCTGCTGTTGTCGGCGCTGGTGGCGTTCGGCCCGCTGTCGATCGACATGTACCTGCCGAGCCTGCCGGCGATCGCCGCCGATCTCGGCGCCAGCGATGCCCAGGTGCAGCGGAGCATCAGCGGCTTCCTGGTCGGCTTCTGCGTCGGCATGCTGTTCTACGGCCCCTTGTCCGACCGTTTCGGCCGGCGCCCGGTGCTGCTGGCCGGTATCGCCTTGTACCTGTTCAGCAGCCTGGCCTGCGCGCTGGCCGACAGCGCGGGGCAACTGGTCCTGCTGAGGGTGCTCCAGGCCCTCGGCGGCGGCGCCGCGTCGGTGCTGGCGCGGGCCATGGTGCGCGACCTCTATCCGTTGGGCGAGGCCGCCCGGATGCTGGCATTGATGCACATGGTGACCATGCTGGCACCGCTGGCCGCGCCGCTGCTCGGCGGCTACCTGATGCTCTGGGCCGGCTGGCGCGCGTTGTTCGTGGTCCTGGCGCTGTTCGCCGGGCTCTGCCTGCTGGCGGTCTGGCGGGTCGCCGAAAGCCACCCGCCGGAGCGCCGCGGCGGCAGCCTGGCCCAGGCCTTTCTCGCCTATGGGCGGCTGCTCGGCGACCGTCGCGCGCTGGGCTACGTGCTGTGCATGGGGCTGGCGTTCGCCGGGATGTTCGCCTACATCAGCGCCGCGCCCTTCGTGTTCATCGAGCATTTCGGCGTGCGCGCGGAGCGCTTCGGCTGGTTCTTCGGCCTGAACATCCTCGGCGTGATGCTCGCCACCTGGTGCAGCGCGCGCCTGGTGCGCCGCCACGGTCCGCGGCCGCTGCTGCGGGCCGGCAGCCTGCTGGCCTGCGTGTCCGGGCTGTTCCTCCTCGGCTATGCGGCGCTCGGCGAGCGGGGCGGGTTGTGGGCGCTGGTGCCCGGCCTGCTGTGCTTCGTCAGCGTCACCGGCCTGCTCGGCGCCAACTGCATCGCCAGCCTGCTGGCGTTGTATCCCGGACAGGCCGGGGCGGCTTCGGCGGTGGCGGTGTCCGGGCAGTTCGGCCTCGGCTGCCTGGCCAGCCTGGCGGTCGGCTGGCTGGCGCTGCCCGGCGTGCTGCCGATGGCGCTGGTGATGGCCGTCTGCGGCGTCGGCAGCCTGCTCGCGCTGGGCTTGGCCCTGCACGGCGGAAACCGTTGA UPDATED NCBI_taxonomy_name with Pseudomonas aeruginosa UPDATED NCBI_taxonomy_id with 287 UPDATED NCBI_taxonomy_cvterm_id with 36752 UPDATED accession with ALV80601.1 UPDATED sequence with MPASASRIQVGSGERRLLLLLSALVAFGPLSIDMYLPSLPAIAADLGASDAQVQRSISGFLVGFCVGMLFYGPLSDRFGRRPVLLAGIALYLFSSLACALADSAGQLVLLRVLQALGGGAASVLARAMVRDLYPLGEAARMLALMHMVTMLAPLAAPLLGGYLMLWAGWRALFVVLALFAGLCLLAVWRVAESHPPERRGGSLAQAFLAYGRLLGDRRALGYVLCMGLAFAGMFAYISAAPFVFIEHFGVRAERFGWFFGLNILGVMLATWCSARLVRRHGPRPLLRAGSLLACVSGLFLLGYAALGERGGLWALVPGLLCFVSVTGLLGANCIASLLALYPGQAGAASAVAVSGQFGLGCLASLAVGWLALPGVLPMALVMAVCGVGSLLALGLALHGGNR " 2305 UPDATE Enterococcus faecalis gshF with mutation conferring daptomycin resistance peptide antibiotic; antibiotic target alteration; daptomycin; daptomycin resistant gshF; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 1663635 UPDATED strand with - UPDATED accession with NZ_CP014949.1 UPDATED fmin with 1661364 UPDATED sequence with ATGAATTATAGAGAATTAATGCAAAAGAAAAATGTTCGTCCTTACGTATTGATGGCTCGTTTTGGTTTAGAAAAAGAAAACCAACGTAGTACACGAGAAGGGCTTTTAGCGACAACTGATCATCCCACGGTTTTTGGTAACCGTTCTTATCATCCATATATTCAAACAGATTTTAGTGAAACACAATTAGAACTAATCACGCCTGTAGCAAATAGCGGCACAGAAATGCTTCGTTTTTTAGATGCCATTCACGATGTGGCTCGTCGTTCGATTCCAGAAGATGAAATGCTGTGGCCATTAAGTATGCCGCCACAATTACCAACAAAAGATGAAGAGATTAAAATTGCTAAATTAGATCAATATGATGCAGTGTTATATCGTCGTTATTTGGCAAAAGAGTATGGCAAACGAAAACAAATGGTCAGCGGAATTCATTTTAATTTTGAATATGACCAAGCCCTGATTCAGCAATTATATGATGAACAATCCGAAGTGACAGATTGCAAACAATTTAAAACGAAAGTGTACATGAAAGTTGCCCGTAACTTTTTACGTTATCGTTGGTTAATTACGTATCTTTTTGGGGCTTCGCCAGTTAGTGAAGACGGCTACTTTAGAGTCTATGACGACCAACCGCAAGAACCCATTCGCAGTATTCGGAATAGTACGTATGGCTACAGAAATCATGACAATGTGAAAGTATCGTATGCCTCATTGGAACGCTATTTAGAAGATATTCATCGCATGGTGGAAAATGGTTTACTTTCTGAAGAAAAAGAATTTTATGCGCCTGTGCGCTTACGTGGTGGGAAACAAATGTCTGATCTGCCTAAAACAGGTATTCGCTATATCGAGTTGCGTAATTTAGACTTAAATCCTTTTTCACGTTTAGGCATTGTGGAAGATACTGTGGATTTCTTACATTATTTCATGTTGTATTTATTGTGGACAGATGAAAAAGAAGAAGCGGATGAATGGGTAAAAACTGGCGATATTTTAAATGAACAAGTGGCTCTTGGTCATCCTCATGAAACGATTAAGTTAATTGCAGAAGGCGATCGGATTTTTTCAGAAATGATTGATATGTTAGATGCTCTAGGCATTCGTAAAGGCAAAGAAGTTGTCGGTAAGTATTATCAACAACTGCGGAATCCACAAGACACCGTTTCTGGCAAAATGTGGACGATTATTCAAGAAAACTCCAACAGTGAACTGGGAAATATTTTTGGAAACCAATATCAAAGTATGGCCTTTGAACGCCCTTATCAATTAGCTGGTTTCCGTGAGATGGAATTATCCACACAAATTTTCTTGTTTGATGCGATTCAAAAAGGTTTGGAAATCGAAATTTTAGATGAACAAGAGCAATTTTTGAAACTGCAACATGGCGAGCACATTGAATACGTCAAAAATGCCAACATGACTAGCAAAGATAACTACGTGGTACCATTGATTATGGAAAACAAAACCGTGACAAAGAAAATTTTGTCTGCAGCAGGGTTCCATGTGCCTGGCGGTGAAGAATTTTCATCTTTTATTGAGGCACAAGAAGCACATTTACGCTACGCCAATAAAGCGTTTGTCGTGAAACCAAAATCAACGAATTACGGTTTAGGAATTACCATTTTTAAAGAAGGCGCTTCGTTGGAAGACTTTACGGAAGCGTTACGGATTGCTTTTAAAGAGGACACAGCGGTTTTAATTGAAGAGTTTTTACCTGGAACAGAATATCGGTTCTTTGTGTTAGATAATGATGTAAAAGCCATCATGTTGCGCGTGCCAGCCAATGTTACCGGAGATGGCAAACACACTGTAGAAGAATTGGTGGCCGCTAAAAATAGTGATCCATTGCGGGGGACCAATCACCGTGCACCACTAGAATTAATCCAGTTAAATGATTTAGAAAAACTAATGTTGAAAGAACAAGGTTTAACTATCTATTCTGTGCCAGAAAAAGAGCAAATCGTGTACTTGCGAGAAAATTCTAATGTTAGCACGGGCGGGGATTCGATTGATATGACCGATGTCATTGATGATAGTTATAAACAAATCGCCATTGAGGCCGTAGCTGCTTTAGGAGCCAAAATTTGTGGCATTGATTTAATCATTCCTGACAAAGACGTAAAAGGCACACGTGATAGCTTAACGTACGGGATTATCGAAGCAAACTTTAATCCAGCCATGCACATGCATGTGTATCCATACGCTGGACAGGGTAGACGCTTGACAATGGACGTTTTAAAACTTTTATACCCAGAAGTGGTTCAATAA UPDATED NCBI_taxonomy_name with Enterococcus UPDATED NCBI_taxonomy_id with 1350 UPDATED NCBI_taxonomy_cvterm_id with 37056 UPDATED accession with WP_002389492.1 UPDATED sequence with MNYRELMQKKNVRPYVLMARFGLEKENQRSTREGLLATTDHPTVFGNRSYHPYIQTDFSETQLELITPVANSGTEMLRFLDAIHDVARRSIPEDEMLWPLSMPPQLPTKDEEIKIAKLDQYDAVLYRRYLAKEYGKRKQMVSGIHFNFEYDQALIQQLYDEQSEVTDCKQFKTKVYMKVARNFLRYRWLITYLFGASPVSEDGYFRVYDDQPQEPIRSIRNSTYGYRNHDNVKVSYASLERYLEDIHRMVENGLLSEEKEFYAPVRLRGGKQMSDLPKTGIRYIELRNLDLNPFSRLGIVEDTVDFLHYFMLYLLWTDEKEEADEWVKTGDILNEQVALGHPHETIKLIAEGDRIFSEMIDMLDALGIRKGKEVVGKYYQQLRNPQDTVSGKMWTIIQENSNSELGNIFGNQYQSMAFERPYQLAGFREMELSTQIFLFDAIQKGLEIEILDEQEQFLKLQHGEHIEYVKNANMTSKDNYVVPLIMENKTVTKKILSAAGFHVPGGEEFSSFIEAQEAHLRYANKAFVVKPKSTNYGLGITIFKEGASLEDFTEALRIAFKEDTAVLIEEFLPGTEYRFFVLDNDVKAIMLRVPANVTGDGKHTVEELVAAKNSDPLRGTNHRAPLELIQLNDLEKLMLKEQGLTIYSVPEKEQIVYLRENSNVSTGGDSIDMTDVIDDSYKQIAIEAVAALGAKICGIDLIIPDKDVKGTRDSLTYGIIEANFNPAMHMHVYPYAGQGRRLTMDVLKLLYPEVVQ " 1246 UPDATE AAC(2')-Ic antibiotic inactivation; AAC(2'); arbekacin; gentamicin B; gentamicin C; amikacin; aminoglycoside antibiotic; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 314854 UPDATED strand with - UPDATED accession with AL123456.3 UPDATED fmin with 314308 UPDATED sequence with GTGCACACCCAGGTACACACGGCCCGCCTGGTCCACACCGCCGATCTTGACAGCGAGACCCGCCAGGACATCCGTCAGATGGTCACCGGCGCGTTTGCCGGTGACTTCACCGAGACCGACTGGGAGCACACGCTGGGTGGGATGCACGCCCTGATCTGGCATCACGGGGCGATCATCGCGCATGCCGCGGTGATCCAGCGGCGACTGATCTACCGCGGCAACGCGCTGCGCTGCGGGTACGTCGAAGGCGTTGCGGTGCGGGCGGACTGGCGGGGCCAACGCCTGGTGAGCGCGCTGTTGGACGCCGTCGAGCAGGTGATGCGCGGCGCTTACCAGCTCGGAGCGCTCAGTTCCTCGGCGCGGGCCCGCAGACTGTACGCCTCACGCGGCTGGCTGCCCTGGCACGGCCCGACATCGGTACTGGCACCAACCGGTCCAGTCCGTACACCCGATGACGACGGAACGGTGTTCGTCCTGCCCATCGACATCAGCCTGGACACCTCGGCGGAGCTGATGTGCGATTGGCGCGCGGGCGACGTCTGGTAA UPDATED NCBI_taxonomy_name with Mycobacterium tuberculosis H37Rv UPDATED NCBI_taxonomy_id with 83332 UPDATED NCBI_taxonomy_cvterm_id with 39507 UPDATED accession with CCP42991.1 UPDATED sequence with MHTQVHTARLVHTADLDSETRQDIRQMVTGAFAGDFTETDWEHTLGGMHALIWHHGAIIAHAAVIQRRLIYRGNALRCGYVEGVAVRADWRGQRLVSALLDAVEQVMRGAYQLGALSSSARARRLYASRGWLPWHGPTSVLAPTGPVRTPDDDGTVFVLPIDISLDTSAELMCDWRAGDVW " 245 UPDATE cmlA5 antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGCGCTCAAAAAACTTTAGTTGGCGGTACTCCCTTGCCGCCACGGTGTTGTTGTTATCACCGTTCGATTTATTGGCATCACTCGGCATGGACATGTACTTGCCAGCAGTGCCGTTTATGCCAAACGCGCTTGGTACGACAGCGAGCACAATTCAGCTTACGCTGACAACGTACTTGGTCATGATTGGTGCCGGTCAGCTCTTGTTTGGACCGCTATCGGACCGACTGGGGCGCCGCCCCGTTCTACTGGGAGGTGGCCTCGCCTACGTTGTGGCGTCAATGGGCCTCGCTCTTACGTCATCGGCTGAAGTCTTTCTGGGGCTTCGGATTCTTCAGGCTTGTGGTGCCTCGGCGTGCCTTGTTTCCACATTTGCAACAGTACGTGACATTTACGCAGGTCGCGAGGAAAGTAATGTCATTTACGGCATACTCGGATCCATGCTGGCCATGGTCCCGGCGGTAGGCCCATTGCTCGGAGCGCTCGTCGACATGTGGCTTGGGTGGCGGGCTATCTTTGCGTTTCTAGGTTTGGGCATGATCGCTGCATCTGCAGCAGCGTGGCGATTCTGGCCTGAAACCCGGGTGCAACGAGTTGCGGGCTTGCAATGGTCGCAGCTGCTACTCCCCGTTAAGTGCCTGAACTTCTGGTTGTACACGTTGTGTTACGCCGCTGGAATGGGTAGCTTCTTCGTCTTTTTCTCCATTGCGCCCGGACTAATGATGGGCAGGCAAGGTGTGTCTCAGCTTGGCTTCAGCCTGCTGTTCGCCACAGTGGCAATTGCCATGGTGTTTACGGCTCGTTTTATGGGGCGTGTGATACCCAAGTGGGGCAGCCCAAGTGTCTTGCGAATGGGAATGGGATGCCTGATAGCTGGAGCAGTATTGCTTGCCATCACCGAAATATGGGCTTCGCAGTCCGTGTTAGGCTTTATTGCTCCAATGTGGCTAGTGGGTATTGGTGTCGCCACAGCGGTATCTGTGTCGCCCAATGGCGCTCTTCGAGGATTCGACCATGTTGCTGGAACGGTCACGGCAGTCTACTTCTGCTTGGGCGGTGTACTGCTAGGAAGCATCGGAACGTTGATCATTTCGCTGTTGCCGCGCAACACGGCTTGGCCGGTTGTCGTGTACTGTTTGACCCTTGCAACAGTCGTGCTCGGTCTGTCTTGTGTTTCCCGAGTGAAGGGCTCTCGCGGCCAGGGGGAGCATGATGTGGTCGCGCTACAAAGTGCGGAAAGTACATCAAATCCCAATCGTTGA " 244 UPDATE SHV-164 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 247 UPDATE TEM-158 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 246 UPDATE CTX-M-126 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 241 UPDATE ACT-30 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 240 UPDATE vanRF glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanR; vancomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAATATAACAATATTAATAGCTGATGATGATGCTGAAATTGCTGATTTGGTTGCTATACATTTAGAGAAAGAAGGGTATCGTGTCATTAAGGTATCGGATGGGCAAGAAACCATTGATGTTATCCAGAACCAACCCATTGATTTACTGATTTTGGATATTATGATGCCGAAAATGGATGGATTTGAAGTGACACGTCGCATTCGCGAAAAACATAATATGCCCATTATTTTTTTGAGCGCTAAAACGTCTGATTTTGATAAAGTGCAGGGACTCGTGATTGGAGCAGACGATTATATGACGAAACCATTTATACCCATTGAATTGGTAGCTCGGGTAAATGCACAGCTGCGACGCTTTATGAAGTTGAATCAACCTAAAACCAAACAGAACTCAAACTTGGAATTTGGAGGATTAACGATTTCTCCTGAACAACGTACAGTTACTCTATATGGTAAGAATATTGAGTTAACACCGAAAGAGTTTGAAATTTTATTTTTATTAGCCAGTAATCCAAATAAAGTTTATCGTGCAGAAGATATTTTTCAGAAGGTATGGGGGGATGCATACTATGAAGGTGGGAATACCGTTATGGTTCATATTCGTACTTTGCGGAAAAAACTTGAAGAGGATAAACGAAAAAACAAATTGATACAAACTGTATGGGGGGTAGGTTATAAATTCAATGGGTAA " 243 UPDATE OXA-9 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 242 UPDATE SHV-152 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 249 UPDATE basS pmr phosphoethanolamine transferase; peptide antibiotic; antibiotic target alteration; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 248 UPDATE OKP-B-9 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2274 UPDATE RlmA(II) antibiotic target alteration; non-erm 23S ribosomal RNA methyltransferase (G748); macrolide antibiotic; lincosamide antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2277 UPDATE Bacillus Cluster B intrinsic mph antibiotic inactivation; macrolide phosphotransferase (MPH); macrolide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 4143 UPDATED strand with - UPDATED accession with AHEL01000071.1 UPDATED fmin with 3243 UPDATED sequence with TTGAACAAACAGAAAGCGGTAGAAATAGCAAGAAAGTATGGTTTGGAAGTTAAAGATGAGTCCATCATATTCAACGAGTCCGGTTTAGATTTTCTGGTTGCTTATGCAGAAGACGATAAAGGCGAAGAATGGGTGCTAAGGTTTCCGAGACGGGACGATGTGATGCCAAGGACGATAGTGGAGAAGAAAGCACTGGATCTTGTAAATAAATATGCCACTTTTCAGGTTCCAGTCTGGTCGGTTTATGAAGGCGATCTAATAGCTTATAAAAAGTTAATCGGAGTGCCAGCAGGCACGATTGATCCGGAGATTCAAAACTATGTGTGGGAGATGGATTATGAAAATGTGCCTGAACAATTTCACCAGACATTAGCCAAAGCGTTGGCTTCGCTACACACAGTTCCGAAAACAGAGGCTCTTAAAGTAGGCCTGTTTGTCCAGACAGCAGAAGAGGCAAGAAAATCGATGATTGAGCGTATGAAAAAGGTTAAAGCGAAGTTTGGCGTAGGCGAATCCTTATGGAACCGCTGGCAGGCCTGGGTAAAAAATGAGGAATTGTGGCCTCAGAGAACAGGTCTGATTCATGGGGATGTTCATGCTGGCCACACGATGATTGATAAAGATGCTAACTTAACAGGTTTTATCGACTGGACCGAAGCAAAAGTAACGGATGTATCAAATGACTTTGTTTTCCAGTACCGGGTATTCGGGGAGGCAGCCCTGGAGAAACTGATCAACTATTACCGGCAAGCAGGTGGGATTTACTGGCCTGCCATGAAAGAGCACGTCATTGAACTTAATGCGGCATACCCTGTTGCGATAGCTGAGTTTGCGATTATCTCAGGCTTGGAAGAATATGAGCAGATGGCGAAAGAAACATTGGAAGTGAATGACCGCTAG UPDATED NCBI_taxonomy_name with Bacillus cereus K-5975c UPDATED NCBI_taxonomy_id with 1053217 UPDATED NCBI_taxonomy_cvterm_id with 39641 UPDATED accession with EOO80837.1 UPDATED sequence with MNKQKAVEIARKYGLEVKDESIIFNESGLDFLVAYAEDDKGEEWVLRFPRRDDVMPRTIVEKKALDLVNKYATFQVPVWSVYEGDLIAYKKLIGVPAGTIDPEIQNYVWEMDYENVPEQFHQTLAKALASLHTVPKTEALKVGLFVQTAEEARKSMIERMKKVKAKFGVGESLWNRWQAWVKNEELWPQRTGLIHGDVHAGHTMIDKDANLTGFIDWTEAKVTDVSNDFVFQYRVFGEAALEKLINYYRQAGGIYWPAMKEHVIELNAAYPVAIAEFAIISGLEEYEQMAKETLEVNDR " 2276 UPDATE Staphylococcus aureus ileS with mutation conferring resistance to mupirocin antibiotic resistant isoleucyl-tRNA synthetase (ileS); antibiotic target alteration; mupirocin; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2271 UPDATE Staphylococcus mupB conferring resistance to mupirocin antibiotic resistant isoleucyl-tRNA synthetase (ileS); antibiotic target alteration; mupirocin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2270 UPDATE Staphylococcus mupA conferring resistance to mupirocin antibiotic resistant isoleucyl-tRNA synthetase (ileS); antibiotic target alteration; mupirocin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2272 UPDATE Enterococcus faecalis cls with mutation conferring resistance to daptomycin peptide antibiotic; antibiotic target alteration; daptomycin resistant cls; daptomycin; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2279 UPDATE Listeria monocytogenes mprF peptide antibiotic; antibiotic target alteration; defensin resistant mprF; defensin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1761291 UPDATED strand with - UPDATED accession with NC_003210.1 UPDATED fmin with 1758693 UPDATED sequence with ATGAAAGAAAAATTAATGCAAGCCTATGCCTGGTTTCAAAAAAATAGTACCGTCGTAAAAATCGTTTTTATTACTTTTGTGATGGCTTTTGTTATTTTTGAAATTATTAATATTGCGACGGGGATTGACTATCCGTCGCTAAAAGAAAATTTAACTTCTCAAAGCCCGGAACAAATATTTATTATGTTTATCGTGGGCTTAATTGCTGTCACTCCAATGCTTTTGTATGATTATGTCATCGTTAAGTTGTTACCTGGAAAGTTTTCGCCAAGTCATGTGATTGCCTCTGGTTGGATTACGAATACCTTTACTAATATTGGCGGTTTTGGTGGCGTATTAGGTGCCAGTTTAAGAGCAAGTTTTTATGGGAAAAATGCATCTCATAAGGAAATTTTACTAGCTATTTCTAAGATTGCTTTATTTTTAGTATCTGGTTTATCGATTTACTGTTTAGTATCATTAGCCACTTTACTCATTCCAGGATTTGCAGATCATTTTGTTAATTACTGGCCATGGCTTCTTGCGGGTGGTCTTTACTTCCCGATTTTATTTACTATTACGAAATGGAAAAGTAAGTCACTCTTTGTTGATTTACCTATCAAAAGAGAATTAACGTTAATTATCGCTTCTCTTTTGGAGTGGGGCTTCGCTTTTGGATGTTTCGCGATTATCGGTACATTGATGGGAGAACCAGTCGATATTTTCAAAGTGTTCCCGTTATTTGTTATTGCTTCGGTAATTGGGATTGCTTCGATGGTACCTGGTGGAGTAGGGACATTTGACGTCGTGATGATTCTTGGACTTAGCCAATTAGGTGTTTCTCAAGAATTAGCGCTCGCTTGGATGCTATTTTACCGAATTTTCTACTATATTATTCCTTTTGTAGTGGGACTACTTTTCTTCGTCCAAAAAGCTGGTAAAAAAGTAAATGACTTTTTAGAAGGATTACCGTTATTATTCTTACAAAAAGTGGCCCATCGCTTCTTAGTTATTTTTGTTTACGGCTCTGGGTTATTGTTAATTTTGTCTTCCGCCGTACCAAACGCTATTTACCATGTGCCATTCTTATACAAAATTATGCCGTTTAATTTCTTATTCACTTCCCAAATTACCATTGTTGCATTTGGCTTTTTACTACTGGGGCTTGCGAGAGGGATTGAATGTAAAACAAAGAAAGCGTATATTATTACAGTAATTGTTCTAGGTTGCGCGATTTTCAACACACTTGCTCGCGTATTTTCGATGAAGCAGGCAATCTTTTTAGGAATTGTGCTGTTATGTTTATTCTTAGCTCGAAACGAATTTTACCGAGAAAAACTGGTTTATACTTGGAGTAAAGTAATTATTGATAGCATTATTTTCATCGTATGTCTGGCAGGTTACATTGTTATCGGTATTTACAACTCACCAAATATCAAACACTCCAAAGAAATCCCTGACTATTTACGCATTGCCTCAGAGCATTTATGGTTAGTCGGCTTCGTTGGCGTATTTATCGCCGTTGTTAGTTTAGTCATTATTTACATTTATTTATCCACAACAAAAGAAAAACTTGGCTCTCCATTTGAAGCAGTCAAAGTACGCGAACATTTAGCGAAATGGGGCGGAAATGAAGTCAGTCATACGATGTTCTTACGTGATAAACTGCTATTTTGGGCAGCAGAGGGGGAAGTACTTTTCTCTTACCGAATCATTGCGGACAAAATGGTCATCATGGGCGAACCAACTGGGAACATGGACAAAATGGAAGCAGCGATTGAAGAGGTAATGATGAACGCTGATAGATTTGGCTATCGACCTGTTTTCTATGAAGTCCGGGGCACGATGATTCCATATTTACATGATCACGGATTTGACTTTATCAAGCTTGGCGAGGAAGGTTTTGTCGACGTCCAAAACTTTACAATGAGTGGTAAAAAGAAAAAAGGTGAGCGAGCTCTCATGAATAAATTAGAACGAGAAGGTTATACTTTTGAAATAATAGAACCACCATTCAATCACGACACTTGGACAACTTTACGAGCAGTTTCTGATGAGTGGCTAGATGGTAGGGAAGAAAAAGGTTTCTCATTAGGATTCTTCGATACGTATTATCTCGAACAAGCTCCGATTGCTATCGCTAAAAACGGAGAAGGTACTATCGTTGGATTTGCTTCGATGATGCCGTCATATACAGACGAAATGACTTCGATTGATTTAATGCGTTACTCCAAAGAAGCGCCATCAGGTATTATGGATTTCCTTTTCATTAACCTATTCGAAAAAGCCAAAGAAGATGGCTTCCAAACATTTAATGCCGGTATGGCACCACTTGCCAATGTTGGGGAAAGTAAATATGCTTTCCTAGGTGAACGATTAGCCGGACTTGTATACCGTTATAGTCAAGGTTTTTACGGTTTCAAAGGATTACGTAATTTTAAATCCAAATATGTTACAGAATGGGAACAAAAATTTGTTGCCTTTAGAAAAAGAAGTTCCATTGCTTTCACCATGTTACAATTAATGATTCTTGTTGGTAAAAAACGACCACTTGCAAATAGCCAAGTAGTCCTTGATTTCCCACTCGAAGAAGAAACAAAAAAACCAGATTCTGAGTAA UPDATED NCBI_taxonomy_name with Listeria monocytogenes EGD-e UPDATED NCBI_taxonomy_id with 169963 UPDATED NCBI_taxonomy_cvterm_id with 40443 UPDATED accession with NP_465220.1 UPDATED sequence with MKEKLMQAYAWFQKNSTVVKIVFITFVMAFVIFEIINIATGIDYPSLKENLTSQSPEQIFIMFIVGLIAVTPMLLYDYVIVKLLPGKFSPSHVIASGWITNTFTNIGGFGGVLGASLRASFYGKNASHKEILLAISKIALFLVSGLSIYCLVSLATLLIPGFADHFVNYWPWLLAGGLYFPILFTITKWKSKSLFVDLPIKRELTLIIASLLEWGFAFGCFAIIGTLMGEPVDIFKVFPLFVIASVIGIASMVPGGVGTFDVVMILGLSQLGVSQELALAWMLFYRIFYYIIPFVVGLLFFVQKAGKKVNDFLEGLPLLFLQKVAHRFLVIFVYGSGLLLILSSAVPNAIYHVPFLYKIMPFNFLFTSQITIVAFGFLLLGLARGIECKTKKAYIITVIVLGCAIFNTLARVFSMKQAIFLGIVLLCLFLARNEFYREKLVYTWSKVIIDSIIFIVCLAGYIVIGIYNSPNIKHSKEIPDYLRIASEHLWLVGFVGVFIAVVSLVIIYIYLSTTKEKLGSPFEAVKVREHLAKWGGNEVSHTMFLRDKLLFWAAEGEVLFSYRIIADKMVIMGEPTGNMDKMEAAIEEVMMNADRFGYRPVFYEVRGTMIPYLHDHGFDFIKLGEEGFVDVQNFTMSGKKKKGERALMNKLEREGYTFEIIEPPFNHDTWTTLRAVSDEWLDGREEKGFSLGFFDTYYLEQAPIAIAKNGEGTIVGFASMMPSYTDEMTSIDLMRYSKEAPSGIMDFLFINLFEKAKEDGFQTFNAGMAPLANVGESKYAFLGERLAGLVYRYSQGFYGFKGLRNFKSKYVTEWEQKFVAFRKRSSIAFTMLQLMILVGKKRPLANSQVVLDFPLEEETKKPDSE " 2278 UPDATE Bifidobacterium ileS conferring resistance to mupirocin antibiotic resistant isoleucyl-tRNA synthetase (ileS); antibiotic target alteration; mupirocin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1613960 UPDATED strand with - UPDATED accession with NC_014638.1 UPDATED fmin with 1610636 UPDATED sequence with GTGAGCGAAACCACCAATTCCCACGTGTATCCCAAGGCGAACGAGGGCGGCGAGACCGCCAGCGTCGCGCCGAACCCGAGTTTCCCCAACATGGAGGAAACCGTCCTGAAGTATTGGGACAAGGACGACACCTTCAACAAGTCCGTTGAACGCAACCCTTCCGGCGACCATAGTCAGAACGAGTTCGTGTTCTTCGACGGCCCGCCGTTCGCGAACGGCCTGCCGCACTACGGCCACCTGCTGACCGGTTACGCGAAGGACGTGATCCCGCGCTACCAGACCATGAAGGGCCGCAAGGTCAACCGCGTGTTCGGCTGGGACACGCACGGTCTGCCCGCCGAGCTGGAGGCGCAGAAGGAGCTCGGCATCGACTCGGTCGACCAGATCGAGAAGATGGGCATCGACAAGTTCAATGACGCCTGCCGCGCCTCCGTCCTGAAGTACACGCACGAATGGCAGGATTACGTGCATCGTCAGGCCCGCTGGGTCGACTTCGAGCACGGGTACAAGACGCTGAACATCCCGTATATGGAGTCGGTGATGTGGGCGTTCAAGCAGCTGTACGAGAAGGGCCTGGCGTACCAGGGCTACCGCGTGCTGCCGTACTGCCCGAAGGATCAGACGCCGCTTTCGGCGCACGAGCTGCGCATGGACGCCGACGTGTATCAGGATCGTCAGGACACCACCGTGTCGGTGGCCGTGAAGCTGCGCGACGAGGAGGACGCCTACGCGGTCTTCTGGACCACCACGCCGTGGACCGTGCCCACTAACTTCGCGATCGTCGTCGGCGCTGACATCGACTATGTCGAGGTGCGCCCGACGCAGGGCAAGTACGCCGGCAAGAAGTTCTACTTCGGCAAGCCCCTGCTCTCCAAGTACGAGAAGGAGCTCGGCGAGGATTACGAGGTCGTGCGCGAGCTCAAGGGCTCCGAGATGGCCGGTTGGCGTTACTGGCCGGTGTTCCCGTACTTCGCTGGCGACAAAGCCGAGTCTGAGGGCAACGTGCCGGGGCCCGAAGGCTACCAAATCTTTACCGCGGACTACGTAGACACCGTCGAGGGTACCGGCCTGGTTCACCAGGCTCCCTATGGTGAGGACGATATGAACACGCTGAACGCGCACGGCATCAAGAGCACTGACGTGCTCGACGCCGGCTGCCGCTTCACCGCGCAGTGCCCCGATTACGAGGGCATGTACGTGTTCGACGCGAACAAGCCGATCCTGCGCAACCTGCGCAACGGAGACGGCCCGCTGGCCGAGATCCCGGCCGAGCATCGCGCGATCCTGTTCCAGGAGAAGAGCTATGTGCACTCCTACCCGCATTGCTGGCGTTGCGCCACGCCGCTGATCTACAAGCCTGTGAGCTCATGGTTCGTGTCGGTGACGAAGATCAAGCCGCGCCTGTTGGAGCTCAACCAGCAGATCAACTGGATTCCTGAGAATGTCAAGGATGGTCAGTTCGGTAAGTGGCTCGCCAACGCGCGCGACTGGTCGATCTCCCGCAACCGCTTCTGGGGTTCGCCGATCCCGGTGTGGGTGAGCGATGACCCGAAGTACCCGCGCGTCGACGTGTACGGTTCGTTGGAGGAGCTCAAGGCCGACTTCGGCGACTACCCGCGCGACAAGGACGGCAACGTCAACATGCACCGTCCGTGGATCGACAACCTCACGCGCGTCAACCCGGACGACCCGACCGGCAAGAGCCACATGCACCGTATCAGCGACGTGCTCGACTGCTGGTTCGAATCCGGTTCGATGTCGTTCGCGCAGTTCCACTACCCGTTCGAGAACAAGGAGAAGTTCGAGCAGCACTTCCCGGCCGACTACATTGTCGAATACATCGGCCAGACCCGCGGCTGGTTCTACCTGCTGCACGTGATGGCCACCGCGCTGTTCGACCGCCCGGCGTTCAAGAACGTGATCTGCCACGGCATCGTGCTCGGTTCCGACGGCCAGAAGATGTCGAAGCACCTGCGCAACTACCCGGACGTGAACGGCGTGTTCGACAAGTACGGTTCCGACGCCATGCGCTGGTTCCTTATGTCGTCGCCGATCCTGCGCGGCGGCAACCTCATTGTTACCGCTGAGGGCATCCGCGACACCGTGCGCCAGGTCATGCTGCCGGTGTGGAGCTCCTACTACTTCTTCACGCTGTATGCGAACGCGGCCAATGGCGGGGCCGGCTTCGACGCCCGTCAGCTGCGCGCGGACGAGGTGGCGGGTCTGCCTGAGATGGATCGTTACCTGCTGGCCCGCACCCGCAGGCTCGTAGAGCGTGTAGAGAAGTCGCTCGACGAGTTCGCGATTTCTGACGCGTGCGATGCGGCGAGTGACTTCATCGACGTGCTCACCAACTGGTACATCCGCAACACCCGTGATCGCTTCTGGAAGGAGGACGTGAATGCGTTCAACACGCTGTACACCGTGCTTGAGGTGTTCATGCGCGTTCTCGCGCCGCTCGCCCCGATGGAGTCCGAATCCGTGTGGCGTGGCCTGACCGGCGGCGAATCCGTGCATCTGGCCGATTGGCCGTACGTCGCGGACGAGAAGACCGGTGAGGCGACCGAGCTTGGCCGTGTGCTGGTCGACGACCCGGCACTGGTGGACGCGATGGAGAAGGTGCGCGAGATCGTCTCCGGCGCTCTGTCGTTGCGCAAGGCCGCCCAGATCCGTGTGCGCCAGCCGCTCGCCAAGCTCACCGTCGTGGTCGAGGATGTGGATGCCGTCAAGGCGTACGACGAAATTCTCAAGTCAGAGCTTAATATAAAGGATATTGAGTTCTGCACGATGGAGGATGCCGGTTCGCAGGGGCTGAAGATCGTGCACGAGCTGAAGGTCAACGCCCGCGCCGCCGGCCCGCGCCTCGGCAAGCAGGTCCAGTTCGCCATCAAGGCGTCCAAGACCGGTGCCTGGCATGTCGATGCCGCGACCGGTGCTCCGGTCGTCGAGACGCCGAACGGCGAGGTTGCGCTGGAGGCTGGCGAATACGAGCTAATCAACCGCGTGGAGGAGGAGAACGCCGCCGAGGCCGACGCTTCCGTGTCGGCCGCTCTGCCTACCGGCGGTTTCGTGATTCTCGATACCGTGCTGACCGCCGACCTGGAGGCCGAGGGCTACGCCCGCGACGTGATTCGCGCCGTGCAGGACGCCCGCAAGGCCGCCGACCTGGACATCGCCGATCGCATCGCCCTGGTGCTGACCGTGCCGTCCGCCAATGTGGCCGATGTCGAGCGGTTCCGCGATCTGATCGCCCATGAGACGCTGGCCACCTCCTTCGCGGTGAAGGAAGGTGCCGAGCTGGGCGTGGAGGTCGCCAAGGCGTGA UPDATED NCBI_taxonomy_name with Bifidobacterium bifidum PRL2010 UPDATED NCBI_taxonomy_id with 702459 UPDATED NCBI_taxonomy_cvterm_id with 40437 UPDATED accession with YP_003971446.1 UPDATED sequence with MSETTNSHVYPKANEGGETASVAPNPSFPNMEETVLKYWDKDDTFNKSVERNPSGDHSQNEFVFFDGPPFANGLPHYGHLLTGYAKDVIPRYQTMKGRKVNRVFGWDTHGLPAELEAQKELGIDSVDQIEKMGIDKFNDACRASVLKYTHEWQDYVHRQARWVDFEHGYKTLNIPYMESVMWAFKQLYEKGLAYQGYRVLPYCPKDQTPLSAHELRMDADVYQDRQDTTVSVAVKLRDEEDAYAVFWTTTPWTVPTNFAIVVGADIDYVEVRPTQGKYAGKKFYFGKPLLSKYEKELGEDYEVVRELKGSEMAGWRYWPVFPYFAGDKAESEGNVPGPEGYQIFTADYVDTVEGTGLVHQAPYGEDDMNTLNAHGIKSTDVLDAGCRFTAQCPDYEGMYVFDANKPILRNLRNGDGPLAEIPAEHRAILFQEKSYVHSYPHCWRCATPLIYKPVSSWFVSVTKIKPRLLELNQQINWIPENVKDGQFGKWLANARDWSISRNRFWGSPIPVWVSDDPKYPRVDVYGSLEELKADFGDYPRDKDGNVNMHRPWIDNLTRVNPDDPTGKSHMHRISDVLDCWFESGSMSFAQFHYPFENKEKFEQHFPADYIVEYIGQTRGWFYLLHVMATALFDRPAFKNVICHGIVLGSDGQKMSKHLRNYPDVNGVFDKYGSDAMRWFLMSSPILRGGNLIVTAEGIRDTVRQVMLPVWSSYYFFTLYANAANGGAGFDARQLRADEVAGLPEMDRYLLARTRRLVERVEKSLDEFAISDACDAASDFIDVLTNWYIRNTRDRFWKEDVNAFNTLYTVLEVFMRVLAPLAPMESESVWRGLTGGESVHLADWPYVADEKTGEATELGRVLVDDPALVDAMEKVREIVSGALSLRKAAQIRVRQPLAKLTVVVEDVDAVKAYDEILKSELNIKDIEFCTMEDAGSQGLKIVHELKVNARAAGPRLGKQVQFAIKASKTGAWHVDAATGAPVVETPNGEVALEAGEYELINRVEEENAAEADASVSAALPTGGFVILDTVLTADLEAEGYARDVIRAVQDARKAADLDIADRIALVLTVPSANVADVERFRDLIAHETLATSFAVKEGAELGVEVAKA " 179 UPDATE QnrA5 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 178 UPDATE vanHA vanH; glycopeptide resistance gene cluster; teicoplanin; glycopeptide antibiotic; antibiotic target alteration; vancomycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 177 UPDATE IMP-51 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAGTTATCAGTATTCTTTATGTTTTTGTTTTGTAGCATTGCTGCCTCAGGAGAGGCTTTGCCAGATTTAAAAATTGAGAAGCTTGACGAAGGCGTTTATGTTCATACTTCGTTTGAGGAAGTTAACGGCTGGGGCGTGGTTCCTAAACACGGCTTGGTGGTTCTTGTAAATACTGACGCTTATTTGATTGACACTCCATTTACAGCTAAAGATACTGAAAAGTTAGTTACTTGGTTTGTAGAGCGCGGCTATAAAATAAAAGGCAGTATCTCCTCTCATTTTCATAGCGACAGCACGGGCGGAATAGAGTGGCTTAATTCTCAATCTATTCCAACATATGCATCTGAATTAACAAATGAACTTCTTAAAAAAGACGGTAAGGTACAAGCTAAAAATTCATTTAGCGGAGCCAGCTATTGGTTAGTTAAGAAAAAGATTGAAATTTTTTATCCTGGCCCAGGGCACACTCCAGATAACGTAGTGGTTTGGCTACCTGAACATAGAGTTTTGTTTGGTGGTTGTTTTGTTAAACCGTATGGTCTAGGTAATTTGGGTGACGCAAATTTAGAAGCTTGGCCAAAGTCTGCCAAATTATTAGTGTCCAAATATGGTAAGGCAAAACTGGTTGTTCCAGGTCACAGTGAAGTTGGAGATGCATCACTCTTGAAACGTACATTAGAACAGGCTGTTAAAGGATTAAACGAAAGTAAAAAGCTATCAAAACCAAGTAACTAA " 176 UPDATE CMY-25 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 175 UPDATE CTX-M-24 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 174 UPDATE CfxA2 antibiotic inactivation; cephamycin; CfxA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1037 UPDATED strand with - UPDATED accession with AF118110.1 UPDATED fmin with 71 UPDATED sequence with ATGGAAAAAAACAGAAAAAAACAAATCGTAGTTTTGAGTATAGCTTTAGTTTGCATTTTCATCTTGGTATTTTCATTGTTCCATAAATCAGCGACAAAAGATAGCGCAAATCCTCCTTTAACAAATGTTTTGACTGATAGCATTTCTCAAATTGTCTCAGCTTGTCCTGGCGAAATTGGTGTGGCGGTTATTGTTAATAACAGAGATACGGTTAAGGTCAATAATAAGAGTGTTTATCCTATGATGAGTGTGTTTAAGGTTCATCAGGCATTAGCTCTTTGTAATGACTTTGACAATAAAGGAATTTCACTTGATACCTTAGTAAATATAAATAGGGATAAACTTGACCCAAAGACTTGGAGTCCTATGCTGAAAGATTATTCAGGGCCAGTCATATCATTGACAGTGAGAGATTTGCTGCGTTATACTCTTACTCAGAGTGACAACAATGCAAGCAACCTTATGTTTAAGGATATGGTTAATGTCGCTCAAACAGATAGTTTTATAGCCACACTCATTCCTCGTTCAAGTTTTCAGATAGCTTATACGGAAGAGGAAATGTCGGCTGACCATAACAAGGCTTACTCTAACTATACATCTCCTCTTGGTGCTGCAATGTTGATGAATCGTTTGTTTACTGAAGGTCTTATCGATGATGAGAAACAAAGTTTCATTAAGAATACGTTAAAAGAATGCAAAACAGGTGTAGATAGGATAGCAGCTCCACTTCTTGATAAAGAAGGGGTTGTTATAGCGCATAAGACAGGTTCAGGTTATGTTAATGAAAATGGTGTTCTTGCAGCTCACAATGATGTTGCCTATATATGTCTGCCTAATAATATCAGTTATACCTTAGCGGTATTTGTTAAGGATTTCAAGGGAAATGAATCACAAGCGTCACAATATGTTGCGCATATATCAGCTGTAGTATATTCTTTATTAATGCAAACTTCAGTAAAATCTTAA UPDATED NCBI_taxonomy_name with Prevotella intermedia UPDATED NCBI_taxonomy_id with 28131 UPDATED NCBI_taxonomy_cvterm_id with 39547 UPDATED accession with AAD23513.1 UPDATED sequence with MEKNRKKQIVVLSIALVCIFILVFSLFHKSATKDSANPPLTNVLTDSISQIVSACPGEIGVAVIVNNRDTVKVNNKSVYPMMSVFKVHQALALCNDFDNKGISLDTLVNINRDKLDPKTWSPMLKDYSGPVISLTVRDLLRYTLTQSDNNASNLMFKDMVNVAQTDSFIATLIPRSSFQIAYTEEEMSADHNKAYSNYTSPLGAAMLMNRLFTEGLIDDEKQSFIKNTLKECKTGVDRIAAPLLDKEGVVIAHKTGSGYVNENGVLAAHNDVAYICLPNNISYTLAVFVKDFKGNESQASQYVAHISAVVYSLLMQTSVKS " 173 UPDATE arr-4 antibiotic inactivation; rifampin; rifapentine; rifabutin; rifampin ADP-ribosyltransferase (Arr); rifaximin; rifamycin antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACGAATGACTGGATTCCCACTTCGCATGACAACTGCTCGCAAGTAGCGGGGCCGTTCTATCACGGCACCAAAGCCAAACTCACGGTTGGTGACTTGCTTTCCCCAGGACACCCGTCTCACTTTGAGCAAGGTCGCAAGCTCAAACACATCTACTTTGCCGCCCTGATGGAACCAGCCATCTGGGGAGCGGAGCTTGCGATGTCGCTGTCAAGCCTAGAGGGGCGCGGCCACATCTACATCGTTGAACCGCTCGGCCCATTTGAGGACGACCCGAACCTTACAAACAAGAAATTCCCGGGAAATCCAACCAAGTCCTATCGCACCACTGAGCCGCTGCGGATTGTTGGGATCGTAGAAGACTGGCAAGGCCACTCACCGGAGGTGTTACAGGGCATGTTGGCGTCTCTGGAGGATCTTCAGCGTCGTGGCCTCGCCATCATTGAGGACTAA " 172 UPDATE OprN antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; norfloxacin; trimethoprim; efflux pump complex or subunit conferring antibiotic resistance; diaminopyrimidine antibiotic; ciprofloxacin; fluoroquinolone antibiotic; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATTCACGCGCAGTCGATCCGGAGCGGGCTCGCGTCCGCCCTGGGTCTGTTCAGTCTGCTGGCGCTCAGCGCCTGCACGGTGGGTCCGGACTACCGGACCCCCGACACCGCGGCGGCGAAGATCGACGCCACGGCGAGCAAGCCCTACGACCGCAGCCGCTTCGAAAGCCTGTGGTGGAAACAGTTCGACGATCCGACCCTGAACCAGTTGGTCGAACAGTCGCTGAGCGGCAACCGCGACCTGCGCGTGGCCTTCGCCCGCCTGCGCGCCGCCCGCGCCCTGCGCGACGACGTGGCCAACGATCGCTTCCCGGTGGTCACCAGCCGCGCCAGCGCCGACATCGGCAAGGGCCAGCAACCGGGAGTGACCGAGGACCGGGTCAACAGCGAGCGCTACGACCTTGGCCTGGATAGCGCCTGGGAGCTTGACCTGTTCGGGCGCATCCGCCGTCAGCTGGAGTCCAGCGACGCCCTCAGCGAAGCGGCCGAGGCCGACCTGCAGCAACTGCAGGTCAGCCTGATCGCCGAGCTGGTGGACGCCTACGGCCAACTGCGCGGCGCGCAACTGCGCGAGAAGATTGCCCTGAGCAACCTGGAGAACCAGAAGGAGTCGCGCCAGCTCACCGAGCAACTGCGCGACGCCGGGGTCGGTGCCGAACTCGACGTACTGCGCGCCGATGCGCGCCTGGCGGCCACCGCCGCCAGCGTGCCGCAACTGCAGGCGGAAGCCGAGCGCGCCAGGCACCGTATCGCCACCCTCCTCGGCCAACGGCCGGAAGAGTTGACAGTGGACCTTTCGCCGCGCGACCTGCCGGCGATCACCAAGGCCCTGCCGATCGGCGATCCCGGCGAACTGCTGCGCCGCCGGCCGGACATCCGCGCCGCCGAACGGCGCCTGGCCGCCAGCACCGCCGACGTCGGCGTGGCCACCGCCGACCTGTTCCCGCGGGTCAGCCTCAGCGGCTTCCTCGGCTTCACCGCCGGGCGGGGCTCGCAGATCGGCTCAAGCGCCGCCCGCGCCTGGAGCGTCGGCCCGAGCATCAGTTGGGCCGCCTTCGACCTCGGCAGCGTGCGTGCCCGCCTGCGCGGCGCCAAGGCCGACGCCGACGCCGCGCTGGCCAGCTACGAACAGCAGGTGCTGCTGGCCCTGGAAGAATCGGCGAATGCCTTCAGCGACTATGGCAAGCGCCAGGAGCGCCTGGTCTCGCTGGTCCGCCAGTCGGAAGCCAGCCGCGCCGCCGCGCAACAGGCGGCGATCCGCTACCGCGAAGGCACCACCGATTTCCTGGTGCTGCTGGACGCCGAACGCGAGCAACTCTCCGCCGAAGATGCCCAGGCCCAGGCCGAGGTCGAGCTGTACCGCGGCATCGTGGCGATCTACCGCTCCCTCGGCGGTGGCTGGCAACCCAGCGCCTGA " 171 UPDATE TEM-78 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGGTGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATCGTCGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAGATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 170 UPDATE IMP-19 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGAAATTATTTGTTTTATGTGTATGCTTCCTTTGTAGCATTACTGCCGCAGGAGCGGCTTTGCCTGATTTAAAAATCGAGAAGCTTGAAGAAGGTGTTTATGTTCATACATCGTTCGAAGAAGTTAACGGTTGGGGTGTTGTTTCTAAACACGGTTTGGTGGTTCTTGTAAACACTGACGCCTATCTGATTGACACTCCATTTACTGCTACAGATACTGAAAAGTTAGTCAATTGGTTTGTGGAGCGCGGCTATAAAATCAAAGGCACTATTTCCTCACATTTCCATAGCGACAGCACAGGGGGAATAGAGTGGCTTAATTCTCAATCTATTCCCACGTATGCATCTGAATTAACAAATGAACTTCTTAAAAAAGACGGTAAGGTGCAAGCTAAAAACTCATTTAGCGGAGTTAGTTATTGGCTAGTTAAAAATAAAATTGAAGTTTTTTATCCCGGCCCGGGGCACACTCAAGATAACGTAGTGGTTTGGTTACCTGAAAAGAAAATTTTATTCGGTGGTTGTTTTGTTAAACCGGACGGTCTTGGTAATTTGGGTGACGCAAATTTAGAAGCTTGGCCAAAGTCCGCCAAAATATTAATGTCTAAATATGTTAAAGCAAAACTGGTTGTTTCAAGTCATAGTGAAATTGGGGACGCATCACTCTTGAAACGTACATGGGAACAGGCTGTTAAAGGGCTAAATGAAAGTAAAAAACCATCACAGCCAAGTAACTAA " 2051 UPDATE dfrA15 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGAAACTATCACTAATGGCAGCAATTTCGAAGAATGGAGTTATCGGAAATGGCCCAGATATTCCATGGAGTGCCAAAGGGGAACAATTACTCTTCAAAGCGATTACCTATAATCAGTGGCTTTTGGTAGGCCGAAAGACTTTCGAGTCAATGGGGGCTTTACCCAACCGAAAATATGCCGTTGTAACTCGTTCAAGCTTCACTTCCAGTGATGAGAATGTATTGGTATTTCCATCTATCGATGAAGCGCTAAATCATCTGAAGACGATAACGGATCATGTGATTGTGTCTGGTGGTGGTGAAATATACAAAAGCCTGATCGATAAAGTTGATACTTTACATATTTCAACAATCGACATTGAGCCAGAAGGTGATGTCTATTTTCCAGAAATCCCCAGTAGTTTTAGGCCAGTTTTTAGCCAAGACTTCGTGTCTAACATAAATTATAGTTACCAAATCTGGCAAAAGGGTTAA " 2050 UPDATE OXA-331 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2053 UPDATE dfrA7 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TTGAAAATTTCATTGATTTCTGCAACGTCAGAAAATGGCGTAATCGGTAATGGCCCTGATATCCCATGGTCAGCAAAAGGTGAGCAGTTACTCTTTAAAGCGCTCACATATAATCAGTGGCTCCTTGTTGGAAGGAAAACATTTGACTCTATGGGTGTTCTTCCAAATCGAAAATATGCAGTAGTGTCGAGGAAAGGAATTTCAAGCTCAAATGAAAATGTATTAGTCTTTCCTTCAATAGAAATCGCTTTGCAAGAACTATCGAAAATTACAGATCATTTATATGTCTCTGGTGGCGGTCAAATCTACAATAGTCTTATTGAAAAAGCAGATATAATTCATTTGTCTACTGTTCACGTTGAGGTTGAAGGTGATATCAATTTTCCTAAAATTCCAGAGAATTTCAATTTGGTTTTTGAGCAGTTTTTTTTGTCTAATATAAATTACACATATCAGATTTGGAAAAAAGGCTAA " 2052 UPDATE APH(3'')-Ic antibiotic inactivation; APH(3''); streptomycin; aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGACCGAGTGGCTGCCCGTCACACGCGGTGAATCCGGTGCCGGGGTCTTCAGGAACTCCGACGGTTCGAGCTACGCGAAGGTGGTCGACGCCGCGGCGGTGGCAGACCTGGCCGCGGAGCGTGACCGGGTGTCCTGGGCCCACAGGCACGGTGTCCCCGGGCCCGCGGTCATCGACTGGCGTGTCACCGAAGACGGCGGCGCGTGCTTGATCACGAGCACTGTGCGCGGTGTCGCTGCCGATCGGCTTTCCGAATCGGCGCTGCGGGCGGCCTGGCCGGCGATTGTGGAGGCGGTCCGGACACTGCACGCCCTTCCGGCCGACGGTTGTCCCTACCGGCGCGATCTCGACGACATGCTGGCCCGGGCCCGCGCGGTCGTCGGCGCCGGTGCCGTGAACCCGGAGTTCCTGTCCGACGAGGACCGCGAGGTACCGGCGGAGGCGCTGCTGGACCGAGTCGAACGGGAAGCCGATCTACGTCGTCGGGAGGAGGCCGCCGACTGGGTGGTGTGCCACGGCGATCTGTGCCTGCCGAACATTTTGGTCGACCCCGACCGTCACACCGTCGAGGGATTCATCGATCTGGGCAGGCTGGGGCTGGCCGACCGGCACGCCGACCTGGCACTGCTGCTGGCCAATACGGCTGATACCGTTCCGGGCTTCGCCGAGGAGGCCACGGCGGGGTTGGCCGCGGGGTATCCGGCGCAGGTGGATCCGGAGCGGCTGCGGTTCTATCTCGCGCTCGATCCGCTGACCTGGGGATGA " 2055 UPDATE LRA-3 penam; antibiotic inactivation; subclass B3 LRA beta-lactamase; cephalosporin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAATCGAAACTGCTTCTTGCCGCGGCCTTGGCCGCACTCGCCGGCACGTCGATGGCCGCCCAGGCGGCCGAACTGCAATATAAGCCGCCGCCGATCACCAACAAGGAATGGGAGACCCCGTTCCCCGGCTTCAAGATCGTCGGCAACATGTATTATGTCGGCACCTACGATCTGGGCTGCTATCTGATCGACACGGGGGCCGGGCTTATTCTGATCAATTCCGGCGCCGACGGTTCGTATCCGCTGATCAAGGCCAATATCGAGAAGCTCGGTTTCAAGACCAGCGACATCAAGATCATCACCTCGACGCACGGCCACGGCGATCATGTCGGCGACCTCGCCGCGTTCCAGAAAGATGCGCCCGCCGCCAAGACCTATATGAATTTTCGCGATGCGCCGACCATCGAATCGGGCGGCAACATCGATTACCGGCGCCCTGAGGGGCGCGGGTTTTATCCCTACCATCCGGTGAAGGTTGATGTGCGCACCAAGCCGGGCGACCATATCAAGCTCGGCAACACCGATCTGACGCTGCACCAGGCTTACGGCCATACGCCGGGGGCGACGAGCTTCACCTTCACGGTCCAGGATGGTGGGCGCAATTACAACGTGCTGATCGTCAACATGAACGGCATCAATGCGGGCGTGAAATTGCTCGGCTCGCCGGGGTATCCGACCATCGTCGAGGATTTTGCCAGCACGCTGAAGGAACAGGCGACCTATACGCCCGACCTCTGGGTCTCTTCGCATGCGGGCCAGTTCAACCTGCATCAGGTCTACAAGCCGGGCGATCCGTACAACCCGGCGCGCTTCGGCGATTTGGCGGCCTACAAATTGAAGATCGCCAACGCGACGAAGGCTTACGAAAAACAATTGGCTGAAGAGCGCGCCGCGAAGGCGAAGTAA " 2054 UPDATE msrC streptogramin antibiotic; ABC-F ATP-binding cassette ribosomal protection protein; antibiotic target protection; macrolide antibiotic; erythromycin; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 36001 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. UPDATED category_aro_name with erythromycin UPDATED category_aro_cvterm_id with 35925 UPDATED category_aro_accession with 0000006 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited. " 2057 UPDATE SHV-179 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2056 UPDATE mdtO antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; acridine dye; puromycin; acriflavin; nucleoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 4306557 UPDATED strand with - UPDATED accession with AP009048.1 UPDATED fmin with 4304505 UPDATED sequence with ATGAGCGCGCTCAACTCCCTGCCATTACCGGTGGTCAGGCTGCTGGCGTTCTTTCATGAAGAGTTAAGCGAGCGGCGACCAGGTCGCGTGCCGCAGACCGTGCAACTCTGGGTAGGCTGCCTGCTGGTGATTCTGATCTCGATGACCTTTGAGATCCCTTTTGTGGCGTTATCGCTGGCAGTGCTGTTTTACGGTATTCAGTCGAACGCGTTTTACACCAAATTTGTCGCGATCTTGTTTGTGGTTGCCACGGTGCTGGAGATCGGCAGCCTGTTTTTGATCTACAAATGGTCATACGGCGAACCGTTGATCCGATTGATCATCGCCGGACCGATCCTGATGGGCTGCATGTTTTTGATGCGCACCCATCGCTTGGGGCTGGTCTTTTTCGCCGTCGCCATTGTCGCTATTTACGGGCAAACCTTCCCCGCCATGCTCGACTATCCGGAAGTGGTCGTGCGCTTAACGCTGTGGTGTATCGTTGTTGGCCTCTATCCAACCTTGCTGATGACGTTAATCGGCGTGCTGTGGTTTCCCAGTCGTGCCATTTCGCAAATGCATCAGGCGCTTAATGATCGGCTTGATGATGCCATTAGTCACCTGACAGACAGCCTCGCACCGCTACCCGAAACGCGGATTGAAAGAGAGGCGCTGGCGCTACAAAAACTCAATGTCTTTTGCCTCGCGGACGATGCCAACTGGCGAACTCAAAACGCATGGTGGCAAAGCTGCGTGGCAACGGTAACCTACATTTACTCGACGCTGAATCGCTACGATCCCACCTCTTTTGCTGATTCTCAGGCAATTATTGAATTCCGACAAAAATTAGCTTCAGAAATCAACAAGCTGCAGCATGCCGTTGCTGAAGGTCAGTGCTGGCAAAGCGACTGGCGGATCAGTGAAAGTGAAGCGATGGCGGCACGGGAATGTAACCTGGAGAATATCTGCCAGACGTTGTTACAACTGGGTCAGATGGACCCGAATACGCCGCCAACGCCCGCAGCCAAACCGCCATCAATGGCCGCCGATGCTTTTACCAATCCAGACTATATGCGCTACGCGGTAAAAACGCTGCTCGCCTGTTTGATCTGTTACACCTTTTACAGCGGCGTGGACTGGGAAGGCATTCACACCTGTATGCTGACATGCGTGATCGTCGCTAACCCAAATGTCGGTTCGTCGTACCAGAAGATGGTGCTGCGTTTTGGCGGGGCCTTTTGCGGCGCGATTCTGGCGCTGTTATTCACGCTACTGGTCATGCCCTGGCTGGACAATATTGTCGAATTGCTGTTTGTGCTGGCACCGATTTTCCTGTTGGGCGCATGGATTGCCACCAGCTCTGAACGCTCTTCTTATATCGGCACACAGATGGTGGTCACCTTCGCGCTCGCCACGCTCGAAAACGTTTTTGGCCCAGTGTACGACCTGGTGGAAATTCGCGATCGCGCCCTGGGTATCATCATTGGTACCGTGGTGTCCGCGGTGATTTACACCTTTGTCTGGCCTGAAAGTGAAGCGCGCACACTGCCGCAAAAACTGGCTGGCACGCTGGGTATGTTAAGTAAAGTAATGCGGATCCCACGCCAGCAGGAAGTCACGGCTCTGCGCACTTATCTGCAAATTCGTATCGGTCTGCATGCGGCGTTTAATGCCTGTGAAGAGATGTGCCAACGCGTGGCGCTGGAGCGTCAACTGGACAGCGAAGAACGCGCATTACTGATTGAACGTTCGCAAACGGTTATTCGTCAGGGCCGCGATCTTCTTCACGCCTGGGATGCCACCTGGAACTCGGCGCAGGCGCTGGATAACGCACTACAGCCGGACAGAGCAGGTCAGTTTGCCGACGCCCTGGAGAAATACGCTGCCGGTCTGGCAACCGCACTCAGCCGTTCTCCTCAAATAACGCTTGAAGAGACACCCGCCTCTCAGGCCATCCTGCCCACCTTATTAAAACAGGAGCAACACGTCTGCCAGCTTTTCGCCCGCTTGCCAGACTGGACAGCCCCGGCATTAACGCCCGCCACGGAACAGGCACAAGGAGCCACGCAATGA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. W3110 UPDATED NCBI_taxonomy_id with 316407 UPDATED NCBI_taxonomy_cvterm_id with 36839 UPDATED accession with BAE78083.1 UPDATED sequence with MSALNSLPLPVVRLLAFFHEELSERRPGRVPQTVQLWVGCLLVILISMTFEIPFVALSLAVLFYGIQSNAFYTKFVAILFVVATVLEIGSLFLIYKWSYGEPLIRLIIAGPILMGCMFLMRTHRLGLVFFAVAIVAIYGQTFPAMLDYPEVVVRLTLWCIVVGLYPTLLMTLIGVLWFPSRAISQMHQALNDRLDDAISHLTDSLAPLPETRIEREALALQKLNVFCLADDANWRTQNAWWQSCVATVTYIYSTLNRYDPTSFADSQAIIEFRQKLASEINKLQHAVAEGQCWQSDWRISESEAMAARECNLENICQTLLQLGQMDPNTPPTPAAKPPSMAADAFTNPDYMRYAVKTLLACLICYTFYSGVDWEGIHTCMLTCVIVANPNVGSSYQKMVLRFGGAFCGAILALLFTLLVMPWLDNIVELLFVLAPIFLLGAWIATSSERSSYIGTQMVVTFALATLENVFGPVYDLVEIRDRALGIIIGTVVSAVIYTFVWPESEARTLPQKLAGTLGMLSKVMRIPRQQEVTALRTYLQIRIGLHAAFNACEEMCQRVALERQLDSEERALLIERSQTVIRQGRDLLHAWDATWNSAQALDNALQPDRAGQFADALEKYAAGLATALSRSPQITLEETPASQAILPTLLKQEQHVCQLFARLPDWTAPALTPATEQAQGATQ " 2059 UPDATE OKP-A-1 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2058 UPDATE pp-flo antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; florfenicol; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACCACCCTACACCCCGCGTGGGCCTATACGCTGCCCGCAGCACTGCTGCTGATGGCTCCTTTCGACATCCTCGCTTCACTGGCGATGGATATTTATCTCCCTGTCGTTCCAGCGATGCCCGGCATCCTGAACACGACGCCCGCTATGATCCAACTCACGTTGAGCCTCTATATGGTGATGCTCGGCGTGGGCCAGGTGATTTTTGGTCCGCTCTCAGACAGAATCGGGCGACGGCCAATTCTACTTGCGGGCGCAACGGCTTTCGTCATTGCGTCTCTGGGAGCAGCTTGGTCTTCAACTGCACCGGCCTTTGTCGCTTTCCGTCTACTTCAAGCAGTGGGCGCGTCGGCCATGCTGGTGGCGACGTTCGCGACGGTTCGCGACGTTTATGCCAACCGTCCTGAGGGTGTCGTCATCTACGGCCTTTTCAGTTCGGTGCTGGCGTTCGTGCCTGCGCTCGGCCCTATCGCCGGAGCATTGATCGGCGAGTTCTTGGGATGGCAGGCGATATTCATTACTTTGGCTATACTGGCGATGCTCGCACTCCTAAATGCGGGTTTCAGGTGGCACGAAACCCGCCCTCTGGATCAAGTCAAGACGCGCCGATCTGTCTTGCCGATCTTCGCGAGTCCGGCTTTTTGGGTTTACACTGTCGGCTTTAGCGCCGGTATGGGCACCTTCTTCGTCTTCTTCTCGACGGCTCCCCGTGTGCTCATAGGCCAAGCGGAATATTCCGAGATCGGATTCAGCTTTGCCTTCGCCACTGTCGCGCTTGTAATGATCGTGACAACCCGTTTCGCGAAGTCCTTTGTCGCCAGATGGGGCATCGCAGGATGTGGGCGCGTGGGATGGCGTTGCTTGTTTGCGGCGGTCCTGTTGGGGATCGGCGAACTTTACGGCTCGCTCAATTCCTCACCTTCATCCTACCGATGTGGGTTGTCGCGGTCGGTATTGTCTTCACGGTGTCCGTTACCGCGAACGGCGCTTTTGGCAGAGTTCGACGACATCGCGGGATCAGCGGTCGCTTTCTACTTCTGCGTTCAAAGCCTGATAGTCAGCATTGTCGGGACATTGGCGGTGGCACTTTTAAACGGTGACACAGCGTGGCCCGTGATCTGTTAG " 654 UPDATE dfrA26 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCTGATGAAGAATACGACCCGCTACTCGATGACGACATGGAAGATGCCAAAGTCGCCGTCATTGCTGCCCGTGCGCAAAACGGTTGCATTGGTCGCCACGGCAAGCTGCCGTGGAAGCTGCCCGGTGACCTGAAATACTTCCGTGAGCGCACCTGGGGCAAGCCCATCATCATGGGGCGCAAAACCTGGGAATCACTCAATGGTGCCTTGCCGGGGCGCACCAACATCGTGGTAACGCGTCAACAAGGTTATGAAGCCGAAGGTGCTCGCGTGGTCGATAGCATCGAAGAAGCCATTAGCTTGGCACAGTCTATCGCCTTAATCGAAGCCGTTGATGAAATCATGGTGCTGGGCGGCGGCGAAATCTATACCCAAGCCTTACCGCAAGCCGACATTCTCTATCTCACCGAAGTACACGCCTCGGTCGACGGCGATGCCTTCTTCCCCGACGTGGACCTCAGCCAATATCAAGAAACCCAACGCCAGGACTTCGAGCCATCGGGCGGCAACCCTTACCCGTTTAGCTTTGTGGTCTATCAGCGGACGTAG " 655 UPDATE OXA-243 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 652 UPDATE tcr3 tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 653 UPDATE AAC(3)-VIIa antibiotic inactivation; AAC(3); aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGACGAACTCGCCTTGCTCAAGCGCTCCGACGGCCCGGTCACCCGGACCCGCCTCGCCCGGGACCTGACCGCGCTCGGCCTCGGCGACGGGGACACCGTGATGTTCCATACGCGGATGTCCGCCGTCGGCTACGTGGCAGGCGGCCCGGAGACGGTCATCGGAGCCCTCCGCGACGTCGTGGGAGAGCGGGGAACCCTGATGGTGACCTGCGGCTGGAACGACGCCCCGCCGTACGACTTCACCGACTGGCCGCAGACCTGGCAGGACGCCCGTCGGGCGGAGCACCCGGCGTACGACCCCGTGCTGAGCGAGGCTGACCACAACAACGGGCGCCTCCCGGAAGCGCTGCGCCGCCGGCCCGGAGCCGTCCGCAGCCGTCACCCCGACGCGAGCTTCGCGGCGCTCGGCGCGGCGGCCACCGCGTTGACGGCCGACCATCCGTGGGACGACCCGCACGGCCCTGACAGCCCGCTGGCGCGGCTGGTCGCGATGGGCGGCCGGGTGCTGCTGCTGGGCGCCCCGCTGGAGGCGCTCACGCTCCTGCACCACGCCGAGGCGCTGGCCGACGCGCCCGGTAAGCGGTTCGTGGACTACGAGCAGCCGATCCTCGTCGACGGGGAGCGGGTCTGGCGGCGGTTCCACGACATCGACTCGGAGGACGGGGCGTTCGACTACTCCGCCCTCGTGCCCGAGGGAACGGAAGCGTTCGAGATCATCGGACGGGACATGCGTGCCGCGGGCATCGGCCGCAGGGGAACGGTCGGGGCGGCCGACAGCCATCTCTTCGAAGCCCGTGACGTGGTCGACTTCGGTGTGGCCTGGATGGAGGAGAAGCTGGGCCGGGAAAGGGGGCCCGGCGGATGA " 1367 UPDATE oleD antibiotic inactivation; ole glycosyltransferase; macrolide antibiotic; tylosin; erythromycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 650 UPDATE aadA antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 81768 UPDATED strand with - UPDATED accession with NC_004998.1 UPDATED fmin with 80976 UPDATED sequence with ATGAGGGAAGCGGTGATCGCCGAAGTATCGACTCAACTATCAGAGGTAGTTGGCGTCATCGAGCGCCATCTCGAACCGACGTTGCTGGCCGTACATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCACACAGTGATATTGATTTGCTGGTTACGGTGACCGTAAGGCTTGATGAAACAACGCGGCGAGCTTTGATCAACGACCTTTTGGAAACTTCGGCTTCCCCTGGAGAGAGCGAGATTCTCCGCGCTGTAGAAGTCACCATTGTTGTGCACGACGACATCATTCCGTGGCGTTATCCAGCTAAGCGCGAACTGCAATTTGGAGAATGGCAGCGCAATGACATTCTTGCAGGTATCTTCGAGCCAGCCACGATCGACATTGATCTGGCTATCTTGCTGACAAAAGCAAGAGAACATAGCGTTGCCTTGGTAGGTCCAGCGGCGGAGGAACTCTTTGATCCGGTTCCTGAACAGGATCTATTTGAGGCGCTAAATGAAACCTTAACGCTATGGAACTCGCCGCCCGACTGGGCTGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAGTAACCGGCAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATGGAGCGCCTGCCGGCCCAGTATCAGCCCGTCATACTTGAAGCTAGACAGGCTTATCTTGGACAAGAAGAAGATCGCTTGGCCTCGCGCGCAGATCAGTTGGAAGAATTTGTCCACTACGTGAAAGGCGAGATCACCAAGGTAGTCGGCAAATAA UPDATED NCBI_taxonomy_name with Bacteria UPDATED NCBI_taxonomy_id with 2 UPDATED NCBI_taxonomy_cvterm_id with 35506 UPDATED accession with WP_001206316.1 UPDATED sequence with MREAVIAEVSTQLSEVVGVIERHLEPTLLAVHLYGSAVDGGLKPHSDIDLLVTVTVRLDETTRRALINDLLETSASPGESEILRAVEVTIVVHDDIIPWRYPAKRELQFGEWQRNDILAGIFEPATIDIDLAILLTKAREHSVALVGPAAEELFDPVPEQDLFEALNETLTLWNSPPDWAGDERNVVLTLSRIWYSAVTGKIAPKDVAADWAMERLPAQYQPVILEARQAYLGQEEDRLASRADQLEEFVHYVKGEITKVVGK " 1505 UPDATE SAT-4 streptothricin acetyltransferase (SAT); streptothricin; antibiotic inactivation; nucleoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGATTACAGAAATGAAAGCAGAGCACCTGAAAGATATCGATAAACCCAGCGAACCATTTGAGGTGATAGGTAAGATTATACCGAGGTATGAAAACGAGAATTGGACCTTTACAGAATTACTCTATGAAGCGCCATATTTAAAAAGCTACCAAGACGAAGAGGATGAAGAGGATGAGGAGGCAGATTGCCTTGAATATATTGACAATACTGATAAGATAATATATCTTTACTACCAAGACGATAAATGCGTCGGAAAAGTTAAACTGCGAAAAAATTGGAACCGGTACGCTTATATAGAAGATATCGCCGTATGTAAGGATTTCAGGGGGCAAGGCATAGGCAGCGCGCTTATCAATATATCTATAGAATGGGCAAAGCATAAAAACTTGCATGGACTAATGCTTGAAACCCAGGACAATAACCTTATAGCTTGTAAATTCTATCATAATTGTGGTTTCAAAATCGGCTCCGTCGATACTATGTTATACGCCAACTTTGAAAACAACTTTGAAAAAGCTGTTTTCTGGTATTTAAGGTTTTAG " 1364 UPDATE CMY-101 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1977 UPDATE AAC(6')-Ik antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATATTAAACCAGCATCAGAAGCTTCACTCAAAGATTGGTTAAAACTAAGAATAAAGCTTTGGAATGATCTTGAAGAATCACATTTGCAAGAGATGCATCAGTTATTGGCTGAAAAGCATGCATTACAATTATTAGTCTATTCGGATGATCACGCGGTTGGCATGCTAGAAGCATCTATTCGGTATGAATATGTAAACGGGACAGAGACTTCTCCCGTGGCATTTCTAGAAGGCATTTATGTACTTCCAGAATATCGTCGCTTAGGTGTAGCAACTTTACTTGTTCGTCAGGTTGAGGCGTGGGCAAAACAATTTTCTTGTACTGAGTTTGCATCTGATGCGGCATTGGACAATGTCATTAGTCATGCAATGCATCGTGCATTGGGTTTTCAAGAAACTGAAAGAGTTGTTTATTTTAGTAAAAAAATAGATTAA " 1600 UPDATE Pseudomonas mutant PhoP conferring resistance to colistin antibiotic efflux; ATP-binding cassette (ABC) antibiotic efflux pump; colistin B; protein(s) and two-component regulatory system modulating antibiotic efflux; pmr phosphoethanolamine transferase; colistin A; macrolide antibiotic; peptide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; antibiotic target alteration; erythromycin; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2697 UPDATE EdeQ peptide antibiotic; antibiotic inactivation; polyamine antibiotic; Edeine acetyltransferase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1975 UPDATE blt antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; acridine dye; acriflavin; fluoroquinolone antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAATCAATAAATGAGCAAAAAACGATATTCATTATACTATTAAGCAACATCTTCGTAGCATTTCTTGGTATCGGTTTAATCATTCCAGTTATGCCTTCTTTTATGAAAATCATGCATTTATCCGGCAGCACAATGGGTTATCTTGTTGCGGCTTTTGCCATTTCTCAGTTAATTACTTCACCTTTTGCAGGTAGGTGGGTTGACCGTTTCGGGAGAAAAAAAATGATTATTCTCGGGTTGCTTATATTCAGTTTATCTGAGTTGATTTTCGGATTAGGGACCCATGTTTCAATATTTTATTTCTCGAGGATATTGGGTGGTGTAAGTGCGGCTTTTATCATGCCCGCGGTAACAGCATATGTAGCTGATATTACAACCCTAAAGGAAAGGTCAAAGGCTATGGGGTATGTTTCTGCTGCAATTAGCACCGGCTTTATTATTGGACCTGGTGCGGGAGGATTTATTGCCGGCTTTGGTATCCGCATGCCGTTTTTCTTCGCCTCCGCCATCGCGTTAATAGCAGCTGTCACTTCCGTTTTTATACTAAAAGAGTCATTGTCGATAGAAGAACGCCATCAACTCTCATCTCATACAAAGGAATCAAATTTCATTAAAGACTTGAAGAGATCCATTCATCCTGTCTATTTCATTGCATTTATTATCGTCTTTGTAATGGCTTTTGGTTTATCAGCTTATGAAACGGTATTCAGCTTGTTTTCTGATCATAAATTTGGCTTCACACCAAAAGATATTGCAGCCATTATTACGATTAGTTCCATTGTTGCGGTAGTTATTCAAGTTTTACTATTCGGGAAATTGGTCAACAAACTTGGAGAGAAAAGAATGATTCAGCTGTGCTTAATAACCGGTGCGATCTTGGCTTTCGTGTCTACTGTTATGTCAGGATTTTTAACTGTTTTGCTTGTAACTTGTTTTATTTTTCTGGCGTTCGATTTGCTACGTCCGGCCTTAACCGCTCATTTATCCAATATGGCCGGTAACCAGCAGGGTTTCGTAGCAGGCATGAACTCCACATACACCAGCCTGGGAAATATATTTGGACCTGCTCTAGGCGGTATACTATTTGATCTTAACATTCATTATCCTTTCCTTTTTGCAGGTTTCGTTATGATTGTCGGCCTTGGTCTTACAATGGTTTGGAAAGAAAAAAAGAATGATGCTGCAGCTTTGAATTAA " 1365 UPDATE AAC(6')-I30 antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCATATGCGTTCTGCGAAATTGGAGAATCAAATGAATATATTATTCAGGCAGCTAGAATCTTAACGAAATCATTCCTTGATATTGGAAATGATTCCTGGCCTGATATGAAAAGTGCCACCAAAGAAGTTGAAGAATGTATTGAGAAGCCAAACATATGTCTTGGAATACATGAAAACGAAAAACTACTTGGATGGATTGGTCTTAGGCCCATGTACAAATTAACATGGGAATTACATCCCTTGGTAATAAGTACGCAATATCAGAATAAAGGTATTGGAAGACTTCTAATAAATGAATTGGAAAAACAAGCAAAGCAAAATGGAATAATCGGAATAGTATTGGGAACTGACGATGAATACTTTAAGACTTCATTATCAGATGTGGATCTTTCCGGGAAAAATATACTTGATGAGATAAGGAATATTAAAAATATAAGGAATCATCCGTACGAATTCTATCAACGATGTGGTTATTCCATTGTCGGAGTAATACCCGATGCAAATGGCAAAAGAAAGCCAGATATTTGGATGTGGAAGAAGATTAGTGATTAG " 1973 UPDATE TEM-111 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1972 UPDATE OXA-149 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1971 UPDATE dfrB2 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1970 UPDATE SHV-44 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTACTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACTGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATCGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 1362 UPDATE IMP-31 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1968 UPDATE SHV-189 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1969 UPDATE tet(35) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; ATP-binding cassette (ABC) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 3322 UPDATED strand with - UPDATED accession with AF353562.1 UPDATED fmin with 2212 UPDATED sequence with ATGTGTGTGATCATGCCAGCTTCTAGTTGGGGTGCGTACATCATTACCATCATCGGTGGTATCTTGGTGTCACACGGCATCACTGAATACTCGGCGCTTGGTGCTTACGTTCGTCTTATTCCTATGAACTTCTACGCAGTATTTGCTCTACTAATGGTATTTGCAGTGGCGTGGTTTGGTCTAGATATCGGTAAGATGCGTGAACATGAAATCGCAGCATCTCAAGGCCGTGGTTTTGATAAAGATAAAGAGAACGACTCACAAGAAGCACACGACCTAAACGAAGAGCTAGATATTCGTGAAAGCGAGAAGGGTAAGGTTTCTGACCTAATTCTTCCTATCGTAACGCTTATTGTGGCGACTATTGCTTCAATGCTTTACACCGGTGGTCAAGCGCTAGCAGCAGATGGTAAAGAATTTGTGCTGTTGGGTGCGTTTGAAAACACGGATGTTGGTACTTCTCTAATCTACGGTAGTTTACTTGGTCTAGCAGTTGCATTGTTCACTGTTATTAAGCAAGGTCTACCAATGGTTGAGATTGCACGCACGCTTTGGATTGGTGCTAAGTCAATGTTTGGTGCAATCCTTATCCTTGTTTTCGCTTGGACTATTGGTTCAGTTATCGGTGACATGAAGACGGGTTCTTACCTATCTACAATGGCGCAAGGCAACATCAACCCACACTGGCTACCAGTTATCCTGTTCTTGCTGTCTGGCCTAATGGCGTTCTCTACAGGTACGTCATGGGGTACGTTCGGTATCATGCTTCCAATCGCGGGTGACATGGCTGGCGCAACAGACGTGGCACTAATGCTACCAATGCTAAGTGCGGTTCTAGCTGGTGCAGTATTTGGTGACCACTGTTCACCAATTTCAGATACAACGATTCTGTCGTCAACAGGTGCACGCTGTAACCACATCGATCACGTATCGACGCAGCTACCTTATGCATTATCAGTGGCGTTTGTGTCATGTATTGGCTTTATCACGCTGGGTATGACTGCATCGATCGCGTTCTCTTTCATCGCAGCATCGATCACTTTCGTTATCGTTTGTGCGATTCTGTCGTGGCTGTCGAAGTCTAAAATGGCATCCTGCCAGAACGCGTAG UPDATED NCBI_taxonomy_name with Vibrio harveyi UPDATED NCBI_taxonomy_id with 669 UPDATED NCBI_taxonomy_cvterm_id with 36785 UPDATED accession with AAK37619.1 UPDATED sequence with MCVIMPASSWGAYIITIIGGILVSHGITEYSALGAYVRLIPMNFYAVFALLMVFAVAWFGLDIGKMREHEIAASQGRGFDKDKENDSQEAHDLNEELDIRESEKGKVSDLILPIVTLIVATIASMLYTGGQALAADGKEFVLLGAFENTDVGTSLIYGSLLGLAVALFTVIKQGLPMVEIARTLWIGAKSMFGAILILVFAWTIGSVIGDMKTGSYLSTMAQGNINPHWLPVILFLLSGLMAFSTGTSWGTFGIMLPIAGDMAGATDVALMLPMLSAVLAGAVFGDHCSPISDTTILSSTGARCNHIDHVSTQLPYALSVAFVSCIGFITLGMTASIAFSFIAASITFVIVCAILSWLSKSKMASCQNA " 1618 UPDATE OXA-362 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1619 UPDATE L1 beta-lactamase antibiotic inactivation; cephalosporin; L1 family beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1616 UPDATE CTX-M-152 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1617 UPDATE vanE glycopeptide antibiotic; glycopeptide resistance gene cluster; van ligase; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGACAGTTGCGATTATCTTTGGCGGAGTTTCTTCTGAATATGAAGTTTCACTGAAATCTGCTGTAGCGATTATTAAAAATATGGAATCTATTGATTATAACGTAATGAAAATAGGGATCACCGAAGAAGGTCATTGGTATCTATTTGAAGGAACGACAGACAAAATAAAGAAAGATCGTTGGTTTTTAGATGAAAGCTGTGAAGAAATCGTAGTTGATTTCGCAAAAAAAAGCTTTGTATTGAAAAACAGTAAAAAAATAATCAAGCCTGATATTTTATTCCCAGTTTTACATGGAGGTTATGGTGAGAATGGTGCTATGCAGGGAGTATTTGAGTTATTAGATATTCCATATGTAGGTTGTGGTATCGGAGCTGCAGCAATCTCTATGAATAAAATAATGCTCCATCAATTTGCTGAAGCAATTGGTGTAAAAAGCACCCCTAGTATGATTATAGAAAAGGGACAAGACCTACAAAAAGTCGATGCGTTTGCGAAAATACATGGATTTCCTTTATATATTAAACCGAATGAGGCAGGCTCATCAAAAGGAATTAGCAAGGTAGAACGAAAAAGTGATTTATATAAAGCAATAGACGAAGCTTCAAAATATGATAGTCGTATTTTAATTCAAAAGGAAGTGAAAGGGGTAGAAATTGGTTGTGGTATTTTAGGAAATGAACAATTGGTCGTTGGAGAATGTGACCAAATCAGTCTTGTGGATGGCTTTTTCGATTATGAAGAGAAATACAATTTAGTAACAGCAGAAATTTTGTTACCAGCTAAACTATCAATAGACAAAAAAGAAGATATTCAGATGAAAGCAAAAAAACTATACAGACTATTAGGATGCAAAGGATTAGCGAGAATCGACTTTTTCTTAACTGATGACGGAGAAATTTTATTAAATGAAATCAATACAATGCCTGGTTTTACAGAGCATTCGAGATTTCCAATGATGATGAATGAGATTGGGATGGACTACAAAGAGATTATAGAAAACCTATTAGTATTGGCGGTGGAAAATCATGAAAAAAAATTATCTACGATTGATTAA " 1614 UPDATE TEM-194 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1615 UPDATE APH(2'')-IIa antibiotic inactivation; kanamycin A; gentamicin B; aminoglycoside antibiotic; plazomicin; sisomicin; arbekacin; APH(2''); netilmicin; gentamicin C; amikacin; isepamicin; tobramycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAACTTGGACGCTGAGATATATGAGCACTTAAATAAACAGATAAAAATAAATGAACTCCGTTATTTATCGTCCGGCGATGATAGTGATACTTTTTTGTGTAATGAACAATATGTTGTGAAAGTTCCTAAACGAGATTCTGTTAGAATTTCTCAGAAACGAGAGCTTGAATTGTATCGTTTTTTAGAAAACTGTAAGCTATCTTATCAAATCCCTGCGGTAGTGTATCAAAGTGACCGATTTAATATTATGAAATATATTAAAGGGGAACGTATTACTTATGAGCAGTATCATAAGTTGAGTGAAAAGGAAAAGGATGCCCTTGCATATGATGAAGCGACGTTTTTGAAAGAGTTACATTCCATAGAGATTGATTGTTCTGTCAGTTTGTTTTCAGATGCTCTGGTGAATAAGAAAGATAAGTTTTTGCAAGATAAAAAATTACTTATAAGTATTCTGGAAAAGGAGCAGCTGTTAACTGATGAGATGTTGGAACATATCGAAACAATATATGAAAACATATTAAGCAATGCTGTTTTATTTAAATATACCCCTTGTTTGGTACATAATGATTTCAGTGCAAATAACATGATTTTTAGAAATAATAGACTGTTTGGAGTTATTGATTTTGGCGATTTTAATGTAGGTGACCCGGATAATGATTTTTTGTGCTTGCTGGATTGTAGTACAGATGATTTCGGGAAAGAATTTGGCAGGAAGGTATTAAAATACTATCAGCATAAGGCGCCGGAAGTAGCAGAAAGAAAAGCAGAGCTTAATGATGTATATTGGTCGATAGACCAAATCATTTATGGTTATGAAAGAAAAGATAGGGAAATGTTGATTAAGGATGTTTCTGAATTGCTACAAACACAAGCAGAGATGTTTATATTTTAG UPDATED category_aro_name with plazomicin UPDATED category_aro_cvterm_id with 40307 UPDATED category_aro_accession with 3003675 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Plazomicin is a neoglycoside, or next-generation, aminoglycoside, that has been identified as a potentially useful agent to combat drug-resistant bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa. " 1960 UPDATE smeB penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; cephamycin; aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTCGTTTCTTCATCGACCGGCCGATCTTCGCCTGGGTGATCGCCATCGCGGTCAGCCTGCTCGGCCTGCTCGCGATCCTGATCCTGCCGGTGGACCGCTACCCGCAGATCGCCCCGCCCACCATCACCATCCGCGCCACCTACACCGGCGCCTCGTCGCAGACCGTGGAAAACGCGGTCACCCAGGTCATCGAGCAGTCCCAGCAAAGCCTCGATCACCTGATGTACATGACCTCGACCAGTGCCTCCGACGGCTCGGCGCAGGTCAACCTGGTGTTCGCCACCGGTACCAATCCGGATACCGCGCAGGTGCAGGTGCAGAACCAGCTGCAGGCCGCCATGGCCACGCTGCCGCAGGCGGTGCAGCAGAACGGCCTGACCATCACCAAGTCCAGTGGTTCGATCTTCGAGGTGCTGTCGTTCACCAGCGAAGACGGCAGCATGGACAACTTCGATGTCGCCAACTTCATGGAAGCGCGCATCGATGACCAGATCAGCCGCGTCAGCGGTGTCGGCAACATCCAGCCGATCGGCCAGGAATACGCCATGCGCATCTGGCTGGATCCGGAGAAGATGCGCCAGTACGCGCTGATGCCCTGGGACATCGAGACCGCATTGCAGGCACAGAACACCGATGTCTCCGCCGGTGAGCTGGGTGGCCAGCCGGCGCTGAAGGGCCAGCAGCTCGACGCCACGGTAACCGCGCGCAGCCGCCTGCACACGCCCGAGCAGTTCGCGCAGGTGGTGCTCAAGGCCGATGCCAACGGCAGCGTGGTGCGTCTGGGCGACGTGGCAAAGATCGGCCTCGGGCCGGAAAGCTACGACAGCATCAGCACCTTCAATGGCAAGCCGTCGGCGTCGCTGGGCATTGAACTCAATGCCGGTGCCAACGCGATCGCCGTCTCCAAGGCCATCGATGCACGGCTTCAGCAGCTGCAGAAGTACTGGCCGCATGGCTACACCGCCCACGTGGCCTTCACCACCACCCCATTCGTGACCATTTCGCTGAAGGAAGTGGTGATCACCCTGATCGAAGCGATCATCCTGGTGGTGCTGGTGATGTACCTGTTCCTGCAGAACTGGCGCGCCACGCTGATCCCGACCATCGCGGTGCCGGTGGTGCTGCTGGGCACGTTCGGCGTGCTGGCTGCATTCGGGTATTCGATCAACACCCTGACCATGTTCGCACTGGTGCTGGCCATCGGCCTGCTGGTGGACGATGCCATCGTGGTGGTGGAGAACGTAGAGCGGGTGATGACCTTCGAAGGGCTGGCGCCGAAGCCGGCCACGCTGAAGGCGATGGGCCAGATCACCGGCGCGCTGGTCGGCATCGTGCTGGTGCTGACCGCGGTGTTCCTGCCGATGGCGTTCTTCAGCGGTGTAACCGGGGTGATCTATCGCCAGTTCTCGGTGACGATCGCCGCCGCGATGATCCTGTCGGTGCTGGTGGCGATGACCATCACCCCGGCACTGTGTGGCAGCATCCTGCACCAGATTCCCAAGGGCGGCCATCCGCATGGCGACCACGGTGGCGAGCCGAGCCTGCTGGGCAAGTTCTTCATCTGGTTCAACCACCGCTTCGAGCGCACCTCCAACGGCCTGCGCCATCGCGTGGATCGTTTCCTCGGCCGCCGCACGCTCGGCGTGCTGTTCTACCTGGTGCTGAGCGTGGCCACCGGCCTGTTGCTGTGGCACCTGCCGGGCGCGTTCCTGCCCGATGAAGACCAGGGCATGCTCAACGCGCTGGTGAAGCTGCCGGCCGGTTCCACGCTGGAGCAGACGCGGGCGGTGATGGATCGTCTGAGTGCCGTCGCGGTGAAGGACGACGGCGTGCTCTCGATCCAGGCCACCGCCGGTTTCAGTGTTACCGGCAGCGGCCAGAACGTCGGCCAGGCCTTCATCCGGCTGAAGGACTGGGATGACCGCAAGGACGACGCCGATACCATCGCCGCACGCTTGACGCGGGCGATGGCCAGCGTGCCCGATGCGCAGGTGTTCATCACCTCGCCACCGGCCATCCTGGGCCTCGGCGATGCGGGTGGCTTCACCCTGGAACTGCAGGACGAAGGCGGTGCAGGCCATGCCGCCGCCGTGGCCGCGCGCAACACGCTGCTGAAGGAAGCCGCCAAGGACCCGAAGCTGGTCAACGTGCGCTACGCCAGCCTGGAAGACGCGCCGGTATACGCGGTGAAGGTGGACGACGCCAAGGCGCAGGCGATGGGCGTGAACCCGCAGGACGTCAATGACACCTTGAACGCGGCGTTGGGCGGCGACTTCGTCAACAACTTCATCTACAAGGGGCGCATCAAGAAGGTGTTCATCCAGGGCACCGCCGAAGCACGCATGCAGCCGCAGGACATCGAGCGCTGGAGCGTGCGCAACCAGGCCGGGCAGATGGTGCCGCTGTCGTCGTTGATCAGCACGCATTGGACCAGCGCGCCGGCCGCAGTGCAGCGCTACAACGGCATCTCGGCGATGGAAATCACCGGCCAGCCGGCACCGGGCGTCAGCTCCGGCGAGGCGATGGCCGAGATCGCGCGCCTGGCCGACACGCTGCCGGAAGGCTTCAGCCATGCCTGGTCGGACATGGCCTACCAGGAACAGCTGTCGGGCAACCAGGCGCCGATGCTGTACGCCATCTCGCTGCTGTTCGTGTTCCTGTGCCTGGCCGCGCTGTATGAAAGCTGGGCGGTGCCGTTCGCGGTGATGCTGGCGGTGCCGGTGGGCATGTTCGGCGCCGTGCTGATGATGAACCTGCGTGGCCTCAACAACGACGTGTACTTCCAGGTCGGCCTGCTGACCACGATTGGTCTGGCAGCGAAGAACGGCATCCTGATCGTCGAGTTCGCGCGCATCCTCGAACAGCAGGGCAAGAGCACCCGCGAAGCGATCCTGCAGGCGGTCTACCTGCGGCTGCGGCCGATCGTAATGACCTCGCTGGCGTTCCTGATGGGCGTACTGCCGCTGGTGTTCGCCACCGGCGCCGGTTCGGCTGCGCGCCGTTCGCTGGGTACCGGCGTGGCCGGTGGTACGGTTGCCTCGATGGTGCTGGGCATGTTCTTCGTGCCGTTGTTCTACCTGCTGGTGCGCCGCCTGTTCCCGGGCCGCGCGCCGGCCGACGCCACTGTCCCGGAGACAAGCCCATGA " 1613 UPDATE CMY-38 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1610 UPDATE OXA-74 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1611 UPDATE SME-4 carbapenem; antibiotic inactivation; SME beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1363 UPDATE CARB-1 penam; antibiotic inactivation; CARB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGTTTTTATTGGCATTTTCGCTTTTAATACCATCCGTGGTTTTTGCAAGTAGTTCAAAGTTTCAGCAAGTTGAACAAGACGTTAAGGCAATTGAAGTTTCTCTTTCTGCTCGTATAGGTGTTTCCGTTCTTGATACTCAAAATGGAGAATATTGGGATTACAATGGCAATCAGCGCTTCCCGTTAACAAGTACTTTTAAAACAATAGCTTGCGCTAAATTACTATATGATGCTGAGCAAGGAAAAGTTAATCCCAATAGTACAGTCGAGATTAAGAAAGCAGATCTTGTGACCTATTCCCCTGTAATAGAAAAGCAAGTAGGGCAGGCAATCACACTCGATGATGCGTGCTTCGCAACTATGACTACAAGTGATAATACTGCGGCAAATATCATCCTAAGTGCTGTAGGTGGCCCCAAAGGCGTTACTGATTTTTTAAGACAAATTGGGGACAAAGAGACTCGTCTAGACCGTATTGAGCCTGATTTAAATGAAGGTAAGCTCGGTGATTTGAGGGATACGACAACTCCTAAGGCAATAGCCAGTACTTTGAATAAATTTTTATTTGGTTCCGCGCTATCTGAAATGAACCAGAAAAAATTAGAGTCTTGGATGGTGAACAATCAAGTCACTGGTAATTTACTACGTTCAGTATTGCCGGCGGGATGGAACATTGCGGATCGCTCAGGTGCTGGCGGATTTGGTGCTCGGAGTATTACAGCAGTTGTGTGGAGTGAGCATCAAGCCCCAATTATTGTGAGCATCTATCTAGCTCAAACACAGGCTTCAATGGAAGAGCGAAATGATGCGATTGTTAAAATTGGTCATTCAATTTTTGACGTTTATACATCACAGTCGCGCTGA " 2873 UPDATE catV antibiotic inactivation; phenicol antibiotic; chloramphenicol acetyltransferase (CAT); chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2872 UPDATE PDC-93 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2871 UPDATE PDC-92 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2870 UPDATE PDC-91 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2877 UPDATE OXA-535 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2876 UPDATE OXA-436 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2875 UPDATE sul4 antibiotic target replacement; sulfonamide resistant sul; sulfonamide antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2874 UPDATE ACI-1 antibiotic inactivation; penam; cefotaxime; cephalosporin; amoxicillin; ACI beta-lactamase; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with penam UPDATED category_aro_cvterm_id with 36017 UPDATED category_aro_accession with 3000008 UPDATED category_aro_class_name with Drug Class UPDATED category_aro_description with Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. UPDATED category_aro_name with cefotaxime UPDATED category_aro_cvterm_id with 36989 UPDATED category_aro_accession with 3000645 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Cefotaxime is a semisynthetic cephalosporin taken parenterally. It is resistant to most beta-lactamases and active against Gram-negative rods and cocci due to its aminothiazoyl and methoximino functional groups. UPDATED category_aro_name with cephalosporin UPDATED category_aro_cvterm_id with 35951 UPDATED category_aro_accession with 0000032 UPDATED category_aro_class_name with Drug Class UPDATED category_aro_description with Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. UPDATED category_aro_name with amoxicillin UPDATED category_aro_cvterm_id with 35981 UPDATED category_aro_accession with 0000064 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan. " 1768 UPDATE CTX-M-144 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGTGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCTGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGGCTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA " 1769 UPDATE CTX-M-115 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGACTCAGAGCATTCGCCGCTCAATGTTAACGGTGATGGCGACGCTACCCCTGCTATTTAGCAGCGCAACGCTGCATGCGCAGGCGAACAGCGTGCAACAGCAGCTGGAAGCCCTGGAGAAAAGTTCGGGAGGTCGGCTTGGCGTTGCGCTGATTAACACCGCCGATAATTCGCAGATTCTCTACCGTGCCGATGAACGTTTTGCGATGTGCAGTACCAGTAAGGTGATGGCGGCCGCGGCGGTGCTTAAACAGAGCGAGAGCGATAAGCACCTGCTAAATCAGCGCGTTGAAATCAAGAAGAGCGACCTGGTTAACTACAATCCCATTGCTGAGAAACACGTTAACGGCACTATGACGCTGGCTGAGCTTGGCGCAGCGGCGCTGCAGTATAGCGACAATACTGCCATGAATAAGCTGATTGCCCATCTGGGTGGGCCCGATAAAGTGACGGCGTTTGCTCGCTCGTTGGGTGATGAGACCTTCCGTCTGGACAGAACCGAGCCCACGCTCAATACCGCCATTCCAGGCGACCCGCGTGATACCACCACGCCGCTCGCGATGGCGCAGACCCTGAAAAATCTGACGCTGGGTAAAGCGCTGGCGGAAACTCAGCGGGCACAGTTGGTGACGTGGCTTAAGGGCAATACTACCGGTAGCGCGAGCATTCGGGCGGGTCTGCCGAAATCATGGGTAGTGGGCGATAAAACCGGCAGCGGAGATTATGGCACCACCAACGATATCGCGATTATCTGGCCGGAAAACCACGCACCGCTGGTTCTGGTGACCTACTTTACCCAACCGGAGCAGAAGGCGGAAAGCCGTCGGGATGTTCTGGCTGCGGCGGCGAAAATCGTAACCCACAGTTTCTGA " 1762 UPDATE aadA16 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGCAACGCAGTGCCCGCCGAGATTTCGGTACAGCTATCACAGGCACTCAACGTCATCGAGCGTCATCTGGGATCGACGTTGCTGGCCGTGCATTTGTACGGCTCTGCACTCGACGGTGGCCTGAAGCCATGCAGTGATATTGATTTGCTGGTTACTGTGACTGCACAGCTCGATGAGACTGTGCGGCAGGCTCTGTTCGTAGATTTCCTGGAAGTTTCCGCTTCTCCCGGCCAAAGTGAAGCTCTCCGTGCCTTGGAAGTTACCATCGTCGTGTACGGCGATGTTGCTCCTTGGCGTTATCTAGCCAGACGGGAACTGCAATTCGGGGAGTGGCAGCGCAAGGACATTCTTGCGGGCATCTTCGAGCCCGCGACAACCGATGTTGATCTGGCTATTCTGCTAACTAAAGCAAGGCAACACAGCCTTGCCTTGGCAGGTTCGGCCGCGGAAGATTTCTTCAACTCAGTCCCGGAAAGCGATCTATTCAAAGCACTGGCCGACACCTTGAAACTATGGAACTCACAACCGGATTGGGCAGGCGACGAGCGGAATGTAGTGCTTACTTTGTCTCGCATTTGGTACAGCGCAGCAACCGGCAAGATCGCGCCGAAGGATGTAGCTGCCAACTGGGTAATGGAACGCCTGCCCGTCCAACATCAGCCCGTGCTGCTTGAAGCCCAGCAGGCTTACCTTGGACAAGGGATGGATTGCTTGGCCTCACGCGCTGATCAGTTGACTGCGTTCATTTACTTTGTGAAGCACGAAGCCGCCAGTCTGCTCGGCTCCACGCCAATGATGTCTAACAGTTCATTCAAGCCGACGCCGCTTCGCGGCGCAGCTTAA " 1763 UPDATE NDM-2 antibiotic inactivation; penam; carbapenem; cephalosporin; cephamycin; NDM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1760 UPDATE QnrB35 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCTCTGGCATTAATTGGCGAAAAAATTGACAGAAACCGCTTCACCGGTGCAAAAGTTGAAAATAGCACTTTTTTTAACTGTGATTTTTCGGGCGCCGACCTTAGCGGTACTGAATTTATCGGCTGTCAGTTCTATGATCGAGAAAGCCAGAAAGGGTGCAATTTCAGTCGCGCAATACTGAAAGATGCCATTTTTAAAAGCTGTGATTTATCCATGGCGGATTTTCGCAACGTCAGTGCGTTGGGCATAGAAATTCGCCACTGCCGAGCACAGGGTGCAGATTTTCGCGGCGCAAGTTTCATGAATATGATCACCACGCGCACCTGGTTTTGCAGCGCATATATCACTAATACCAATCTAAGCTATGCCAACTTTTCGAAGGCCGTGCTTGAAAAGTGCGAATTGTGGGAAAATCGCTGGATGGGAACTCAGATGCTGGGTGCGACGTTGAGTGGTTCCGATCTCTCCGGTGGCGAGTTTTCGTCGTTCGACTGGCGGACGGCAAATTTCACGCACTGTGATTTGACCAATTCAGAACTGGGTGATTTAGATATTCGGGGCGTCGATTTACAAGGTGTCAAATTGGACAGCTATCAGGCCGCGTTGCTCATGGAACGTCTTGGCATCGCTGTCATTGGCTAA " 1761 UPDATE OXA-351 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1766 UPDATE VIM-14 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1767 UPDATE OKP-A-16 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1764 UPDATE OXA-97 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 12565 UPDATED strand with - UPDATED accession with EF102240.1 UPDATED fmin with 11722 UPDATED sequence with ATGAAATTATTAAAAATATTGAGTTTAGTTTGCTTAAGCATAAGTATTGGGGCTTGTGCTGAGCATAGTATGAGTCGAGCAAAAACAAGTACAATTCCACAAGTGAATAACTCAATCATCGATCAGAATGTTCAAGCGCTTTTTAATGAAATCTCAGGTGATGCTGTGTTTGTCACATATGATGGTCAAAATATTAAAAAATATGGCACGCATTTAGACCGAGCAAAAACAGCTTATATTCCTGCATCTACATTTAAAATTGCCAATGCACTAATTGGTTTAGAAAATCATAAAGCAACATCTACAGAAATATTTAAGTGGGATGGAAAGCCACGTTTTTTTAAAGCATGGGACAAAGATTTTACTTTGGGCGAAGCCATGCAAGCATCTACAGTGCCTGTATATCAAGAATTGGCACGTCGTATTGGTCCAAGCTTAATGCAAAGTGAATTGCAACGTATTGGTTATGGCAATATGCAAATAGGCACGGAAGTTGATCAATTTTGGTTGAAAGGGCCTTTGACAATTACACCTATACAAGAAGTAAAGTTTGTGTATGATTTAGCCCAAGGGCAATTGCCTTTTAAACCTGAAGTTCAGCAACAAGTGAAAGAGATGTTGTATGTAGAGCGCAGAGGGGAGAATCGTCTATATGCTAAAAGTGGCTGGGGAATGGCTGTAGACCCGCAAGTGGGTTGGTATGTGGGTTTTGTTGAAAAGGCAGATGGGCAAGTGGTGGCATTTGCTTTAAATATGCAAATGAAAGCTGGTGATGATATTGCTCTACGTAAACAATTGTCTTTAGATGTGCTAGATAAGTTGGGTGTTTTTCATTATTTATAA UPDATED NCBI_taxonomy_name with Acinetobacter baumannii UPDATED NCBI_taxonomy_id with 470 UPDATED NCBI_taxonomy_cvterm_id with 35507 UPDATED accession with ABO33299.1 UPDATED sequence with MKLLKILSLVCLSISIGACAEHSMSRAKTSTIPQVNNSIIDQNVQALFNEISGDAVFVTYDGQNIKKYGTHLDRAKTAYIPASTFKIANALIGLENHKATSTEIFKWDGKPRFFKAWDKDFTLGEAMQASTVPVYQELARRIGPSLMQSELQRIGYGNMQIGTEVDQFWLKGPLTITPIQEVKFVYDLAQGQLPFKPEVQQQVKEMLYVERRGENRLYAKSGWGMAVDPQVGWYVGFVEKADGQVVAFALNMQMKAGDDIALRKQLSLDVLDKLGVFHYL " 1765 UPDATE OXA-56 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1142 UPDATE dfrA17 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1143 UPDATE OXA-7 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAACATTTGCCGCATATGTAATTACTGCGTGTCTTTCAAGTACGGCATTAGCTAGTTCAATTACAGAAAATACGTTTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTTTTCGTGCTTTGTAAAAGTAGCAGTAAATTAGCCTGCGCTACCAATAACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAACGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGATTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAACAATGGGAAAGAGACTTGAGCTTAAGAGGGGCAATACAAGTTTCAGCGGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATATCTTAAAAAATTTTCATATGGTAACCAGAATATCAGTGGTGGCATTGACAAATTCTGGTTGGAGGGTCAGCTTAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATTTTTAAATAAATTGTCAGCATCAAAAGAAAATCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCGCCTGAATATCTTGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGTTGGGTTGAGAAGGGAGCAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAATAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGCAAGTGAGGGCATCATTGGTGGCTAA " 1140 UPDATE CMY-86 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGTTATGCTGCGCTCTGCTGCTGACAGCCCCTTTCTCCACGTTTGCCGCAGCCAAAACAGAACAACAGATTGCCGATATCGTTAATCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCCGTTATCTACCAGGGAAAACCCTATTATTTCACCTGGGGTAAAGCCGATATCACCAATAACCACCCAGTCACGCAGCAAACTCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCAGGGTATCAGCCTGCTGCACTTAGCCACCTACACGGCAGGCGGCCTGCCGCTGCAGATCCCCGATGACGTTACGGATAAAGCCGCATTACTGCGTTTTTATCAAAACTGGCAGCCGCAATGGGCCCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGCGCGCTGGCGGTGAAACCCTCAGGAATGAGTTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACAGTTCCGCAAAGCGAACAAAAAGATTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATTGATATGGCCCGCTGGGTTCAGGTCAACATGGACGCCAGCCGCGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGCGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGTAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCCGCCCCCGCAGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACTGGAGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGTGGCCTGGCACATTCTTGAAAAGCTGCAATAA " 1141 UPDATE OXA-169 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1146 UPDATE TEM-156 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATAGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 1147 UPDATE CMY-63 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGTTATGCTGCGCTCTGCTGCTGACAGCCTCATTCTCCACGTTTGCCGCCGCCAAAACAGAACAACAGATTGCCGATATCGTTAATCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCCGTTATCTACCAGGGAAAACCCTATTATTTCACCTGGGGTAAAGCCGATATCACCAATAACCACCCAGTCACGCAGCAAACTCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCAGGGTATCAGCCTGCTGCACTTAGCCACCTACACGGCAGGCGGCCTGCCGCTGCAGATCCCCGATGACGTTACGGATAAAGCCGCATTACTGCGTTTTTATCAAAACTGGCAGCCGCAATGGGCCCCGGGCGCTAAGAGACTTTACGCTAACTCCAGCATTGGTCTGTTTGGCGCGCTGGCGGTGAAACCCTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACAGTTCCGCAGAACGAACAAAAAGATTATGCCTGGGGCTATCGCGAAGGGAAGGCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGTGTTATTGATATGGCCCGCTGGGTTCAGGTCAACATGGACGCCAGCCGCGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGCGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCAATCATCAACGGTAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCTGCCCCCGCAGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACTGGAGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAAACTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGCGGCCTGGCGCATTCTTGAAAAGCTGCAATAA " 1144 UPDATE vgbB virginiamycin S2; pristinamycin IB; quinupristin; vernamycin B-gamma; ostreogrycin B3; vernamycin C; pristinamycin IA; antibiotic inactivation; streptogramin antibiotic; streptogramin vgb lyase; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 1145 UPDATE CTX-M-124 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1148 UPDATE OXA-363 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1149 UPDATE AER-1 AER beta-lactamase; penam; antibiotic inactivation; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTACGTACTTTCCGTGGAGAAACCTACATTGAGAAACAAATTTGCGGCCGGAATAGGCGTCGTGCTTGTATGTGTCGTTGCCTCGTTTATTCCAACCCCAGTATTCGCCCTAGACACCACGAAGCTGATCCAAGCCGTCCAGTCGGAAGAGAGCGCCTTGCATGCCCGAGTCGGCATGACCGTGTTTGACTCAAACACTGGAACGACTTGGAACTATCGGGGCGATGAGCGGTTTCCATTGAACAGTACGCACAAGACGTTTTCCTGTGCAGCTTTGCTCGCGAAGGTCGATGGGAAGTCCCTCTCTCTGGGCCAATCCGTATCGATCAGCAAGGAAATGCTGGTCACCTATTCGCCGATTACGGAAAAGTCGCTGTCACCCGAAACCGTTACCTTCGGCAAGATTTGTCAGGCAGCGGTGAGCTATAGCGATAACACAGCCGCAAACGTCGTCTTTGATGCCATTGGAGGAGCAACCGGATTCAACGCATACATGCGGTCTATCGGCGATGAAGAAACCCAGCTTGATCGCAAAGAACCCGAGTTGAACGAAGGTACGCCGGGCGATGTGCGTGACACCACCACTCCCAACGCCATGGTCAATAGTCTTAGGAAGATACTTCTTGGCGACGCGTTGTCAGCATCATCCCGATCCCAGCTGACGCAATGGATGCTGGACGATCAGGTTGCTGGTGCGCTCCTGCGTGCCTCACTGCCATCCGATTGGAAGATCGCCGACAAGACCGGCGCGGGGGGTTACGGCTCACGCTCGATCGTCGCAGTAATCTGGCCGCCATCGAAGCAGCCACTGGTGGTTGGCATCTATATCACGCAAACCAAAGCATCCATGCAGGCCAGCAATCAGGCGATTGCAAGGATAGGAGTGGTGCTGAAGGATACGGTCGCTCCTTGA " 769 UPDATE KPC-11 antibiotic inactivation; penam; carbapenem; cephalosporin; monobactam; KPC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 692 UPDATE TEM-159 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 693 UPDATE OXA-22 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAACGCCGCCACGCCGCCATCGGCGCCCTGCTTGCCGCGCTTGCCACCTTTGCCCACGCCGAGCACCCGATCTGCACGATCGTGGCCGATGCCGCCACGGGCAAGGCCGTCTTGCATGAAGGCAAGTGCGACGAGCGCGTGACGCCCGCTTCCACCTTCAAGCTGGCGCTGGCCGTCATGGGCTTCGACCACGGCTTCCTCAAAGATGAGCACACCCCGGTTGAGCACTTCAGGCACGGTGACCCCGACTGGGGCGGCGAAGCCTGGCACCAGCCGATCGACCCGGCGCTGTGGCTCAAGTATTCGGTGGTCTGGTATTCGCAGCGCATTACGCATGCGATGGGCGCGCAGACCTTCCAGGCCTACGTGCGCAAGCTTGGCTACGGCAACATGGATGTGAGCGGCGATCCGGGCAAGAACAACGGCATGGACCGCTCGTGGATCACCTCGTCGCTGAAGATTTCGCCGGAAGAGCAAGTCGGCTTGATGCGCCGGATCGTCAACCGGCAGTTGCCGGTGTCGGCGCACACCTACGAGATGCTCGACCGTACCGTGCAGACCTGGCAGGTGCCCGGCGGCTGGGCGGTGCAGGGCAAGACGGGCACTGCCGGTCCGGCGCCGGGCAACACGTCGCCCGATGGCACGTGGGATCAGGCACACGCTTACGGCTGGTTTGTCGGCTGGGCCAGGAAGGGCGACAAGACCTACGTATTCGCCAACCTGATCCAGGACGACAAGGTTGAGCCGACGTCGGGCGGTATCCGCTCGCGCGATGCGCTGTTTGCTCGCCTGTCGGAAGTGCTGGCCTTTGCTGGGCACTGA " 1544 UPDATE dfrE iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 234307 UPDATED strand with - UPDATED accession with AIIS01000002.1 UPDATED fmin with 233812 UPDATED sequence with ATGTTAGCAGCTATTTGGGCCCAAGATGAACAAGGAGTGATTGGTAAAGAAGGCAAATTGCCTTGGCATTTACCCAATGACTTGAAATTTTTCAAGGAAAAAACAATTCATAATACATTGGTCTTAGGACGTGCAACTTTCGAAGGCATGGGATGTCGTCCGCTACCAAATCGAACAACGATTGTCCTAACCAGTAATCCGGATTACCGAGCTGAAGGCGTTTTGGTTATGCATTCCGTAGAGGAAATTCTTGCGTATGCTGACAACTATGAAGGTGTGACCGTTATTGGTGGAGGTTCTGTCGTTTTTAAAGAACTGATTCCCGCATGCGATGTCTTATATCGGACGATGATTCATGAAACGTTTGAAGGCGACACTTTCTTTCCAGAAATCGACTGGTTTGTTTGGGAAAAAGTTGCCACTGTTCCCGGCGTCGTGGACGAGAAAAATCTCTATGCACATGACTATGAAACGTATCATCGAAACGATAAATAA UPDATED NCBI_taxonomy_name with Enterococcus faecalis EnGen0074 UPDATED NCBI_taxonomy_id with 1151194 UPDATED NCBI_taxonomy_cvterm_id with 41527 UPDATED accession with EOD99669.1 UPDATED sequence with MLAAIWAQDEQGVIGKEGKLPWHLPNDLKFFKEKTIHNTLVLGRATFEGMGCRPLPNRTTIVLTSNPDYRAEGVLVMHSVEEILAYADNYEGVTVIGGGSVVFKELIPACDVLYRTMIHETFEGDTFFPEIDWFVWEKVATVPGVVDEKNLYAHDYETYHRNDK " 691 UPDATE vanRE glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanR; vancomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCTAAAATACTAATTTTAGATGATGAAAAAGAGATTGTAAGTCTTCTAAGTACGCTACTTTCTAACGAAGGATATGAGGTTTATGAGGCTATGTCAGGAAAAGAAAGCTTGGAGATTATAGAAAATAACAAGATCGATTTAGCCATACTAGATGTCATGCTTCCCGATATTTCCGGTTTTGATGTATTGCAAAGCATTAGAGAAAAACAATTTTTTCCTGTGTTGATGCTAACTGCTCGAGGTCAGGATATGGATAAAATTACTGGACTGTCTATGGGGGCAGATGACTATATTGTTAAGCCGTTCAATCCTTTTGAAGTGTTGGCTAGAGTGAAAACACAGCTACGTAGATATCAAACGTATAATTCTCAAAGTATAGATGAAACAAATGAATATGCAAAAAATGGATTAAATATATCTGTCAACAGTCGAAAAGTATTCTTATATGATGAAGAAATTAAATTAACGCCTATTGAATTTGATATCTTGTGGTATTTGTGTAGAAATGAAGGTCGCGTAATATCGTCAGAAGAGTTATTTGAAAAAGTCTGGAAAGAAGACTATCTAGAGAATAATAATACTGTTATGGCGCATATTGCTAAAATTAGAGAAAAGATGCATGAAAAGCCGAGACAGCCAAATATTATAAAAACGGTATGGGGAGTAGGTTATACAATTGAAAAATAA " 696 UPDATE cfrA dalfopristin; thiamphenicol; oxazolidinone antibiotic; pristinamycin IIA; pleuromutilin antibiotic; tiamulin; madumycin II; griseoviridin; linezolid; lincomycin; macrolide antibiotic; streptogramin antibiotic; antibiotic target alteration; lincosamide antibiotic; azidamfenicol; clindamycin; phenicol antibiotic; Cfr 23S ribosomal RNA methyltransferase; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 11077 UPDATED strand with - UPDATED accession with AM408573 UPDATED fmin with 10027 UPDATED sequence with ATGAATTTTAATAATAAAACAAAGTATGGTAAAATACAGGAATTTTTAAGAAGTAATAATGAGCCTGATTATAGAATAAAACAAATAACCAATGCGATTTTTAAACAAAGAATTAGTCGATTTGAGGATATGAAGGTTCTTCCAAAATTACTTAGGGAGGATTTAATAAATAATTTTGGAGAAACAGTTTTGAATATCAAGCTCTTAGCAGAGCAAAATTCAGAGCAAGTTACGAAAGTGCTTTTTGAAGTATCAAAGAATGAGAGAGTAGAAACGGTAAACATGAAGTATAAAGCAGGTTGGGAGTCATTTTGTATATCATCACAATGCGGATGTAATTTTGGGTGTAAATTTTGTGCTACAGGCGACATTGGATTGAAAAAAAACCTAACTGTAGATGAGATAACAGATCAAGTTTTATACTTCCATTTATTAGGTCATCAAATTGATAGCATTTCTTTTATGGGAATGGGTGAAGCTCTAGCCAACCGTCAAGTATTTGATGCTCTTGATTCGTTTACGGATCCTAATTTATTTGCATTAAGTCCTCGTAGACTTTCTATATCAACGATTGGTATTATACCTAGTATCAAAAAAATAACCCAGGAATATCCTCAAGTAAATCTTACATTTTCATTACACTCACCTTATAGTGAGGAACGCAGCAAATTGATGCCAATAAATGATAGATACCCAATAGATGAGGTAATGAATATACTCGATGAACATATAAGATTAACTTCAAGGAAAGTATATATAGCTTATATCATGTTGCCTGGTGTAAATGATTCTCTTGAGCATGCAAACGAAGTTGTTAGCCTTCTTAAAAGTCGCTATAAATCAGGGAAGTTATATCATGTAAATTTGATACGATACAATCCTACAATAAGTGCACCTGAGATGTATGGAGAAGCAAACGAAGGGCAGGTAGAAGCCTTTTACAAAGTTTTGAAGTCTGCTGGTATCCATGTCACAATTAGAAGTCAATTTGGGATTGATATTGACGCTGCTTGTGGTCAATTATATGGTAATTATCAAAATAGCCAATAG UPDATED NCBI_taxonomy_name with Staphylococcus warneri UPDATED NCBI_taxonomy_id with 1292 UPDATED NCBI_taxonomy_cvterm_id with 40034 UPDATED accession with CAL64019.1 UPDATED sequence with MNFNNKTKYGKIQEFLRSNNEPDYRIKQITNAIFKQRISRFEDMKVLPKLLREDLINNFGETVLNIKLLAEQNSEQVTKVLFEVSKNERVETVNMKYKAGWESFCISSQCGCNFGCKFCATGDIGLKKNLTVDEITDQVLYFHLLGHQIDSISFMGMGEALANRQVFDALDSFTDPNLFALSPRRLSISTIGIIPSIKKITQEYPQVNLTFSLHSPYSEERSKLMPINDRYPIDEVMNILDEHIRLTSRKVYIAYIMLPGVNDSLEHANEVVSLLKSRYKSGKLYHVNLIRYNPTISAPEMYGEANEGQVEAFYKVLKSAGIHVTIRSQFGIDIDAACGQLYGNYQNSQ " 697 UPDATE Erm(42) antibiotic target alteration; streptogramin antibiotic; Erm 23S ribosomal RNA methyltransferase; macrolide antibiotic; lincosamide antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 694 UPDATE CTX-M-40 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 695 UPDATE CMY-66 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCACTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTGGCGATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATGACATTACGGATAAAGCCGCATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGTGGTAAAACCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAATTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTACACGTTTCTCCGGGGCAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCTCGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACAGGATCCACAGGCGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTAATGTTGGCAAACAAAAGCTACCCCAACCCGGCTCGCGTCGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA " 698 UPDATE TEM-205 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 699 UPDATE QnrS9 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1548 UPDATE APH(3')-Vb antibiotic inactivation; aminoglycoside antibiotic; paromomycin; APH(3'); ribostamycin; G418; neomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAAAGCACGTTGCGCCGGACATACCCGCACCACACTTGGCACCTCGTGAACGAAGGAGACTCGGGCGCCTTCGTCTACCGCCTCACCGGACACGGGCCCGAGCTCTACGCGAAGATCGCCCCCCGCACCCCCGAGAACTCCGCCTTCCACCTCGACGGCGAGGCCGACCGCCTCGACTGGCTCGCCCGCCATGGCATCTCGGTCCCCCGTGTCGTCGAGCGCGGTGCCGACGACACCACCGCCTGGCTCGTCACCGAGGCCGTGCCCGGCGCCGCGGCCTCCGAGGAGTGGCCCGAGGACGAGCGGGCGGCCGTTGTCGACGCGATCGCCGAAATGGCCCGCACCCTCCATGAACTCCCCGTGTCCGAGTGCCCCTTCGACCGCCGCCTCGACGTCACCGGCGAGGCCCGGCACAACGTCCGCGAGGGCCTGGTCGACCTCGACGACCTCCAGGAGGAGCCGGCCGGCTGGACCGGCGACCAACTCCTGGCCGAACTCGACCTGACGCGGCCCGAGAAGGAGGACTTGGTCGTCTGCCATGGCGACCTGTGCCCCAACAACGTGCTGCTCGACCCCGAGACCCACCGGATCACCGGGCTGATCGACGTCGGCCGCCTCCGGCTCGCCACCTGCCACGCCGACCTCGCCCTCGCCGCCCGCGAACTGGCGATCGACGAGGACCCGTGGTTCGGCCCCGCATACGCCGAACGGTTCCTCGAACGGTACGGGGCCCACCACGTCGACCAGGAGAAGATGGCCTTCTACCAGCTGCTCGACGAGTTCTTCTAG " 1549 UPDATE ErmB antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACAAAAATATAAAATATTCTCAAAACTTTTTAACGAGTGAAAAAGTACTCAACCAAATAATAAAACAATTGAATTTAAAAGAAACCGATACCGTTTACGAAATTGGAACAGGTAAAGGGCATTTAACGACGAAACTGGCTAAAATAAGTAAACAGGTAACGTCTATTGAATTAGACAGTCATCTATTCAACTTATCGTCAGAAAAATTAAAACTGAATACTCGTGTCACTTTAATTCACCAAGATATTCTACAGTTTCAATTCCCTAACAAACAGAGGTATAAAATTGTTGGGAGTATTCCTTACAATTTAAGCACACAAATTATTAAAAAAGTGGTTTTTGAAAGCCGTGCGTCTGACATCTATCTGATTGTTGAAGAAGGATTCTACAAGCGTACCTTGGATATTCACCGAACACTAGGGTTGCTCTTGCACACTCAAGTCTCGATTCAGCAATTGCTTAAGCTGCCAGCGGAATGCTTTCATCCTAAACCAAAAGTAAACAGTGTCTTAATAAAACTTACCCGCCATACCACAGATGTTCCAGATAAATATTGGAAGCTATATACGTACTTTGTTTCAAAATGGGTCAATCGAGAATATCGTCAACTGTTTACTAAAAATCAGTTTCATCAAGCAATGAAACACGCCAAAGTAAACAATTTAAGTACCATTACTTATGAGCAAGTATTGTCTATTTTTAATAGTTATCTATTATTTAACGGGAGGAAATTAATTCTATGA UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 542 UPDATE adeH antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; fluoroquinolone antibiotic; tetracycline; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 543 UPDATE TEM-106 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTAAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGACGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 540 UPDATE emrY tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCAATCACTAAATCAACTCCGGCACCATTAACCGGTGGGACGTTATGGTGCGTCACTATTGCATTGTCATTAGCGACATTTATGCAAATGTTGGATTCCACTATTTCTAACGTCGCAATACCGACAATATCTGGCTTTCTGGGAGCATCAACAGACGAAGGCACCTGGGTTATCACCTCGTTTGGTGTAGCAAATGCCATTGCGATCCCTGTTACTGGCAGGTTGGCACAAAGAATAGGCGAATTAAGATTATTTTTACTTTCAGTCACTTTTTTTTCGCTGTCTTCATTAATGTGTAGCCTATCGACCAATCTTGATGTGCTGATATTTTTTAGAGTCGTTCAGGGGTTAATGGCGGGGCCGTTAATTCCACTGTCACAGAGTTTATTATTAAGGAATTATCCGCCAGAAAAAAGAACATTTGCTCTGGCATTATGGTCAATGACCGTGATTATCGCTCCGATATGTGGACCGATATTGGGCGGTTATATTTGTGATAACTTTAGCTGGGGTTGGATATTTTTAATCAATGTCCCTATGGGGATTATCGTCCTGACATTATGCTTAACCTTACTTAAAGGAAGAGAAACTGAGACTTCACCGGTCAAAATGAATCTACCAGGACTGACCCTGTTAGTGCTCGGTGTTGGTGGCTTGCAAATTATGCTTGATAAAGGGCGCGATCTGGATTGGTTCAACTCGAGTACAATAATAATATTAACAGTAGTATCAGTTATTTCTCTGATCTCTTTAGTCATTTGGGAGTCGACCTCAGAGAACCCGATTCTTGATCTCAGTTTGTTTAAGTCCCGTAACTTCACCATTGGTATTGTGAGTATCACATGCGCGTATTTATTTTACTCTGGAGCGATCGTCCTTATGCCGCAGTTACTCCAGGAAACGATGGGGTATAATGCGATATGGGCCGGACTTGCTTATGCGCCCATCGGCATCATGCCACTATTAATTTCACCTTTGATAGGACGTTATGGCAACAAAATAGACATGCGGTTGTTAGTGACATTTAGTTTTTTGATGTATGCGGTTTGCTATTACTGGCGTTCTGTGACATTTATGCCAACGATTGATTTTACAGGCATCATTTTGCCGCAGTTTTTTCAGGGATTCGCCGTTGCCTGTTTCTTTTTACCCTTAACAACGATTTCGTTTTCAGGCTTGCCAGATAATAAATTTGCCAATGCCTCGAGTATGAGTAATTTTTTTCGTACCTTGTCAGGATCAGTTGGTACGTCGTTGACAATGACGCTGTGGGGACGACGCGAATCGTTACACCATAGTCAGTTGACAGCAACCATCGATCAATTTAACCCCGTGTTTAATTCATCGTCACAAATTATGGATAAATATTATGGTTCGCTTTCAGGAGTTCTTAATGAAATTAATAATGAAATAACCCAGCAGTCACTTTCTATTTCTGCAAATGAGATTTTCCGTATGGCGGCTATTGCTTTTATCTTACTTACGGTTTTGGTTTGGTTTGCGAAACCGCCGTTTACAGCGAAAGGCGTTGGGTGA " 541 UPDATE TEM-133 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 546 UPDATE TLA-1 antibiotic inactivation; monobactam; fluoroquinolone antibiotic; cephalosporin; TLA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 547 UPDATE arr-5 antibiotic inactivation; rifampin; rifapentine; rifabutin; rifampin ADP-ribosyltransferase (Arr); rifaximin; rifamycin antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACGGTAGACTGGATCCCCATTTCGCACGACAACTACCATCAAGTGCGTGGCCCGTTTTATCACGGAACAAAAGCCGAACTCGCCATTGGCGACTTAATTTCAACCGGATTTATTTCTCACTTTGAGCGGGACAGAGCACTAAAGCATGTGTACTTTTCCGCGCTGATGGAGCCAGCAATCTGGGGGGCCGAGCTCGCTGTAGCACTCTCTGGCTCTGACGGGCCAGGCCATATTTACATCATTGAGCCAACCGGCCCGTTTGAAGACGACCCCAATCTCACAAACAAACGATTCCCTGGCAATCCAACACAGTCCTATCGCACATGCCACCCACTTAAAATTGTTGGCATACTGCGGGAGTGGGAGCGCCATTCTCCTGAAGCATTGAAGACCATGCTAGATTCTCTGGCAGACCTCAAGCGACGCGGCTTGGCCATCATTGAAGAATGA " 544 UPDATE AAC(6')-Is antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 545 UPDATE GES-22 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGCTTCATTCACGCACTATTACTGGCAGGGATCGCTCACTCTGCATATGCGTCGGAAAAATTAACCTTCAAGACCGATCTTGAGAAGCTAGAGCGCGAAAAAGCAGCTCAGATCGGTGTTGCGATCGTCGATCCCCAAGGAGAGATCGTCGCGGGCCACCGAATGGCGCAGCGTTTTGCAATGTGCTCAACGTTCAAGTTTCCGCTAGCCGCGCTGGTCTTTGAAAGAATTGACTCAGGCACCGAGCGGGGGGATCGAAAACTTTCATATGGGCCGGACATGATCGTCGAATGGTCTCCTGCCACGGAGCGGTTTCTAGCATCGGGACACATGACGGTTCTCGAGGCAGCGCAAGCTGCGGTGCAGCTTAGCGACAATGGGGCTACTAACCTCTTACTGAGAGAAATTGGCGGACCTGCTGCAATGACGCAGTATTTTCGTAAAATTGGCGACTCTGTGAGTCGGCTAGACCGGAAAGAGCCGGAGCTGGGCGACAACACACCTGGCGACCTCAGAGATACAACTACGCCTATTGCTATGGCACGTACTGTGGCTAAAGTCCTCTATGGCGGCGCACTGACGTCCACCTCGACCCACACCATTGAGAGGTGGCTGATCGGAAACCAAACGGGAGACGCGACACTACGAGCGGGTTTTCCTAAAGATTGGGTTGTTGGAGAGAAAACTGGTACCTGCGCCAACGGGGCCCGGAACGACATTGGTTTTTTTAAAGCCCAGGAGAGAGATTACGCTGTAGCGGTGTATACAACGGCCCCGAAACTATCGGCCGTAGAACGTGACGAATTAGTTGCCTCTGTCGGTCAAGTTATTACACAACTCATCCTGAGCACGGACAAATAG " 548 UPDATE QnrB3 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 549 UPDATE TEM-107 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTAAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCATTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGACGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCAGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 760 UPDATE TEM-6 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 761 UPDATE GES-13 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGCTTCATTCACGCACTATTACTGGCAGGGATCGCTCACTCTGCATATGCGTCGGAAAAATTAACCTTCAAGACCGATCTTGAGAAGCTAGAGCGCGAAAAAGCAGCTCAGATCGGTGTTGCGATCGTCGATCCCCAAGGAGAGATCGTCGCGGGCCACCGAATGGCGCAGCGTTTTGCAATGTGCTCAACGTTCAAGTTTCCGCTAGCCGCGCTGGTCTTTGAAAGAATTGACTCAGGCACCGAGCGGGGGGATCGAAAACTTTCATATGGGCCGGACATGATCGTCAAATGGTCTCCTGCCACGGAGCGGTTTCTAGCATCGGGACACATGACGGTTCTCGAGGCAGCGCAAGCTGCGGTGCAGCTTAGCGACAATGGGGCTACTAACCTCTTACTGAGAGAAATTGGCGGACCTGCTGCAATGACGCAGTATTTTCGTAAAATTGGCGACTCTGTGAGTCGGCTAGACCGGAAAGAGCCGGAGATGAACGACAACACACCTGGCGACCTCAGAGATACAACTACGCCTATTGCTATGGCACGTACTGTGGCTAAAGTCCTCTATGGCGGCGCACTGACGTCCACCTCGACCCACACCATTGAGAGGTGGCTGATCGGAAACCAAACGGGAGACGCGACACTACGAGCGGGTTTTCCTAAAGATTGGGTTGTTGGAGAGAAAACTGGTACCTGCGCCAACGGGGGCCGGAACGACATTGGTTTTTTTAAAGCCCAGGAGAGAGATTACGCTGTAGCGGTGTATACAACGGCCCCGAAACTATCGGCCGTAGAACGTGACGAATTAGTTGCCTCTGTCGGTCAAGTTATTACACAACTCATCCTGAGCACGGACAAATAG " 766 UPDATE SHV-102 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 767 UPDATE OXA-207 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 764 UPDATE FOX-2 antibiotic inactivation; cephamycin; cephalosporin; FOX beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAACAACGACGTGCGCTCGCGCTACTGACGCTGGGTAGCCTGCTGCTAGCCCCTTGTACTTATGCCAGCGGGGAGGCTCCGCTGACCGCCGCTGTGGACGGCATTATCCAGCCGATGCTCAAGGAGTATCGGATCCCGGGGATGGCGGTCGCCGTGCTGAAAGATGGCAAGGCCCACTATTTCAACTATGGGGTTGCCAACCGCGAGAGTGGCCAGCGCGTCAGCGAGCAGACGCTGTTCGAGATTGGCTCGGTCAGCAAGACCCTGACCGCGACCCTCGGTGCCTATGCTGCGGTCAAGGGGGGCTTTGAGCTGGATGACAAGGTGAGCCACCACGCCCCTTGGCTCAAAGGTTCCGCTTTCGATGGTGTGACTATGGCCGAGCTTGCCACCTACAGTGCGGGTGGTTTGCCGCTGCAGTTCCCTGATGAGGTGGATTCGAATGACAAGATGCAAACTTACTATCGGAGCTGGTCACCGGTTTATCCGGCGGGGACCCATCGCCAGTATTCCAACCCCAGCATAGGCCTGTTTGGTCACCTGGCCGCAAATAGTCTGGGCCAGCCATTTGAGAAACTGATGAGCCAGACCCTGCTGCCCAAGCTTGGTTTGCACCACACCTATATCCAGGTGCCGGAGTCGGCCATGGCGAACTATGCCTACGGCTATTCGAAGGAAGATAAGCCCATCCGGGTCACTCCGGGCGTACTGGCGGCCGAGGCTTACGGGATCAAAACCGGCTCGGCGGATCTGCTGAAGTTTGTCGAGGCAAACATGGGGTATCAGGGAGATGCCGCGCTAAAAAGCGCGATCGCGCTGACCCACACCGGTTTCTACTCGGTGGGAGACATGACCCAGGGACTGGGCTGGGAGAGCTACGCCTATCCGGTGACCGAGCAGGCGTTGCTGGCGGGCAACTCCCCGGCGGTGAGCTTCCAGGCCAATCCGGTTACGCGCTTTGCGGTGCCCAAAGCGATGGGCGAGCAGCGGCTCTATAACAAGACGGGCTCGACCGGCGGCTTTGGCGCCTATGTGGCGTTCGTGCCCGCCAGAGGGATCGCCATCGTCATGCTGGCCAATCGCAACTATCCCATCGAGGCCAGGGTGAAGGCGGCTCACGCCATCCTGAGTCAGTTGGCCGAGTGA " 765 UPDATE QnrB7 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 414 UPDATE OXA-377 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATTAAAACACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGCGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGTACACACTAAGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACCACAGAAGTATTTAAGTGGGACGGGCAAAAAAGGCTATTCCCAGAATGGGAAAAGGACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAAGGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAGTTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCCAAAAGTCCAAGATGAAGTGCAATCCATGTTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAGACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGTTTAGAACAATTAGGTATTTTATAG " 415 UPDATE TEM-33 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 51165 UPDATED strand with - UPDATED accession with GU371926 UPDATED fmin with 50304 UPDATED sequence with ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGCTGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA UPDATED NCBI_taxonomy_name with Escherichia coli UPDATED NCBI_taxonomy_id with 562 UPDATED NCBI_taxonomy_cvterm_id with 35914 UPDATED accession with ADL13944.1 UPDATED sequence with MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEDQLGARVGYIELDLNSGKILESFRPEERFPMLSTFKVLLCGAVLSRVDAGQEQLGRRIHYSQNDLVEYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTMPAAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGAGERGSRGIIAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGASLIKHW " 416 UPDATE OXA-204 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTGTATTAGCCTTATCGGCTGTGTTTTTGGTGGCATCGATTATCGGAATGCCTGCGGTAGCAAAGGAATGGCAAGAAAACAAAAGTTGGAATGCTCACTTTACTGAACATAAATCACAGGGCGTAGTTGTGCTCTGGAATGAGAATAAGCAGCAAGGATTTACCAATAATCTTAAACGGGCGAACCAAGCATTTTTACCCGCATCTACCTTTAAAATTCCCAATAGCTTGATCGCCCTCGATTTGGGCGTGGTTAAGGATGAACACCAAGTCTTTAAGTGGGATGGACATCGGCGCGATATCGCCACTTGGAATCGCGATCATAATCTAATCACCGCGATGAAATATTCAGTTGTGCCTGTTTATCAAGAATTTGCCCGCCAAATTGGCGAGGCACGTATGAGCAAGATGCTACATGCTTTCGATTATGGTAATGAGGACATTTCGGGCAATGTAGACAGTTTCTGGCTCGATGGTGGTATTCGAATTTCGGCCACTGAGCAAATCAGCTTTTTAAGAAAGCTGTATCACAATAAGTTACACGTATCGGAGCGCAGCCAGCGTATTGTCAAACAAGCCATGCTGACCGAAGCCAATGGCGACTATATTATTCGGGCTAAAACGGGATACTCGACTAGAATCGAACCTAAGATTGGCTGGTGGGTCGGTTGGGTTGAACTGGATGATAATGTGTGGTTTTTTGCGATGAATATGGATATGCCCACATCGGATGGTTTAGGGCTGCGCCAAGCCATCACAAAAGAAGTGCTCAAACAGGAAAAAATTATTCCCTAG " 417 UPDATE QnrB6 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 410 UPDATE AAC(3)-IIIb kanamycin A; antibiotic inactivation; AAC(3); aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTCCATGCCGCCGTCAGCAGGGTCGGCCGCCTGCTCGATGGCCCCGACACCATCATCGCCGCCCTGCGCGATACCGTCGGCCCGGGCGGTACCGTTCTCGCCTATGCCGATTGGGAGGCACGATACGAGGACCTGGTCGACGACGCGGGCCGCGTGCCTCCGGAATGGCGCGAACATGTCCCACCCTTCGACCCGCAGCGCTCGCGTGCGATCCGCGACAATGGTGTGCTGCCGGAATTCCTGCGGACCACGCCCGGCACGCTCCGCAGCGGCAACCCCGGCGCCTCGCTCGTCGCGCTCGGGGCGAAGGCGGAGTGGTTCACTGCCGACCACCCGCTCGACTACGGCTATGGCGAGGGCTCGCCGCTGGCCAAGCTGGTCGAGGCCGGCGGCAAGGTGCTGATGCTTGGGGCGCCGCTCGACACGCTGACCCTGCTGCACCATGCCGAGCATCTGGCTGATATCCCCGGCAAGCGGATCAAGCGGATCGAGGTGCCGTTCGCGACACCTACAGGCACGCAATGGCGCATGATCGAGGAGTTCGACACCGGCGATCCGATCGTCGCAGGGCTGGCCGAGGACTATTTCGCGGGAATCGTGACCGAATTCCTCGCCAGCGGCCAGGGTCGGCAAGGGTTGATCGGCGCCGCTCCCTCGGTGCTGGTCGATGCCGCGGCGATCACCGCCTTCGGCGTCACCTGGCTCGAAAAACGGTTCGGTACGCCCTCGCCCTGA " 411 UPDATE QnrB11 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 412 UPDATE OXA-117 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 413 UPDATE OXA-144 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1384 UPDATE OXA-382 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATTAAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGCGCTTCAAAAACTGATAAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACCACAGAAGTATTTAAGTGGAACGGGCAAAAAAGGCTGTTCCCAGAATGGGAAAAGGACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGGCTTGAACTCATGTCTAATGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAATTTACTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAGACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGTTTAGAACAATTAGGTATTTTATAG " 1385 UPDATE mdsB penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; penem; carbapenem; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; cephamycin; monobactam; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 397061 UPDATED strand with - UPDATED accession with NC_003197.2 UPDATED fmin with 393893 UPDATED sequence with ATGAAATTCACCCACTTTTTCATTGCACGCCCCATCTTCGCCATCGTCCTGTCGCTGTTAATGCTGCTGGCTGGCGCTATCGCCTTTTTAAAACTGCCGCTGAGTGAATATCCGGCCGTTACGCCGCCCACGGTACAGGTTAGCGCCAGCTACCCCGGCGCTAACCCGCAAGTGATTGCCGATACGGTAGCCGCGCCGCTGGAACAGGTGATCAACGGCGTTGACGGCATGTTGTATATGAATACCCAGATGGCCATTGATGGTCGCATGGTTATCTCTATCGCCTTCGAACAGGGAACCGATCCTGATATGGCGCAAATTCAGGTGCAAAACCGGGTATCCCGCGCGCTGCCTCGCCTGCCCGAAGAAGTCCAGCGAATTGGCGTTGTAACGGAGAAAACGTCCCCCGATATGTTGATGGTGGTTCATCTTGTCTCGCCGCAAAAACGCTATGACTCGCTTTACCTGTCTAACTTCGCCATCCGGCAGGTTCGCGACGAACTGGCCCGTTTACCCGGCGTCGGCGATGTTCTCGTCTGGGGCGCGGGCGAGTACGCCATGCGCGTCTGGCTGGACCCGGCGAAAATCGCCAACCGCGGTCTTACCGCCAGTGATATCGTTACGGCGTTGCGGGAACAAAACGTACAGGTCGCCGCCGGTTCCGTCGGGCAACAGCCGGAGGCCTCCGCCGCTTTTCAGATGACGGTAAACACGCTGGGCCGCCTGACCAGCGAAGAACAGTTCGGCGAGATTGTGGTAAAAATCGGCGCTGACGGCGAGGTGACGCGTCTGCGTGATGTCGCCCGCGTCACGCTGGGCGCAGATGCCTATACGCTGCGCAGTTTACTGAATGGCGAAGCGGCGCCAGCGTTACAGATTATTCAAAGTCCGGGCGCCAATGCGATTGACGTTTCTAACGCGATTCGCGGCAAAATGGATGAGTTGCAGCAAAACTTCCCGCAGGATATCGAATACCGGATTGCCTATGATCCTACGGTCTTCGTGCGCGCATCGCTACAATCGGTGGCGATTACGTTGCTGGAAGCCCTCGTGCTGGTCGTCCTTGTCGTGGTGATGTTCCTGCAAACCTGGCGGGCGTCCATTATTCCTCTGGTGGCGGTTCCCGTTTCGCTGGTCGGCACCTTTGCCTTGATGCACCTGTTTGGCTTTTCGCTGAATACGCTTTCGCTGTTTGGTTTGGTCCTGTCGATAGGTATCGTTGTCGATGACGCCATCGTTGTGGTCGAAAACGTGGAACGGCATATCTCGCAGGGCAAAAGTCCCGGAGAGGCGGCAAAGAAGGCGATGGATGAAGTCACTGGTCCCATTCTTTCTATTACCTCGGTGCTAACGGCGGTCTTTATCCCTTCCGCATTCCTGGCGGGCCTGCAGGGTGAGTTTTATCGTCAGTTCGCGTTGACCATCGCTATTTCGACCATCCTTTCGGCCATTAACTCGCTGACGCTCTCCCCTGCGCTGGCTGCCATTTTGCTAAGACCGCACCACGATACTGCGAAGGCTGACTGGCTAACGCGGTTGATGGGCACGGTCACTGGCGGTTTTTTCCATCGCTTTAACCGTTTCTTCGACAGCGCGTCGAACCGCTATGTTAGCGCCGTCCGTCGGGCCGTGCGCGGCAGCGTCATTGTGATGGTGCTCTATGCTGGCTTTGTGGGGCTGACCTGGCTTGGCTTCCATCAGGTGCCGAACGGGTTTGTGCCTGCGCAGGATAAATACTATCTCGTCGGCATCGCCCAGCTCCCAAGCGGCGCATCGTTGGATCGCACAGAGGCGGTCGTGAAACAGATGTCCGCTATCGCGCTGGCGGAACCCGGCGTTGAAAGCGTCGTCGTCTTCCCCGGTCTGTCGGTTAACGGCCCGGTAAATGTGCCAAATTCGGCGCTGATGTTCGCCATGCTGAAACCCTTTGACGAGCGTGAAGATCCTTCGCTTTCCGCTAACGCTATCGCCGGAAAGCTAATGCACAAATTTAGCCACATTCCCGACGGATTTATTGGCATCTTCCCGCCACCGCCGGTTCCAGGGCTTGGCGCGACGGGCGGCTTTAAATTGCAGATTGAAGATCGTGCGGAACTGGGATTTGAAGCGATGACAAAGGTGCAAAGCGAGATTATGTCTAAGGCGATGCAGACGCCCGAACTGGCCAATATGCTGGCCAGTTTCCAGACAAACGCCCCGCAATTACAGGTGGATATCGACCGGGTAAAGGCGAAATCAATGGGGGTATCGCTCACCGACATCTTTGAAACGTTGCAAATTAACCTCGGCTCGCTTTACGTCAACGATTTCAACCGATTTGGCCGTGCCTGGCGGGTGATGGCGCAGGCCGATGCGCCATTCCGTATGCAGCAAGAGGATATCGGCCTGCTTAAAGTCCGCAATGCGAAGGGCGAGATGATCCCGCTTAGCGCTTTCGTCACGATTATGCGCCAGTCGGGGCCGGACAGAATCATCCATTACAACGGCTTCCCCTCGGTAGATATTAGCGGTGGACCGGCTCCGGGCTTCTCCTCCGGACAGGCGACGGACGCGATTGAAAAGATCGTGCGTGAAACGTTACCGGAAGGGATGGTCTTCGAATGGACCGATCTGGTTTATCAGGAAAAACAGGCCGGCAACTCTGCGCTTGCTATCTTTGCGCTGGCGGTGCTGCTGGCCTTCCTGATCCTGGCGGCGCAGTACAACAGTTGGTCGCTGCCCTTCGCCGTCCTGCTTATTGCGCCTATGTCATTACTCTCAGCCATTGTCGGCGTGTGGGTATCTGGCGGAGATAACAATATCTTTACGCAGATTGGTTTCGTGGTGCTGGTCGGCCTGGCGGCCAAGAACGCCATTTTGATTGTCGAGTTTGCCCGCGCCAAAGAACACGACGGCGCAGACCCGCTGACCGCCGTACTGGAAGCGTCCCGCCTGCGTCTGCGTCCTATCCTGATGACCTCATTCGCCTTTATCGCAGGTGTAGTACCACTGGTACTCGCGACGGGTGCCGGCGCGGAAATGCGACATGCGATGGGCATCGCCGTGTTTGCCGGCATGTTGGGCGTCACGCTCTTCGGCCTGTTATTGACGCCTGTATTTTACGTGGTGGTTCGCAGGATGGCATTAAAGCGTGAGAACCGCGTTGATTCGCATGATCAGCAAGCATAA UPDATED NCBI_taxonomy_name with Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 UPDATED NCBI_taxonomy_id with 99287 UPDATED NCBI_taxonomy_cvterm_id with 35734 UPDATED accession with NP_459346.1 UPDATED sequence with MKFTHFFIARPIFAIVLSLLMLLAGAIAFLKLPLSEYPAVTPPTVQVSASYPGANPQVIADTVAAPLEQVINGVDGMLYMNTQMAIDGRMVISIAFEQGTDPDMAQIQVQNRVSRALPRLPEEVQRIGVVTEKTSPDMLMVVHLVSPQKRYDSLYLSNFAIRQVRDELARLPGVGDVLVWGAGEYAMRVWLDPAKIANRGLTASDIVTALREQNVQVAAGSVGQQPEASAAFQMTVNTLGRLTSEEQFGEIVVKIGADGEVTRLRDVARVTLGADAYTLRSLLNGEAAPALQIIQSPGANAIDVSNAIRGKMDELQQNFPQDIEYRIAYDPTVFVRASLQSVAITLLEALVLVVLVVVMFLQTWRASIIPLVAVPVSLVGTFALMHLFGFSLNTLSLFGLVLSIGIVVDDAIVVVENVERHISQGKSPGEAAKKAMDEVTGPILSITSVLTAVFIPSAFLAGLQGEFYRQFALTIAISTILSAINSLTLSPALAAILLRPHHDTAKADWLTRLMGTVTGGFFHRFNRFFDSASNRYVSAVRRAVRGSVIVMVLYAGFVGLTWLGFHQVPNGFVPAQDKYYLVGIAQLPSGASLDRTEAVVKQMSAIALAEPGVESVVVFPGLSVNGPVNVPNSALMFAMLKPFDEREDPSLSANAIAGKLMHKFSHIPDGFIGIFPPPPVPGLGATGGFKLQIEDRAELGFEAMTKVQSEIMSKAMQTPELANMLASFQTNAPQLQVDIDRVKAKSMGVSLTDIFETLQINLGSLYVNDFNRFGRAWRVMAQADAPFRMQQEDIGLLKVRNAKGEMIPLSAFVTIMRQSGPDRIIHYNGFPSVDISGGPAPGFSSGQATDAIEKIVRETLPEGMVFEWTDLVYQEKQAGNSALAIFALAVLLAFLILAAQYNSWSLPFAVLLIAPMSLLSAIVGVWVSGGDNNIFTQIGFVVLVGLAAKNAILIVEFARAKEHDGADPLTAVLEASRLRLRPILMTSFAFIAGVVPLVLATGAGAEMRHAMGIAVFAGMLGVTLFGLLLTPVFYVVVRRMALKRENRVDSHDQQA " 1386 UPDATE ANT(9)-Ia antibiotic inactivation; aminoglycoside antibiotic; spectinomycin; ANT(9); model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTAATTGGGGTGTATTTGTATGGTTCGGCAGTAATGGGTGGTTTACGTATGAATAGCGATGTAGATATTTTGGTAATAACAAATCAAAGTTTATCTGAAAAAACTCGAAGGAATCTTACAAATAGGTTAATGCTTATATCTGGGAAAATAGGAAACATAAAAGATATGAGGCCTCTTGAAGTTACGGTCATAAATCAAAAGGATATTGTCCCTTGGCATTTCCCCCCCAAATATGAATTTATGTATGGCGAGTGGCTAAGAGAGCAGTTTGAAAAGGGAGAAATTCCTGAGTCGACTTATGATCCGGATTTAGCAATACTTTTAGCACAACTAAGAAAAAATAGTATTAACCTTTTGGGACCAAAGGCAACAGAAGTAATTGAGCCTGTGCCAATGACAGATATTCGAAAAGCAATTAAAGAATCGTTGCCCGGGTTGATAGCTAGCATTAACGGTGACGAACGCAATGTGATTTTAACTTTAGCCAGAATGTGGCTGACAGCATCTACTGGTGAAATTCGCTCAAAAGATCTGGCAGCTGAATGGGCGATACCTCAATTACCCGATGAGCATGCTACTTTACTCAACAAAGCGAGAGAGGCTTATTTAGGAGAGTGTGTTGACAAGTGGGAAGGAATGGAATCTGAGGTGGCTGAACTCGTTAATCATATGAAAAAGTCTATAGAGTCTTCCCTTAATATCCAATTACCTTTTCGAATAGTTTAA " 1387 UPDATE OXA-99 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1380 UPDATE TEM-193 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 419 UPDATE SLB-1 penam; antibiotic inactivation; cephalosporin; SHW beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1382 UPDATE rmtG antibiotic target alteration; aminoglycoside antibiotic; 16S rRNA methyltransferase (G1405); model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1383 UPDATE IMI-4 carbapenem; antibiotic inactivation; IMI beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 368 UPDATE CARB-14 penam; antibiotic inactivation; CARB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGACGTACGTAAACACAAGGCTAGTTTTTTTAGCGTAGTAATTACTTTTTTATGTCTCACGCTATCATTAAATGCTAATGCAACAGACTCAGTACTTGAAGCGGTTACCAATGCTGAAACTGAATTAGGCGCTAGAATTGGTCTAGCTGTGCATGATTTGGAAACGGGAAAACGTTGGGAACATAAATCTAATGAACGTTTTCCTCTAAGTAGTACCTTTAAAACACTTGCCTGTGCAAACGTTCTTCAAAGAGTTGATCTAGGTAAAGAAAGAATTGATAGAGTTGTGAGATTCTCTGAAAGCAATCTCGTTACATACTCACCTGTAACAGAAAAACATGTGGGTAAAAAAGGGATGTCGCTCGCAGAGCTGTGTCAGGCCACATTATCAACCAGTGATAATTCAGCTGCCAATTTTATTCTACAAGCGATTGGTGGACCTAAGGCTCTAACGAAATTTTTGCGTTCCATTGGCGACGATACTACGCGCCTTGATCGCTGGGAAACAGAACTTAACGAAGCGGTACCTGGAGATAAGCGAGACACGACAACACCAATTGCAATGGTAACGACACTTGAAAAGTTACTAATTGACGAAACACTATCTATCAAATCTCGTCAACAACTAGAATCTTGGCTTAAAGGTAATGAGGTTGGCGATGCATTGTTTCGTAAAGGCGTTCCAAGTGACTGGATAGTAGCAGATAGAACAGGCGCTGGTGGTTATGGGTCGCGTGCTATTACTGCGGTGATGTGGCCTCCAAATCGCAAGCCTATCGTAGCCGCTCTATACATTACAGAGACAGACGCCTCGTTTGAAGAAAGAAATGCTGTCATTGCAAAAATTGGTGAGCAAATAGCGAAGATAGTATTAATGGAGAATAGCCGTAACTGA " 369 UPDATE SHV-15 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 366 UPDATE Mycobacterium tuberculosis iniA mutant conferring resistance to Ethambutol antibiotic efflux; polyamine antibiotic; Ethambutol resistant iniA; efflux pump complex or subunit conferring antibiotic resistance; ethambutol; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with ATGGTCCCCGCCGGTTTGTGCGCATACCGTGATCTGAGGCGTAAACGAGCGAGAAAGTGGGGCGACACGGTGACCCAGCCCGATGACCCACGTCGGGTCGGTGTGATCGTCGAACTGATCGATCACACTATCGCCATCGCCAAACTGAACGAGCGTGGTGATCTAGTACAGCGGTTGACGCGGGCTCGCCAGCGGATCACCGACCCGCAGGTCCGTGTGGTGATCGCCGGGCTGCTCAAACAGGGCAAGAGTCAATTGCTCAATTCGTTGCTCAACCTGCCCGCGGCGCGAGTAGGCGATGACGAGGCCACCGTGGTGATCACCGTCGTAAGCTACAGCGCCCAACCGTCGGCCCGGCTTGTGCTGGCCGCCGGGCCCGACGGGACAACCGCAGCGGTTGACATTCCCGTCGATGACATCAGCACCGATGTGCGTCGGGCTCCGCACGCCGGTGGCCGCGAGGTGTTGCGGGTCGAGGTCGGCGCGCCCAGCCCGCTGCTGCGGGGCGGGCTGGCGTTTATCGATACTCCGGGTGTGGGCGGCCTCGGACAGCCCCACCTGTCGGCGACGCTGGGGCTGCTACCCGAGGCCGATGCCGTCTTGGTGGTCAGCGACACCAGCCAGGAATTCACCGAACCCGAGATGTGGTTCGTGCGGCAGGCCCACCAGATCTGTCCGGTCGGGGCGGTCGTGGCCACCAAGACCGACCTGTATCCGCGCTGGCGGGAGATCGTCAATGCCAATGCAGCACATCTGCAGCGGGCCCGGGTTCCGATGCCGATCATCGCAGTCTCATCACTGTTGCGCAGCCACGCGGTCACGCTTAACGACAAAGAGCTCAACGAAGAGTCCAACTTTCCGGCGATCGTCAAGTTTCTCAGCGAGCAGGTGCTTTCCCGCGCGACGGAGCGAGTGCGTGCTGGGGTACTCGGCGAAATACGTTCGGCAACAGAGCAATTGGCGGTGTCTCTAGGTTCCGAACTATCGGTGGTCAACGACCCGAACCTCCGTGACCGACTTGCTTCGGATTTGGAGCGGCGCAAACGGGAAGCCCAGCAGGCGGTGCAACAGACAGCGCTGTGGCAGCAGGTGCTGGGCGACGGGTTCAACGACCTGACTGCTGACGTGGACCACGACCTACGAACCCGCTTCCGCACCGTCACCGAAGACGCCGAGCGCCAGATCGACTCCTGTGACCCGACTGCGCATTGGGCCGAGATTGGCAACGACGTCGAGAATGCGATCGCCACAGCGGTCGGCGACAACTTCGTGTGGGCATACCAGCGTTCCGAAGCGTTGGCCGACGACGTCGCTCGCTCCTTTGCCGACGCGGGGTTGGACTCGGTCCTGTCAGCAGAGCTGAGCCCCCACGTCATGGGCACCGACTTCGGCCGGCTCAAAGCGCTGGGCCGGATGGAATCGAAACCGCTGCGCCGGGGCCATAAAATGATTATCGGCATGCGGGGTTCCTATGGCGGCGTGGTCATGATTGGCATGCTGTCGTCGGTGGTCGGACTTGGGTTGTTCAACCCGCTATCGGTGGGGGCCGGGTTGATCCTCGGCCGGATGGCATATAAAGAGGACAAACAAAACCGGTTGCTGCGGGTGCGCAGCGAGGCCAAGGCCAATGTGCGGCGCTTCGTCGACGACATTTCGTTCGTCGTCAGCAAACAATCACGGGATCGGCTCAAGATGATCCAGCGTCTGCTGCGCGACCACTACCGCGAGATCGCCGAAGAGATCACCCGGTCGCTCACCGAGTCCCTGCAGGCGACCATCGCGGCGGCGCAGGTGGCGGAAACCGAGCGGGACAATCGAATTCGGGAACTTCAGCGGCAATTGGGTATCCTGAGCCAGGTCAACGACAACCTTGCCGGCTTGGAGCCAACCTTGACGCCCCGGGCGAGCTTGGGACGAGCGTGA " 367 UPDATE CTX-M-25 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAGAAAAAGCGTAAGGCGGGCGATGTTAATGACGACAGCCTGTGTTTCGCTGCTGTTGGCCAGTGTGCCGCTGTGTGCCCAGGCGAACGATGTTCAACAAAAGCTCGCGGCGCTGGAGAAAAGCAGCGGGGGACGACTGGGTGTGGCGTTGATTAACACCGCCGATAACACGCAGACGCTCTACCGCGCCGACGAGCGTTTTGCCATGTGCAGCACCAGTAAAGTGATGGCGGTAGCGGCGGTGCTTAAGCAAAGTGAAACGCAAAAGGGCTTGTTGAGTCAGCGGGTTGAAATTAAGCCCTCAGACTTGATTAACTACAACCCCATTGCGGAAAAACACGTCAATGGCACGATGACATTCGGGGAGTTGAGCGCGGCGGCGCTACAGTACAGCGATAATACTGCCATGAATAAGCTGATTGCCCATCTCGGGGGGCCGGATAAAGTGACGGCATTTGCCCGTACGATTGGCGATGACACGTTCCGGCTCGATCGTACCGAGCCGACGCTCAACACCGCGATCCCCGGCGACCCGCGCGATACCACCACGCCGTTAGCGATGGCGCAGGCTCTGCGCAATCTGACGTTGGGCAATGCCCTGGGTGACACTCAGCGTGCGCAGCTGGTGATGTGGCTGAAAGGCAACACCACCGGCGCTGCCAGCATTCAGGCAGGGCTACCCACATCGTGGGTTGTCGGGGATAAAACCGGCAGCGGCGGTTATGGTACGACGAATGATATCGCGGTTATTTGGCCGGAAGGTCGCGCGCCGCTCGTTCTGGTGACTTACTTCACCCAGTCGGAGCCGAAGGCAGAGAGCCGTCGTGACGTGCTCGCTGCTGCCGCCAGAATTGTCACCGACGGTTATTAA " 364 UPDATE CMY-83 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCTTCGTTCTCCACGTTTGCCGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCGCTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCGATTATCTATCAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCGTCCAGTCACTCAACAAACGCTGTTTGAACTCGGATCGGTCAGTAAAACGTTCAACGGCGTGCTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGCATTACTGGCCTGAACTGACTGGTAAGCAGTGGCAGGGTATCAGCCTGCTGCACTTAGCCACCTACACGGCAGGCGGCCTGCCGCTTCAGGTTCCGGACGACGTTACGGATAAAGCCGCGTTACTACGCTTTTATCAAAACTGGCAGCCGCAATGGGCCCCAGGCGCTAAACGTCTTTATGCTAACTCCAGCATTGGTCTGTTTGGCGCCCTGGCGGTGAACCCCTCAGGCATGAGCTACGAAGAGGCGATGACCAAACGCGTCCTGCGCCCCTTAAAACTGGCGCATACCTGGATTACGGTTCCGCAGAGCGAACAAAAAGATTATGCCTGGGGTTATCGCGAAGGAAAGCCAGTGCATGTATCCCCTGGGCAACTTGATGCCGAAGCCTACGGGGTGAAATCGAGCGTTATCGATATGACCCGTTGGGTTCAGGCCAACATGGACGCCAGCCAGGTTCAGGAGAAAACGCTCCAGCAGGGCATCGAGCTTGCGCAGTCACGTTACTGGCGTATTGGCGATATGTACCAGGGCCTGGGCTGGGAGATGCTGAACTGGCCGGTGAAGGCCGACTCGATAATTAGCGGTAGCGACAGCAAAGTGGCCCTGGCAGCGCTTCCTGCCGTTGAGGTAAACCCGCCCGCGCCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGCTCCACTGGCGGATTCGGCAGCTACGTTGCTTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAGAGCTACCCAAACCCTGTTCGCGTCGAAGCCGCCTGGCGCATTCTTGAAAAACTGCAGTAA " 365 UPDATE TEM-122 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 362 UPDATE CTX-M-151 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATCAATAAACGGCTGAGTATTGCTCTGGCGCTGGCGGCCATGATAGGTACGCCTGTGGCGATGGCCCTCGAGAGCCAGAAGCCGGGGAGCGATTCTGCTAATCATATTCAGCACCAGATGGTGCAACAGCTGTCGGCGCTGGAGAAAAGCGCTAACGGGCGGCTTGGCGTAGCGGTTATCGATACCGGCAGCGGCGCAATTGCGGGCTGGCGGATGGATGAACCTTTCCCCATGTGCAGTACCAGTAAAGTGATGGCGGTAGCGGCGCTGCTGAAACAGAGCGAACAGACTCCTGAACTTATGAGTCAGCCTCAGCCGGTAGCGAGCGGAGATCTGGTGAACTACAACCCGATAACTGAACGTTTTGTGGGTAAGAGCATGACGTTTGATGAGCTAAGCGCCGCAACGCTGCAATATAGCGATAACGCCGCAATGAACCTGATTCTGGCCAAACTGGGTGGGCCGCAAAAAGTAACGGCGTTTGCCCGCAGTATTGGCGATGATAAATTCCGGCTCGACCGCAATGAACCTTCGCTAAATACCGCCATTCCCGGCGATCTTCGGGATACCAGCACTCCACGAGCTATGGCCTTAAGCCTGCAAAAGCTGGCGCTGGGGGATGCTTTAGGCCAGGTTCAGCGCGAGAAACTTAGCCACTGGTTGCGCGGCAATACCACCGGTGCGGCCAGCATTCGGGCCGGGCTGCCATCGGGATGGAGCGTTGGGGATAAGACCGGCAGCGGTGATTACGGCACAACCAACGATATTGCCGTGGTATGGCCGACCGGCAGACCGCCGCTGGTTATTGTGACTTACTTTACTCAGCCGCAGCAGCAGGCAGAAAGCCAGCGGCCGGTGCTGGCGAAAGCGGCTGCTATCGTTGCCAGCCATTATGTATTGCCTAAAGGCTGA " 363 UPDATE TEM-155 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATAAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATAGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTAAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 360 UPDATE AAC(6')-Iy antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGACATCAGGCAAATGAACAAAACCCATCTGGAGCACTGGCGCGGATTGCGAAAACAGCTCTGGCCTGGTCACCCGGATGACGCCCATCTGGCGGACGGCGAAGAAATTCTGCAAGCCGATCATCTGGCATCATTTATTGCGATGGCAGACGGGGTGGCGATTGGCTTTGCGGATGCCTCAATCCGCCACGATTATGTCAATGGCTGTGACAGTTCGCCCGTGGTTTTCCTTGAAGGTATTTTTGTTCTCCCCTCATTCCGTCAACGCGGCGTAGCGAAACAATTGATTGCAGCGGTGCAACGATGGGGAACGAATAAAGGGTGTCGGGAAATGGCCTCCGATACCTCGCCGGAAAATACAATTTCCCAGAAAGTTCATCAGGCGTTAGGATTTGAGGAAACAGAGCGCGTCATTTTCTACCGAAAGCGTTGTTGA " 361 UPDATE OXA-278 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 380 UPDATE CTX-M-147 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 381 UPDATE QnrS1 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 382 UPDATE QnrB61 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACTCTGGCATTAGTTGGCGAAAAAATTGACAGAAATCGCTTCACCAGTGAGAAAGTTGAAAATAGTACATTTTTTAACTGCGATTTTTCAGGTGCCGACCTGAGCGGCACTGAATTTATCGGCTGCCAGTTCTATGATCGCGAAAGTCAGAAAGGATGCAATTTTAGTCGCGCAATGCTGAAAGATGCCATTTTCAAAAGCTGTGATTTATCAATGGCAGATTTCCGCAACGTCAGCGCATTGGGCATTGAAATTCGCCACTGCCGCGCACAAGGCGCAGATTTCCGCGGTGCAAGCTTTATGAATATGATCACCACGCGCACCTGGTTTTGCAGCGCATATATCACTAATACCAATCTAAGCTACGCCAATTTTTCGAAAGTCGTGTTGGAAAAGTGTGAGCTATGGGAAAACCGCTGGATGGGGACTCAGGTACTGGGTGCGACGTTCAGTGGTTCAGATCTCTCCGGCGGCGAGTTTTCGACTTTCGACTGGCGAGCAGCAAACTTCACACATTGCGATCTGACCAATTCGGAGTTAGGTGACTTAGATATTCGGGGTGTTGATTTACAAGGCGTTAAGTTAGACAACTACCAGGCATCGTTGCTCATGGAGCGGCTTGGCATCGCTGTGATTGGTTAG " 383 UPDATE Pseudomonas mutant PhoQ conferring resistance to colistin antibiotic efflux; ATP-binding cassette (ABC) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; pmr phosphoethanolamine transferase; macrolide antibiotic; peptide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; antibiotic target alteration; erythromycin; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 384 UPDATE APH(2'')-IVa antibiotic inactivation; kanamycin A; gentamicin B; aminoglycoside antibiotic; sisomicin; arbekacin; APH(2''); netilmicin; gentamicin C; amikacin; isepamicin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 385 UPDATE OXA-46 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCAATCCGATTCTTCACCATACTGCTATCCACCTTCTTTCTTACCTCATTCGTGTATGCGCAAGAACATGTGGTAATCCGTTCGGACTGGAAAAAGTTCTTCAGCGACCTCCAGGCCGAAGGTGCAATCGTTATTGCAGACGAACGTCAAGCGAAGCATACTTTATCGGTTTTTGATCAAGAGCGAGCGGCAAAGCGTTACTCGCCAGCTTCAACCTTCAAGATACCCCACACACTTTTTGCACTTGATGCAGACGCCGTTCGTGATGAGTTCCAGGTTTTTCGATGGGACGGCGTTAACCGAAGCTTTGCAGGTCACAATCAAGACCAAGATTTGCGATCAGCGATGCGAAATTCTACGGTTTGGGTTTATGAGCTGTTTGCAAAAGATATCGGAGAGGACAAAGCAAGACGTTATTTAAAGCAAATTGATTATGGCAACGTCGATCCTTCGACAATCAAGGGCGATTACTGGATAGATGGAAATCTTAAAATCTCAGCGCACGAACAGATTTTGTTTCTCAGAAAACTCTATCGAAATCAGTTACCATTTAAGGTGGAGCACCAGCGCTTGGTGAAAGATCTCATGATTACGGAAGCCGGGCGCAGTTGGATACTACGCGCAAAGACCGGCTGGGAAGGCAGGTTTGGCTGGTGGGTAGGGTGGATTGAATGGCCAACAGGCCCCGTATTCTTTGCGCTGAATATTGATACGCCAAACAGAACGGACGATCTTTTCAAAAGAGAGGCCATCGCACGGGCAATCCTTCGTTCTATTGACGCATTGCCACCCAACTAA " 386 UPDATE LEN-8 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 387 UPDATE mdtA efflux pump complex or subunit conferring antibiotic resistance; antibiotic efflux; aminocoumarin antibiotic; resistance-nodulation-cell division (RND) antibiotic efflux pump; novobiocin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAGGTAGTTATAAATCCCGTTGGGTAATCGTAATCGTGGTGGTTATCGCCGCCATCGCCGCATTCTGGTTCTGGCAAGGCCGCAATGACTCCCGGAGTGCAGCCCCAGGGGCGACGAAACAAGCGCAGCAATCGCCAGCGGGTGGTCGACGTGGTATGCGTTCCGGCCCATTAGCCCCGGTTCAGGCGGCGACCGCCGTAGAACAGGCAGTTCCGCGTTACCTCACCGGGCTTGGCACCATTACCGCCGCTAATACCGTTACGGTGCGCAGCCGCGTGGACGGCCAACTGATAGCGTTACATTTCCAGGAAGGCCAGCAGGTCAAAGCAGGCGATTTACTGGCAGAAATTGACCCCAGCCAGTTCAAAGTTGCATTAGCACAAGCCCAGGGCCAACTGGCAAAAGATAAAGCCACGCTTGCCAACGCCCGCCGTGACCTGGCGCGTTATCAACAACTGGCAAAAACCAATCTCGTTTCCCGCCAGGAGCTGGATGCCCAACAGGCGCTGGTCAGTGAAACCGAAGGCACCATTAAGGCTGATGAAGCAAGCGTTGCCAGCGCGCAGCTGCAACTCGACTGGAGCCGGATTACCGCACCAGTCGATGGTCGCGTTGGTCTCAAGCAGGTTGATGTTGGTAACCAAATCTCCAGTGGTGATACCACCGGGATCGTGGTGATCACCCAGACGCATCCTATCGATTTAGTCTTTACCCTGCCGGAAAGCGATATCGCTACCGTAGTGCAGGCGCAGAAAGCCGGAAAACCGCTGGTGGTAGAAGCCTGGGATCGCACCAACTCGAAGAAATTAAGTGAAGGCACGCTGTTAAGTCTAGATAACCAAATCGATGCCACTACCGGTACGATTAAAGTGAAAGCACGCTTTAATAATCAGGATGATGCGCTGTTTCCCAATCAGTTTGTTAACGCGCGCATGTTAGTCGACACCGAACAAAACGCCGTAGTGATCCCAACAGCCGCCCTGCAAATGGGCAATGAAGGCCATTTTGTCTGGGTGCTGAATAGCGAAAACAAGGTCAGCAAACATCTGGTGACGCCGGGCATTCAGGACAGTCAGAAAGTGGTGATCCGTGCAGGTATTTCTGCGGGCGATCGCGTGGTGACAGACGGCATTGATCGCCTGACCGAAGGGGCGAAAGTGGAAGTGGTGGAAGCCCAGAGCGCCACTACTCCGGAAGAGAAAGCCACCAGCCGCGAATACGCGAAAAAAGGAGCACGCTCCTGA " 388 UPDATE QnrB71 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 389 UPDATE tetW chlortetracycline; demeclocycline; oxytetracycline; tetracycline antibiotic; tetracycline; antibiotic target protection; minocycline; tetracycline-resistant ribosomal protection protein; doxycycline; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1253 UPDATE GES-23 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1077 UPDATE OXA-420 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAATTATTAAAAATATTGAGTTTAGTTTGCTTAAGCATAAGTATTGGGGCTTGTGCTGAGCATAGTATGAGTCGAGCAAAAACAAGTACAATTCCACAAGTGAATAACTCAATCATCGATCAGAATGTTCAAGCGCTTTTTAATGAAATCTCAGCTGATGCTGTGTTTGTTACATATGATGGTCAAAATATTAAAAAATATGGCACGCATTTAGACCGAGCAAAAACAGCTTATATTCCTGCATCTACATTTAAAATTGCCAATGCACTAATTGGTTTAGAAAATCATAAAGCAACATCTACAGAAATATTTAAGTGGGATGGAAAGCCACGTTTTTTTAAAGCATGGGACAAAGATTTTACTTTGGGCGAAGCCATGCAAGCATCTACAGTGCCTGTATATCAAGAATTGGCACGTCGTATTGGTCCAAGCTTAATGCAAAGTGAATTGCAACGTATTGGTTATGGCAATATGCAAATAGGCACGGAAGTTGATCAATTTTGGTTGAAAGGGCCTTTGACAATTACACCTATACAAGAAGTAAAGTTTGTTTATGATTTAGCCCAAGGGCAATTGCCTTTTAAACCTGAAGTTCAGCAACAAGTGAAAGAGATGTTGTATGTAGAGCGCAGAGGGGAGAATCGTCTATATGCTAAAAGTGGCTGGGGAATGGCTGTAGACCCGCAAGTGGGTTGGTATGTGGGTTTTGTTGAAAAGGCAGATGGGCAAGTGGTGGCATTTGCTTTAAATATGCAAATGAAAGATGGTGATGATATTGCTCTACGTAAACAATTGTCTTTAGATGTGCTAGATAAGTTGGGTGTTTTTCATTATTTATAA " 2191 UPDATE AAC(6')-Iaj antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 258 UPDATE OXA-208 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2193 UPDATE TriB efflux pump complex or subunit conferring antibiotic resistance; triclosan; resistance-nodulation-cell division (RND) antibiotic efflux pump; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2194 UPDATE TriC efflux pump complex or subunit conferring antibiotic resistance; triclosan; resistance-nodulation-cell division (RND) antibiotic efflux pump; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2195 UPDATE OpmH efflux pump complex or subunit conferring antibiotic resistance; triclosan; resistance-nodulation-cell division (RND) antibiotic efflux pump; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2196 UPDATE Pseudomonas aeruginosa gyrA conferring resistance to fluoroquinolones nybomycin; ofloxacin; antibiotic target alteration; fluoroquinolone resistant gyrA; levofloxacin; sparfloxacin; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; sitafloxacin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 3559198 UPDATED strand with - UPDATED accession with NC_002516.2 UPDATED fmin with 3556426 UPDATED sequence with ATGGGCGAACTGGCCAAAGAAATTCTCCCGGTCAATATCGAAGACGAGCTGAAACAGTCCTATCTCGACTACGCGATGAGCGTGATCGTCGGGCGGGCCCTGCCGGATGCACGTGACGGCCTGAAGCCGGTGCACCGCCGTGTGCTTTATGCCATGAGCGAGCTGGGCAACGACTGGAACAAGCCCTACAAGAAATCCGCCCGTGTGGTCGGCGACGTGATCGGTAAGTACCACCCGCACGGCGACACCGCGGTCTACGACACCATCGTGCGCATGGCGCAGCCGTTCTCGCTGCGCTACATGCTGGTAGACGGCCAGGGCAACTTCGGTTCGGTGGACGGCGACAACGCCGCAGCCATGCGATACACCGAAGTGCGCATGGCCAAGCTGGCCCACGAACTGCTGGCGGACCTGGAAAAGGAAACCGTCGACTGGGTGCCCAACTACGATGGCACCGAGCAGATCCCGGCGGTCATGCCGACCAAGATTCCCAACCTGCTGGTCAACGGTTCCAGCGGTATCGCCGTGGGCATGGCGACCAACATCCCGCCGCACAACCTCGGCGAAGTGATCGACGGCTGCCTGGCGCTGATGGACAACCCCGACCTGACCGTCGATGAGCTGATGCAGTACATCCCCGGTCCGGACTTCCCCACCGCCGGCATCATCAACGGCCGCGCCGGGATCATCGAGGCCTACCGCACCGGTCGCGGGCGCATCTACATCCGTGCCCGCGCCGTCGTCGAGGAGATGGAGAAGGGCGGCGGTCGCGAGCAGATTATCATCACCGAGCTGCCGTACCAGTTGAACAAGGCGCGGTTGATCGAGAAGATCGCCGAGCTGGTGAAAGAGAAGAAGATCGAGGGTATTTCCGAGCTGCGCGACGAGTCTGACAAGGACGGCATGCGCGTGGTCATCGAGCTGCGTCGCGGCGAGGTGGGCGAGGTGGTCCTCAACAACCTCTATGCCCAGACCCAGCTGCAGAGCGTGTTCGGCATCAACGTGGTGGCCCTGGTCGACGGCCAGCCGCGCACGCTGAACCTGAAGGACATGCTCGAGGTGTTCGTCCGCCACCGCCGCGAAGTGGTGACCCGGCGTACCGTCTACGAGCTGCGCAAGGCCCGCGAGCGCGGGCACATCCTGGAAGGCCAGGCGGTCGCCCTGTCGAACATCGACCCGGTGATCGAGCTGATCAAGAGTTCGCCGACCCCGGCCGAGGCCAAGGAACGCCTGATCGCCACTGCCTGGGAGTCCAGCGCGGTGGAAGCGATGGTCGAGCGTGCCGGCGCCGACGCCTGTCGTCCGGAAGACCTGGATCCGCAGTACGGCCTGCGCGACGGCAAGTACTACCTGTCGCCGGAGCAGGCCCAGGCGATCCTCGAGCTGCGCCTGCATCGCCTGACCGGCCTGGAGCACGAGAAGCTGCTCTCCGAATACCAGGAAATCCTCAACCTGATCGGCGAGCTGATCCGCATCCTGACCAACCCGGCGCGCCTGATGGAGGTGATCCGTGAGGAACTGGAAGCGGTCAAGGCCGAATTCGGCGATGCTCGCCGCACCGAGATCGTGGCTTCCCAGGTCGACCTGACCATCGCCGACCTGATCACCGAGGAAGACCGCGTGGTGACCATCTCGCACGGCGGCTACGCCAAGTCCCAGCCGCTGGCCGCCTACCAGGCGCAGCGTCGCGGCGGCAAAGGCAAGTCCGCCACCGGGATGAAGGACGAGGACTACATCGAACACCTGCTGGTGGCCAACAGCCATGCGACCCTCCTGCTGTTCTCCAGCAAGGGCAAGGTCTACTGGCTGCGTACCTTCGAGATTCCGGAAGCCTCGCGTACCGCGCGTGGCCGGCCGCTGGTGAACCTGCTGCCGCTGGATGAGGGCGAGCGGATCACCGCGATGTTGCAGATCGACCTGGAGGCGCTGCAGCAGAACGGTGGCGCCGATGACGACCTCGACGAAGCCGAAGGCGCGGTGCTCGAGGGCGAGGTGGTCGAGGCCGCCGAGGTCGAGGAAGTCGAGGGCGAGACCGCCGAGCTGGTGGCCGAGCCGACCGGCGCCTACATCTTCATGGCCACCGCCTTCGGTACCGTGAAGAAGACCCCGCTGGTGCAGTTCAGCCGTCCGCGCAGCAGCGGCCTGATCGCGCTCAAGCTGGAAGAGGGCGACACCCTGATCGCCGCCGCGATCACCGATGGCGCCAAGGAAGTCATGCTGTTCTCCAGCGCCGGCAAGGTGATCCGCTTCGCCGAGAGCGTGGTGCGCATCATGGGCCGCAACGCCCGCGGCGTACGTGGCATGCGCCTGGGCAAGGGGCAGCAGCTGATCTCCATGCTGATTCCGGAGTCCGGGGCGCAGATCCTCACCGCCTCCGAGCGCGGCTTCGGCAAGCGTACCCCGCTGAGCAAGTTCCCGCGTCGCGGCCGCGGCGGCCAGGGGGTGATCGCCATGGTCACCAACGAGCGCAACGGCGCGCTGATCGCCGCGGTACAGGTCCAGGAAGGCGAGGAGATCATGCTGATTTCCGACCAGGGCACCCTGGTGCGGACGCGTGTCGACGAAGTCTCCCTGTCCGGCCGCAATACCCAGGGCGTAACCCTGATCAAGCTCGCCAGCGACGAGGTACTGGTCGGTCTGGAGCGTGTCCAGGAGCCGTCGGGCGGAGATGACGAGGACCTGCCCGAGGGCGAGGAAGCTGCCGAATCTCTGGGCGAGTCGGCCGAGTCCGAGTCCGAGCCCGCGGCGGAAGCGGAAGGCAACGAAGAGTAA UPDATED NCBI_taxonomy_name with Pseudomonas aeruginosa PAO1 UPDATED NCBI_taxonomy_id with 208964 UPDATED NCBI_taxonomy_cvterm_id with 36804 UPDATED accession with NP_251858.1 UPDATED sequence with MGELAKEILPVNIEDELKQSYLDYAMSVIVGRALPDARDGLKPVHRRVLYAMSELGNDWNKPYKKSARVVGDVIGKYHPHGDTAVYDTIVRMAQPFSLRYMLVDGQGNFGSVDGDNAAAMRYTEVRMAKLAHELLADLEKETVDWVPNYDGTEQIPAVMPTKIPNLLVNGSSGIAVGMATNIPPHNLGEVIDGCLALMDNPDLTVDELMQYIPGPDFPTAGIINGRAGIIEAYRTGRGRIYIRARAVVEEMEKGGGREQIIITELPYQLNKARLIEKIAELVKEKKIEGISELRDESDKDGMRVVIELRRGEVGEVVLNNLYAQTQLQSVFGINVVALVDGQPRTLNLKDMLEVFVRHRREVVTRRTVYELRKARERGHILEGQAVALSNIDPVIELIKSSPTPAEAKERLIATAWESSAVEAMVERAGADACRPEDLDPQYGLRDGKYYLSPEQAQAILELRLHRLTGLEHEKLLSEYQEILNLIGELIRILTNPARLMEVIREELEAVKAEFGDARRTEIVASQVDLTIADLITEEDRVVTISHGGYAKSQPLAAYQAQRRGGKGKSATGMKDEDYIEHLLVANSHATLLLFSSKGKVYWLRTFEIPEASRTARGRPLVNLLPLDEGERITAMLQIDLEALQQNGGADDDLDEAEGAVLEGEVVEAAEVEEVEGETAELVAEPTGAYIFMATAFGTVKKTPLVQFSRPRSSGLIALKLEEGDTLIAAAITDGAKEVMLFSSAGKVIRFAESVVRIMGRNARGVRGMRLGKGQQLISMLIPESGAQILTASERGFGKRTPLSKFPRRGRGGQGVIAMVTNERNGALIAAVQVQEGEEIMLISDQGTLVRTRVDEVSLSGRNTQGVTLIKLASDEVLVGLERVQEPSGGDDEDLPEGEEAAESLGESAESESEPAAEAEGNEE " 2198 UPDATE Pseudomonas aeruginosa parE conferring resistance to fluoroquinolones antibiotic target alteration; fluoroquinolone resistant parE; fluoroquinolone antibiotic; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 5577917 UPDATED strand with - UPDATED accession with NC_002516.2 UPDATED fmin with 5576027 UPDATED sequence with ATGGCTACTTACAACGCAGACGCCATCGAAGTCCTTTCCGGCCTCGACCCGGTGCGCAAGCGCCCGGGGATGTACACCGACACCACCCGCCCCAACCATCTGGCCCAGGAAGTCATCGACAACAGCGTCGACGAAGCCCTGGCCGGCCATGCGAAGAGCGTGCAGGTGATCCTGCACCAGGACAACTCGCTGGAAGTCATCGACGATGGCCGCGGCATGCCGGTGGACATCCACCCGGAAGAGGGCGTGCCGGGCGTCGAGCTGATCCTTACCAAGCTGCATGCCGGCGGCAAGTTCTCGAACAAGAACTACCAGTTCTCCGGCGGCTTGCACGGGGTCGGCATCTCGGTGGTGAACGCGCTCTCGACCCGGGTCGAGGTACGCGTCAAGCGCGACGCCAACGAGTACCGGATGACCTTCGCCGACGGCTTCAAGGACAGCGATCTGGAAGTCATCGGCACGGTCGGCAAGCGCAATACCGGTACCAGCGTGCATTTCTGGCCGGATCCGAAGTATTTCGATTCGGCGAAGTTCTCGGTCAGCCGCCTCAAGCATGTGCTCAAGGCCAAGGCGGTGCTGTGCCCGGGCCTGAGCGTGGTGTTCGAGGACAAGAACACCGGCGAGCGCGTCGAGTGGCACTTCGAGGACGGCCTGCGCTCCTACCTGACCGACGCGGTCGCCGAGCTGCCGCGCCTGCCCGATGAACCCTTCTGCGGCAACCTCGAAGGTTCCAAGGAAGCGGTGAGCTGGGCCCTGCTGTGGCTGCCCGAGGGCGGTGAGTCGGTGCAGGAAAGCTACGTCAACCTGATTCCCACGGCCCAGGGCGGCACCCATGTGAACGGCCTGCGCCAGGGCCTGCTCGACGCCATGCGCGAGTTCTGCGAGTTCCGCAACCTGTTGCCGCGCGGCGTCAAGCTGGCGCCCGAGGACGTCTGGGAGCGGATCGCCTTCGTCCTCTCGATGAAGATGCAGGAGCCGCAGTTCTCCGGGCAGACCAAGGAGCGCCTGTCGTCCCGCGAGGCGGCGGCGTTCGTCTCGGGCGTGGTGAAGGACGCCTTCAGCCTGTGGCTCAACGAGCACGCCGAAATCGGCCTGCAACTGGCGGAACTGGCGATCAGCAACGCCGGGCGTCGCCTCAAGGCGGGCAAGAAGGTCGAGCGCAAGAAGATCACCCAGGGGCCGGCGCTGCCCGGCAAACTGGCCGACTGCGCCGGACAGGAACCGATGCGCGCGGAACTGTTCCTGGTCGAGGGCGACTCCGCCGGCGGCTCGGCGAAGCAGGCGCGGGACAAGGAATTCCAGGCGATCATGCCGCTGCGCGGAAAGATCCTGAACACCTGGGAAGTGGACGGCGGCGAGGTGCTCGCCAGCCAGGAGGTCCACGACATCGCGGTGGCCATCGGCGTCGATCCGGGTGCCAGTGACCTGGCCCAGCTGCGCTACGGCAAGATCTGTATCCTCGCGGATGCCGACTCCGACGGGCTGCACATCGCCACGCTGCTCTGCGCGCTGTTCGTCCGCCATTTCCGCCCGCTGGTGGAAGCCGGCCACGTCTACGTGGCGATGCCGCCGCTGTACCGCATCGACCTCGGCAAGGACATCTACTACGCCCTCGACGAAGCCGAGCGCGACGGCATCCTCGAGCGCCTGGCCGCAGAGAAGAAGCGCGGCAAGCCGCAGGTCACCCGCTTCAAGGGCCTTGGCGAAATGAATCCGTTGCAACTGCGCGAGACCACCATGGATCCGAATACCCGGCGGCTGGTCCAGCTCACCCTGGAGGACGCCACCGGTACCCTGGAGATCATGGACATGCTGCTGGCCAAGAAGCGCGCCGGTGACCGCAAGTCCTGGCTGGAAAGCAAGGGCAACCTGGCCGAGGTGCTGGTCTGA UPDATED NCBI_taxonomy_name with Pseudomonas aeruginosa PAO1 UPDATED NCBI_taxonomy_id with 208964 UPDATED NCBI_taxonomy_cvterm_id with 36804 UPDATED accession with NP_253654.1 UPDATED sequence with MATYNADAIEVLSGLDPVRKRPGMYTDTTRPNHLAQEVIDNSVDEALAGHAKSVQVILHQDNSLEVIDDGRGMPVDIHPEEGVPGVELILTKLHAGGKFSNKNYQFSGGLHGVGISVVNALSTRVEVRVKRDANEYRMTFADGFKDSDLEVIGTVGKRNTGTSVHFWPDPKYFDSAKFSVSRLKHVLKAKAVLCPGLSVVFEDKNTGERVEWHFEDGLRSYLTDAVAELPRLPDEPFCGNLEGSKEAVSWALLWLPEGGESVQESYVNLIPTAQGGTHVNGLRQGLLDAMREFCEFRNLLPRGVKLAPEDVWERIAFVLSMKMQEPQFSGQTKERLSSREAAAFVSGVVKDAFSLWLNEHAEIGLQLAELAISNAGRRLKAGKKVERKKITQGPALPGKLADCAGQEPMRAELFLVEGDSAGGSAKQARDKEFQAIMPLRGKILNTWEVDGGEVLASQEVHDIAVAIGVDPGASDLAQLRYGKICILADADSDGLHIATLLCALFVRHFRPLVEAGHVYVAMPPLYRIDLGKDIYYALDEAERDGILERLAAEKKRGKPQVTRFKGLGEMNPLQLRETTMDPNTRRLVQLTLEDATGTLEIMDMLLAKKRAGDRKSWLESKGNLAEVLV " 253 UPDATE vanXYG glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanXY; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAACGATTGAGCTTGAAAAGGAAGAAATTTATTGTGGAAATTTGCTGCTCGTCAACAAAAATTATCCGCTACGAGATAACAATGTAAAGGGTTTAGTTCCTGCTGATATACGCTTTCCAAATATTCTTATGAAGCGTGATGTGGCAAATGTTTTGCAGCTTATTTTTGAAAAAATCTCGGCAGGTAACTCTATCGTTCCTGTAAGCGGTTATCGCTCATTAGAAGAACAGACAGCCATATATGACGGCTCTCTCAAAGATAATGGAGAGGATTTTACAAGAAAATATGTTGCTCTGCCCAATCATAGTGAACATCAAACAGGTCTTGCCATTGATTTAGGACTGAATAAAAAGGATATAGACTTTATCCGTCCCGATTTTCCCTATGACGGTATTTGCGATGAATTTAGGAGAGCTGCCCCAGACTATGGCTTTACCCAGCGTTATGCAAGGGATAAAGAAGAAATAACAGGGATTTCACACGAGCCGTGGCATTTTCGATATGTAGGATACCCACACTCAAAAATTATGCAGGAAAATGGTTTTTCACTTGAAGAATACACACAATTTATAAAAGCCTATCTGGAAGATAACAAATATCTTTTTGAGCAGGCTCACAGAGCTGAGATTGAAATATATTATGTTCCTGCAAAAGACGACAAAACGCTGATAAAAATACCAGAAAATTGTGTTTATCAGATTTCTGGTAATAACATAGACGGTTTTGTTGTGACCATATGGAGGAAAACAGATGACTAA " 250 UPDATE Rhodococcus fascians cmr antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGCCATTCGCCATCTATGTCCTGGGTATTGCTGTATTCGCCCAGGGCACATCGGAATTCATGCTGTCCGGACTCATACCGGATATGGCTCAGGATCTACAGGTTTCGGTCCCCACTGCAGGACTTCTCACTTCGGCATTCGCAATCGGCATGATCATCGGTGCCCCGTTGATGGCAATTGTCAGTATGCGGTGGCAACGTCGACGAGCGCTCTTGACCTTCCTCATCACTTTTATGGTTGTGCATGTCATCGGCGCACTCACCGACAGTTTCGGCGTCTTGCTGGTCACCCGGATCGTAGGAGCACTGGCCAACGCCGGTTTCCTGGCTGTAGCGCTGGGCGCAGCCATGTCGATGGTTCCTGCCGACATGAAGGGACGAGCGACCTCAGTTCTACTGGGCGGAGTGACCATCGCCTGCGTAGTTGGAGTCCCGGGCGGAGCGCTATTGGGCGAACTGTGGGGATGGCGCGCCTCGTTCTGGGAGGTAGTGCTGATTTCCGCACCGGCAGTGGCAGCGATCATGGCATCGACCCCTGCTGATTCCCCTACAGATTCTGTTCCGAACGCGACCCGCGAACTGTCCTCGCTGCGTCAACGCAAACTTCAACTGATCTTGGTGCTGGGCGCGCTGATCAACGGTGCCACCTTCTGTTCCTTCACCTACCTGGCTCCGACGCTCACCGACGTCGCCGGGTTCGACTCTCGCTGGATCCCTTTGCTTCTCGGACTGTTCGGACTGGGGTCGTTCATCGGCGTCAGTGTCGGTGGCCGGCTCGCTGACACCCGTCCGTTTCAATTGCTGGTGGCGGGCTCGGCAGCTCTTCTGGTCGGGTGGATCGTGTTCGCTATCACTGCCTCTCACCCGGTAGTGACCCTGGTGATGCTGTTCGTGCAAGGAACGCTGTCGTTCGCTGTGGGGTCGACGTTGATCTCGCGAGTGCTCTACGTCGCCGACGGTGCTCCGACTTTGGGGGGATCCTTCGCTACGGCTGCCTTCAATGTCGGAGCCGCATTGGGGCCGGCCCTCGGCGGTGTGGCCATCGGTATCGGAATGGGCTATCGCGCTCCACTGTGGACCAGCGCGGCTCTGGTGGCACTTGCGATCGTGATCGGTGCCGCGACGTGGACGCGTTGGCGGGAACCACGTCCAGCGCTGGACACCGTTCCTCCGTGA " 251 UPDATE APH(3')-VIIa antibiotic inactivation; kanamycin A; APH(3'); aminoglycoside antibiotic; G418; neomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAATATATCGATGAAATTCAAATTCTGGGAAAATGTTCAGAGGGTATGTCTCCAGCAGAAGTATATAAATGCCAGCTTAAAAATACTGTATGCTATCTGAAAAAAATTGACGATATATTTTCAAAAACCACATACAGCGTGAAAAGAGAAGCTGAGATGATGATGTGGTTATCCGATAAACTGAAAGTACCAGATGTAATCGAATACGGAGTACGAGAACATTCAGAATATTTGATCATGAGTGAGTTAAGGGGGAAACACATAGATTGCTTTATTGATCATCCAATAAAATATATTGAGTGCTTGGTAAACGCACTTCATCAGCTACAAGCAATAGATATAAGAAACTGCCCATTTTCATCCAAAATAGATGTTCGATTAAAAGAACTAAAATATCTTTTGGATAACAGAATTGCCGATATTGATGTATCGAATTGGGAAGATACAACAGAATTTGATGATCCAATGACGTTATATCAGTGGCTTTGCGAAAATCAACCTCAAGAAGAACTGTGTCTCTCTCATGGAGATATGAGCGCTAATTTTTTTGTATCTCATGATGGAATATATTTTTATGATTTGGCAAGATGTGGAGTTGCAGACAAATGGTTGGATATAGCATTTTGTGTCAGAGAGATTCGAGAATATTATCCTGATTCTGATTATGAAAAATTCTTTTTTAACATGTTGGGACTTGAACCGGATTATAAAAAAATTAACTATTACATTTTATTAGATGAGATGTTTTAG " 256 UPDATE CMY-21 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGTTATGCTGCGCTCTGCTGCTGACAGCCTCTTTCTCCACATTTGCTGCCGCAAAAACAGAACAACAGATTGCCGATATCGTTAATCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCCGTTATCTACCAGGGAAAACCCTATTATTTCACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGATCGGTTAGTAAGACGTTTAACGGCGTGTTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCAGGGTATCCGCCTGCTGCACTTAGCCACCTATACGGCAGGCGGCCTACCGCTGCAGATCCCCGATGACGTTAGGGATAAAGCCGCATTACTGCATTTTTATCAAAACTGGCAGCCGCAATGGACTCCGGGCGCTAAGCGACTTTACGCTAACTCCAGCATTGGTCTGTTTGGCGAGCTGGCGGTGAAACCCTCAGGAATGAGTTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAGAACGAACAAAAAGATTATGCCTGGGGCTATCGCGAAGGGAAGCCCGTACACGTTTCTCCGGGAAAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATTGATATGGCCCGCTGGGTTCAGGCCAACATGGATGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGCGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCCGCCCCCGCAGTGAAAGCCTCATGGGTGCATAAAACGGGCTCCACTGGTGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGCGGCCTGGCGCATTCTTGAAAAGCTGCAATAA " 257 UPDATE ACT-37 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCCTTTTGCTGCGCCCTGCTGCTCGCCATCTCTGGCGCTGCTCTCGCCGCGCCAGTATCAGAAAAACAGCTGGCGGAGGTGGTCGCGAATACGGTTACCCCGCTGATGAAAGCCCAGGCTATTCCAGGCATGGCGGTGGCCGTTATCTATCAGGGAAAACCGCACTATTACACGTTTGGCGAAGCCGATATTGCGGCCAAAAAACCCGTTACGCCACAAACCCTGTTCGAGCTAGGTTCTATAAGTAAAACCTTCACCGGCGTTTTAGGTGGGGATGCCATTGCTCGCGGTGAAATTTCGCTGGATGATCCGGTGATCAAATACTGGCCTGAACTGACGGGCAAGCAGTGGCAGGGTATTCGTATGCTGGATCTCGCAACCTACACCGCGGGCGGCCTGCCGCTACAGGTACCGGAAGAGGTCACGGATAACGCCTCCCTGCTGCGCTTTTATCAACACTGGCAACCGCAGTGGAAGCCTGGCACAACGCGTCTTTACGCCAATGCCAGCATCGGACTTTTTGGCGCGCTGGCGGTCAAACCTTCCGGCATGCGCTATGAGCAGGCCATGACGAAGCGGGTCTTCAAGCCGCTCAGGCTGAACCATACCTGGATTAACGTTCCGAAAGCGGAAGCGGCGCATTACGCCTGGGGTTATCGTGACGGTAAAGCGGTCCACGTTTCACCGGGTATGCTGGACGCAGAGGCCTATGGCGTGAAAACTAACGTGCAGGATATGGCGAACTGGGTGATGGCGAACATGGCGCCGGAGAACGTTGCTGATGCCTCACTCAAGCAGGGCATCGCGCTGGCGCAGTCGCGCTACTGGCGTATCGGGTCAATGTATCAGGGCCTGGGCTGGGAAATGCTCAACTGGCCCGTGGAGGCCAAAACAGTGATCGAGGGCAGCGACAATAAGGTGGCACTGGCGCCGTTGCCCGTGGCAGAAGTGAATCCACCGGTTCCCCCGGTCAAAGCGTCCTGGGTCCATAAAACGGGCTCTACTGGCGGGTTTGGCAGCTACGTGGCATTTATTCCTGAAAAGCAGATCGGTATTGTGATGCTCGCGAATAAAAGCTATCCGAATCCGGCACGCGTTGAGGCGGCATACCATATCCTCGACGCACTACAGTAA " 254 UPDATE OXA-150 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 255 UPDATE BRP(MBL) glycopeptide antibiotic; antibiotic inactivation; Bleomycin resistant protein; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2200 UPDATE APH(3')-VI antibiotic inactivation; aminoglycoside antibiotic; isepamicin; paromomycin; kanamycin A; APH(3'); gentamicin B; amikacin; ribostamycin; G418; neomycin; butirosin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2203 UPDATE MCR-1 peptide antibiotic; MCR phosphoethanolamine transferase; antibiotic target alteration; colistin B; colistin A; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2204 UPDATE AAC(6')-IId antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2205 UPDATE MexJ antibiotic efflux; triclosan; resistance-nodulation-cell division (RND) antibiotic efflux pump; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; tetracycline; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 4120373 UPDATED strand with - UPDATED accession with NC_002516.2 UPDATED fmin with 4119269 UPDATED sequence with ATGTACCGCCATATCCCGCTCGTCGCCCTGTCCCTGTTTTCCTCCCTGTTCCTCGCCGCCTGCGGCAACGGCACGCCGCCGCCAGCCGCGGCGCGTCCGGCGATCGTCGTCCAGCCCCAGCCGGCGGGGGAGGTGAGCCAGGCCTTTCCCGGCGAGATCCGCGCCCGCCACGAGCCGGAGCTGGCCTTCCGCATCGGCGGCAAGGTCATCCGCCGGCTGGTGGAAGTCGGCGAGCGGGTAAAGAAGGACCAGCCCCTGGCCGAACTCGATCCCCAGGACGTGCGCCTGCAACTGGAGGCGGCGCGGGCCCAGGTCAGTGCCGCCGAGGCCAACTTGCAGACCGTGCGCGCCGAGTACCGGCGCTACCGCACCTTGCTCGACCGCAACCTGGTCAGCCATTCCCAGTTCGAGAACATCCAGAACAGCTACCGCGCCGGCGAGGCGCGGCTGAAGCAGATCCGCGCCGAATTCAACGTCGCCGACAACCAGGCCGGCTACGCCGTGCTGCGCTCGCCCCAGGATGGCGTGATCGCCAGCCGGCGCGTCGAGGTGGGCCAGGTGGTGGCGGCCGGACAGACGGTCTTCAGCCTGGCCGCCGACGGCGAACGCGAGGTGCTGATCGGCCTGCCGGAACACAGCTTCGAACGTTTCCGCATCGGCCAGCCGGTGTCGGTCGAACTCTGGTCGCAACGCGACAGACGCTTCGCCGGGCATATCCGCGAGCTCTCGCCCGCGGCCGATCCGCAATCGCGTACCTTCGCCGCCCGGGTGGCCTTCGACGACCGCGCGACTCCGGCCGAACTGGGCCAGAGCGCGCGGGTCTACGTCGCCGCCGCCGAGGCGGTGCCGTTATCGGTTCCCTTGTCGGCGCTGACCGCAGAGGCCGGCCAGGCGTTCGTCTGGGTGGTCGAGCCGGGCAGCTCGACCCTGCGCCGGCAGGCGGTGCGCACCGGTCCCTATGCCGAGGACCGGGTGCCGGTGCTCGAAGGCCTGAAGGCTGGCGACTGGGTGGTGGCCACCGGGGTCCAGGTGCTTCGCGAAGGGCAGCAGGTGCGTCCGATCGACCGGGCCAACCGCACGGTGAAACTGGCGGCCAAGGAGTAG UPDATED NCBI_taxonomy_name with Pseudomonas aeruginosa PAO1 UPDATED NCBI_taxonomy_id with 208964 UPDATED NCBI_taxonomy_cvterm_id with 36804 UPDATED accession with NP_252367.1 UPDATED sequence with MYRHIPLVALSLFSSLFLAACGNGTPPPAAARPAIVVQPQPAGEVSQAFPGEIRARHEPELAFRIGGKVIRRLVEVGERVKKDQPLAELDPQDVRLQLEAARAQVSAAEANLQTVRAEYRRYRTLLDRNLVSHSQFENIQNSYRAGEARLKQIRAEFNVADNQAGYAVLRSPQDGVIASRRVEVGQVVAAGQTVFSLAADGEREVLIGLPEHSFERFRIGQPVSVELWSQRDRRFAGHIRELSPAADPQSRTFAARVAFDDRATPAELGQSARVYVAAAEAVPLSVPLSALTAEAGQAFVWVVEPGSSTLRRQAVRTGPYAEDRVPVLEGLKAGDWVVATGVQVLREGQQVRPIDRANRTVKLAAKE " 2206 UPDATE MexK antibiotic efflux; triclosan; resistance-nodulation-cell division (RND) antibiotic efflux pump; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; tetracycline; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 4119265 UPDATED strand with - UPDATED accession with AE004091.2 UPDATED fmin with 4116187 UPDATED sequence with ATGTCCTTCAACCTTTCCGCCTGGGCGTTGCAGAATCGCCAGATCGTCCTGTACCTGATGATCCTGCTTGGCGCGGTCGGCGCGCTGTCCTACAGCAAGCTGGGGCAGAGCGAAGACCCGCCGTTCACCTTCAAGGCCATGGTGGTGCAGACCAACTGGCCGGGCGCCAGCGCCGAAGAGGTGGCCCGGCAGGTCACCGAGCGTATCGAGAAGAAGCTGATGGAAACCGGCGACTACGATCGCATCGTGTCCTTCTCCCGCCCCGGCGTCTCGCAGGTGACCTTCATGGCCCGCGAGGACATCCATTCCAGCGAGATCCCCGAACTCTGGTACCAGATCCGCAAGAAGATCAGCGACATTCGCGCCACCTTGCCGCAAAGCATCCAGGGCCCGTTCTTCAACGACGAGTTCGGCACCACCTACGGCAACATCTATGCGCTCACCGGCAAGGGCTTCGACTACGCGGTGATGAAGGACTATGCCGACCGCCTGCAACTGCAATTGCAGCGGATCAGGAACGTCGGCAAGGTCGAGCTGATCGGCCTGCAGGACGAGAAGATCTGGATCGACCTGTCCAACACCAAGCTGGCCACCCTCGGCCTGCCCCTGGCGGCGGTACAGAAGGCGCTGGAGGAACAGAACGCGGTGGCCTCCTCCGGGTTCTTCGAGACCGCCAGCGACCGCGTGCAGTTGCGCGTTTCCGGGCGTTTCGATTCGGTGGAGGAGATCCGCGACTTCCCCATCCGCGTCGGCGACCGCACCTTCCGCATCGGCGACGTGGCCGAGGTTCGCCGCGGCTTCAACGATCCGCCGGCGCCGCGCATGCGCTTCATGGGCGAGGACGCCATCGGCCTGGCGGTAGCGATGAAGCCGGGCGGCGACATCCTGGTGCTGGGCAAGGCCCTGGAAACCGAGTTCGCCCGCCTGCAGCAGTCGCTGCCGGCCGGACTGGAACTGCGCAAGGTGTCCGACCAGCCGGCGGCGGTACGTACCGGGGTCGGCGAGTTCATCCGGGTGCTGGCCGAGGCGCTGGTGATCGTCCTGCTGGTGAGCTTCTTCTCCCTCGGCCTGCGCACCGGCCTGGTGGTGGCGCTGTCGATCCCGCTGGTGCTGGCGATGACCTTCGCCGCCATGCATTACTTCGGCATCGGCCTGCACAAGATCTCCCTCGGCGCCCTGGTGCTGGCGCTGGGATTACTGGTGGACGACGCGATCATCGCGGTGGAGATGATGGCGGTGAAGATGGAGCAGGGCTACGACCGCCTCAAGGCGGCCAGCTTCGCCTGGACCAGCACCGCCTTCCCGATGCTCACCGGCACCCTGATCACCGCCGCCGGCTTCCTGCCGATCGCCACCGCGCAGTCCGGCACCGGCGAATACACCCGCTCGTTGTTCCAGGTGGTGACCATCGCCCTGGTGGTCTCCTGGTTCGCCGCGGTGGTCTTCGTTCCCTACCTGGGGGCCAAGCTGCTGCCGGACCTGGCCAGGTTGCACGCGCAGAAGCACGGCGGCAGCGCCGATGGCTACGATCCCTATGCTACGGCCTTCTACCAGCGCTTCCGGCGTCTGGTGGAGTGGTGCGTGCGCTACCGCAAGACGGTGATCGTCCTGACTCTCGCGGCCTTCGTCGGCGCGCTGCTGCTGTTCCGCCTGGTGCCGCAGCAGTTCTTCCCGCCCTCGGCGCGCCTGGAGCTGCTGCTGGACATCAAGCTGGCGGAGGGTGCCTCACTGCGCTCTACCGGCGAGGAAGTCCAGCGCCTGGAAAAAATGCTGCAGGGCCATGACGGCATCGACAACTACGTGGCCTACGTCGGCACCGGCTCGCCCCGCTTCTACCTGCCGCTGGACCAGCAATTGCCGGCGGCCAGCTTCGCCCAGGTGGTGGTGCTGGCCAAGGACCTGGAGAGCCGCGAGGCGCTGCGCAAGTGGCTGATCGAGCGGATGAACGAGGACTTCCCGCACCTGCGCAGCCGCATCAGTCGCCTGGAGAACGGGCCGCCGGTGGGCTATCCGGTGCAGTTCCGGGTTTCCGGCGAGGACATCCCGCAGGTTCGCGAACTGGCGCGCAAGGTCGCCGACAAGATGCGCGAGAACCCGCACGTGGTGAATGTGCACCTGGATTGGGAAGAGCCGAGCAAGGTGGTGTACCTGAGCATCGACCAGGAGCGCGCCCGTGCCCTGGGGGTGAGCACCGCCAGCCTGTCGCAGTTCCTGCAGAGCGCGCTGACCGGCTCGCACGTGAGCTTCTTCCGCGAAGACAACGAGCTGATCGAGATCCTCCTGCGCGGCACCGAGCAGGAGCGTCGTGACCTGTCGTTGCTGCCGAGCCTGGCGGTGCCGACCGAGAATGGCCGGAGCGTGGCGCTGTCGCAGATCGCTACGCTCGAATACGGCTTCGAAGAGGGCATCATCTGGCACCGCAACCGCCTGCCGACGGTCACCGTGCGCGCCGATATCTACGACGATTCGCTGCCGGCGACCCTGGTCGCGCAGATCGCCCCGACCCTGGAACCGATCCGCGCCGAGTTGCCGGACGGCTACCTGCTGGAGGTGGGCGGCACGGTGGAGGACGCGGCGAAGGGCCAGAGTTCGGTGAACGCCGGCGTGCCGCTGTTCATCGTGGTGGTGTTGAGCCTGCTGATGGTGCAGTTGCGCAGCTTCTCGCGGATGGCGATGGTATTCCTCACCGCACCGCTGGGCCTGATCGGCGTGACCCTGTTCCTGCTGCTGTTCCGCCAGCCGTTCGGCTTCGTGGCGATGCTCGGGACCATCGCCCTGGCCGGCATGATCATGCGCAACTCGGTGATCCTGGTGGACCAGATCGAACAGGACATCAGCCATGGACTGGATCGCTGGCACGCCATCATCGAGGCTACCGTGCGGCGTTTCAGGCCCATCGTGCTGACCGCGCTGGCGGCGGTGCTGGCGATGATCCCGCTGTCGCGCAGCGTGTTCTTCGGGCCGATGGCGGTGGCGATCATGGGCGGGCTGATCGTCGCCACCGTGCTCACCCTGCTGTTCCTGCCGGCGCTCTATGCCGCCTGGTTCCGCGTGAAGAAGGACGAGGCGCGGGCCTGA UPDATED NCBI_taxonomy_name with Pseudomonas aeruginosa PAO1 UPDATED NCBI_taxonomy_id with 208964 UPDATED NCBI_taxonomy_cvterm_id with 36804 UPDATED accession with AAG07064.1 UPDATED sequence with MSFNLSAWALQNRQIVLYLMILLGAVGALSYSKLGQSEDPPFTFKAMVVQTNWPGASAEEVARQVTERIEKKLMETGDYDRIVSFSRPGVSQVTFMAREDIHSSEIPELWYQIRKKISDIRATLPQSIQGPFFNDEFGTTYGNIYALTGKGFDYAVMKDYADRLQLQLQRIRNVGKVELIGLQDEKIWIDLSNTKLATLGLPLAAVQKALEEQNAVASSGFFETASDRVQLRVSGRFDSVEEIRDFPIRVGDRTFRIGDVAEVRRGFNDPPAPRMRFMGEDAIGLAVAMKPGGDILVLGKALETEFARLQQSLPAGLELRKVSDQPAAVRTGVGEFIRVLAEALVIVLLVSFFSLGLRTGLVVALSIPLVLAMTFAAMHYFGIGLHKISLGALVLALGLLVDDAIIAVEMMAVKMEQGYDRLKAASFAWTSTAFPMLTGTLITAAGFLPIATAQSGTGEYTRSLFQVVTIALVVSWFAAVVFVPYLGAKLLPDLARLHAQKHGGSADGYDPYATAFYQRFRRLVEWCVRYRKTVIVLTLAAFVGALLLFRLVPQQFFPPSARLELLLDIKLAEGASLRSTGEEVQRLEKMLQGHDGIDNYVAYVGTGSPRFYLPLDQQLPAASFAQVVVLAKDLESREALRKWLIERMNEDFPHLRSRISRLENGPPVGYPVQFRVSGEDIPQVRELARKVADKMRENPHVVNVHLDWEEPSKVVYLSIDQERARALGVSTASLSQFLQSALTGSHVSFFREDNELIEILLRGTEQERRDLSLLPSLAVPTENGRSVALSQIATLEYGFEEGIIWHRNRLPTVTVRADIYDDSLPATLVAQIAPTLEPIRAELPDGYLLEVGGTVEDAAKGQSSVNAGVPLFIVVVLSLLMVQLRSFSRMAMVFLTAPLGLIGVTLFLLLFRQPFGFVAMLGTIALAGMIMRNSVILVDQIEQDISHGLDRWHAIIEATVRRFRPIVLTALAAVLAMIPLSRSVFFGPMAVAIMGGLIVATVLTLLFLPALYAAWFRVKKDEARA " 2207 UPDATE MexV antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; macrolide antibiotic; acridine dye; acriflavin; tetracycline antibiotic; fluoroquinolone antibiotic; erythromycin; phenicol antibiotic; tetracycline; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2208 UPDATE MexW antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; macrolide antibiotic; acridine dye; acriflavin; tetracycline antibiotic; fluoroquinolone antibiotic; erythromycin; phenicol antibiotic; tetracycline; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2428 UPDATE farA antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; linoleic acid; efflux pump complex or subunit conferring antibiotic resistance; antibacterial free fatty acids; palmitic acid; oleic acid; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2429 UPDATE farB antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; linoleic acid; efflux pump complex or subunit conferring antibiotic resistance; antibacterial free fatty acids; palmitic acid; oleic acid; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2421 UPDATE efrA antibiotic efflux; ATP-binding cassette (ABC) antibiotic efflux pump; rifampin; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; ciprofloxacin; fluoroquinolone antibiotic; rifamycin antibiotic; erythromycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2422 UPDATE efrB antibiotic efflux; ATP-binding cassette (ABC) antibiotic efflux pump; rifampin; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; ciprofloxacin; fluoroquinolone antibiotic; rifamycin antibiotic; erythromycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2423 UPDATE msbA nitroimidazole antibiotic; metronidazole; ATP-binding cassette (ABC) antibiotic efflux pump; antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2424 UPDATE YojI peptide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; ATP-binding cassette (ABC) antibiotic efflux pump; microcin J25; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2308615 UPDATED strand with - UPDATED accession with NC_000913.3 UPDATED fmin with 2306971 UPDATED sequence with ATGGAACTTCTTGTACTTGTCTGGCGGCAGTATCGCTGGCCATTTATCAGTGTGATGGCGCTAAGCCTCGCCAGTGCGGCATTAGGCATTGGCTTAATTGCTTTTATCAATCAGCGCCTTATCGAAACGGCGGATACCAGTCTGCTGGTGTTGCCGGAGTTTCTGGGATTATTGCTGCTGTTGATGGCAGTCACTCTCGGATCGCAACTGGCGCTCACCACTTTGGGGCATCACTTCGTTTACCGACTGCGTAGTGAATTTATCAAGCGGATTCTGGATACTCACGTCGAGCGCATTGAACAACTCGGTAGCGCCTCGTTGCTGGCGGGGTTAACCAGCGATGTGCGCAATATCACCATTGCTTTTGTGCGTCTGCCGGAACTGGTGCAGGGGATCATTCTCACTATCGGTTCAGCGGCGTATCTGTGGATGCTGTCGGGCAAAATGTTGCTGGTAACGGCTATCTGGATGGCGATCACCATCTGGGGCGGTTTTGTGCTGGTGGCGCGGGTGTACAAACATATGGCGACCCTGCGTGAAACCGAAGACAAGCTGTACACGGATTTTCAAACTGTACTTGAAGGGCGCAAAGAGCTGACTCTGAACCGGGAACGCGCCGAGTATGTGTTTAACAACCTCTACATTCCTGATGCGCAAGAGTATCGCCACCATATTATTCGCGCAGACACCTTCCATCTTAGTGCCGTGAACTGGTCAAACATCATGATGCTGGGCGCAATCGGCCTGGTGTTCTGGATGGCGAACAGCCTCGGTTGGGCTGATACCAACGTTGCCGCGACCTATTCGTTGACGCTTTTATTCCTGCGTACGCCGCTGCTTTCGGCGGTTGGCGCATTGCCGACGCTGCTGACGGCGCAGGTGGCGTTTAACAAGCTGAACAAATTCGCGCTCGCGCCTTTCAAAGCAGAGTTTCCGCGCCCGCAGGCGTTTCCCAACTGGCAAACGCTGGAGCTGCGTAACGTGACGTTTGCTTATCAGGATAACGCGTTTTCCGTTGGTCCGATTAATCTCACCATCAAACGTGGCGAGCTGCTGTTTCTGATTGGCGGCAACGGTAGCGGAAAATCGACGCTGGCGATGTTGTTGACGGGCTTGTATCAGCCACAAAGCGGCGAAATCTTGCTGGATGGCAAACCTGTCAGCGGCGAACAACCGGAAGATTATCGCAAACTGTTTTCGGCAGTGTTTACCGATGTCTGGCTGTTTGATCAACTGCTGGGGCCGGAGGGTAAACCCGCTAACCCGCAACTGGTTGAGAAGTGGCTGGCGCAGCTGAAAATGGCTCATAAGCTTGAGTTAAGCAACGGGCGTATTGTTAACCTGAAGTTATCAAAAGGGCAGAAAAAACGCGTGGCGCTGTTGCTGGCGCTGGCAGAAGAACGCGATATTATCCTGCTGGATGAATGGGCGGCGGATCAGGATCCACACTTCCGTCGTGAGTTTTATCAGGTGTTGCTGCCGCTGATGCAGGAGATGGGTAAAACTATTTTCGCTATCAGTCATGATGATCATTACTTTATCCACGCCGACCGCCTGCTGGAAATGCGCAATGGGCAACTTAGCGAGCTGACGGGCGAAGAGCGCGATGCCGCTTCGCGTGATGCCGTTGCCCGGACGGCATAA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. MG1655 UPDATED NCBI_taxonomy_id with 511145 UPDATED NCBI_taxonomy_cvterm_id with 36849 UPDATED accession with NP_416715.1 UPDATED sequence with MELLVLVWRQYRWPFISVMALSLASAALGIGLIAFINQRLIETADTSLLVLPEFLGLLLLLMAVTLGSQLALTTLGHHFVYRLRSEFIKRILDTHVERIEQLGSASLLAGLTSDVRNITIAFVRLPELVQGIILTIGSAAYLWMLSGKMLLVTAIWMAITIWGGFVLVARVYKHMATLRETEDKLYTDFQTVLEGRKELTLNRERAEYVFNNLYIPDAQEYRHHIIRADTFHLSAVNWSNIMMLGAIGLVFWMANSLGWADTNVAATYSLTLLFLRTPLLSAVGALPTLLTAQVAFNKLNKFALAPFKAEFPRPQAFPNWQTLELRNVTFAYQDNAFSVGPINLTIKRGELLFLIGGNGSGKSTLAMLLTGLYQPQSGEILLDGKPVSGEQPEDYRKLFSAVFTDVWLFDQLLGPEGKPANPQLVEKWLAQLKMAHKLELSNGRIVNLKLSKGQKKRVALLLALAEERDIILLDEWAADQDPHFRREFYQVLLPLMQEMGKTIFAISHDDHYFIHADRLLEMRNGQLSELTGEERDAASRDAVARTA " 1849 UPDATE Mycobacterium tuberculosis tlyA mutations conferring resistance to aminoglycosides antibiotic target alteration; streptomycin; aminoglycoside antibiotic; Antibiotic resistant tlyA; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with GTGGCACGACGTGCCCGCGTTGACGCCGAGCTGGTCCGGCGGGGCCTGGCGCGATCACGTCAACAGGCCGCGGAGTTGATCGGCGCCGGCAAGGTGCGCATCGACGGGCTGCCGGCGGTCAAGCCGGCCACCGCCGTGTCCGACACCACCGCGCTGACCGTGGTGACCGACAGTGAACGCGCCTGGGTATCGCGCGGAGCGCACAAACTAGTCGGTGCGCTGGAGGCGTTCGCGATCGCGGTGGCGGGCCGGCGCTGTCTGGACGCGGGCGCATCGACCGGTGGGTTCACCGAAGTACTGCTGGACCGTGGTGCCGCCCACGTGGTGGCCGCCGATGTCGGATACGGCCAGCTGGCGTGGTCGCTGCGCAACGATCCTCGGGTGGTGGTCCTCGAGCGGACCAACGCACGTGGCCTCACACCGGAGGCGATCGGCGGTCGCGTCGACCTGGTAGTGGCCGACCTGTCGTTCATCTCGTTGGCTACCGTGTTGCCCGCGCTGGTTGGATGCGCTTCGCGCGACGCCGATATCGTTCCACTGGTGAAGCCGCAGTTTGAGGTGGGGAAAGGTCAGGTCGGCCCCGGTGGGGTGGTCCATGACCCGCAGTTGCGTGCGCGGTCGGTGCTCGCGGTCGCGCGGCGGGCACAGGAGCTGGGCTGGCACAGCGTCGGCGTCAAGGCCAGCCCGCTGCCGGGCCCATCGGGCAATGTCGAGTACTTCCTGTGGTTGCGCACGCAGACCGACCGGGCATTGTCGGCCAAGGGATTGGAGGATGCGGTGCACCGTGCGATTAGCGAGGGCCCGTAG " 2426 UPDATE efmA antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; fluoroquinolone antibiotic; erythromycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2427 UPDATE efpA antibiotic efflux; rifampin; isoniazid; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; rifamycin antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 3154631 UPDATED strand with - UPDATED accession with NC_000962.3 UPDATED fmin with 3153038 UPDATED sequence with ATGACGGCTCTCAACGACACAGAGCGGGCGGTCCGTAACTGGACAGCCGGACGCCCACACCGTCCGGCCCCGATGCGCCCGCCGCGCTCGGAGGAGACCGCTTCAGAGCGCCCCAGCAGGTACTACCCGACTTGGCTGCCCTCGCGCAGCTTTATCGCTGCGGTTATTGCTATCGGCGGGATGCAGCTGCTGGCGACCATGGACAGCACCGTCGCCATCGTCGCGCTACCTAAGATTCAAAACGAGCTGAGCTTGTCTGATGCCGGCCGCAGCTGGGTGATCACCGCCTACGTGCTGACCTTCGGCGGGCTGATGCTGCTCGGCGGCCGGCTTGGCGACACCATCGGGCGCAAACGCACCTTCATTGTTGGCGTTGCGCTATTCACCATCTCGTCGGTGCTGTGCGCGGTCGCCTGGGACGAGGCGACGTTGGTGATCGCCCGGTTGTCCCAGGGTGTGGGGTCGGCCATCGCATCTCCGACCGGTCTGGCGCTGGTGGCGACCACGTTCCCCAAGGGACCTGCCCGCAACGCCGCGACGGCGGTGTTCGCCGCGATGACCGCGATCGGGTCGGTGATGGGGCTGGTGGTCGGCGGAGCACTGACCGAGGTGTCATGGCGGTGGGCGTTCCTGGTGAACGTGCCGATCGGGCTGGTGATGATCTACCTGGCCCGCACCGCCCTACGGGAAACCAACAAAGAACGGATGAAGCTCGACGCCACCGGGGCCATACTGGCCACGCTGGCATGCACCGCGGCGGTTTTCGCCTTCTCGATCGGTCCTGAAAAGGGCTGGATGTCAGGCATTACCATCGGTTCGGGCCTGGTGGCCTTGGCGGCCGCTGTCGCGTTTGTCATCGTGGAGCGCACTGCCGAGAACCCCGTCGTGCCGTTCCACTTGTTCCGCGACCGCAACCGGTTGGTCACGTTCAGCGCGATCCTGTTGGCCGGCGGCGTCATGTTCAGCCTGACCGTCTGCATCGGCCTGTACGTGCAGGACATCTTGGGCTACAGCGCGCTACGCGCGGGCGTAGGTTTCATCCCGTTCGTCATCGCGATGGGAATCGGCCTAGGTGTGTCCTCGCAGCTGGTGTCCCGGTTTTCGCCACGGGTGTTGACCATCGGCGGCGGATATCTGCTATTCGGCGCCATGCTGTACGGCTCATTTTTCATGCACCGTGGTGTGCCCTACTTCCCCAACCTGGTCATGCCGATCGTCGTCGGCGGGATTGGCATCGGCATGGCCGTCGTCCCGCTGACTCTGTCGGCGATCGCTGGCGTCGGCTTCGACCAGATCGGTCCGGTATCGGCAATTGCGCTGATGCTGCAGAGCCTGGGCGGTCCGCTGGTGCTCGCCGTCATCCAGGCTGTGATCACGTCGCGCACGCTGTACCTGGGCGGTACCACCGGTCCGGTGAAGTTCATGAACGACGTGCAGTTGGCCGCGCTTGACCACGCCTACACCTACGGCCTGCTGTGGGTGGCCGGAGCGGCCATCATCGTCGGCGGTATGGCGCTGTTTATCGGGTATACGCCGCAGCAGGTTGCCCATGCGCAGGAGGTCAAGGAAGCGATCGACGCCGGCGAGCTGTAA UPDATED NCBI_taxonomy_name with Mycobacterium tuberculosis H37Rv UPDATED NCBI_taxonomy_id with 83332 UPDATED NCBI_taxonomy_cvterm_id with 39507 UPDATED accession with NP_217362.1 UPDATED sequence with MTALNDTERAVRNWTAGRPHRPAPMRPPRSEETASERPSRYYPTWLPSRSFIAAVIAIGGMQLLATMDSTVAIVALPKIQNELSLSDAGRSWVITAYVLTFGGLMLLGGRLGDTIGRKRTFIVGVALFTISSVLCAVAWDEATLVIARLSQGVGSAIASPTGLALVATTFPKGPARNAATAVFAAMTAIGSVMGLVVGGALTEVSWRWAFLVNVPIGLVMIYLARTALRETNKERMKLDATGAILATLACTAAVFAFSIGPEKGWMSGITIGSGLVALAAAVAFVIVERTAENPVVPFHLFRDRNRLVTFSAILLAGGVMFSLTVCIGLYVQDILGYSALRAGVGFIPFVIAMGIGLGVSSQLVSRFSPRVLTIGGGYLLFGAMLYGSFFMHRGVPYFPNLVMPIVVGGIGIGMAVVPLTLSAIAGVGFDQIGPVSAIALMLQSLGGPLVLAVIQAVITSRTLYLGGTTGPVKFMNDVQLAALDHAYTYGLLWVAGAAIIVGGMALFIGYTPQQVAHAQEVKEAIDAGEL " 1848 UPDATE CTX-M-75 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 168 UPDATE VIM-17 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTCAAACTTTTGAGTAAGTTATTGGTCTATTTGACCGCGTCTATGATGGCTATTGCGAGTCCGCTCGCTTTTTCCGTAGATTCTAGCGGTGAGTATCCGACAGTCAGCGAAATTCCGGTCGGGGAGGTCCGGCTTTACCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTTTGATGGCGCAGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAGAAGCAAATTGGACTTCCTGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCCGAGGTAGAGGGGAACGAGATTCCCACGCACTCTCTAGAAGGACTCTCATCGAGCGGGGACGCAGTGCGCTTCGGTCCAGTAGAACTCTTCTATCCTGGTGCTGCGCATTCGACCGACAACTTAGTTGTGTACGTCCCGTCTGCGAGTGTGCTCTATGGTGGTTGTGCGATTTATGAGTTGTCACGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCATTGAGCGGATTCAACAACACTACCCGGAAGCACAGTTCGTCATTCCGGGGCACGGCCTGCCGGGCGGTCTAGACTTGCTCAAGCACACAACGAATGTTGTAAAAGCGCACACAAATCGCTCAGTCGTTGAGTAG " 169 UPDATE IMP-33 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 164 UPDATE vanN glycopeptide antibiotic; glycopeptide resistance gene cluster; van ligase; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAAATCGCCTTAATTTTTGGTGGTACTTCAGCAGAATATGAAGTATCCCTCAAATCAGCAGCTAGTGTTTTGTCTGTATTAGAAAATCTAAATGTTGAAATTTACAGAATTGGCATAGCTTCGAACGGAAAATGGTATTTAACCTTTAGTGATAATGAAACTATTGCAAATGACTTATGGTTACAAGATAAAAAATTAAATGAGATCACTCCCTCCTTCGATGGGAGAGGGTTTTATGACCAAGCAGAAAAAGTATATTTTAAACCAGATGTCTTATTTCCGATGCTACACGGTGGCACTGGAGAAAATGGTACATTACAAGGAGTTTTTGAATGTATGCAAATTCCTTATGTTGGTTGCGGCGTTGCCTCCTCTGCCATTTGTATGAATAAATATCTATTACATCAGTTTGCAAAAAGTGTCGGAGTGATGAGTACGCCTACACAGCTGATCTCATCGACGGACGAACAACAAGTAATCAAAAATTTTACTGAGTTGTACGGTTTTCCTATATTTATCAAACCAAATGAAGCTGGTTCTTCAAAGGGAATCAGCAAAGTTCATACCGAAGCAGAGTTAACTAAAGCGCTGACCGAAGCGTTCCAATTCAGTCAGACAGTCATTTTACAAAAAGCTGTTTCTGGAGTAGAGATCGGTTGCGCCATCCTAGGAAATGATCAATTGCTTGTTGGGGAATGTGATGAAGTATCCTTAGCGACCGACTTTTTTGATTATACGGAAAAATATCAAATGACTACAGCAAAGTTGACCGTTCCAGCAAAAATTCCAGTGGCAACTAGTAGAGAAATCAAGCGTCAAGCACAATTACTGTATCAATTACTTGGATGTCAGGGCTTAGCTCGCATTGATTTTTTTCTAACAGAAGCAGGTGAAATTCTCTTAAATGAAATCAATACAATGCCAGGCTTTACCAATCATTCTAGATTTCCAGCCATGATGGCAGCTACGGGTATCACTTATCAGGAGCTTATTTCAACATTAATTACTTTAGCGGAGGATAAATAG " 165 UPDATE VIM-29 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 166 UPDATE TEM-77 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGCTGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTAGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 167 UPDATE CMY-39 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 160 UPDATE OXA-236 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 161 UPDATE SHV-56 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 162 UPDATE KPC-8 antibiotic inactivation; penam; carbapenem; cephalosporin; monobactam; KPC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 163 UPDATE OXA-376 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATTAAAACACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGCGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGTACACACTACGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGTACCATAAGGCAACCACCACAGAAGTATTTAAGTGGGACGGGCAAAAAAGGCTATTCCCAGAATGGGAAAAGGACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAAGGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAGTTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCCAAAAGTCCAAGATGAAGTGCAATCCATGTTATTCATAGAAGAAAAGAACGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAGACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGAAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGTTTAGAACAATTAGGTATTTTATAG " 2518 UPDATE tetB(48) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2519 UPDATE LlmA 23S ribosomal RNA methyltransferase antibiotic target alteration; clindamycin; Llm 23S ribosomal RNA methyltransferase; lincosamide antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2517 UPDATE tetA(48) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 908 UPDATE CTX-M-139 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2734 UPDATE PmpM efflux pump complex or subunit conferring antibiotic resistance; multidrug and toxic compound extrusion (MATE) transporter; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1473980 UPDATED strand with - UPDATED accession with NC_002516.2 UPDATED fmin with 1472546 UPDATED sequence with GTGAACAGCCCCGCCCTGCCCCTTTCCCGTGGCTTGCGCATCCGCGCCGAACTCAAGGAACTGCTGACCCTCGCCGCGCCGATCATGATCGCGCAACTGGCGACCACCGCCATGGGCTTCGTCGATGCGGTGATGGCCGGGCGCGCCAGTCCGCACGACCTGGCAGCGGTGGCGCTGGGCAACTCCATCTGGATCCCGATGTTCCTGCTGATGACCGGCACCCTGCTCGCCACCACGGCCAAGGTCGCCCAGCGCCATGGCGCCGGCGACCAGCCCGGCACCGGGCCGCTGGTGCGCCAGGCGCTGTGGCTGGCGCTGCTGATCGGACCGCTGTCGGGGGCGGTGCTGTGGTGGTTGTCGGAGCCGATCCTCGGCTTGATGAAAGTGCGCCCGGAACTGATCGGGCCGAGCCTGCTGTACCTCAAGGGCATCGCCCTGGGCTTCCCGGCGGCGGCGCTGTACCACGTACTGCGCTGCTACACCAACGGCCTGGGACGGACCCGGCCGAGCATGGTGCTGGGGATCGGCGGGCTGCTGCTGAACATCCCGATCAACTACGCGCTGATCTACGGCCACTTCGGCATGCCGAAGATGGGTGGCCCCGGCTGCGGCTGGGCCACCGGCTCGGTGATGTGGTTCATGTTCCTCGGCATGCTGTTCTGGGTGAACAAGGCCTCGATCTACCGCGCCAGCCAGTTGTTCTCGCGCTGGGAGTGGCCGGATCGCGCGACCATCGGCCCGCTGGTGGCGGTCGGCCTGCCGATCGGCATCGCGGTGTTCGCCGAGTCGAGCATCTTCTCGGTGATCGCCCTGCTGATCGGCGGGCTCGACGAGAACGTGGTGGCCGGCCACCAGATCGCCCTGAACTTCAGCGCGCTGGTGTTCATGATTCCCTATTCGCTGGGGATGGCGGTGACCGTGCGGGTCGGCCACAACCTCGGCGCCGGCCTGCCGCGCGACGCGCGCTTCGCCGCCGGCGTGGGGATGGCCGCGGCGCTGGGCTACGCCTGCGTCTCGGCGAGCCTGATGTTGTTGCTGCGCGAGCAGATCGCCGCGATGTATTCGCCGGACCCGGCGGTGATCGCCATCGCCGCCTCGCTGATCGTGTTCTCCGCGCTGTTCCAGTTCTCCGACGCCCTGCAGGTCACCGCCGCCGGGGCCCTGCGCGGCTACCAGGACACCCGGGTGACGATGATCATGACCCTGTTCGCCTACTGGGGCATCGGCCTGCCGGTGGGCTACAGCCTCGGCCTCACCGACTGGTTCCAGGAACCCACCGGACCGCGCGGTCTGTGGCAAGGCCTGGTGGTGGGCCTGACCGGCGCGGCGATCATGCTCTGCATCCGCCTGGCGCGCAGCGCGCGGCGCTTCATCCGCCAGCACGAGCGCCTGCAGCGGGAGGACGCGGAGGCCGCCTCAGTCCTTGGCCGGTAG UPDATED NCBI_taxonomy_name with Pseudomonas aeruginosa PAO1 UPDATED NCBI_taxonomy_id with 208964 UPDATED NCBI_taxonomy_cvterm_id with 36804 UPDATED accession with NP_250052.1 UPDATED sequence with MNSPALPLSRGLRIRAELKELLTLAAPIMIAQLATTAMGFVDAVMAGRASPHDLAAVALGNSIWIPMFLLMTGTLLATTAKVAQRHGAGDQPGTGPLVRQALWLALLIGPLSGAVLWWLSEPILGLMKVRPELIGPSLLYLKGIALGFPAAALYHVLRCYTNGLGRTRPSMVLGIGGLLLNIPINYALIYGHFGMPKMGGPGCGWATGSVMWFMFLGMLFWVNKASIYRASQLFSRWEWPDRATIGPLVAVGLPIGIAVFAESSIFSVIALLIGGLDENVVAGHQIALNFSALVFMIPYSLGMAVTVRVGHNLGAGLPRDARFAAGVGMAAALGYACVSASLMLLLREQIAAMYSPDPAVIAIAASLIVFSALFQFSDALQVTAAGALRGYQDTRVTMIMTLFAYWGIGLPVGYSLGLTDWFQEPTGPRGLWQGLVVGLTGAAIMLCIRLARSARRFIRQHERLQREDAEAASVLGR " 909 UPDATE OXA-5 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAACCATAGCCGCATATTTAGTTCTAGTTTTTTATGCAAGCACCGCGCTCTCAGAGTCTATTTCTGAAAATTTGGCGTGGAATAAAGAATTTTCTAGTGAATCCGTACATGGCGTTTTTGTACTTTGTAAAAGTAGTAGCAATTCCTGTACTACAAATAATGCGGCACGTGCATCTACAGCCTATATTCCAGCATCAACATTCAAAATTCCTAATGCTCTAATAGGTCTTGAAACCGGCGCCATAAAAGATGAACGGCAGGTTTTCAAATGGGACGGCAAGCCCAGAGCCATGAAGCAATGGGAAAAAGACTTAAAGCTAAGGGGCGCTATACAGGTTTCTGCTGTTCCGGTATTTCAACAAATTGCCAGAGAAGTTGGCGAAATAAGAATGCAAAAATACCTTAACCTGTTTTCATACGGCAACGCCAATATAGGGGGAGGCATTGACAAATTCTGGCTAGAAGGTCAGCTTAGAATCTCAGCATTCAATCAAGTTAAATTTTTAGAGTCGCTCTACCTGAATAATTTGCCAGCATCAAAAGCAAACCAACTAATAGTAAAAGAGGCAATAGTTACAGAAGCAACTCCAGAATATATAGTTCATTCAAAAACTGGGTATTCCGGTGTTGGCACAGAATCAAGTCCTGGTGTCGCTTGGTGGGTTGGTTGGGTAGAGAAAGGAACTGAGGTTTACTTTTTTGCTTTTAACATGGACATAGACAATGAGAGTAAATTGCCGTCAAGAAAATCCATTTCAACGAAAATCATGGCAAGTGAAGGCATCATCATTGGTGGCTAA " 1090 UPDATE TEM-169 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1091 UPDATE IMP-6 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1814 UPDATE AAC(6')-Ie-APH(2'')-Ia antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; gentamicin B; AAC(6'); isepamicin; plazomicin; sisomicin; arbekacin; APH(2''); netilmicin; gentamicin C; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATATAGTTGAAAATGAAATATGTATAAGAACTTTAATAGATGATGATTTTCCTTTGATGTTAAAATGGTTAACTGATGAAAGAGTATTAGAATTTTATGGTGGTAGAGATAAAAAATATACATTAGAATCATTAAAAAAACATTATACAGAGCCTTGGGAAGATGAAGTTTTTAGAGTAATTATTGAATATAACAATGTTCCTATTGGATATGGACAAATATATAAAATGTATGATGAGTTATATACTGATTATCATTATCCAAAAACTGATGAGATAGTCTATGGTATGGATCAATTTATAGGAGAGCCAAATTATTGGAGTAAAGGAATTGGTACAAGATATATTAAATTGATTTTTGAATTTTTGAAAAAAGAAAGAAATGCTAATGCAGTTATTTTAGACCCTCATAAAAATAATCCAAGAGCAATAAGGGCATACCAAAAATCTGGTTTTAGAATTATTGAAGATTTGCCAGAACATGAATTACACGAGGGCAAAAAAGAAGATTGTTATTTAATGGAATATAGATATGATGATAATGCCACAAATGTTAAGGCAATGAAATATTTAATTGAGCATTACTTTGATAATTTCAAAGTAGATAGTATTGAAATAATCGGTAGTGGTTATGATAGTGTGGCATATTTAGTTAATAATGAATACATTTTTAAAACAAAATTTAGTACTAATAAGAAAAAAGGTTATGCAAAAGAAAAAGCAATATATAATTTTTTAAATACAAATTTAGAAACTAATGTAAAAATTCCTAATATTGAATATTCGTATATTAGTGATGAATTATCTATACTAGGTTATAAAGAAATTAAAGGAACTTTTTTAACACCAGAAATTTATTCTACTATGTCAGAAGAAGAACAAAATTTGTTAAAACGAGATATTGCCAGTTTTTTAAGACAAATGCACGGTTTAGATTATACAGATATTAGTGAATGTACTATTGATAATAAACAAAATGTATTAGAAGAGTATATATTGTTGCGTGAAACTATTTATAATGATTTAACTGATATAGAAAAAGATTATATAGAAAGTTTTATGGAAAGACTAAATGCAACAACAGTTTTTGAGGGTAAAAAGTGTTTATGCCATAATGATTTTAGTTGTAATCATCTATTGTTAGATGGCAATAATAGATTAACTGGAATAATTGATTTTGGAGATTCTGGAATTATAGATGAATATTGTGATTTTATATACTTACTTGAAGATAGTGAAGAAGAAATAGGAACAAATTTTGGAGAAGATATATTAAGAATGTATGGAAATATAGATATTGAGAAAGCAAAAGAATATCAAGATATAGTTGAAGAATATTATCCTATTGAAACTATTGTTTATGGAATTAAAAATATTAAACAGGAATTTATCGAAAATGGTAGAAAAGAAATTTATAAAAGGACTTATAAAGATTGA UPDATED category_aro_name with plazomicin UPDATED category_aro_cvterm_id with 40307 UPDATED category_aro_accession with 3003675 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Plazomicin is a neoglycoside, or next-generation, aminoglycoside, that has been identified as a potentially useful agent to combat drug-resistant bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa. " 1815 UPDATE CTX-M-134 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1816 UPDATE TEM-8 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATAAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTAAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATAGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCAGTGAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 1817 UPDATE vgaB dalfopristin; pleuromutilin; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; ABC-F ATP-binding cassette ribosomal protection protein; antibiotic target protection; streptogramin antibiotic; ARO_description; model_description; model_sequences; ARO_category "UPDATED ARO_description with Vga(B) is an ABC-F protein expressed in staphylococci that confers resistance to streptogramin A antibiotics and related compounds. It is associated with plasmid DNA. UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCTTAAAATCGACATGAAGAATGTAAAAAAATATTATGCAGATAAATTAATTTTAAATATAAAAGAACTAAAGATTTATAGTGGGGATAAAATAGGTATTGTAGGTAAGAATGGAGTTGGCAAAACAACACTTTTAAAAATAATAAAAGGACTAATAGAGATTGACGAAGGAAATATAATTATAAGTGAAAAAACAACTATTAAATATATCTCTCAATTAGAAGAACCACATAGTAAGATAATTGATGGAAAATATGCTTCAATATTTCAAGTTGAAAATAAGTGGAATGACAATATGAGTGGTGGTGAAAAAACTAGATTTAAACTAGCAGAGGGATTTCAAGATCAATGTTCTTTAATGCTCGTAGATGAACCTACAAGTAATTTAGATATCGAAGGAATAGAGTTGATAACAAATACTTTTAAAGAGTACCGTGATACTTTTTTGGTAGTATCTCATGATAGAATTTTTTTAGATCAAGTTTGTACAAAAATTTTTGAAATTGAAAATGGATATATTAGAGAATTCATCGGTAATTATACAAACTATATAGAGCAAAAAGAAATGCTTCTACGAAAGCAACAAGAAGAATACGAAAAGTATAATTCTAAAAGAAAGCAATTGGAGCAAGCTATAAAGCTAAAAGAGAATAAGGCGCAAGGAATGATTAAGCCCCCTTCAAAAACAATGGGAACATCTGAATCTAGAATATGGAAAATGCAACATGCTACTAAACAAAAAAAGATGCATAGAAATACGAAATCGTTGGAAACACGAATAGATAAATTAAATCATGTAGAAAAAATAAAAGAGCTTCCTTCTATTAAAATGGATTTACCTAATAGAGAGCAATTTCATGGTCGCAATGTAATTAGTTTAAAAAACTTATCTATAAAATTTAATAATCAATTTCTTTGGAGAGATGCTTCATTTGTCATTAAAGGTGGAGAAAAGGTTGCTATAATTGGTAACAATGGTGTAGGAAAAACAACATTGTTGAAGCTGATTCTAGAAAAAGTAGAATCAGTAATAATATCACCATCAGTTAAAATTGGATACGTCAGTCAAAACTTAGATGTTCTACAATCTCATAAATCTATCTTAGAAAATGTTATGTCTACCTCCATTCAAGATGAAACAATAGCAAGAATTGTTCTAGCAAGATTACATTTTTATCGCAATGATGTTCATAAAGAAATAAATGTTTTGAGTGGTGGAGAACAAATAAAGGTTGCTTTTGCCAAGCTATTTGTTAGCGATTGTAATACATTAATTCTTGATGAACCAACAAACTATTTGGATATCGATGCTGTTGAGGCATTAGAAGAATTGTTAATTACCTATGAAGGTGTTGTGTTATTTGCTTCCCATGATAAAAAATTTATACAAAACCTAGCTGAACAATTGTTAATAATAGAAAATAATAAAGTGAAAAAATTCGAAGGAACATATATAGAATATTTAAAAATTAAAGATAAACCAAAATTAAATACAAATGAAAAAGAACTCAAAGAAAAAAAGATGATACTAGAAATGCAAATTTCATCATTATTAAGTAAAATCTCAATGGAAGAAAATGAAGAAAAAAACAAAGAATTAGATGAAAAGTACAAATTGAAATTAAAAGAATTGAAAAGCCTAAATAAAAATATTTAA DELETED 36001 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. " 1810 UPDATE VIM-15 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1811 UPDATE CARB-2 penam; antibiotic inactivation; CARB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGTTTTTATTGGCATTTTCGCTTTTAATACCATCCGTGGTTTTTGCAAGTAGTTCAAAGTTTCAGCAAGTTGAACAAGACGTTAAGGCAATTGAAGTTTCTCTTTCTGCTCGTATAGGTGTTTCCGTTCTTGATACTCAAAATGGAGAATATTGGGATTACAATGGCAATCAGCGCTTCCCGTTAACAAGTACTTTTAAAACAATAGCTTGCGCTAAATTACTATATGATGCTGAGCAAGGAAAAGTTAATCCCAATAGTACAGTCGAGATTAAGAAAACAGATCTTGTGACCTATTCCCCTGTAATAGAAAAGCAAGTAGGGCAGGCAATCACACTCGATGATGCGTGCTTCGCAACTATGACTACAAGTGATAATACTGCGGCAAATATCATCCTAAGTGCTGTAGGTGGCCCCAAAGGCGTTACTGATTTTTTAAGACAAATTGGGGACAAAGAGACTCGTCTAGACCGTATTGAGCCTGATTTAAATGAAGGTAAGCTCGGTGATTTGAGGGATACGACAACTCCTAAGGCAATAGCCAGTACTTTGAATAAATTTTTATTTGGTTCCGCGCTATCTGAAATGAACCAGAAAAAATTAGAGTCTTGGATGGTGAACAATCAAGTCACTGGTAATTTACTACGTTCAGTATTGCCGGCGGGACGGAACATTGCGGATCGCTCAGGTGCTGGCGGATTTGGTGCTCGGAGTATTACAGCAGTTGTGTGGAGTGAGCATCAAGCCCCAATTATTGTGAGCATCTATCTAGCTCAAACACAGGCTTCAATGGCAGAGCGAAATGATGCGATTGTTAAAATTGGTCATTCAATTTTTGACGTTTATACATCACAGTCGCGCTGA " 1812 UPDATE KHM-1 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; KHM beta-latamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAATAGCTCTTGTTATATCGTTTGGTCTGCTGTTGTTTACCAATATGGTATGCGCTGACGATTCATTACCAGAACTAGATATCCAAAAAATAGAAGACGGCGTTTATCTGTACACCGCTTACGAAAAAATCGAAGGCTGGGGGCTTGTTGGCTCTAACGGATTAGTCGTGCTTGATAACAAAAATGCTTATCTGATTGATACGCCCATTTCAGCCACAGATACTGAAAAATTAGTGAAGTGGATTGACGCGCAGGGCTTTACGGCCAAGGCAAGTATTTCTACCCATTTCCACACCGACAGTACAGGCGGTATTGCATTTCTCAACTCCAAGTCCATTCCAACCTATGCCTCCAAGCTAACTAACCAGCTGCTTAAAAATAAAGGCGAAGAGCAGGCTACGCATTCGTTCGGTAAGAATCCTTATTGGCTATTAAAAAATAAAATCGAAGCCTTTTATCCGGGTGCGGGTCACACACCTGATAATTTAGTAGTGTGGCTGCCGAAACAGAAAATTTTATTTGGTGGCTGTTTTGTCAAACCCGAAGGCCTTGGCAATCTTAGCCATGCGGTAATTGCAGAATGGCCAGCTTCCGCCGAAAAACTTATCGCCCGTTATAGCAATGCAACAATGGTAGTTCCCGGTCACGGAAAAGTTGGCGACGCATCGCTGCTGGAAAAAACCAGGCAGCGCGCAGTTGAAGCGCTTGCAGCTAAAAAGTGA " 1813 UPDATE MOX-4 penam; antibiotic inactivation; MOX beta-lactamase; cephamycin; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1818 UPDATE GES-26 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1819 UPDATE TEM-3 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1337 UPDATED strand with - UPDATED accession with X64523.1 UPDATED fmin with 476 UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATAAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTAAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCAGTGAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA UPDATED NCBI_taxonomy_name with Klebsiella pneumoniae UPDATED NCBI_taxonomy_id with 573 UPDATED NCBI_taxonomy_cvterm_id with 35915 UPDATED accession with CAA45828.1 UPDATED sequence with MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEDKLGARVGYIELDLNSGKILESFRPEERFPMMSTFKVLLCGAVLSRVDAGQEQLGRRIHYSQNDLVKYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTMPAAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGASERGSRGIIAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGASLIKHW " 1098 UPDATE vanB glycopeptide antibiotic; glycopeptide resistance gene cluster; van ligase; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATAGAATAAAAGTCGCAATCATCTTCGGCGGTTGCTCGGAGGAACATGATGTGTCGGTAAAATCCGCAATAGAAATTGCTGCGAACATTGATACGGAAAAATTCGATCCGCACTACATCGGAATTACAAAAAACGGTGTATGGAAGCTATGCAAGAAGCCATGTACGGAATGGGAAGCCGACAGTCTCCCCGCCATACTCTCCCCGGATAGGAAAACGCATGGGCTGCTTGTCATGAAAGAAAGCGAATACGAAACACGGCGTATTGATGTGGCTTTCCCGGTTTTGCATGGCAAATGCGGGGAGGATGGTGCGATACAGGGGCTGTTTGTATTGTCTGGTATCCCCTATGTGGGCTGTGATATTCAAAGCTCCGCAGCTTGCATGGACAAATCACTGGCCTACATTCTTACAAAAAATGCGGGCATCGCCGTTCCCGAATTTCAAATGATTGATAAAGGTGACAAGCCGGAGGCGGGTGCGCTTACCTACCCTGTCTTTGTGAAGCCGGCACGGTCAGGTTCGTCCTTTGGCGTAACCAAAGTAAACGGTACGGAAGAACTTAACGCTGCGATAGAAGCGGCAGGACAATATGATGGAAAAATCTTAATTGAGCAAGCGATTTCGGGCTGTGAGGTCGGGTGTGCGGTCATGGGGAACGAGGATGATTTGATTGTCGGCGAAGTGGATCAAATCCGGCTGAGCCACGGTATCTTCCGCATCCATCAGGAAAACGAGCCGGAAAAAGGCTCAGAAAATGCGATGATTACAGTTCCCGCAGACATTCCGGTCGAGGAACGAAATCGGGTGCAGGAAACGGCAAAGAAAGTATATCGGGTGCTTGGATGCAGAGGGCTTGCCCGTGTTGATCTTTTTTTGCAGGAGGATGGCGGCATCGTTCTAAATGAGGTCAATACCCTGCCCGGTTTTACATCGTACAGCCGCTACCCACGTATGATGGCCGCCGCAGGAATCACGCTTCCTGCACTGATTGACAGCCTGATTACATTGGCGTTAAAGAGGTGA " 1099 UPDATE OXA-48 penam; temocillin; cephalosporin; antibiotic inactivation; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTGTATTAGCCTTATCGGCTGTGTTTTTGGTGGCATCGATTATCGGAATGCCTGCGGTAGCAAAGGAATGGCAAGAAAACAAAAGTTGGAATGCTCACTTTACTGAACATAAATCACAGGGCGTAGTTGTGCTCTGGAATGAGAATAAGCAGCAAGGATTTACCAATAATCTTAAACGGGCGAACCAAGCATTTTTACCCGCATCTACCTTTAAAATTCCCAATAGCTTGATCGCCCTCGATTTGGGCGTGGTTAAGGATGAACACCAAGTCTTTAAGTGGGATGGACAGACGCGCGATATCGCCACTTGGAATCGCGATCATAATCTAATCACCGCGATGAAATATTCAGTTGTGCCTGTTTATCAAGAATTTGCCCGCCAAATTGGCGAGGCACGTATGAGCAAGATGCTACATGCTTTCGATTATGGTAATGAGGACATTTCGGGCAATGTAGACAGTTTCTGGCTCGACGGTGGTATTCGAATTTCGGCCACGGAGCAAATCAGCTTTTTAAGAAAGCTGTATCACAATAAGTTACACGTATCGGAGCGCAGCCAGCGTATTGTCAAACAAGCCATGCTGACCGAAGCCAATGGTGACTATATTATTCGGGCTAAAACTGGATACTCGACTAGAATCGAACCTAAGATTGGCTGGTGGGTCGGTTGGGTTGAACTTGATGATAATGTGTGGTTTTTTGCGATGAATATGGATATGCCCACATCGGATGGTTTAGGGCTGCGCCAAGCCATCACAAAAGAAGTGCTCAAACAGGAAAAAATTATTCCCTAG " 1609 UPDATE QnrC sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TTGAATTATTCCCATAAAACGTACGATCAAATTGATTTTTCCGGCCAAGATTTGAGCTCTCATCACTTTTCTCACTGTAAATTTTTTGGTTGTAATTTTAATCGAGTGAATTTACGTGATGCTAAATTCATGGGTTGTACATTTATTGAATCGAATGATTTTGAAGGATGTAATTTTATCTATGCAGACCTACGAGATGCTTCATTTATGAATTGCATGCTTTCAATGGCGAATTTCCAAGGGGCAAACTGTTTTGGCCTTGAATTGAGAGAATGCGATTTAAAAGGTGCTAATTTCTCACAGGCAAACTTTGTTAATCATGTTTCTAACAAAATGTATTTTTGCTCTGCTTACATTACGGGTTGTAATTTGTCTTATGCTAATTTCGATAAGCAATGCCTTGAAAAGTGTGATTTATTTGAAAATAAATGGGTAGGTGCAAGCCTGCAAGGGGCCTCTTTTAAAGAGTCAGACTTAAGTAGGGGATCATTTTCTGATGACTTTTGGGAGCAATGCAGAATTCAGGGGTGTGATCTCACTCATTCAGAATTAAATGGCTTAGAACCTCGTAAAGTGGATTTAACTGGCGTGAAAATTTGTTCATGGCAACAAGAGCAGCTTTTGGAGCAGTTGGGGGTGATTGTTATTCCAGACAAAGTGTTTTGA " 1608 UPDATE MexT antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; trimethoprim; efflux pump complex or subunit conferring antibiotic resistance; diaminopyrimidine antibiotic; ciprofloxacin; fluoroquinolone antibiotic; phenicol antibiotic; chloramphenicol; model_sequences "UPDATED fmax with 2808512 UPDATED strand with + UPDATED accession with NC_002516.2 UPDATED fmin with 2807468 UPDATED sequence with ATGCCTGTCAGTGATCCTATGCCCCTCCGGCACCTCGCCAGGCCCCGCCCCGTCTCGCACGCAAGGCTTGACGGCGAGCCCCCGCGGTTGCAGCCTCTAGCCCCTGGAAACGAGGAACGCCATGAACCGAAACGACCTGCGCCGCGTCGATCTGAACCTGCTGATCGTGTTCGAGACCCTGATGCACGAACGCAGCGTGACCCGCGCCGCAGAGAAACTGTTCCTCGGCCAGCCGGCCAGCCGGCCATCAGCGCCGCGCTGTCGCGCCTGCGCACGCTGTTCGACGACCCGCTGTTCGTCCGTACCGGACGCAGCATGGAGCCCACCGCGCGAGCCCAGGAAATCTTCGCCCACCTGTCGCCGGCGCTGGATTCCATCTCCACCGCCATGAGTCGCGCCAGCGAGTTCGATCCGGCGACCAGCACCGCGGTGTTCCGCATCGGCCTTTCCGACGACGTCGAGTTCGGCCTGTTGCCGCCCCTGCTCCGCCGCCTGCGCGCGGAGGCGCCGGGGTTCGTCCTCGTCGTGCGCCGCGCCAACTATCTATTGATGCCGAACCTGCTGGCCTCGGGGGAGATCTCGGTGGGCGTCAGCTACACCGACGAACTGCCGGCCAACGCCAAGCGCAAGACCGTGCGCCGCAGCAAGCCGAAGATCCTCCGCGCCGACTCCGCGCCCGGCCAGCTGACCCTCGACGACTATTGCGCGCGACCGCACGCGCTGGTGTCCTTCGCCGGCGACCTCAGCGGCTTCGTCGACGAGGAGCTGGAAAAATTCGGCCGCAAGCGCAAGGTGGTCCTGGCGGTGCCGCAGTTCAACGGCCTCGGCACCCTCCTGGCCGGCACCGACATCATCGCCACCGTGCCCGACTACGCCGCCCAGGCGCTGATCGCCGCCGGCGGCCTACGCGCCGAGGACCCACCGTTCGAGACCCGGGCCTTCGAACTGTCGATGGCTTGGCGCGGCGCCCAGGACAACGATCCGGCCGAACGCTGGCTGCGCTCGCGGATCAGCATGTTCATCGGCGATCCGGACAGTCTCTGA UPDATED NCBI_taxonomy_name with Pseudomonas aeruginosa PAO1 UPDATED NCBI_taxonomy_id with 208964 UPDATED NCBI_taxonomy_cvterm_id with 36804 UPDATED accession with NP_251182.1 UPDATED sequence with MPVSDPMPLRHLARPRPVSHARLDGEPPRLQPLAPGNEERHEPKRPAPRRSEPADRVRDPDARTQRDPRRRETVPRPAGQPAISAALSRLRTLFDDPLFVRTGRSMEPTARAQEIFAHLSPALDSISTAMSRASEFDPATSTAVFRIGLSDDVEFGLLPPLLRRLRAEAPGFVLVVRRANYLLMPNLLASGEISVGVSYTDELPANAKRKTVRRSKPKILRADSAPGQLTLDDYCARPHALVSFAGDLSGFVDEELEKFGRKRKVVLAVPQFNGLGTLLAGTDIIATVPDYAAQALIAAGGLRAEDPPFETRAFELSMAWRGAQDNDPAERWLRSRISMFIGDPDSL " 1979 UPDATE FosA4 fosfomycin; fosfomycin thiol transferase; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1978 UPDATE OXA-200 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1601 UPDATE LRA-1 class A LRA beta-lactamase; penam; cephalosporin; antibiotic inactivation; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 5713 UPDATED strand with - UPDATED accession with EU408346.1 UPDATED fmin with 4825 UPDATED sequence with ATGAATCCTCCAATCCATCGCCGCACCCTGTTGCTCGCCGCCTCGGTCCTCCCGCTCGCAAGCGCCTGCACCGCGTGGTCCGCCAAGGGGCCGCAGCAAGACGCATCGGCGCAGCTCGCCGCGCTCGAAGCCGCATCGGGCAGCCGGCTCGGTGTGGTCGGTTTCAACACCGCCACCGGCGCGCGCGTGCAGCACCGTGCCGAGGAACGCTTTCCGTTCTGCAGCACCTTCAAGCTCATGCTGGCCGCGGCCGTCCTCGAACGCAGCGCGAAAGAGGGCGACCTGCTCGCGCGCCGCGTCAACTACAGCAAGGGCGACCTGGTCTCCTACTCGCCCATCACCGAAAAGAATGTGGCGACCGGCATGACGGTGGCCGAGCTGTGCGCCGCCACCGTCCAGTACAGCGACAACGGCGCGGCCAACCTGCTGATGAAGATCCTGGGCGGCCCGTCCGCCGTGACGGCCTTTGCGCGTGCCTCCGGCGACGAGGTCTTCAGGCTGGACCGCTGGGAGACCGAACTCAACACCGCCATCCCCGGCGACCTGCGCGACACCACCACGCCCGCGGCCATGGCGGCAAGCGTGCAGCGGCTGGTGCTGGGCAACGCGCTGGGCGCGGCACAGCGCGAGCAGCTCAAGACCTGGTTGCTGGGCAACACCACGAGCACCCAGCGCTTCCTGGCCGGCGTGCCCGCCGGCTGGAAGGTGGGCGACAAGACCGGTTCGGGCTCCTACGGCACCACGAACGACGTGGGCGTGCTGTGGCCGCCGGCCGGCGCGCCGCTGGTGCTGGCGGTCTACCTGACGTTTCCGCAGAAGGAGGCGAAGGGGCGCAGCGATGTGGTTGCGTCGGCGACGCGCATTGCGGTGAGCGCGCTGGCGAGCTGA UPDATED NCBI_taxonomy_name with uncultured bacterium BLR1 UPDATED NCBI_taxonomy_id with 506512 UPDATED NCBI_taxonomy_cvterm_id with 39079 UPDATED accession with ACH58980.1 UPDATED sequence with MNPPIHRRTLLLAASVLPLASACTAWSAKGPQQDASAQLAALEAASGSRLGVVGFNTATGARVQHRAEERFPFCSTFKLMLAAAVLERSAKEGDLLARRVNYSKGDLVSYSPITEKNVATGMTVAELCAATVQYSDNGAANLLMKILGGPSAVTAFARASGDEVFRLDRWETELNTAIPGDLRDTTTPAAMAASVQRLVLGNALGAAQREQLKTWLLGNTTSTQRFLAGVPAGWKVGDKTGSGSYGTTNDVGVLWPPAGAPLVLAVYLTFPQKEAKGRSDVVASATRIAVSALAS " 1976 UPDATE mefA efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; macrolide antibiotic; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 66509 UPDATED strand with - UPDATED accession with NC_023287.1 UPDATED fmin with 65291 UPDATED sequence with ATGGAAAAATACAACAATTGGAAACTTAAGTTTTATACAATATGGGCAGGGCAAGCAGTATCATTAATCACTAGTGCCATCCTGCAAATGGCGATTATTTTTTACCTTACAGAAAAAACTGGATCTGCGATGGTCTTGTCTATGGCTTCACTAGTAGGTTTTTTACCCTATGCGGTCTTTGGACCTGCAATTGGTGTGCTAGTGGATCGTCATGATAGGAAGAAGATAATGATTGGTGCTGATTTAATTATCGCAGCAGCTGGTGCAGTGCTTGCTATTGTTGCATTCTATATGGAGCTACCTGTCTGGATGGTTATGATAGTATTGTTTATCCGTAGCATTGGAACAGCTTTTCATACCCCAGCACTCAATTCGGTTACACCACTTTTAGTACCAGAAGAGCAGCTAACGAAATGCGCAGGCTATAGTCAGTCTTTGCAGTCTATAAGCTATATTGTTAGTCCGGCAGTTGCAGCACTCTTATACTCCGTTTGGGATTTAAATGCTATTATTGCCATCGACGTATTGGGTGCTGTGATTGCATCTATTACGGTAGCAATTGTACGTATACCTAAGCTGGGTAATCAAGTGCAAAGTTTGGAACCAAATTTCATAAGAGAAATGAAAGAAGGAATTGTCGTTCTGAGACAAAACAAAGGATTGTTTGCCTTATTACTCTTAGGAACACTATATACTTTTGTTTATATGCCAATTAATGCACTATTTCCTTTAATAAGCATGGAATACTTTAATGGAACACCTGTGCATATTTCTATTACGGAAATTTCCTTTGCCTTTGGAATGCTAGCAGGAGGCTTATTGTTAGGAAGATTAGGGAGCTTCGAAAAGCGTGTATTACTAATAACTAGTTCATTTTTTATAATGGGGGCCAGTTTAGCCGTTTCGGGAATACTTCCTCCAAATGGATTTGTAATATTTGTAGTTTGCTGTGCAATAATGGGGCTTTCGGTGCCATTTTATAGCGGTGTGCAAACAGCTCTTTTTCAGGAGAAAATTAAGCCTGAATATTTAGGACGTGTATTTTCTTTGACCGGAAGTATCATGTCACTTGCTATGCCAATTGGATTAATTCTTTCTGGATTCTTTGCTGATAGAATTGGTGTAAATCATTGGTTTTTACTATCAGGTATTTTAATTATTGGCATTGCTATAGTTTGCCCAATGATAACAGAGGTTAGAAAATTAGATTTAAAATAA UPDATED NCBI_taxonomy_name with Exiguobacterium sp. S3-2 UPDATED NCBI_taxonomy_id with 1389960 UPDATED NCBI_taxonomy_cvterm_id with 39580 UPDATED accession with YP_008997285.1 UPDATED sequence with MEKYNNWKLKFYTIWAGQAVSLITSAILQMAIIFYLTEKTGSAMVLSMASLVGFLPYAVFGPAIGVLVDRHDRKKIMIGADLIIAAAGAVLAIVAFYMELPVWMVMIVLFIRSIGTAFHTPALNSVTPLLVPEEQLTKCAGYSQSLQSISYIVSPAVAALLYSVWDLNAIIAIDVLGAVIASITVAIVRIPKLGNQVQSLEPNFIREMKEGIVVLRQNKGLFALLLLGTLYTFVYMPINALFPLISMEYFNGTPVHISITEISFAFGMLAGGLLLGRLGSFEKRVLLITSSFFIMGASLAVSGILPPNGFVIFVVCCAIMGLSVPFYSGVQTALFQEKIKPEYLGRVFSLTGSIMSLAMPIGLILSGFFADRIGVNHWFLLSGILIIGIAIVCPMITEVRKLDLK " 1603 UPDATE SHV-86 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1602 UPDATE AAC(6')-Iai antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAATACACTATTATTGATATTAAAGATTCAGAAACGTACATTACTCAAGCTGCAGAAATATTATTTGATGTATTTTCAGAAATAAGCCCAGAATCATGGCCAACACTCCAAAAAGCAAAAGAAGATGTTATTGAATGTATAGAAGGTGAAAACATTTGCATTGGCATTATAATAAATAAAGAATTAATTGGATGGATTGGATTAAGAGAAATGTATAAAAAAACATGGGAATTACATCCTATGGTTATCAAGAAAACACATCATAATATGGGATTTGGAAAAATACTAATTAATGAAATAGAAAAAAAAGCAAGAGAAAGAAATTTAGAAGGTATTGTACTTGGAACAGATGATGAAACATATAGAACTTCATTATCAATGATTGAATTAAATAATGAAAATATTTTGCAAGAAATAAAGAATATTAGAAATTTAGAAAATCATCCTTATGAATTTTATAAAAAATGTGGATATTGTATTATTGGTGTAATTCCAAACGCAAATGGGAAGAATAAGCCAGATATATTAATGTGGAAAAATATTATGGAAGAAAATTGCGGCTAA " 1605 UPDATE cphA5 carbapenem; CphA beta-lactamase; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1604 UPDATE CTX-M-84 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1607 UPDATE Streptococcus pneumoniae PBP1a conferring resistance to amoxicillin ceftaroline; ampicillin; flucloxacillin; ceftibuten; cefditoren; piperacillin; cefpodoxime; cefixime; cefdinir; meropenem; carbapenem; imipenem; aztreonam; cefradine; isopenicillin N; cefazolin; penicillin N; ceftazidime; cefepime; penicillin; antibiotic target alteration; oxacillin; cefmetazole; moxalactam; cloxacillin; cefadroxil; ceftriaxone; methicillin; loracarbef; ceftizoxime; cephalosporin; cefotaxime; cefaclor; Penicillin-binding protein mutations conferring resistance to beta-lactam antibiotics; cefonicid; monobactam; cefuroxime; amoxicillin; mezlocillin; azlocillin; cefalexin; doripenem; cefotiam; ertapenem; penam; cefprozil; cephapirin; ceftobiprole; benzylpenicillin; phenoxymethylpenicillin; cephamycin; carbenicillin; cefalotin; ceftiofur; mecillinam; propicillin; cefoxitin; dicloxacillin; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 1606 UPDATE CTX-M-16 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 809 UPDATE lnuB antibiotic inactivation; lincosamide nucleotidyltransferase (LNU); lincosamide antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 808 UPDATE TEM-171 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 803 UPDATE cphA4 carbapenem; CphA beta-lactamase; antibiotic inactivation; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAGGTTGGATGAAGTGCACATTAGCCGGGGCCGTGGTGCTGATGGCGAGTTTCTGGGGTGGCAGCGTGCGGGCGGCGGGGATCTCCCTTAAGCAGGTGAGTGGCCCTGTGTATGTGGTTGAAGATAACTACTACGTAAAGGAAAACTCCGTGGTCTATTTCGGGGCCAAGGGGGTGACGGTGGTGGGGGCGACCTGGACGCCGGATACCGCCCGCGAGCTGCACAAGCTGATCAAACGGGTCAGCAGCAAGCCGGTGCTGGAGGTGATCAACACCAACTACCACACCGATCGGGTGGGCGGTAATGCCTACTGGAAGTCCATCGGGGCCAAGGTGGTGGCGACGCGCCAGACCCGGGATCTGATGAAGAGCGACTGGGCCGAGATTGTCGCCTTTACCCGCAAGGGGCTGCCGGAGTATCCGGATCTGCCGCTGGTGCTGCCCAACGTGGTGCACGATGGCGACTTCACCCTGCAAGAGGGCAAGGTGCGCGCTTTCTACGCGGGCCCGGCCCATACGCCGGACGGCATCTTTGTCTACTTCCCTGACGAGCAGGTGCTTTATGGCAACTGCATCCTCAAGGAGAAGCTGGGCAACCTGAGCTTTGCCAATGTGAAGGCCTATCCGCAGACCATCGAGCGGCTTAAAGCGATGAAGTTGCCGATCAAGACGGTGATTGGNGGTCACGACTCGCCGCTGCATGGCCCCGAGCTGATTGATCACTACGAGGAGCTGATCAAGGCGGCCGCCGCAGTCTAA " 802 UPDATE QnrA3 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 801 UPDATE mfpA sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 3773567 UPDATED strand with - UPDATED accession with AL123456 UPDATED fmin with 3773015 UPDATED sequence with TTGCAGCAGTGGGTTGATTGCGAATTCACCGGTCGAGACTTCCGCGACGAGGACCTTAGCCGCCTGCACACCGAACGGGCGATGTTCAGCGAATGCGATTTCAGCGGCGTGAATCTGGCCGAGTCACAACACCGAGGGTCGGCGTTTCGTAATTGCACCTTCGAACGGACGACACTGTGGCACAGCACATTTGCCCAGTGCAGCATGTTGGGCTCGGTCTTCGTGGCTTGCCGGCTGCGGCCGCTGACGTTGGACGACGTGGATTTCACGCTCGCCGTGCTCGGCGGAAATGATCTGCGTGGTCTCAACTTGACCGGCTGCCGGTTGCGAGAGACCAGCCTGGTGGATACCGACTTGCGCAAGTGCGTGCTGCGCGGCGCCGACCTCAGTGGTGCCCGTACCACGGGCGCCCGGCTGGATGACGCCGACTTGCGGGGCGCGACCGTGGACCCGGTATTGTGGCGGACCGCGTCGTTGGTGGGTGCGCGTGTCGACGTCGACCAAGCCGTGGCCTTTGCGGCGGCGCACGGGCTGTGCTTGGCAGGGGGCTAG UPDATED NCBI_taxonomy_name with Mycobacterium tuberculosis H37Rv UPDATED NCBI_taxonomy_id with 83332 UPDATED NCBI_taxonomy_cvterm_id with 39507 UPDATED accession with CCP46182.1 UPDATED sequence with MQQWVDCEFTGRDFRDEDLSRLHTERAMFSECDFSGVNLAESQHRGSAFRNCTFERTTLWHSTFAQCSMLGSVFVACRLRPLTLDDVDFTLAVLGGNDLRGLNLTGCRLRETSLVDTDLRKCVLRGADLSGARTTGARLDDADLRGATVDPVLWRTASLVGARVDVDQAVAFAAAHGLCLAGG " 800 UPDATE CTX-M-87 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 807 UPDATE OKP-B-1 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 806 UPDATE SHV-150 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 805 UPDATE MexC penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; ofloxacin; trimethoprim; aminocoumarin antibiotic; novobiocin; macrolide antibiotic; phenicol antibiotic; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; diaminopyrimidine antibiotic; tetracycline antibiotic; gentamicin C; chloramphenicol; aminoglycoside antibiotic; fluoroquinolone antibiotic; tetracycline; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCTGATTTGCGTGCAATAGGAAGGATCGGGGCGTTGGCTATGGCCATCGCGTTGGCGGGTTGTGGGCCGGCGGAAGAGCGACAGGAGGCCGCCGAAATGGTGTTGCCGGTGGAGGTCCTGACGGTGCAGGCCGAGCCCCTGGCGCTGAGTTCGGAACTGCCTGGGCGGATCGAACCGGTGCGGGTCGCCGAGGTGCGCGCGCGGGTGGCCGGCATCGTCGTGCGGAAGCGCTTCGAGGAGGGCGCCGACGTCAAGGCTGGCGACCTGCTGTTCCAGATCGATCCGGCACCGCTGAAGGCTGCGGTGTCGCGCGCCGAGGGTGAGCTGGCGCGGAACCGCGCGGTGCTGTTCGAGGCGCAGGCGCGGGTGCGTCGCTACGAGCCGCTGGTGAAGATCCAGGCGGTCAGCCAGCAGGACTTCGATACCGCCACCGCCGACCTGCGCAGCGCCGAGGCGGCGACCCGCTCGGCCCAGGCCGACCTGGAGACCGCGCGCCTGAACCTCGGCTACGCCTCGGTCACTGCGCCGATCTCCGGGCGCATCGGCCGCGCGCTGGTGACCGAGGGCGCGCTGGTCGGGCAGGGCGAGGCGACGCTGATGGCGCGCATCCAGCAGCTCGATCCGATCTATGCGGATTTCACCCAGACCGCGGCCGAGGCCCTGCGCCTGCGCGACGCCCTGAAGAAAGGCACCTTGGCCGCCGGCGACAGCCAGGCGCTGACCCTGCGCGTCGAAGGGACGCCCTACGAGCGCCAGGGCGCGTTGCAGTTCGCCGACGTGGCGGTGGATCGCGGCACCGGCCAGATCGCCCTGCGCGGCAAGTTCGCCAACCCCGACGGGGTCCTGCTGCCGGGCATGTACGTGCGCGTACGTACGCCCCAGGGCATCGACAACCAGGCGATCCTGGTGCCGCAACGGGCCGTGCACCGCTCCAGCGACGGCAGCGCCCAGGTGATGGTGGTGGGCGCCGACGAGCGCGCCGAGTCGCGCAGCGTCGGTACCGGCGTCATGCAGGGTTCGCGCTGGCAGATCACCGAGGGCCTGGAGCCGGGTGACCGGGTCATAGTCGGCGGCCTGGCTGCGGTGCAGCCGGGGGTGAAGATCGTGCCGAAGCCGGATGGTGCCCAGGCGCAAGCCCAGTCACCTGCGCCGCAACAGTAA " 804 UPDATE tetB(P) chlortetracycline; demeclocycline; oxytetracycline; tetracycline antibiotic; tetracycline; antibiotic target protection; minocycline; tetracycline-resistant ribosomal protection protein; doxycycline; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGAAAATAATTAATATAGGAATCGTAGCACACGTGGATGCAGGAAAAACAACTATAACAGAAAACTTATTATATTATAGTGGAGCTATAAAATCAGTTGGAAGAGTTGATTTAGGCAATACACAGACGGATTCTATGGAGCTTGAGCGTAAGAGAGGAATTACCATTAAATCGTCAACCATATCTTTTAATTGGAATAATGTTAAGGTGAATATTATTGATACTCCAGGACATGTGGATTTTATTTCGGAAGTTGAACGTTCATTAAATAGCTTAGATGGAGCAATACTAGTTATATCAGGAGTAGAGGGGATTCAGTCACAAACAAGAATATTATTTGACACATTAAAGGAGTTAAATATTCCAACAATAATTTTTGTAAATAAGCTAGATAGAATTGGGGCAAATTTCAACAAAGTATTTGAAGAAATAAAGAAGAATATGTCCAATAAAGTAGTTAGATTACAAGAAGTATATGATGTAGGAAGCAAAGCTGTTTATATAAAAAAACTATTTGATACATGCATAATAAATGATGATGCTATTAATGTTTTATCAGACTTAGACGAAGCATTTTTAGAAAGATATATTGGTGGAATAGAACCTGATAAAGAAGAAATACAAGAAAAGCTTTCATTATATGCAAGAGAAGGAAGTCTATATCCAGTATTTTGTGGTGCTGCAGCAATTGGACTTGGAATTGAAGATTTATTAGATGGAATTTGTAGTTATTTTCCATTTGCAAGTAATGATTGTGAAAGTGATTTATCTGGGGTAGTATTTAAAATCGAAAGAACAAGTAAAAATGAAAAGAAGGTTTATGTAAGATTATTTGGAGGAAAAATATCTGTAAGAGATAAAATTCAAGTACCTAATAAGGAGATAGCAGAAAAAGTAAAGAAAATTAATAGGTTAGAAAATGGGGGAGTTGTTGAAGCACAGAGGATAGAAGCAGGGGATATAGGTATTTTATATGGACTTACAAGTTTCCAAGTGGGAGATGTTATTGGAATTTCAAATGATAAAATTAAAAATATATCTATAGCTAAACCAGCATTAAAAACAACAATTTCTGCAATTGATAAAGAAAAAAATCCAGAGCTATTTAAAGCATTAACATTACTTGCAGAGGAAGATCCACTACTCGCCTTCGCGATGAATGACATAGATAAAGAAATTTATGTCAACTTATTCGGTGAAGTTCAAATGGAAATACTAAGTTCCATGTTAGATGATTTATATGGAATAAAAGTAGAGTTTTCGAATATTGAGACTATCTATAAGGAAACACCTAAAGGTTTTGGAGCGTCAATAATGCATATGCAGGAAGACTTAAATCCATTTTGGGCGACAGTAGGCTTAGAAATAGAACCAGCAGGGAGAGGCGAAGGTCTTAGGTATATTTCTAATGTTTCAGTAGGGTCATTGCCAAAATCTTTTCAAAATGCAATTGAAGAAGCAGTTATTAAGACAAGTAAACAAGGATTATTTGGATGGGAGGTTACAGATGTAAAAGTCACTCTTAGCTGTGGTGAATTTTTTAGTCCAGCCAGCACTCCAGCAGATTTTAGAAATGTGACACCTATGGTATTCATGGAAGCATTATATAAAGCACAAACTGTTTTATTAGAGCCATTACATGAGTTTGAGTTAAAGATTCCTCAAAATGCTTTAAGCAAAGCGGTATGGGATTTAGAAACTATGAGGGCAACCTTTGATAATCCTATTGTTATAGGGGATGAATTCTCAATAAAGGGATTAATTCCAGTAGAAAATTCAAAAGAATATAAAATGAAAATAGCTTCATATACAGAAGGTAGAGGAATGTTTGTGACAAAATTTTATGGGTATAAGGAAGCTTCAGCTGAATTTTCAAAAGCACGCAAAAAAACAACGTATGATCCATTGAATAAAAAAGAGTATTTGCTTCATAAACTAAACGCAATTAGAGATTAA " 2848 UPDATE MCR-4 peptide antibiotic; MCR phosphoethanolamine transferase; antibiotic target alteration; colistin B; colistin A; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 7433 UPDATED strand with - UPDATED accession with MF543359.1 UPDATED fmin with 5807 UPDATED sequence with GTGATTTCTAGATTTAAGACGTTATCGGTTAACCAATTCACTTTCATCACTGCGTTGTTTTATGTTGCCATTTTCAATCTACCGCTCTTTGGTATAGTGCGAAAAGGAATTGAAAAACAACCAGAAGTTGATCCCCTTTTCATCGCATCTATGCCGCTATTTTTAACATTTGCGCTGAGTTTTTTGTTTTCAATTTTTACCGTCAAATACCTGCTGAAGCCCTTTTTTATCGTATTGACGTTACTTTCCTCAAGTGTATTTTTTGCAGCCTATCAATACAATGTCGTGTTTGACTACGGCATGATAGAAAACACGTTTCAAACACATCCTGCTGAAGCATTGATGTATGTAAATCTTGCATCAATTACCAATCTACTGCTGACTGGGCTATTACCGTCATATCTTATTTATAAGGCCGATATTCATTATCAGCCCTTTTTTAAGGAGTTATTGCATAAATTAGCCTTTATGCTGCTAATGTTCGTTGGCATTGGGATAGTCGCCTTTTTTTACTATCAAGATTATGCTGCATTTGTTCGAAACAACAGTGAGTTAAGGCGTTACATTGTCCCTACCTATTTTGTCAGTAGTGCATCTAAATATCTCAATGAGCACTATTTGCAGACGCCCATGGAATACCAACAACTTGGCCTAGATGCGAAGAATGCCAGTCGTAACCCGAACACTAAACCTAACTTATTAGTGGTTGTTGTGGGTGAAACTGCGCGCTCAATGAGCTATCAATATTATGGATATAACAAGCCAACCAATGCTCATACCCAAAATCAGGGGCTGATTGCGTTTAACGATACTAGCTCATGCGGCACGGCCACGGCGGTGTCTCTACCCTGTATGTTTTCACGAATGGGGCGGGCAGACTATGATCCTCGCCGTGCTAATGCTCAAGACACAGTGATTGATGTGTTAAGTCATAGTGGTATAAAAGTACAGTGGTTTGATAATGATTCTGGCTGTAAAGGTGTGTGTGATCAGGTTGAAAATCTCACGATAGATTTGAAGAGTGATCCGAAGCTGTGTTCTGGCCAATATTGTTTTGACCAAGTATTGCTCAACAAATTAGATAAAATTCTGGCAGTAGCACCAAGTCAAGATACAGTAATTTTTTTGCATATCATTGGTAGTCATGGACCAACTTATTATCTTAGATACCCGCCAGAGCATCGTAAATTTATACCGGATTGTCCGCGCAGTGATATTCAAAATTGCAGTCAAGAAGAACTGATTAACACCTACGACAACACTATTCTATATACGGATTTTATTCTCAGTGAAGTGGTGAATAAATTAAAAGGTAAGCAGGATATGTTCGATACTGCAATGCTGTATCTCTCTGACCATGGTGAGTCTTTGGGTGAAAAGGGCATGTATTTACATGGTGCGCCCTATAGTATTGCACCGAAAGAACAAACTAGCGTACCAATGCTGGCTTGGGTATCTAATGACTTTAGCCAAGATAATCAGTTGAACATGACTTGTGTTGCACAGCGAGCAGAACAGGGCGGCTTTTCCCACGACAATTTGTTCGACAGTTTGCTAGGACTTATGAATGTAAAAACCACCGTCTATCAGAGCCAACTCGATATTTTTGCACCTTGCAGGTATTAG UPDATED NCBI_taxonomy_name with Salmonella sp. UPDATED NCBI_taxonomy_id with 599 UPDATED NCBI_taxonomy_cvterm_id with 41493 UPDATED accession with ASR73329.1 UPDATED sequence with MISRFKTLSVNQFTFITALFYVAIFNLPLFGIVRKGIEKQPEVDPLFIASMPLFLTFALSFLFSIFTVKYLLKPFFIVLTLLSSSVFFAAYQYNVVFDYGMIENTFQTHPAEALMYVNLASITNLLLTGLLPSYLIYKADIHYQPFFKELLHKLAFMLLMFVGIGIVAFFYYQDYAAFVRNNSELRRYIVPTYFVSSASKYLNEHYLQTPMEYQQLGLDAKNASRNPNTKPNLLVVVVGETARSMSYQYYGYNKPTNAHTQNQGLIAFNDTSSCGTATAVSLPCMFSRMGRADYDPRRANAQDTVIDVLSHSGIKVQWFDNDSGCKGVCDQVENLTIDLKSDPKLCSGQYCFDQVLLNKLDKILAVAPSQDTVIFLHIIGSHGPTYYLRYPPEHRKFIPDCPRSDIQNCSQEELINTYDNTILYTDFILSEVVNKLKGKQDMFDTAMLYLSDHGESLGEKGMYLHGAPYSIAPKEQTSVPMLAWVSNDFSQDNQLNMTCVAQRAEQGGFSHDNLFDSLLGLMNVKTTVYQSQLDIFAPCRY " 2849 UPDATE MCR-5 peptide antibiotic; MCR phosphoethanolamine transferase; antibiotic target alteration; colistin B; colistin A; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2846 UPDATE BUT-1 BUT beta-lactamase; antibiotic inactivation; cephalosporin; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with BUT beta-lactamase UPDATED category_aro_cvterm_id with 41459 UPDATED category_aro_accession with 3004293 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A class C beta-lactamase family of chromosome-encoded antibiotic resistance genes originally described from Buttiauxella spp. UPDATED category_aro_name with cephalosporin UPDATED category_aro_cvterm_id with 35951 UPDATED category_aro_accession with 0000032 UPDATED category_aro_class_name with Drug Class UPDATED category_aro_description with Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. " 2844 UPDATE Rhodobacter sphaeroides ampC beta-lactamase penam; antibiotic inactivation; benzylpenicillin; ampC-type beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2845 UPDATE Laribacter hongkongensis ampC beta-lactamase penam; antibiotic inactivation; cephalosporin; ampC-type beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2842 UPDATE Vibrio cholerae varG carbapenem; antibiotic inactivation; subclass B1 Vibrio cholerae varG beta-lactamase; meropenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2843 UPDATE Escherichia coli ampC beta-lactamase penam; penicillin; cephalosporin; antibiotic inactivation; ampC-type beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 4378944 UPDATED strand with - UPDATED accession with NC_000913.3 UPDATED fmin with 4377810 UPDATED sequence with ATGTTCAAAACGACGCTCTGCGCCTTATTAATTACCGCCTCTTGCTCCACATTTGCTGCCCCTCAACAAATCAACGATATTGTGCATCGCACAATTACCCCGCTTATAGAGCAACAAAAGATCCCGGGTATGGCGGTGGCGGTAATTTATCAGGGTAAACCTTATTACTTTACCTGGGGCTATGCGGACATCGCCAAAAAGCAGCCCGTCACACAGCAAACGTTGTTTGAGTTAGGTTCGGTCAGCAAAACATTTACTGGCGTGCTTGGTGGCGACGCTATTGCTCGAGGGGAAATCAAGTTAAGCGATCCCACAACAAAATACTGGCCTGAACTTACCGCTAAACAGTGGAATGGGATCACACTATTACATCTCGCAACCTACACTGCTGGCGGCCTGCCATTGCAGGTGCCGGATGAGGTGAAATCCTCAAGCGACTTGCTGCGCTTCTATCAAAACTGGCAGCCTGCATGGGCTCCAGGAACACAACGTCTGTATGCCAACTCCAGTATCGGTTTGTTCGGCGCACTGGCTGTGAAGCCGTCTGGTTTGAGTTTTGAGCAGGCGATGCAAACTCGTGTCTTCCAGCCACTCAAACTCAACCATACGTGGATTAATGTACCGCCCGCAGAAGAAAAGAATTACGCCTGGGGATATCGCGAAGGTAAGGCAGTGCATGTTTCGCCTGGGGCGTTAGATGCTGAAGCTTATGGTGTGAAGTCGACCATTGAAGATATGGCCCGCTGGGTGCAAAGCAATTTAAAACCCCTTGATATCAATGAGAAAACGCTTCAACAAGGGATACAACTGGCACAATCTCGCTACTGGCAAACCGGCGATATGTATCAGGGCCTGGGCTGGGAAATGCTGGACTGGCCGGTAAATCCTGACAGCATCATTAACGGCAGTGACAATAAAATTGCACTGGCAGCACGCCCCGTAAAAGCGATTACGCCCCCAACTCCTGCAGTACGCGCATCATGGGTACATAAAACAGGGGCGACCGGCGGATTTGGTAGCTATGTCGCGTTTATTCCAGAAAAAGAGCTGGGTATCGTGATGCTGGCAAACAAAAACTATCCCAATCCAGCGAGAGTCGACGCCGCCTGGCAGATTCTTAACGCTCTACAGTAA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. MG1655 UPDATED NCBI_taxonomy_id with 511145 UPDATED NCBI_taxonomy_cvterm_id with 36849 UPDATED accession with NP_418574.1 UPDATED sequence with MFKTTLCALLITASCSTFAAPQQINDIVHRTITPLIEQQKIPGMAVAVIYQGKPYYFTWGYADIAKKQPVTQQTLFELGSVSKTFTGVLGGDAIARGEIKLSDPTTKYWPELTAKQWNGITLLHLATYTAGGLPLQVPDEVKSSSDLLRFYQNWQPAWAPGTQRLYANSSIGLFGALAVKPSGLSFEQAMQTRVFQPLKLNHTWINVPPAEEKNYAWGYREGKAVHVSPGALDAEAYGVKSTIEDMARWVQSNLKPLDINEKTLQQGIQLAQSRYWQTGDMYQGLGWEMLDWPVNPDSIINGSDNKIALAARPVKAITPPTPAVRASWVHKTGATGGFGSYVAFIPEKELGIVMLANKNYPNPARVDAAWQILNALQ " 2840 UPDATE NPS-1 penam; antibiotic inactivation; NPS beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2841 UPDATE Escherichia coli 23S rRNA with mutation conferring resistance to chloramphenicol antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to phenicol antibiotics; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 1775 UPDATE QnrS7 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1774 UPDATE CTX-M-106 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1777 UPDATE OXA-177 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1776 UPDATE SHV-159 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1771 UPDATE TEM-19 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1770 UPDATE TEM-127 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1773 UPDATE tet(43) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1619 UPDATED strand with - UPDATED accession with GQ244501.1 UPDATED fmin with 59 UPDATED sequence with ATGCCCCCATCTCACCACATGTTGCGCCCAATCGAACAATGTTCTATTCTATGGAACGACGTTCGATACTCGAACAGCGTTCGACTGAAGGAGGCCGGTATGACCGCCACAACTCAAGCCTCGGCACCCGCGGCACGTACCTATCTGTCGCTGCGCGCCGCGTGGATTCCGCTCTTCGCGCTCTGCCTCGCGTTCTTCGTGGAGATGGTTGACAACACCCTGCTCACGATCGCGCTGCCGACGATCGGGCGCGACCTCGGCGCGAGCGTCACCTCCTTGCAGTGGGTGACCGGCGCCTATTCGCTGACCTTTGGCGGCCTGTTGCTGACAGCGGGCTCGCTCGCCGACCGCTTTGGCCGGCGCCGCGTGCTGCAGATTGGCCTTCTCGCCTTTGGGCTCATCAGCCTCACGGTGATTGCCGTGGCAACCGCGGGCCAGCTGATCGCGGTGCGCGCTGCGCTCGGCCTCGCCGCCGCCGCGATGGCCCCAATCACCAACTCCCTCGTGTTCAGGCTGTTCGAGGGCGAGGACCTCCGTCGGCGGGCAATGACCCTCATGATCGTCGTCGGCATGAGCGGATTCATCCTTGGCCCGCTACTCGGCGGAACGGTTCTCGCTCACGCCAGCTGGCAGTGGTTGCTGCTTATCAACGCACCCATCGCGCTCATTGCGCTCATCGGCGTTCGCCTTGGCGTGCCTGCGGACGACGCCGAGGGACTCACAAAGGACCGCCTTGACGTGAAGGGCTCGGCACTCAGCATCGCCGCGATCGGCCTCGCTTGCTACACACTCACGAGCGGAGTGGAGCACGGCTGGATGTCTGCCGTCACCTGGGCCTGCGGGATCGGCGCGGCTGCCGCGCTGATGGGATTCGTGTGGCACGAGCGCCGCACCGATCACCCCATGCTGGACCTCGACGTCTTCAGGAACCGCACCGTTCGCGGCGCATCGATCGCCCAGGTAGGCACCTCAATCGCGATGGCTTCGCTGATGTTCGGCCTGATCCTTCACTTCCAGGGCGCGTACGGCTGGAGCCCCATGCGCGCCGGCCTCGCCAACCTGCCGCTCATCCTCACGATGATTCTTGCGACACCGGTCTCTGAGGGCCTCGCGAAGAGGTTCGGCCACCGCATTGCCATGCTCATCGGCGCGGGTCTCCTCGCCGGATCGCTCGCTGGCCTCGCGTGGGGCGTGGGGCATGGSTACCTCGTCATCGCGGTATTCATGGTGACCTTCACCCTCGGTCTCCGCACCGTTATGACGATCGCGGCGGTGGGCCTCGTTGGTGCGATGCCGGAGAACCGCACCTCGCTCGGCGCGGCACTCAACGACACCGCCCAAGAAGTAGGAACAAGCCTCGGCATGGCAGTGATCGGCACGCTCATCGCGGTGCTCGYCACCACGACGCTTCCCAACGGCGACKGGAGCCTCGACCTCGCGACTTCATACTTCGCCGGGGAGCGCATCGCTTATCTGTTCCTTGCCGTCGTAGTCGGAGTGATCGCGGGATGGGGCGCGCTCACGTTGTCCAACTCCAAGGAGATGGAAGACGTCCACTAG UPDATED NCBI_taxonomy_name with uncultured bacterium AOTet43 UPDATED NCBI_taxonomy_id with 654983 UPDATED NCBI_taxonomy_cvterm_id with 37082 UPDATED accession with ACS83748.1 UPDATED sequence with MPPSHHMLRPIEQCSILWNDVRYSNSVRLKEAGMTATTQASAPAARTYLSLRAAWIPLFALCLAFFVEMVDNTLLTIALPTIGRDLGASVTSLQWVTGAYSLTFGGLLLTAGSLADRFGRRRVLQIGLLAFGLISLTVIAVATAGQLIAVRAALGLAAAAMAPITNSLVFRLFEGEDLRRRAMTLMIVVGMSGFILGPLLGGTVLAHASWQWLLLINAPIALIALIGVRLGVPADDAEGLTKDRLDVKGSALSIAAIGLACYTLTSGVEHGWMSAVTWACGIGAAAALMGFVWHERRTDHPMLDLDVFRNRTVRGASIAQVGTSIAMASLMFGLILHFQGAYGWSPMRAGLANLPLILTMILATPVSEGLAKRFGHRIAMLIGAGLLAGSLAGLAWGVGHGYLVIAVFMVTFTLGLRTVMTIAAVGLVGAMPENRTSLGAALNDTAQEVGTSLGMAVIGTLIAVLXTTTLPNGDXSLDLATSYFAGERIAYLFLAVVVGVIAGWGALTLSNSKEMEDVH " 1772 UPDATE aadA11 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTAACGCAGTACCCGCCGAGATTTCGGTACAGCTATCACTGGCTCTCAACGCCATCGAGCGTCATCTGGAATCAACGTTGCTGGCCGTGCATTTGTACGGCTCTGCACTGGACGGTGGCCTGAAGCCATACAGTGATATTGATTTGCTGGTTACTGTGGCTGCACAGCTCGATGAGACTGTCCGACAAGCCCTGGTCGTAGATCTCTTGGAAATTTCTGCCTCCCCTGGCCAAAGTGAGGCTCTCCGCGCCTTGGAAGTTACCATCGTCGTGCATGGTGATGTTGTCCCTTGGCGTTATCCGGCCAGACGGGAACTGCAATTCGGGGAGTGGCAGCGTAAGGACATTCTTGCGGGCATCTTCGAGCCCGCCACAACCGATGTTGATCTGGCTATTCTGCTAACTAAAGTAAGGCAGCATAGCCTTGCATTGGCAGGTTCGGCCGCAGAGGATTTCTTTAACCCAGTTCCGGAAGGCGATCTATTCAAGGCATTGAGCGACACTCTGAAACTATGGAATTCGCAGCCGGATTGGGAAGGCGATGAGCGGAATGTAGTGCTTACCTTGTCTCGCATTTGGTACAGCGCAGCAACCGGCAAGATCGCACCGAAGGATATCGTTGCCAACTGGGCAATTGAGCGTCTGCCAGATCAACATAAGCCCGTACTGCTTGAAGCCCGGCAGGCTTATCTTGGACAAGGAGAAGATTGCTTGGCCTCACGCGCGGATCAGTTGGCGGCGTTCGTTCACTTCGTGAAACATGAAGCCACTAAATTGCTTGGTGCCATGCCAGTGATGTCTAACAATTCATTCAAGCCGAACCCGCTTCGCGGGTCGGCTTAA " 1779 UPDATE CTX-M-12 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAGCCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCGGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTCGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAGTCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTGGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCAGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGACTATGGCACCACCAACGATATCGCGGTGATTTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATATATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA " 1778 UPDATE OKP-A-5 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 608 UPDATE OXA-361 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1159 UPDATE TEM-129 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1158 UPDATE SHV-22 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1155 UPDATE ACT-9 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGACAAAATCCCTTTGCTGTGCCCTGCTGCTCAGCACCTCCTGCTCTGTTCTCGCCGCGCCGATGTCAGAGAAACAGCTGTCTGACGTGGTGGAACGTACCGTTACCCCCCTGATGAAAGCGCAAGCCATTCCGGGCATGGCGGTGGCGGTGATTTATCAGGGTCAGCCGCACTACTTTACCTTCGGAAAGGCCGATGTTACGGCGAACAAACCTGTCACCCCGCAAACCCTGTTTGAGCTGGGCTCTATAAGTAAAACCTTCACCGGCGTATTAGGTGGCGATGCGATTGCGCGCGGAGAAATATCGCTGGGCGACCCCGTGACAAAGTACTGGCCCGAGCTAACAGGCAAGCAGTGGCAGGGTATTCGCATGTTGGATCTGGCGACCTACACCGCGGGTGGCCTGCCGCTACAGGTGCCGGATGAGGTCACGGATAACACCTCCCTGCTGCGTTTCTATCAACACTGGCAACCGCAGTGGAAACCAGGCACAACGCGTCTTTATGCGAACGCCAGCATCGGGCTTTTTGGCGCCCTCGCGGTTAAACCCTCCGGTATGAACTTTGAACAGGCCATGACGAAGCGGGTCTTCAAGCCACTCAAACTGGACCATACATGGATTAACGTTCCGAAAGAAGAAGAGGCGCATTACGCCTGGGGATACCGTGATGGTAAAGCAATCCACGTTTCACCGGGAATGCTGGATGCCGAAGCGTATGGTGTCAAAACCAACATCCAGGATATGGCGAGCTGGCTGAAGGCCAACATGAACCCTGACGCCCTTTCGGATTCAACGTTGAAACAGGGTATTGCCCTGGCACAGTCTCGCTACTGGCGCGTGGGTGCCATGTATCAGGGTCTGGGCTGGGAGATGCTCAACTGGCCGGTAGAAGCCAAAACCGTCGTGGAGGGCAGCGATAACAAGGTGGCTCTTGCACCGTTACTGGTGGCAGAAGTGAACCCTCCAGCTCCGCCAGTAAAAGCATCATGGGTACATAAAACAGGCTCGACGGGTGGATTCGGCAGCTATGTCGCATTTATTCCTGAAAAGGAACTCGGCATTGTTATGCTGGCGAACAAGAGCTACCCGAACCCGGCGCGCGTGGAAGCGGCATACCGTATTTTGAGCGCTCTGTAG " 1154 UPDATE TEM-146 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1157 UPDATE vanG glycopeptide antibiotic; glycopeptide resistance gene cluster; van ligase; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAAAATAAAAAAATAGCAGTTATTTTTGGAGGCAATTCAACAGAGTACGAGGTGTCATTGCAATCGGCATCCGCTGTTTTTGAAAATATCAATACCAATAAATTTGACATAATTCCAATAGGAATTACAAGAAGTGGTGAATGGTATCACTATACGGGAGAAAAGGAGAAAATCCTAAACAATACTTGGTTTGAAGATAGCAAAAATCTATGCCCTGTTGTCGTTTCCCAAAATCGTTCCGTTAAAGGCTTTTTAGAAATTGCTTCAGACAAATACCGTATTATAAAAGTTGATTTGGTATTCCCCGTATTGCATGGCAAAAACGGCGAAGATGGTACTTTGCAGGGCATATTTGAATTGGCAGGAATACCTGTTGTTGGCTGCGATACACTCTCATCAGCTCTTTGTATGGATAAGGACAGGGCACATAAACTCGTTAGCCTTGCGGGTATATCTGTTCCTAAATCGGTAACATTCAAACGCTTTAACGAAGAAGCAGCGATGAAAGAGATTGAAGCGAATTTAACTTATCCGCTGTTTATTAAACCTGTTCGTGCAGGCTCTTCCTTTGGAATAACAAAAGTAATTGAAAAGCAAGAGCTTGATGCTGCCATAGAGTTGGCATTTGAACACGATACAGAAGTCATCGTTGAAGAAACAATAAACGGCTTTGAAGTCGGTTGTGCCGTACTTGGCATAGATGAGCTCATTGTTGGCAGAGTTGATGAAATCGAACTGTCAAGCGGCTTTTTTGATTATACAGAGAAATATACGCTTAAATCTTCAAAGATATATATGCCTGCAAGGATTGATGCCGAAGCAGAAAAACGGATACAAGAAGCGGCTGTAACCATATATAAAGCTCTGGGCTGTTCGGGTTTTTCCAGAGTGGATATGTTTTATACACCGTCTGGCGAAATTGTATTTAATGAGGTAAACACAATACCAGGCTTTACCTCGCACAGTCGCTATCCAAATATGATGAAAGGCATTGGTCTATCGTTCTCCCAAATGTTGGATAAGCTGATAGGTCTGTATGTGGAATGA " 1156 UPDATE Erm(31) antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCATTTTCCCCGCAGGGCGGCCGACACGAGCTCGGTCAGAACTTCCTCGTCGACCGGTCAGTGATCGACGAGATCGACGGCCTGGTGGCCAGGACCAAGGGTCCGATACTGGAGATCGGTCCGGGTGACGGCGCCCTGACCCTGCCGCTGAGCAGGCACGGCAGGCCGATCACCGCCGTCGAGCTCGACGGCCGGCGCGCGCAGCGCCTCGGTGCCCGCACCCCCGGTCATGTGACCGTGGTGCACCACGACTTCCTGCAGTACCCGCTGCCGCGCAACCCGCATGTGGTCGTCGGCAACGTCCCCTTCCATCTGACGACGGCGATCATGCGGCGGCTGCTCGACGCCCAGCACTGGCACACCGCCGTCCTCCTCGTCCAGTGGGAGGTCGCCCGGCGCCGGGCCGGCGTCGGCGGGTCGACGCTGCTGACGGCCGGCTGGGCGCCCTGGTACGAGTTCGACCTGCACTCCCGGGTCCCCGCGCGGGCCTTCCGTCCGATGCCGGGCGTGGACGGAGGAGTACTGGCCATCCGGCGGCGGTCCGCGCCGCTCGTGGGCCAGGTGAAGACGTACCAGGACTTCGTACGCCAGGTGTTCACCGGCAAGGGGAACGGGCTGAAGGAGATCCTGCGGCGGACCGGGCGGATCTCGCAGCGGGACCTGGCGACCTGGCTGCGGAGGAACGAGATCTCGCCGCACGCGCTGCCCAAGGACCTGAAGCCCGGGCAGTGGGCGTCGCTGTGGGAGCTGACCGGCGGCACGGCCGACGGATCCTTCGACGGTACGGCGGGCGGTGGCGCGGCCGGATCGCACGGGGCGGCTCGGGTCGGGGCCGGTCACCCGGGCGGCCGGGTGTCCGCGAGCCGGCGGGGCGTGCCGCAGGCGCGGCGCGGCCGGGGGCATGCGGTACGGAGCTCCACGGGGACCGAGCCGAGGTGGGGCAGGGGGCGGGCGGAGAGCGCGTGA UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 1151 UPDATE OXA-240 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1150 UPDATE QnrVC5 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1153 UPDATE KPC-3 antibiotic inactivation; penam; carbapenem; cephalosporin; monobactam; KPC beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCACTGTATCGCCGTCTAGTTCTGCTGTCTTGTCTCTCATGGCCGCTGGCTGGCTTTTCTGCCACCGCGCTGACCAACCTCGTCGCGGAACCATTCGCTAAACTCGAACAGGACTTTGGCGGCTCCATCGGTGTGTACGCGATGGATACCGGCTCAGGCGCAACTGTAAGTTACCGCGCTGAGGAGCGCTTCCCACTGTGCAGCTCATTCAAGGGCTTTCTTGCTGCCGCTGTGCTGGCTCGCAGCCAGCAGCAGGCCGGCTTGCTGGACACACCCATCCGTTACGGCAAAAATGCGCTGGTTCCGTGGTCACCCATCTCGGAAAAATATCTGACAACAGGCATGACGGTGGCGGAGCTGTCCGCGGCCGCCGTGCAATACAGTGATAACGCCGCCGCCAATTTGTTGCTGAAGGAGTTGGGCGGCCCGGCCGGGCTGACGGCCTTCATGCGCTCTATCGGCGATACCACGTTCCGTCTGGACCGCTGGGAGCTGGAGCTGAACTCCGCCATCCCAGGCGATGCGCGCGATACCTCATCGCCGCGCGCCGTGACGGAAAGCTTACAAAAACTGACACTGGGCTCTGCACTGGCTGCGCCGCAGCGGCAGCAGTTTGTTGATTGGCTAAAGGGAAACACGACCGGCAACCACCGCATCCGCGCGGCGGTGCCGGCAGACTGGGCAGTCGGAGACAAAACCGGAACCTGCGGAGTGTATGGCACGGCAAATGACTATGCCGTCGTCTGGCCCACTGGGCGCGCACCTATTGTGTTGGCCGTCTACACCCGGGCGCCTAACAAGGATGACAAGTACAGCGAGGCCGTCATCGCCGCTGCGGCTAGACTCGCGCTCGAGGGATTGGGCGTCAACGGGCAGTAA " 1152 UPDATE CTX-M-39 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1555 UPDATE SHV-140 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1554 UPDATE norA antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; norfloxacin; acridine dye; acriflavin; ciprofloxacin; fluoroquinolone antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAACAATTATTCATTCTTTATTTTAATATATTTCTTATATTTTTAGGGATTGGATTAGTTATTCCTGTACTTCCTGTATATTTGAAGGATTTAGGATTAAAAGGTAGTGACTTAGGAATGCTAGTTGCTGCTTTTGCATTATCACAAATGATTATTTCACCATTTGGTGGGACACTAGCTGATAAATTGGGTAAAAAATTAATTATATGTATCGGTTTAGTATTCTTTGCTGTCTCTGAATTTATGTTCGCAGCCGGTCAAAGTTTTACCATTTTAATCATTTCACGTGTTTTAGGTGGCTTTAGTGCAGGCATGGTCATGCCTGGTGTAACAGGTATGATTGCAGATATTTCTCCAGGAGCTGATAAAGCTAAAAACTTTGGTTACATGTCGGCAATTATTAATTCAGGTTTTATATTAGGACCTGGATTTGGAGGCTTTTTAGCTGAAATTTCACATAGATTACCTTTCTATGTTGCTGGAACATTAGGTGTTGTTGCATTCATTATGTCAGTTTTATTAATTCATAATCCTCAAAAAGCAACTACAGATGGATTCCACCAATATCAACCTGAATTATTCACTAAAATTAATTGGAAAGTATTTATTACTCCAGTCATATTAACACTTGTATTAGCATTTGGTTTATCTGCTTTTGAAACATTATTTTCTTTATATACAGCTGACAAAGTAAATTATACTCCTAAAGATATTTCGATAGCTATTATCGGTGGAGGCGTGTTTGGCGCATTATTCCAAGTATTCTTCTTTGATAAATTTATGAAATATATGAGTGAACTTAATTTTATTGCATGGTCATTACTATATTCAGCCATTGTTCTCGTTATGTTAGTGCTTGCAAACGGTTATTGGACGATTATGATTATTAGCTTTGTTGTTTTTATAGGTTTTGATATGATTAGACCAGCTTTAACCAATTACTTCTCGAATATAGCAGGCAAACGGCAAGGTTTTGCAGGTGGATTGAATTCAACTTTTACCAGTATGGGTAACTTTATAGGTCCTCTTGTAGCTGGTGCATTATTCGATGTTAATTTAGAGTTTCCTTTATATATGGCTATTGCGGTTTCATTAAGTGGAATTATCATTATTTTTATTGAAAAAGGACTTAAGTCACGCCGTAAAGAAGCAAATTAA " 1551 UPDATE OXA-78 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1550 UPDATE smeR penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; cephamycin; aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1041 UPDATED strand with - UPDATED accession with AF173226.1 UPDATED fmin with 351 UPDATED sequence with ATGAGCACGTCGCCCGCCACGTCCACGAAGATCCTGATCGTCGAGGACGAGCCACGCCTGGCCTCGGTACTGCGCGACTACCTGGCCGCCGCCGGCATGGCCAGCGAGTGGGTGGACGACGGTGGCCAGGTGATCGACGCATTCGCGCGCTACCAGCCCGACCTGGTGCTGCTGGACCTGATGCTGCCGCAGCGCGACGGCGTGGACCTGTGCCGCGAACTGCGTGCCAGCAGCGATGTACCGGTCATCATGGTCACCGCACGGGTGGAAGAGATCGACCGCCTGCTGGGCCTGGAGATCGGCGCCGACGACTACATCTGCAAGCCGTTCAGTCCGCGCGAAGTGGTCGCGCGGGTAATGGCGGTGCTGCGCCGCTACCGCCCGGACCCGGGTGCGCGCGCCAACGGTGGCCTGCACATCGACGAGCCGGCCGCACGCGCCACCTGGAACGGCAAGGGCCTGGACCTGACGCCGGTGGAGTACCGCCTGCTGCGCACGCTGCTGGCCACCCCAGGCCGGATCTGGGCGCGCGATGAACTGCTCGACCGGCTGTACCTGGACCATCGCGTGGTGGTCGACCGCACCGTCGACAGCCATGTGCGCAACCTGCGCCGCAAGCTGGCCGACGCCGGCATGGAAGGCGAGCCGATCCGTTCGGTGTACGGCATGGGCTACAGCTACGAGCCCTGA UPDATED NCBI_taxonomy_name with Stenotrophomonas maltophilia UPDATED NCBI_taxonomy_id with 40324 UPDATED NCBI_taxonomy_cvterm_id with 37076 UPDATED accession with AAD51348.1 UPDATED sequence with MSTSPATSTKILIVEDEPRLASVLRDYLAAAGMASEWVDDGGQVIDAFARYQPDLVLLDLMLPQRDGVDLCRELRASSDVPVIMVTARVEEIDRLLGLEIGADDYICKPFSPREVVARVMAVLRRYRPDPGARANGGLHIDEPAARATWNGKGLDLTPVEYRLLRTLLATPGRIWARDELLDRLYLDHRVVVDRTVDSHVRNLRRKLADAGMEGEPIRSVYGMGYSYEP " 1553 UPDATE tetS chlortetracycline; demeclocycline; oxytetracycline; tetracycline antibiotic; tetracycline; antibiotic target protection; minocycline; tetracycline-resistant ribosomal protection protein; doxycycline; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1552 UPDATE MUS-1 carbapenem; antibiotic inactivation; MUS beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCACAGAATACTTAGTGTCATAACGATGTTAATCTGTACTACATTAGTACACGCTCAATCTGACAAACTAAAAATCAAACAACTCAATGATAATATGTATATATACACTACTTATCAAGAGTTTCAAGGAGTAACATACTCTTCTAATTCGATGTACGTACTGACAGACGAAGGCGTTATTCTAATAGACACACCTTGGGATAAAGATCAGTACGAACCTCTATTAGAGTACATCAGATCGAATCATAACAAAGAGGTTAAATGGGTCATCACTACCCACTTCCACGAAGATCGTTCTGGTGGATTAGGTTACTTTAACAGTATAGGAGCACAGACGTATACCTATGCATTGACCAATGAAATATTAAAAGAACGCAATGAACCACAAGCTCAACATTCTTTTAATAAAGAAAAACAGTTTACCTTTGGCAATGAGAAGTTGGCTGTATACTTTTTAGGAGAAGGACATTCACTAGATAATACCGTAGTCTGGTTTCCAAAAGAAGAAGTATTATACGGAGGATGCCTGATTAAGAGTGCCGAAGCTACCACTATAGGTAATATAGCCGATGGTAACGTGATAGCTTGGCCTAAGACTATCGAAGCCGTAAAACAAAAATTTAAGAATGCTAAAGTCATTATACCAGGACATGATGAATGGGATATGACAGGCCATATCGAGAATACTGAGCGTATATTATCAGCATACAATCAACAACATTCAACTAAAAACGATTAA " 59 UPDATE OXA-256 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAACATTTGCCGCATATGTAATTATCGCGTGTCTTTCGAGTACGGCATTAGCTGGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTCTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATGACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCGACGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAGCAATGGGAAAGAGACTTGACCTTAAGAGGGGCAATACAAGTTTCAGCTGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATACCTTAAAAAATTTTCCTATGGCAACCAGAATATCAGTGGTGGCATTGACAAATTCTGGTTGGAAGGCCAGCTTAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATATTTAAATAAATTGTCAGCATCTAAAGAAAACCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCGGCACCTGAATATCTAGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGGTGGGTTGAGAAGGAGACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAGTAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGAAAGTGAGGGCATCATTGGTGGCTAA " 58 UPDATE QnrB47 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACTCTGGCATTAGTTGGCGAAAAAATTGACAGAAATCGCTTCACCGGTGAGAAAGTTGAAAATAGTACATTTTTTAACTGCGATTTTTCAGGTGCCGACCTGAGCGGCACTGAATTTATCGGCTGCCAGTTCTATGATCGCGAAAGTCAGAAAGGATGCAATTTTAGTCGCGCAATGCTGAGAGATGCCATTTTCAAAAGCTGTGATTTATCAATGGCAGATTTCCGCAACGTCAGCGCATTGGGCATTGAAATTCGCCACTGCCGTGCACAAGGCGCAGATTTCCGCGGTGCAAGCTTTATGAATATGATCACCACGCGCACCTGGTTTTGCAGCGCATATATCACTAATACCAATCTAAGCTACGCCAATTTTTCGAAAGTCGTGTTGGAAAAGTGTGAGCTATGGGAAAACCGCTGGATGGGGACTCAGGTACTGGGTGCGACGTTCAGTGGTTCAGATCTCTCCGGCGGCGAGTTTTCGACTTTCGACTGGCGAGCAGCAAACTTCACACATTGCGATCTGACCAATTCGGAGTTAGGTGACTTAGATATTCGGGGTGTTGATTTACAAGGCGTTAAGTTAGACAACTACCAGGCATCGTTGCTCATGGAGCGGCTTGGCATCGCTGTGATTGGTTAG " 1557 UPDATE SHV-187 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1556 UPDATE VIM-13 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 55 UPDATE OXA-69 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATTAAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGTGCTTCAAAATCTGATGACAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCATCAAGGTCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACCACAGAAGTATTTAAATGGGATGGGGAAAAAAGGCTATTCCCAGAATGGGAAAAGAACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAGCTCATGTCTAAGGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTCTAAAAATTACTCCTCAGCAAGAGGCACAGTTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAAACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGTTTAGAACAATTAGGTATTTTATAG " 54 UPDATE TEM-34 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGGTGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 57 UPDATE SHV-24 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 56 UPDATE TEM-7 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 51 UPDATE AAC(3)-IIIc antibiotic inactivation; AAC(3); aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTCTCTCGTTGGTCGAAACCTCTCGTGCTTGCCGCCGTGACCCGCGCCTCGCTCGCCGCTGATCTCGCCGCGCTTGGCCTTGCCGCGGGCGATGCGGTCATGGTCCATGCCGCCGTCAGCAAGGTCGGCCGCCTGCTCGACGGTCCCGACACGATCATCGCCGCTCTGTCCGACGCCGGTCGGCCTGCCGGCACCATCCTCGCCTATGCCGATTGGGAAGCGCGCTACGAGGACCTCGTGGACGAGGACGGCCGCGTGCCGCAGGAATGGCGCGAGCACATCCCACCCTTCGATCCGCGGCGCTCACGCGCGATCCGCGACAATGGCGTGCTTCCGGAATTCCTGCGGACGACACCGGGTGCGTTGCGCAGCGGCAATCCCGGCGCCTCGATGGTCGGGCTCGGCGCCAGAGCGGAATGGTTCACCGCAGACCATCCCCTCGACTACGGCTATGGCGAGGGTTCGCCGCTGGCCAGGCTGGTCGAAGCCGGCGGCAAGGTGCTGATGCTCGGGGCGCCGCTCGACACGCTGACCCTGCTGCACCATGCCGAGCATCTGGCCGACATCCCCGGCAAGCGCATCCGGCGGATCGAGGTGCCGCTGGCGACGCCGACCGGCACGCAATGGCGCATGATCGAGGAATTCGATACCGGCGATCCGATCGTCGAAGGTTTGGCCGAGGACTACTTCGCCGAGATCGTGACGGCGTTCCTTGCCGGCGGCCGAGGACGGCAGGGCTTGATCGGCACCGCGCCATCCGTGCTGGTCGATGCTGCCGCAATCACGGCTTTCGGCGTCGCCTGGCTGGAATCGCGCTTCGGCTCGCCCTCATCCTGA " 50 UPDATE SME-2 carbapenem; antibiotic inactivation; SME beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 53 UPDATE MOX-5 penam; antibiotic inactivation; MOX beta-lactamase; cephamycin; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 52 UPDATE OXY-2-2 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 537 UPDATE OXA-120 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 536 UPDATE TEM-95 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 535 UPDATE Morganella morganii gyrB conferring resistance to fluoroquinolone aminocoumarin antibiotic; antibiotic target alteration; moxifloxacin; fluoroquinolone resistant gyrB; grepafloxacin; trovafloxacin; ofloxacin; norfloxacin; nalidixic acid; lomefloxacin; gatifloxacin; coumermycin A1; ciprofloxacin; fleroxacin; levofloxacin; sparfloxacin; clorobiocin; novobiocin; Clofazimine; clinafloxacin; enoxacin; pefloxacin; fluoroquinolone antibiotic; cinoxacin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 547614 UPDATED strand with - UPDATED accession with NC_020418.1 UPDATED fmin with 545199 UPDATED sequence with ATGTCGAATACCTATGACTCCTCAAGTATCAAAGTATTAAAAGGGCTGGACGCGGTGCGTAAACGCCCGGGAATGTACATTGGTGATACCGATGACGGAACCGGTTTACACCACATGGTCTTCGAGGTTGTTGACAACGCTATCGACGAAGCCCTCGCCGGTTACTGTAAAGACATCATTGTGACCATTCACAATGATAATTCAGTCTCCGTACAGGATGACGGTCGCGGTATCCCGACCGGGATCCATGAAGAAGAAGGCGTCTCCGCCGCAGAAGTTATCATGACTGTTCTGCACGCCGGCGGGAAGTTCGATGATAACTCCTATAAAGTCTCAGGCGGCCTGCACGGCGTCGGGGTCTCTGTTGTTAACGCCCTGTCTGAAAAACTGGAACTGGTTATCCGCCGTGACGGCAAAGTTCACGAGCAGATTTACCGCCACGGTGAACCGCAGGATCGCCTGACTGTTGTCGGCGAAACCGATAAAACCGGGACACGCGTGCGTTTCTGGCCGAGCATGGACACCTTCAAAGGCGAGACTGAATTCCAGTACGACATTCTGGCAAAACGCCTGCGCGAACTCTCCTTCCTGAACTCCGGTGTATCGATCCGTCTGATCGATAAACGCGACGGCAAAGAAGATCACTTTCACTACGAAGGCGGTATCAAAGCATTCGTGGAATATTTAAGCCGCGCCAAAACTTCGATTCATAACAACGTTTTCTATTTCTCCACTGAGAAAGACGATATCGGCGTGGAAATCTCCATGCAGTGGAATGACTCCTTCCAGGAAAACGTATACTGCTTCACCAACAACATTCCGCAGCGCGACGGTGGTGCTCACCTCGCCGGTTTCCGCGCCGCCATGACCCGTACCCTCAACAGCTATATTGAGAAAGAAGGGCTGAATAAAAAATCCAAAGTCAGCACCACCGGGGACGATGCCCGTGAAGGACTGGTGGCGGTCATTTCCGTCAAAGTGCCGGATCCGAAATTCTCCTCCCAGACTAAAGACAAGCTGGTCTCTTCCGAAGTGAAAACGGCGGTTGAAACCCTGATGAACGAAAAGCTGTCTGAATATCTGGATGAAAACCCGAACGACACCAAAATCATTGTCGGCAAAATTATTGATGCCGCACGCGCCCGTGAAGCTGCACGCCGTGCCCGTGAAATGACCCGCCGTAAAGGCGCGCTGGATTTAGCCGGTCTGCCGGGTAAACTGGCGGATTGTCAGGAACGCGACCCGGCCTTCTCCGAACTGTACTTAGTGGAAGGGGACTCTGCGGGCGGCTCTGCAAAACAGGGGCGTAACCGTAAGAACCAGGCTATCCTGCCGCTGAAAGGTAAAATCCTGAACGTTGAGAAGGCGCGTTTTGATAAAATGCTGGCTTCTCAGGAAGTTGCCACCCTGATCACCGCACTCGGCTGCGGTATCGGCCGCGACGAATACAACCCGGACAAACTGCGCTATCACAGCATCATCATCATGACCGATGCCGACGTCGATGGTTCACACATCCGTACCCTGTTACTGACTTTCTTCTACCGTCAGATGCCGGAAATCATTGAGCGCGGTTATGTGTATATCGCACAGCCGCCGCTGTATAAAGTGAAAAAAGGCAAGCAGGAACAGTATATTAAAGATGACGAAGCGATGGAGCAGTATCAGGTCTCTATCGCACTGGATGGCGCGGCACTGTATGTAAACGAAAATGCAGCTCCGATTCAGGGCGAACATCTGGAAAAACTGCTGCACGAATACAACGGCGCACACAAAATTATCCGCCGTTTAGAGCGTCTCTATCCGCTGGCACTGTTAAACAGCCTGGTCTACCAGCCGAAACTGGAAGAATCCGCGCTGCTGAACAAAACCGAGGTGGAAGCCTGGGCACAGAGCCTGACAGAGCGCCTGACCCGTCATGAAGAGCACGGCAGCACCTACAGCTACCGTATTGCGGAAAACAAAGAGCGCCAGCTGTTTGAGCCGGTACTGACTATCCGTACCCACGGTGTGGATACTGACTACAATCTGGATTTCGATTTTGTTCACGGCAGCGAATATGCCCGTATCTCCAAACTGGGTGAGCTTATCCGTGGTCTGATTGAAGAAGGTGCTTATGTTGTCCGTGGTGAACGCCGTCAGAACGTCAGCAACTTTGAGCAGGCACTGGACTGGCTGATGAAAGAATCACGCCGTGGTCTGGCTGTACAGCGCTATAAAGGGCTGGGTGAAATGAACCCGGAACAGCTGTGGGAAACCACAATGAACCCGGAAACCCGCCGTATGTTGCAGGTCACGGTAAAAGATGCGATTGCAACGGATCAGTTATTCACCACACTGATGGGTGATGATGTTGAACCGCGCCGTGCCTTTATCGAAGAGAATGCCCTGAAAGCGGCAAACATCGACGTATAA UPDATED NCBI_taxonomy_name with Morganella UPDATED NCBI_taxonomy_id with 581 UPDATED NCBI_taxonomy_cvterm_id with 40137 UPDATED accession with WP_004236715.1 UPDATED sequence with MSNTYDSSSIKVLKGLDAVRKRPGMYIGDTDDGTGLHHMVFEVVDNAIDEALAGYCKDIIVTIHNDNSVSVQDDGRGIPTGIHEEEGVSAAEVIMTVLHAGGKFDDNSYKVSGGLHGVGVSVVNALSEKLELVIRRDGKVHEQIYRHGEPQDRLTVVGETDKTGTRVRFWPSMDTFKGETEFQYDILAKRLRELSFLNSGVSIRLIDKRDGKEDHFHYEGGIKAFVEYLSRAKTSIHNNVFYFSTEKDDIGVEISMQWNDSFQENVYCFTNNIPQRDGGAHLAGFRAAMTRTLNSYIEKEGLNKKSKVSTTGDDAREGLVAVISVKVPDPKFSSQTKDKLVSSEVKTAVETLMNEKLSEYLDENPNDTKIIVGKIIDAARAREAARRAREMTRRKGALDLAGLPGKLADCQERDPAFSELYLVEGDSAGGSAKQGRNRKNQAILPLKGKILNVEKARFDKMLASQEVATLITALGCGIGRDEYNPDKLRYHSIIIMTDADVDGSHIRTLLLTFFYRQMPEIIERGYVYIAQPPLYKVKKGKQEQYIKDDEAMEQYQVSIALDGAALYVNENAAPIQGEHLEKLLHEYNGAHKIIRRLERLYPLALLNSLVYQPKLEESALLNKTEVEAWAQSLTERLTRHEEHGSTYSYRIAENKERQLFEPVLTIRTHGVDTDYNLDFDFVHGSEYARISKLGELIRGLIEEGAYVVRGERRQNVSNFEQALDWLMKESRRGLAVQRYKGLGEMNPEQLWETTMNPETRRMLQVTVKDAIATDQLFTTLMGDDVEPRRAFIEENALKAANIDV " 534 UPDATE vanVB glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanV; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2212277 UPDATED strand with - UPDATED accession with AE016830 UPDATED fmin with 2211932 UPDATED sequence with TTGTTTACAGAAAAATTCTGCGCTGATGGAATCTGCTTTATTATGCGGGCGAAAAATGAAATTGACCATATTTTTTCAGAACTTTACTCTGTACCGAATTGCCTGCAAAAGCCTTATTTTAAGCTGAAAGTTCAGGAATTGCTTTTGTTTTTGTGTATGCCCCTCGTGATTTGTACACCTATCTTAATTGGCTTTGCAATTCTCATTCCGTATCTCTGCTTTAAGAATTTGGAAAAACGAAGCATTGTGAATCGGCTGCGGGCAGAGCAAAAAGAGAACCAGCAGAAACAAGTCGTTCTTGCTCTGCTGATTCACTCGGAACTGTTTGATTCGGGTTTTCGTTGA UPDATED NCBI_taxonomy_name with Enterococcus faecalis V583 UPDATED NCBI_taxonomy_id with 226185 UPDATED NCBI_taxonomy_cvterm_id with 37592 UPDATED accession with AAO82019.1 UPDATED sequence with MFTEKFCADGICFIMRAKNEIDHIFSELYSVPNCLQKPYFKLKVQELLLFLCMPLVICTPILIGFAILIPYLCFKNLEKRSIVNRLRAEQKENQQKQVVLALLIHSELFDSGFR " 533 UPDATE CARB-16 penam; antibiotic inactivation; CARB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 3358 UPDATED strand with - UPDATED accession with HF953351 UPDATED fmin with 2461 UPDATED sequence with ATGGACGTACGTAAACACAAGGCTAGTTTTTTTAGCGTAGTAATTACTTTTTTATGTCTCACGCTATCATTAAATGCTAATGCAACAGACTCAGTACTTGAAGCGGTTACCAATGCTGAAACTGAATTAGGCGCTAGAATTGGTCTAGCTGTGCATGATTTGGAAACGGGAAAACGTTGGGAACATAAATCTAATGAACGTTTTCCTCTAAGTAGCACCTTTAAAACACTTGCCTGTGCAAACGTTCTTCAAAGAGTTGATCTAGGTAAAGAAAGAATTGATAGAGTTGTGAGATTCTCTGAAAGCAATCTCGTTACATACTCACCTGTAACAGAAAAACATGTGGGTAAAAAAGGGATGTCGCTCGCAGAGCTGTGTCAGGCCACATTATCAACCAGTGATAATTCAGCTGCCAATTTTATTCTACAAGCGATTGGTGGACCTAAGGCTCTAACGAAATTTTTGCGTTCCATTGGCGACGATACTACGCGCCTTGATCGCTGGGAAACAGAACTTAACGAAGCGGTGCCTGGAGATAAGCGAGACACGACAACACCAATTGCAATGGTAACGACACTTGAAAAGTTACTAATTGACGAAACACTATCTATCAAATCTCGTCAACAACTAGAATCTTGGCTTAAAGGTAATGAGGTTGGCGATGCATTGTTTCGTAAAGGCGTTCCAAGTGACTGGATAGTAGCAGATAGAACAGGCGCTGGTGGTTATGGGTCGCGTGCTATTACTGCGGTGATGTGGCCTCCAAATCGCAAGCCTATCGTAGCCGCTCTATACATTACAGAGACAGACGCCTCGTTTGAAGAAAGAAATGCTGTCATTGCAAAAATTGGTGAGCAAATAGCGAAGACAGTATTAATGGAGAATAGCCGTAACTGA UPDATED NCBI_taxonomy_name with Psychrobacter maritimus UPDATED NCBI_taxonomy_id with 256325 UPDATED NCBI_taxonomy_cvterm_id with 39652 UPDATED accession with CCW43444.1 UPDATED sequence with MDVRKHKASFFSVVITFLCLTLSLNANATDSVLEAVTNAETELGARIGLAVHDLETGKRWEHKSNERFPLSSTFKTLACANVLQRVDLGKERIDRVVRFSESNLVTYSPVTEKHVGKKGMSLAELCQATLSTSDNSAANFILQAIGGPKALTKFLRSIGDDTTRLDRWETELNEAVPGDKRDTTTPIAMVTTLEKLLIDETLSIKSRQQLESWLKGNEVGDALFRKGVPSDWIVADRTGAGGYGSRAITAVMWPPNRKPIVAALYITETDASFEERNAVIAKIGEQIAKTVLMENSRN " 532 UPDATE CTX-M-47 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAAGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA " 531 UPDATE SAT-3 streptothricin acetyltransferase (SAT); streptothricin; antibiotic inactivation; nucleoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACGCCACAGTCAATGCGTGAATTGGTCATCTGTCGTGCAAGCGATGCCGACGTTCTTCAGCTTGCGCGGTGCGATTTCTCTTTCGAGGTCACAGCTGAGCTCGAAGAGCCGTTCGATGACATGCGGTCCGTTCCAGTCAAGCCGCCCTACCTCAAGAACTATGGCTTTGATGCCGATGAGTTGGTCGAGCATATGAACAACTCTGCTGGGGCGTTGTTTGTGGCTCGGGCGGACAATTGCCTTGTTGGCTACTTGGCCGTGTCTCAAAGCTGGAACGAATATGCCGTCATCGATGATATCGCGGTCGATGTGCCCTATCGGGGGAGTGGCGTTTCGCGCTTGCTGATGGATGCAGCTGTGGACTGGGCACGAAATGTGCCGTCGGCAGGCGTACGTCTGGAGACGCAGTCCGTTAATCTCGCCGCATGTCGCTTTTACCGACGATACGGTTTCCGGTTAGGTGGTTATGATCGCTACCTGTATCGTGGCCTGCATCCGGGCAGCCGAGAGGTAGCTCTGTTCTGGTATTTGAGTTTTTAA " 530 UPDATE VIM-11 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTCAAACTTTTGAGTAAGTTATTGGTCTATTTGACCGCGTCTATCATGGCTATTGCGAGTCCGCTCGCTTTTTCCGTAGATTCTAGCGGTGAGTATCCGACAGTCAGCGAAATTCCGGTCGGGGAGGTCCGGCTTTACCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTTTGATGGCGCAGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAGAAGCAAATTGGACTTCCTGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCCGAGGTAGAGGGGAGCGAGATTCCCACGCACTCTCTAGAAGGACTCTCATCGAGCGGGGACGCAGTGCGCTTCGGTCCAGTAGAACTCTTCTATCCTGGTGCTGCGCATTCGACCGACAACTTAGTTGTGTACGTCCCGTCTGCGAGTGTGCTCTATGGTGGTTGTGCGATTTATGAGTTGTCACGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCATTGAGCGGATTCAACAACACTACCCGGAAGCACAGTTCGTCATTCCGGGGCACGGCCTGCCGGGCGGTCTAGACTTGCTCAAGCACACAACGAATGTTGTAAAAGCGCACACAAATCGCTCAGTCGTTGAGTAG " 539 UPDATE QnrB59 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1558 UPDATE Bacillus subtilis mprF peptide antibiotic; antibiotic target alteration; defensin resistant mprF; defensin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 429 UPDATE mdsA penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; penem; carbapenem; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; cephamycin; monobactam; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 398284 UPDATED strand with - UPDATED accession with NC_003197.2 UPDATED fmin with 397057 UPDATED sequence with ATGCGTAGAACATTCAAAATTATGTTGATAGCCGGCGTCATCGCCGCCATCGGGGGCGTGATTTACATGGCCGGCGAAGCACTATGGGATAAAGACAACGCCGTCGGCCCCCCGGCCAGCGCGCCGCCTCCACCGTCGGTACCGGTTGCTAAAGCCCTTAGCCGTACACTCGCGCCTACGGCGGAATTCACCGGTTTTCTGGCCGCGCCGGAAACCGTGGAGCTGCGTTCGCGCGTGGGAGGAACCCTTGACGCCATCAGCGTTCCGGAAGGACGTCTGGTAAGCCGCGGACAACTGCTGTTCCAGATCGATCCGCGCCCGTTCGAGGTCGCCCTCGACACCGCCGTCGCGCAATTACGTCAGGCTGAAGTACTGGCCCGCCAGGCGCAGGCGGATTTCGATCGCATTCAACGACTGGTCGCCAGCGGCGCCGTATCACGTAAAAACGCTGACGATGTCACCGCCACGCGTAATGCGCGACAGGCGCAGATGCAATCGGCCAAAGCCGCCGTCGCCGCAGCGCGCCTTGAACTCTCCTGGACCCGTATTACCGCGCCCATTGCCGGACGCGTTGACCGCATACTGGTGACCCGGGGCAATCTGGTCAGCGGCGGCGTAGCGGGTAACGCCACGCTTCTGACGACTATCGTGTCTCACAATCCCATGTATGTGTATTTCGATATTGACGAAGCCACCTGGCTGAAGGCGTTACGGCATACCCGCTCCGACAAAAATCCACCGGTAGTCAACATGGGGTTAACCACCGATAACGGGCTGCCTTATCAGGGCGTACTCGACTTTATGGGCAATCAGATGAACCGCAGCACCGGCACTATCCGGGCACGCGCCGTGATTCCTGACCCCGACGGAATGCTTTCTCCCGGCCTGTTTGCCCGAATCAGTTTGCCCATCGGCGAGCCGCGGGAAACCGTGCTGATTGACGATCTGGCGGTGAGCGCCGATCAGGGCAAAAACTATGTGCTGATCGTCGGCAAGGAGAATCAGGTGGAGTATCGTCCGGTTGAGTTGGGACAAATGGTCGATGGATTCCGCGTCGTTACACAGGGAGTACTGCCGGGAGAAAAAATCATCCTCAAGGGGCTGGTGCGTCCTGGCATGACCGTTGCGCCACGTCTGGTGCCGATGCGGCAGAATGTGACCGACAAACAGACCGCGACATTGACTAAAGCGGACGGCGACAGTGCGCCGAAGGCGGTGCGCCAATGA UPDATED NCBI_taxonomy_name with Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 UPDATED NCBI_taxonomy_id with 99287 UPDATED NCBI_taxonomy_cvterm_id with 35734 UPDATED accession with NP_459347.3 UPDATED sequence with MRRTFKIMLIAGVIAAIGGVIYMAGEALWDKDNAVGPPASAPPPPSVPVAKALSRTLAPTAEFTGFLAAPETVELRSRVGGTLDAISVPEGRLVSRGQLLFQIDPRPFEVALDTAVAQLRQAEVLARQAQADFDRIQRLVASGAVSRKNADDVTATRNARQAQMQSAKAAVAAARLELSWTRITAPIAGRVDRILVTRGNLVSGGVAGNATLLTTIVSHNPMYVYFDIDEATWLKALRHTRSDKNPPVVNMGLTTDNGLPYQGVLDFMGNQMNRSTGTIRARAVIPDPDGMLSPGLFARISLPIGEPRETVLIDDLAVSADQGKNYVLIVGKENQVEYRPVELGQMVDGFRVVTQGVLPGEKIILKGLVRPGMTVAPRLVPMRQNVTDKQTATLTKADGDSAPKAVRQ " 428 UPDATE OXY-2-7 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATAAAAAGTTCGTGGCGTAAAATTGCAATGCTAGCCGCCGCCGTTCCGCTGCTGCTGGCGAGCGGCGCACTGTGGGCCAGTACCGATGCTATCCATCAGAAGCTGACAGATCTCGAGAAGCGTTCAGGCGGCAGGTTGGGCGTGGCGCTAATCAACACGGCAGATAATTCTCAAATCTTATATCGCGGCGACGAGCGTTTTGCCATGTGCAGCACCAGTAAAGTGATGGCCGCCGCCGCGGTATTAAAACAGAGCGAAAGCAATAAAGAGGTGGTAAATAAAAGGCTGGAGATTAACGCAGCCGATTTGGTGGTCTGGAGTCCGATTACCGAAAAACATCTCCAGAGCGGAATGACGCTGGCTGAGCTAAGCGCGGCGACGCTGCAATATAGCGACAATACGGCGATGAATCTGATCATCGGCTACCTTGGCGGGCCGGAAAAAGTCACCGCCTTCGCCCGCAGTATCGGCGATGCCACCTTTCGTCTCGATCGTACGGAGCCCACGCTGAATACCGCCATCCCGGGCGATGAGCGTGATACCAGCACGCCGCTGGCGATGGCTGAAAGCCTACGCAAGCTGACGCTTGGCGATGCGCTGGGCGAACAGCAACGCGCCCAGTTAGTCACCTGGCTGAAAGGCAATACCACCGGCGGGCAAAGCATTCGCGCGGGCCTGCCTGAAAGCTGGGTGGTCGGCGATAAAACCGGCGCCGGAGATTACGGCACCACCAATGATATTGCGGTTATCTGGCCGGAAGATCACGCTCCGCTGGTATTAGTCACCTACTTTACCCAGCCGCAGCAGGATGCGAAAAACCGCAAAGAGGTGTTAGCCGCAGCGGCAAAAATCGTGACCGAAGGGCTTTAA " 1399 UPDATE OXA-315 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1398 UPDATE OXA-108 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 421 UPDATE TEM-2 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 420 UPDATE CTX-M-1 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1395 UPDATE Neisseria gonorrhoeae porin PIB (por) penam; reduced permeability to antibiotic; penem; carbapenem; cephalosporin; cephamycin; General Bacterial Porin with reduced permeability to beta-lactams; tetracycline antibiotic; monobactam; tetracycline; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with ATGAAAAAATCCCTGATTGCCCTGACTTTGGCAGCCCTTCCTGTTGCGGCAACGGCCGATGTCACCCTGTACGGCGCCATCAAAGCCGGCGTACAAACTTACCGTTCTGTAGAACATACAAAAGGCAAGGTAAGTAAAGTGGAAACCGGCAGCGAAATCGCCGACTTCGGTTCAAAAATCGGCTTCAAAGGCCAAGAAGACCTCGGCAACGGCCTGAAGGCCGTTTGGCAGTTGGAACAAGGTGCCTCCGTCGCCGGCACTAACACCGGCTGGGGCAACAAACAATCCTTCGTCGGCTTGAAGGGCGGCTTCGGTACCATCCGCGCCGGTAGCCTGAACAGCCCCCTGAAAAACACCGGCGCCAACGTCAATGCTTGGGAATCCGGCAAATTTACCGGCAATGTGCTGGAAATCAGCGGAATGGCCCAACGGGAACACCGCTACCTGTCCGTACGCTACGATTCTCCCGAATTTGCCGGCTTCAGCGGCAGCGTACAATACGCACCTAAAGACAATTCAGGCTCAAACGGCGAATCTTACCACGTTGGTTTGAACTACCGAAACAACGGCTTCTTCGCACAATACGCCGGCTTGTTCCAAAGATACGGCGAAGGCACTAAAAAAATCGAATACGAACATCAAGTTTATAGTATCCCCAGCCTGTTTGTTGAAAAACTGCAAGTTCACCGTTTGGTAGGCGGTTACGACAATAATGCCCTGTACGTTTCCGTAGCCGCGCAACAACAAGATGCCAAATTGTATGGAGCAAGGAGGGCTAATTCGCACAACTCTCAAACCGAAGTTGCCGCTACCGCGGCATACCGTTTCGGCAATGTAACGCCCCGCGTTTCTTACGCCCACGGCTTCAAAGGCACTGTTGATAGTGCAGACCACGACAATACTTATGACCAAGTGGTTGTCGGTGCGGAATACGACTTCTCCAAACGCACTTCTGCCTTGGTTTCTGCCGGCTGGTTGCAAGAAGGCAAAGGCGCAGACAAAATCGTATCGACTGCCAGCGCCGTCGTTCTGCGCCACAAATTCTAA " 422 UPDATE FOX-10 antibiotic inactivation; cephamycin; cephalosporin; FOX beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1393 UPDATE THIN-B carbapenem; penam; cephalosporin; antibiotic inactivation; THIN-B beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACACTATTGGCGAAGTTGATGCTGGCGACGGTTGCGACCATGTCGGCGGCTACGGTGCAGGCAAAGACACCGGCGCCCAAGCCGGATACCCCTGTCGATTGCGACAGCTGCAAGGCGTGGAACGGGGAAGTCACACCATTCAACGTATTTGGCAATACCTGGTATGTGGGCACGGCCGGCTTGTCCGCCGTGCTGGTGACCAGCCCGCAAGGCCACGTCCTGCTCGACGGCGCGCTGCCGCAATCGGCGCCACTGATCATCGCGAACATCGCGGCGCTGGGTTTCCGCATCGAGGATGTGAAATTCATCCTCAATTCCCACGCGCATTGGGATCACGCCGGCGGCATCGCCGCGCTGCAGGCCGCCAGCGGCGCCACCGTGGTGGCCAGCGCCTCGGGCGCCCTGGGATTGCAAAGCGGCACCAACGGCAAGGATGATCCGCAATTCCAGGCCAAGCCTGTCGTGCATGTGGCAAAGGTGGAGAAGGTCAAGGTGGTGGGCGAGGGCGATGCCATCAAGCTGGGGCCGTTGAACCTGACGGCGCACATGACGCCAGGCCACACGCCAGGCGCCACCACCTGGACCTGGACCTCGTGCGAAGGGCAGCGCTGCCTGGACGTGGTGTATGCCGACAGCCTGAATCCGTATTCCAGCGGCGACTTTACGTACACGGGCAAAGGGGACGGACCCGATATCTCGGCCTCGTTTGCCGCCAGCATCGCCAAGGTGGCGGCCCTGCCGTGCGACATCATTCTTTCCGTGCATCCCGATTCGACGGGCGTGCTGGACAAGGCGGCCAAGCGCAGCGGCGAACACAATCCCTTCATCGATGCGAACGCCTGCCGCGCCTATGCGGCCACGGCGGACGCCATGCTGACGAAACGGCTGGCGAAGGAGCGCGGCGTGGCCCTGCCTGCGGCGGCCCCGGCTGCCCAGCACGCGCACTAG " 424 UPDATE SHV-36 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1391 UPDATE CTX-M-92 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 426 UPDATE aadK antibiotic inactivation; streptomycin; aminoglycoside antibiotic; ANT(6); model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2736536 UPDATED strand with - UPDATED accession with AL009126 UPDATED fmin with 2735681 UPDATED sequence with ATGCGAAGTGAGCAGGAAATGATGGACATTTTTTTGGACTTTGCTTTGAACGATGAGAGAATCCGATTGGTCACTTTGGAAGGGTCACGTACAAACAGAAATATCCCTCCTGACAACTTCCAAGATTATGACATCTCGTATTTTGTAACTGATGTAGAATCTTTTAAAGAAAATGATCAGTGGCTCGAAATCTTTGGGAAGCGCATTATGATGCAAAAACCAGAAGATATGGAGCTTTTTCCTCCCGAATTAGGTAATTGGTTTTCATACATTATTCTTTTTGAGGATGGCAACAAATTAGATCTAACCCTTATTCCAATTCGTGAAGCAGAAGATTATTTTGCTAATAACGATGGTTTGGTTAAGGTATTGCTTGATAAGGATTCGTTCATCAACTATAAAGTGACCCCAAATGATCGCCAATACTGGATAAAAAGGCCGACTGCAAGGGAATTTGATGATTGCTGTAATGAGTTCTGGATGGTTTCGACTTACGTAGTAAAAGGACTAGCAAGAAATGAAATCCTTTTTGCCATTGACCATTTAAATGAAATTGTACGTCCTAATTTATTGAGAATGATGGCCTGGCATATCGCATCTCAGAAAGGGTATTCATTTAGTATGGGGAAGAACTATAAATTTATGAAGCGGTACCTTTCAAATAAAGAATGGGAGGAACTCATGTCTACATATTCTGTGAATGGGTATCAGGAAATGTGGAAGTCTTTATTTACTTGCTATGCATTATTTAGAAAGTATTCAAAAGCTGTATCAGAAGGTCTTGCATATAAGTATCCTGATTACGATGAAGGTATTACTAAGTATACGGAAGGTATTTATTGCTCAGTAAAGTGA UPDATED NCBI_taxonomy_name with Bacillus subtilis subsp. subtilis str. 168 UPDATED NCBI_taxonomy_id with 224308 UPDATED NCBI_taxonomy_cvterm_id with 39579 UPDATED accession with CAB14620.1 UPDATED sequence with MRSEQEMMDIFLDFALNDERIRLVTLEGSRTNRNIPPDNFQDYDISYFVTDVESFKENDQWLEIFGKRIMMQKPEDMELFPPELGNWFSYIILFEDGNKLDLTLIPIREAEDYFANNDGLVKVLLDKDSFINYKVTPNDRQYWIKRPTAREFDDCCNEFWMVSTYVVKGLARNEILFAIDHLNEIVRPNLLRMMAWHIASQKGYSFSMGKNYKFMKRYLSNKEWEELMSTYSVNGYQEMWKSLFTCYALFRKYSKAVSEGLAYKYPDYDEGITKYTEGIYCSVK " 1443 UPDATE CARB-7 penam; antibiotic inactivation; CARB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGTCTTTGTTGGTATTTGCGCTTTTAATGCCATCTGTAGTTTTTGCAAGCAGTTCAAAATTTCAATCAGTTGAACAAGAAATTAAGGGAATTGAGTCTTCACTCTCTGCTCGTATAGGAGTCGCCATTTTGGATACTCAAAATGGCGAAAGCTGGGATTATAATGGTGATCAACGATTTCCATTAACAAGTACTTTCAAAACAATAGCTTGTGCTAAGTTGCTGTATGATGCAGAGCATGGGAAAGTTAATCTCAATAGTACAGTTGAGATTAAGAAAGCAGATCTTGTTACGTATTCGCCTGTATTAGAAAAGCAAGTAGGTAAACCAATAACGCTCTCTGATGCATGCCTTGCTACTATGACAACAAGCGACAATACAGCAGCCAATATTGTTATAAATGCTGTCGGTGATCCTAAAAGCATTACTGATTTTCTGAGACAAATTGGTGACAAAGAAACTCGTCTAGATCGTGTCGAGCCTGAGCTCAATGAAGGTAAACTCGGTGATTTGAGGGATACGACAACGCCTAATGCAATAACCAGCACGTTAAATCAATTATTATTTGGTTCCACATTATCTGAAGCTAGTCAGAAAAAATTAGAGTCTTGGATGGTGAACAATCAAGTTACGGGTAATTTATTGAGGTCAGTATTGCCAGTGAAGTGGAGTATTGCTGATCGCTCAGGAGCAGGTGGATTTGGTGCTAGGAGTATTACAGCGATTGTGTGGAGTGAAGAAAAAAAACCGATTATCGTAAGTATTTATCTAGCTCAAACCGAGGCTTCAATGGCAGAACGAAATGATGCGATAGTTAAGATTGGTCGTTCAATTTTTGAAGTTTATACATCACAGTCGCGTTGA " 229 UPDATE vanTmL glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanT; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAACAAAATACGGGTGTAAATAATTTCCGTTTAATCGCTGCTGCCATGGTAGTAGCGATTCATTGCTTTCCATTTCAAACAATCAGTAAAGAACTAGATACATTGGTTACGCTAACTGTCTTTCGTATTGCCGTTCCTTTTTTCTTCATGGTTTCTGGGTACTACCTACTAGGTCCAATTCCAAGTTCAGCCACAAATACTTATCAAATTAATAACTATATAAAGAAACAGCTTAAAGTTTATACTTTCGCTATAGTTCTGTATCTACCTTTAGCGTTTTATAGTCAATCTATCACTTTGGATATGTCAATTATTAGTTTTATAAAACAACTACTTTTTAACGGTTTTTTTTACCATCTTTGGTTTTTCCCTGCATGGGTATTAGGATTATTAATTGTTCAATTTTTATTAAAAAGAATGAATATACAGACTGTATTGTTTATAACATTTGTGGCTTATTTAATAGGACTAGGAGGGGATAGTTGGTGGGGAATAGTTAAACAAGTTCCCTTTTTTTTCAGATTTTACAATGCTATATTTCAATTATTTGGTTATACACGAAATGGTCTATTTTATGCGCCGTTATTCTTTGCACTGGGAGCATATCTATACAAGATGAATATTAAAAACTTTAATTCCGCAAGAAATAACTATCTTTTACTGCTTTTTAGTATAGAAATGATTTTAGAAAGTTATTTCTTACATCTCTTTAACATTCCTAAACATGACAGTATGTATTTGTTTTTACCGTTTGTAATGACTTTGGTGTTTATCAAAATATACAATTGGTCACCAAAAAATAATTTATTGAACAGCTCTCAGCTATCTCTAGGAGTATATCTTATACATCCATATATCATCGCAGTAATTCACTCTATCTCAATTTACGTTTCTATTTTTACTAATAGCATAATTAATTATTTAAGTGTGCTATTGATAAGTTACCTAACTATAAGACTAATACTAAAAAGGAAGGAATGGTAG " 228 UPDATE sdiA penam; antibiotic efflux; triclosan; rifampin; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; cephalosporin; cefalotin; tigecycline; glycylcycline; ampicillin; fluoroquinolone antibiotic; rifamycin antibiotic; phenicol antibiotic; tetracycline; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2040377 UPDATED strand with - UPDATED accession with NC_003197.2 UPDATED fmin with 2039654 UPDATED sequence with ATGCAGGAAAATGATTTCTTCACCTGGCGACGCGCAATGTTGTTACGCTTTCAGGAGATGGCGGCAGCAGAGGATGTTTATACTGAATTGCAATATCAGACACAGCGGCTGGAATTTGATTATTATGCCCTGTGTGTTCGTCATCCCGTCCCCTTTACCCGGCCTAAAATATCGCTTCGTACCACTTATCCTCCGGCGTGGGTAACGCATTACCAGTCCGAAAACTATTTCGCGATCGATCCGGTATTAAAGCCGGAAAATTTCAGGCAGGGTCATTTACATTGGGATGACGTGCTATTTCATGAAGCGAAGGCGATGTGGGATGCCGCCCAGCGTTTCGGATTACGCAGAGGCGTAACCCAGTGTGTGATGTTGCCGAACCGGGCGCTGGGCTTTTTATCTTTCTCCCGTAGCAGTTTACGCTGCTCCTCGTTTACCTACGACGAAGTGGAGCTGAGGTTGCAACTGCTGGCGCGGGAGAGTCTTTCGGCGCTGACAAGATTTGAAGACGACATGGTGATGGCGCCTGAAATGCGTTTCAGTAAACGTGAGAAAGAGATTCTGAAGTGGACGGCGGAAGGGAAGACCTCATCGGAGATCGCCATTATTCTGTCGATTTCTGAAAATACCGTTAACTTCCATCAGAAAAATATGCAGAAGAAATTCAATGCGCCAAATAAAACACAGATTGCCTGCTACGCTGCGGCGACAGGTCTGATATGA UPDATED NCBI_taxonomy_name with Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 UPDATED NCBI_taxonomy_id with 99287 UPDATED NCBI_taxonomy_cvterm_id with 35734 UPDATED accession with NP_460903.1 UPDATED sequence with MQENDFFTWRRAMLLRFQEMAAAEDVYTELQYQTQRLEFDYYALCVRHPVPFTRPKISLRTTYPPAWVTHYQSENYFAIDPVLKPENFRQGHLHWDDVLFHEAKAMWDAAQRFGLRRGVTQCVMLPNRALGFLSFSRSSLRCSSFTYDEVELRLQLLARESLSALTRFEDDMVMAPEMRFSKREKEILKWTAEGKTSSEIAIILSISENTVNFHQKNMQKKFNAPNKTQIACYAAATGLI " 227 UPDATE OKP-B-3 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 226 UPDATE OXA-113 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 225 UPDATE CTX-M-88 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 224 UPDATE MIR-2 antibiotic inactivation; monobactam; cephalosporin; MIR beta-lactamase; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 35962 " 223 UPDATE GES-3 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGCTTCATTCACGCACTATTACTGGCAGGGATCGCTCACTCTGCATATGCGTCGGAAAAATTAACCTTCAAGACCGATCTTGAGAAGCTAGAGCGCGAAAAAGCAGCTCAGATCGGTGTTGCGATCGTCGATCCCCAAGGAGAGATCGTCGCGGGCCACCGAACGGCGCAGCGCTTTGCAATGTGCTCAACGTTCAAGTTTCCGCTAGCCGCGCTGGTCTTTGAAAGAATTGACTCAGGCACCGAGCGGGGGGATCGAAAACTTTCATATGGGCCGGACATGATCGTCAAATGGTCTCCTGCCACGGAGCGGTTTCTAGCATCGGGACACATGACGGTTCTCGAGGCAGCGCAAGCTGCGGTGCAGCTTAGCGACAATGGGGCTACTAACCTCTTACTGAGAGAAATTGGCGGACCTGCTGCAATGACGCAGTATTTTCGTAAAATTGGCGACTCTGTGAGTCGGCTAGACCGGAAAGAGCCGGAGATGGGCGACAACACACCTGGCGACCTCAGAGATACAACTACGCCTATTGCTATGGCACGTACTGTGGCTAAAGTCCTCTATGGCGGCGCACTGACGTCCACCTCGACCCACACCATTGAGAGGTGGCTGATCGGAAACCAAACGGGAGACGCGACACTACGAGCGGGTTTTCCTAAAGATTGGGTTGTTGGAGAGAAAACTGGTACCTGCGCCAACGGGGGCCGGAACGACATTGGTTTTTTTAAAGCCCAGGAGAGAGATTACGCTGTAGCGGTGTATACAACGGCCCCGAAACTATCGGCCGTAGAACGTGACGAATTAGTTGCCTCTGTCGGTCAAGTTATTACACAACTCATCCTGAGCACGGACAAATAG " 222 UPDATE JOHN-1 carbapenem; penam; cephalosporin; antibiotic inactivation; JOHN beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGAAAATTAGCTTCGATAATTTTATTCTTAGCCGCGGTTTCAAATAGTTTGGGACAATCTAAGAATTCGCCATTACAAATAAGTCATCTTACAGGTGACTTTTATGTTTATAGAACTTTTAATGATTACAAAGGAACTAAGATTTCTGCCAATGCTATGTATGTTGTTACAGATAAAGGCGTTGTGCTTTTTGATGCGCCTTGGGATAAAACACAGTTTCAGCCGTTATTAGACAGCATAAAAGCAAAACACAATAAAGAGGTTGTGATGCTTTTTGGCACGCATTCTCATGAAGATCGTGCAGGAGGATTTGATTTTTACAAGAAAAAAGGAATCAAAACGTACTCAATTAAACTGACTGATGATATTCTTAAAAAGAATAAGGAACCAAGAGCAGAATTTATAATTTCAAATGATACAACATTTACTGTTGGAAATCATACTTTTGAAGTTTATTACCCAGGAAAAGGACATGCTCCTGATAATATTGTAGCATGGTTTAAAAAAGAGAAAATTCTTTACGGAGGCTGTTTTGTAAAAAGTGCAGAAGCATTAGATTTAGGTTATCTGGGTGATGCTGATGTTAAAGAATGGCAGAAATCTATAAAAAAAGTGCAGGCAAAATTCAAAAAACCGGATTATATAATTTCGGGACATGATGACTGGACTAGTAAAGAATCTTTAAATCATACTTTGAAATTGGTTGACGAGTATTTGGCTCAAAAATCTGCCGGAAAAAAGTAA " 221 UPDATE CMY-100 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 220 UPDATE TEM-92 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2213 UPDATE opmE kitasamycin; imipenem; thiamphenicol; resistance-nodulation-cell division (RND) antibiotic efflux pump; rokitamycin; efflux pump complex or subunit conferring antibiotic resistance; trimethoprim; macrolide antibiotic; antibiotic efflux; carbapenem; acridine dye; diaminopyrimidine antibiotic; acriflavin; tetracycline antibiotic; chloramphenicol; phenicol antibiotic; tetracycline; erythromycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2212 UPDATE mexQ kitasamycin; imipenem; thiamphenicol; resistance-nodulation-cell division (RND) antibiotic efflux pump; rokitamycin; efflux pump complex or subunit conferring antibiotic resistance; trimethoprim; macrolide antibiotic; antibiotic efflux; carbapenem; acridine dye; diaminopyrimidine antibiotic; acriflavin; tetracycline antibiotic; chloramphenicol; phenicol antibiotic; tetracycline; erythromycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2211 UPDATE mexP kitasamycin; imipenem; thiamphenicol; resistance-nodulation-cell division (RND) antibiotic efflux pump; rokitamycin; efflux pump complex or subunit conferring antibiotic resistance; trimethoprim; macrolide antibiotic; antibiotic efflux; carbapenem; acridine dye; diaminopyrimidine antibiotic; acriflavin; tetracycline antibiotic; chloramphenicol; phenicol antibiotic; tetracycline; erythromycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2217 UPDATE mexN antibiotic efflux; thiamphenicol; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; phenicol antibiotic; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2216 UPDATE mexM antibiotic efflux; thiamphenicol; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; phenicol antibiotic; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2215 UPDATE Pseudomonas aeruginosa gyrA and parC conferring resistance to fluoroquinolone nybomycin; ofloxacin; norfloxacin; fluoroquinolone resistant gyrA; levofloxacin; fluoroquinolone resistant parC; sparfloxacin; antibiotic target alteration; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; sitafloxacin; model_description; ARO_category "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. DELETED 40471 " 2219 UPDATE MexL antibiotic efflux; triclosan; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; tetracycline; erythromycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 151 UPDATE OKP-A-15 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 150 UPDATE catB3 antibiotic inactivation; thiamphenicol; chloramphenicol acetyltransferase (CAT); azidamfenicol; phenicol antibiotic; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 153 UPDATE adeF antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; fluoroquinolone antibiotic; tetracycline; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 152 UPDATE cpxA antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; aminocoumarin antibiotic; novobiocin; efflux pump complex or subunit conferring antibiotic resistance; aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 4904935 UPDATED strand with - UPDATED accession with NC_002695.1 UPDATED fmin with 4903561 UPDATED sequence with ATGATAGGCAGCTTAACCGCGCGCATCTTCGCCATCTTCTGGCTGACGCTGGCGCTGGTGTTGATGTTGGTTTTGATGTTACCCAAGCTCGATTCACGCCAGATGACCGAGCTTCTGGATAGCGAACAGCGTCAGGGTCTGATGATTGAGCAGCATGTTGAAGCGGAGCTGGCGAACGATCCGCCCAACGATTTAATGTGGTGGCGGCGTCTGTTCCGGGCGATTGATAAGTGGGCACCGCCAGGACAGCGTTTGTTATTGGTGACCACCGAAGGCCGCGTGATCGGCGCTGAACGCAGCGAAATGCAGATCATTCGTAACTTTATTGGTCAGGCCGATAACGCCGATCATCCGCAGAAGAAAAAGTATGGCCGCGTGGAACTGGTCGGTCCGTTCTCCGTGCGTGATGGCGAAGATAATTACCAACTTTATCTGATTCGTCCGGCCAGCAGTTCTCAATCCGATTTCATTAACTTACTGTTTGACCGCCCGCTATTACTGCTGATTGTCACCATGTTGGTCAGTACGCCGCTGCTGTTGTGGTTGGCCTGGAGTCTGGCAAAACCGGCGCGTAAGCTGAAAAACGCTGCCGATGAAGTTGCCCAGGGAAACTTACGCCAGCACCCGGAACTGGAAGCGGGGCCACAGGAATTCCTTGCCGCAGGTGCCAGTTTTAACCAGATGGTCACCGCGCTGGAGCGCATGATGACCTCTCAGCAGCGTCTGCTTTCTGATATCTCTCACGAGCTGCGCACCCCGCTGACGCGTCTGCAACTGGGTACGGCGTTACTGCGCCGTCGTAGTGGTGAAAGCAAGGAACTGGAGCGTATTGAAACCGAAGCGCAACGTCTGGACAGCATGATTAACGACCTGTTGGTGATGTCACGTAATCAGCAAAAAAACGCGCTGGTTAGCGAGACCATCAAAGCCAATCAGTTGTGGAGTGAAGTGCTGGATAACGCGGCGTTCGAAGCCGAGCAAATGGGCAAGTCGTTGACAGTTAACTTCCCGCCTGGGCCGTGGCCGCTGTACGGCAACCCGAACGCCCTGGAGAGTGCGCTGGAAAACATTGTTCGTAATGCCCTGCGTTATTCCCATACGAAGATTGAAGTGGGCTTTGCGGTAGATAAAGACGGTATCACCATTACGGTGGACGACGATGGTCCTGGCGTTAGCCCGGAAGATCGCGAACAGATTTTCCGTCCGTTCTATCGGACCGATGAAGCGCGCGATCGTGAATCTGGCGGTACAGGTTTGGGACTGGCGATTGTTGAAACCGCCATTCAGCAGCATCGTGGCTGGGTGAAAGCAGAAGACAGCCCGCTGGGCGGTTTACGGCTGGTGATTTGGTTGCCGCTGTATAAGCGGAGTTAA UPDATED NCBI_taxonomy_name with Escherichia coli O157:H7 str. Sakai UPDATED NCBI_taxonomy_id with 386585 UPDATED NCBI_taxonomy_cvterm_id with 36747 UPDATED accession with NP_312864.1 UPDATED sequence with MIGSLTARIFAIFWLTLALVLMLVLMLPKLDSRQMTELLDSEQRQGLMIEQHVEAELANDPPNDLMWWRRLFRAIDKWAPPGQRLLLVTTEGRVIGAERSEMQIIRNFIGQADNADHPQKKKYGRVELVGPFSVRDGEDNYQLYLIRPASSSQSDFINLLFDRPLLLLIVTMLVSTPLLLWLAWSLAKPARKLKNAADEVAQGNLRQHPELEAGPQEFLAAGASFNQMVTALERMMTSQQRLLSDISHELRTPLTRLQLGTALLRRRSGESKELERIETEAQRLDSMINDLLVMSRNQQKNALVSETIKANQLWSEVLDNAAFEAEQMGKSLTVNFPPGPWPLYGNPNALESALENIVRNALRYSHTKIEVGFAVDKDGITITVDDDGPGVSPEDREQIFRPFYRTDEARDRESGGTGLGLAIVETAIQQHRGWVKAEDSPLGGLRLVIWLPLYKRS " 155 UPDATE TEM-195 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 154 UPDATE mgrA penam; peptide antibiotic; ATP-binding cassette (ABC) antibiotic efflux pump; major facilitator superfamily (MFS) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; sparfloxacin; norfloxacin; moxifloxacin; daptomycin; cefotaxime; acridine dye; cephalosporin; acriflavin; antibiotic efflux; ciprofloxacin; tetracycline antibiotic; fluoroquinolone antibiotic; methicillin; tetracycline; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 735860 UPDATED strand with - UPDATED accession with NC_002745.2 UPDATED fmin with 735416 UPDATED sequence with ATGTCTGATCAACATAATTTAAAAGAACAGCTATGCTTTAGTTTGTACAATGCTCAAAGACAAGTTAATCGCTACTACTCTAACAAAGTTTTTAAGAAGTACAATCTAACATACCCACAATTTCTTGTCTTAACAATTTTATGGGATGAATCTCCTGTAAACGTCAAGAAAGTCGTAACTGAATTAGCACTCGATACTGGTACAGTATCACCATTATTAAAACGAATGGAACAAGTAGACTTAATTAAGCGTGAACGTTCCGAAGTCGATCAACGTGAAGTATTTATTCACTTGACTGACAAAAGTGAAACTATTAGACCAGAATTAAGTAATGCATCTGACAAAGTCGCTTCAGCTTCTTCTTTATCTCAAGATGAAGTTAAAGAACTTAATCGCTTATTAGGTAAAGTCATTCATGCATTTGATGAAACAAAGGAAAAATAA UPDATED NCBI_taxonomy_name with Staphylococcus UPDATED NCBI_taxonomy_id with 1279 UPDATED NCBI_taxonomy_cvterm_id with 37074 UPDATED accession with WP_001283444.1 UPDATED sequence with MSDQHNLKEQLCFSLYNAQRQVNRYYSNKVFKKYNLTYPQFLVLTILWDESPVNVKKVVTELALDTGTVSPLLKRMEQVDLIKRERSEVDQREVFIHLTDKSETIRPELSNASDKVASASSLSQDEVKELNRLLGKVIHAFDETKEK " 157 UPDATE dfrA21 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACCCGGAATCGGTCCGCATTTATCTGGTCGCTGCCATGGGTGCCAATCGGGTTATTGGCAATGGTCCCGATATCCCCTGGAAAATCCCAGGTGAGCAGAAGATTTTTCGCAGGCTCACCGAGAGCAAAGTGGTCGTTATGGGCCGCAAGACATTTGAGTCCATAGGCAAGCCCTTACCAAACCGCCACACAGTGGTGCTCTCGCGCCAAGCTCGTTATAGCGCTCCTGGTTGTGCAGTTGTTTCAACGCTGTCACAGGCTATCGCCATCGCAGCCGAACACGGCAAAGAACTCTACGTAGCCGGCGGAGCCGAGGTATATGCGCTGGCGCTACCGCATGCCAACGGCGTCTTTCTATCTGAGGTACATCAAACCTTTGAGGGTGACGCCTTCTTCCCAGTGCTTAACGCAGCAGAATTCGAGGTTGTCTCATCCGAAACCATTCAAGGCACAATCACGTACACGCACTCCGTCTATGCGCGTCGTAACGGCTAA " 156 UPDATE AAC(6')-Iaf antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TTGGACTATTCAATATGCGATATAGCTGAATCAAATGAATTAATCCTTGAAGCAGCAAAGATTCTTAAGAAAAGCTTTCTTGATGTTGGAAATGAATCATGGGGAGATATTAAAAAAGCTATTGAAGAAGTTGAAGAATGTATAGAACATCCAAATATATGCTTGGGAATATGTCTGGATGATAAACTGATTGGCTGGACCGGATTAAGGCCGATGTACGATAAGACCTGGGAACTTCATCCCATGGTTATAAAAACTGAATATCAAGGCAAGGATTTTGGGAAAGTACTACTAAGAGAACTAGAGACGAGAGCGAAGGGTAGGGGAATTATCGGAATAGCTCTTGGAACTGATGATGAATATCAGAAAACTAGTTTGTCTATGATTGATATAAACGAACGAAATATCTTCGATGAAATCGAGAATATAAAGAACATTAATAATCATCCATATGAGTTTTATAAGAAATGTGGTTATATGATCGTTGGAATAATCCCTAATGCTAATGGAAAAAGGAAACCAGATATATGGATGTGGAAAGATATTAGCTAG " 2433 UPDATE lrfA efflux pump complex or subunit conferring antibiotic resistance; fluoroquinolone antibiotic; major facilitator superfamily (MFS) antibiotic efflux pump; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 158 UPDATE myrA antibiotic target alteration; non-erm 23S ribosomal RNA methyltransferase (G748); macrolide antibiotic; lincosamide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGCACCCCGACCTGCTCCCCCACCTCCGCTGCCCGGTCTGCGGCCAGCCGCTGCACCAGGCCGACGCGGCACCACCACGCGCCCTGCGCTGCCCGGCCGGGCACAGCTTCGACATCGCCCGACAGGGTTACGTCAACCTGCTCACGGGCCGGGCACCGCACGTCGGCGACACCGCCGAGATGATCGCCGCCAGGGAGGAGTTTCTGGCCGCCGGGCACTACGACCCGTTCTCGGCGGCACTCGCCACCGCGGCCGCGCGGGCGGTGCCACGTCGTGTCCGGCCCGGCGACGGCGTGGGCGAACCGGTGGCGTACCCGGATCTGGTGGTGGACGCCGGAGCCGGTACCGGCCGGCACCTCGCCGCAGTGCTCGACGCGGTGCCGACCGCCGTCGGCCTGGCGCTGGACGTCTCGAAGCCCGCACTACGCCGGGCGGCCCGGGCGCATCCCCGGGCCGGCGCGGCCGTCTGCGACACCTGGGGCCGGTTGCCGCTGGCCGATGCCACGGTCGCAGTACTGGTCAACGTCTTCGCCCCGCGCAACGGGCCGGAATTCCGTCGGGTGCTCCGGCCGGACGGCGCCCTGCTCGTGGTGACACCGACCGCCGAACACCTGGTCGAGCTGGTGGACCGGCTGGGGCTGCTGCGGGTCGACCCGGCCAAGGACGCCCGGGTGGCCGACAGCCTCACGAGACACTTCGAACCGGCCGGGCAGAGCACCCACCGGCACCGGCTTCAGCTGACCCGGAAGGAGGTGCTGACCCTGGTTGGTATGGGGCCGAGCGCCTGGCACACCGACCCGGCCCGGCTCACCGCGCGGGTCGCAGCCCTGTCCGAGCCGGTCACGGTCACCGCCGCTGTCCGGCTCGCCCGTTACCGCCCGATCTGA " 1293 UPDATE OXA-197 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2430 UPDATE hp1181 metronidazole; major facilitator superfamily (MFS) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; antibiotic efflux; nitroimidazole antibiotic; ciprofloxacin; tetracycline antibiotic; fluoroquinolone antibiotic; tetracycline; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2436 UPDATE D-Ala-D-Ala ligase glycopeptide antibiotic; antibiotic target alteration; van ligase; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2435 UPDATE lmrP antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; streptogramin antibiotic; lincosamide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1770310 UPDATED strand with - UPDATED accession with CP000259.1 UPDATED fmin with 1769089 UPDATED sequence with ATGCAAGAGTTTTTAAACCTTCCTAAGCAGATTCAGCTGAGGCAACTGGTACGCTTTGTGACCATTACCTTAGGCAGTAGTATCTTTCCCTTTATGGCCATGTATTATACGACTTACTTTGGTACGTTTTGGACAGGCCTCTTAATGATGATTACCAGTTTGATGGGATTTGTTGGAACTTTATACGGTGGGCATCTGTCAGATGCTCTTGGTCGTAAAAAAGTCATTATGATTGGGTCAGTAGGAACAACGCTAGGCTGGTTTCTGACTATTTTAGCTAATTTGCCTAATGCAGCTATTCCTTGGTTAACCTTTGCGGGTATTTTATTGGTAGAGATTGCTTCTAGTTTTTATGGTCCTGCCTATGAAGCTATGTTGATTGATTTGACTGATGAGAGTAATCGTCGATTTGTTTACACCATCAATTATTGGTTTATCAATATTGCCGTCATGTTTGGTGCAGGGCTATCTGGGCTTTTTTATGACCATCATTTTTTAGCCTTGTTAGTAGCCTTATTACTCGTTAATGTACTTTGTTTTGGCGTTGCTTACTACTATTTTGATGAGACTAGACCAGAAACACACGCTTTTGATCATGGTAAAGGATTACTGGCGAGTTTTCAGAACTACCGTCAGGTGTTTCAGGATCGTGCCTTTGTCTTGTTTACCTTAGGTGCCATCTTTTCTGGTAGTATCTGGATGCAGATGGATAACTATGTGCCAGTCCATTTGAAACTGTATTTTCAGCCAACGGCTGTGTTAGGTTTCCAAGTAACTAGTTCTAAAATGTTATCATTAATGGTTTTAACTAATACATTGCTGATTGTCCTTTTCATGACAGTAGTAAATAAATTAACGGAAAAATGGAAACTATTACCTCAGCTTGTGGTTGGTTCTTTACTATTTACTCTAGGGATGCTCTTGGCATTTACCTTTACGCAGTTCTATGCTATTTGGCTATCAGTTGTTTTGTTAACTTTTGGGGAAATGATAAATGTTCCTGCTAGTCAAGTCCTACGTGCTGATATGATGGATCATTCCCAAATAGGATCTTATACAGGTTTTGTGTCAATGGCACAACCCCTAGGTGCTATTTTGGCTAGTCTACTAGTATCTGTCAGCCATTTTACAGGTCCTTTAGGTGTGCAATGCTTATTTGTAGTCATTGCTTTGCTAGGGATTTATTTTACGGTTGTTTCTGCAAAAATGAAAAAGGTGTAG UPDATED NCBI_taxonomy_name with Streptococcus pyogenes MGAS9429 UPDATED NCBI_taxonomy_id with 370551 UPDATED NCBI_taxonomy_cvterm_id with 40741 UPDATED accession with ABF33001.1 UPDATED sequence with MQEFLNLPKQIQLRQLVRFVTITLGSSIFPFMAMYYTTYFGTFWTGLLMMITSLMGFVGTLYGGHLSDALGRKKVIMIGSVGTTLGWFLTILANLPNAAIPWLTFAGILLVEIASSFYGPAYEAMLIDLTDESNRRFVYTINYWFINIAVMFGAGLSGLFYDHHFLALLVALLLVNVLCFGVAYYYFDETRPETHAFDHGKGLLASFQNYRQVFQDRAFVLFTLGAIFSGSIWMQMDNYVPVHLKLYFQPTAVLGFQVTSSKMLSLMVLTNTLLIVLFMTVVNKLTEKWKLLPQLVVGSLLFTLGMLLAFTFTQFYAIWLSVVLLTFGEMINVPASQVLRADMMDHSQIGSYTGFVSMAQPLGAILASLLVSVSHFTGPLGVQCLFVVIALLGIYFTVVSAKMKKV " 2720 UPDATE MuxC kitasamycin; resistance-nodulation-cell division (RND) antibiotic efflux pump; rokitamycin; aztreonam; aminocoumarin antibiotic; novobiocin; macrolide antibiotic; antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; monobactam; tetracycline; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2850886 UPDATED strand with - UPDATED accession with NC_002516.2 UPDATED fmin with 2847775 UPDATED sequence with ATGAGTCTGTCCACGCCCTTCATCCGCCGCCCGGTCGCCACCACGCTGCTGACCCTGGCGTTGCTGCTGGCCGGCACCCTGTCGTTCGGCCTGCTGCCGGTGGCGCCGCTGCCCAACGTCGATTTTCCGGCCATCGTGGTCAGCGCCAGCCTGCCGGGCGCCAGCCCGGAAACCATGGCCTCGTCGGTGGCCACGCCGCTGGAGCGCTCGCTGGGACGGATCGCCGGGATCAGCGAGATGACCTCCAGCAGTTCGCTGGGCTCGACCACCGTGGTGCTCGTGTTCGACCTGGAGAAGGACATCGACGGCGCCGCCCGCGAGGTGCAGGCGGCGATCAACGGCGCGATGAGCCTGCTGCCCAGCGGTATGCCGAACAATCCCAGCTACCGCAAGGCCAACCCCTCGGACATGCCGATCATGGTCCTCACCCTGACCTCGGAGACCCAGAGTCGCGGCGAGATGTACGACCTCGCCTCGACCGTGCTGGCGCCCAAGCTGTCGCAGGTGCAGGGGGTAGGGCAGGTGAGCATCGGCGGCAGCTCGCTGCCGGCGGTGCGGGTCGACCTCAACCCGGATGCCATGAGCCAGTACGGGCTGTCCCTGGACAGCGTGCGCACGGCCATCGCCGCGGCCAACAGCAACGGCCCCAAGGGCGCCGTCGAGAAGGACGACAAGCACTGGCAGGTGGACGCCAACGACCAGTTGCGCAAGGCCCGCGAGTACGAGCCGCTGGTGATCCACTACAACGCCGACAACGGCGCCGCGGTGCGCCTCGGCGACGTGGCCAAGGTCAGCGACTCGGTGGAGGACGTGCGCAACGCCGGCTTTTCCGACGACCTGCCGGCTGTGCTGCTAATCGTCACCCGCCAGCCCGGCGCCAACATCATCGAGGCCACCGACGCCATCCACGCGCAACTGCCGGTGTTGCAGGAACTGCTCGGGCCGCAGGTCAAGCTGAACGTGATGGACGATCGCAGCCCGTCGATCCGTGCGTCGCTGGAAGAGGCCGAGCTGACCCTGCTGATCTCGGTGGCGCTGGTGATCCTGGTGGTCTTCCTGTTCCTGCGCAACGGCCGCGCCACGCTGATCCCCAGCCTGGCGGTGCCGGTCTCGCTGATCGGCACCTTCGCGGTCATGTACCTGTGCGACTTCAGCCTGAACAACCTGTCGCTGATGGCGCTGATCATCGCCACCGGCTTCGTGGTGGATGACGCCATAGTGGTGGTGGAGAACATCGCCCGACGCATCGAGGAGGGCGATCCGCCGATCCAGGCGGCGATCACCGGCGCCCGCCAGGTCGGTTTCACCGTGCTGTCGATGACGCTCTCGCTGGTCGCGGTGTTCATCCCGCTGCTGCTCATGGGTGGCCTCACCGGACGGCTGTTCCGCGAGTTCGCGGTGACTCTCTCGGCGGCGATCCTGGTGTCCCTGGTGGTATCCCTGACCCTCACGCCGATGCTCTGCGCGCGTCTGCTGCGTCCGCTGAAACGGCCCGAAGGCGCTTCCCTGGCGCGGCGCAGCGATCGCTTCTTCGCCGCCTTCATGCTGCGCTACCGCGCCAGCCTGGGCTGGGCGCTGGAGCACTCGCGGCTGATGGTGGTGATCATGCTGGCCTGCATCGCCATGAACCTCTGGTTGTTCGTGGTGGTGCCCAAGGGCTTCCTCCCGCAGCAGGACTCCGGGCGCCTGCGCGGCTACGCGGTGGCCGACCAGAGCATCTCGTTCCAGTCCCTGAGCGCGAAGATGGGCGAGTACCGCAAGATCCTCTCTTCCGATCCGGCGGTGGAAAACGTGGTCGGCTTCATCGGTGGCGGCCGTTGGCAGTCGAGCAACACCGGTTCGTTCTTCGTCACTCTCAAGCCGATCGGCGAGCGCGACCCGGTGGAGAAGGTCCTCACCCGGCTGCGCGAGCGGATCGCCAAGGTGCCCGGCGCGGCGCTCTATCTCAACGCCGGCCAGGACGTGCGCCTGGGCGGCCGCGACAGCAACGCGCAGTACGAATTCACCCTGCGCAGCGACGACCTGACCCTGCTCCGCGAATGGGCGCCGAAGGTCGAGGCGGCGATGCGCAAGCTGCCGCAGCTGGTGGACGTCAACAGCGACTCCCAGGACAAGGGCGTGCAGACCCGCCTGGTGATCGACCGCGACCGCGCGGCGACCCTGGGGATCAACGTGGAAATGGTCGACGCGGTGCTCAACGACTCTTTCGGCCAGCGCCAGGTGTCGACCATCTTCAACCCGCTGAACCAGTACCGGGTGGTGATGGAGGTCGACCAGCAGTACCAGCAGAGCCCGGAGATCCTCCGCCAGGTCCAGGTGATCGGCAACGACGGCCAGCGCGTGCCGCTGTCCGCGTTCAGCCACTACGAACCGAGCCGGGCACCGCTGGAGGTCAACCACCAGGGCCAGTTCGCCGCCACCACGCTGTCCTTCAACCTGGCACCGGGCGCGCAGATCGGCCCGACCCGCGAGGCCATCATGCAGGCCCTGGAGCCGCTGCACATCCCGGTGGACGTGCAGACCAGCTTCGAGGGCAACGCCGGCGCGGTGCAGGACACGCAGAACCAGATGCCCTGGCTGATCCTCCTGGCGCTGCTGGCGGTGTACATCGTCCTCGGCATCCTCTACGAGAGCTACGTGCACCCGCTGACCATCCTCTCGACCCTGCCTTCGGCCGGGGTCGGCGCGCTGCTCGCGCTGATCCTCTGCCGCAGCGAGCTGAGCCTGATCGCGCTGATCGGCATCATCCTGCTGATCGGCATCGTCAAGAAGAACGCGATCATGATGATCGACTTCGCCCTGGAGGCCGAGCGCAACCACGGCCTGAGCCCGCGCGAGGCGATCCTCGAGGCCTGCATGATGCGCTTCCGGCCGATCATGATGACCACCCTGGCCGCCTTGCTCGGCGCCTTGCCGCTGATCTTCGGCATCGGCGGCGACGCCGCGCTGCGCCGGCCGCTGGGCATCACCATCGTCGGCGGGCTGATCGGCAGCCAGTTGCTGACCCTGTACACCACCCCGGTGGTCTACCTCTATCTCGACCGCCTGCGCCACTGGGTCAACCAGAAACGCGGCGTACGCACGGACGGTGCGCTGGAGACACCCCTATGA UPDATED NCBI_taxonomy_name with Pseudomonas aeruginosa PAO1 UPDATED NCBI_taxonomy_id with 208964 UPDATED NCBI_taxonomy_cvterm_id with 36804 UPDATED accession with NP_251216.1 UPDATED sequence with MSLSTPFIRRPVATTLLTLALLLAGTLSFGLLPVAPLPNVDFPAIVVSASLPGASPETMASSVATPLERSLGRIAGISEMTSSSSLGSTTVVLVFDLEKDIDGAAREVQAAINGAMSLLPSGMPNNPSYRKANPSDMPIMVLTLTSETQSRGEMYDLASTVLAPKLSQVQGVGQVSIGGSSLPAVRVDLNPDAMSQYGLSLDSVRTAIAAANSNGPKGAVEKDDKHWQVDANDQLRKAREYEPLVIHYNADNGAAVRLGDVAKVSDSVEDVRNAGFSDDLPAVLLIVTRQPGANIIEATDAIHAQLPVLQELLGPQVKLNVMDDRSPSIRASLEEAELTLLISVALVILVVFLFLRNGRATLIPSLAVPVSLIGTFAVMYLCDFSLNNLSLMALIIATGFVVDDAIVVVENIARRIEEGDPPIQAAITGARQVGFTVLSMTLSLVAVFIPLLLMGGLTGRLFREFAVTLSAAILVSLVVSLTLTPMLCARLLRPLKRPEGASLARRSDRFFAAFMLRYRASLGWALEHSRLMVVIMLACIAMNLWLFVVVPKGFLPQQDSGRLRGYAVADQSISFQSLSAKMGEYRKILSSDPAVENVVGFIGGGRWQSSNTGSFFVTLKPIGERDPVEKVLTRLRERIAKVPGAALYLNAGQDVRLGGRDSNAQYEFTLRSDDLTLLREWAPKVEAAMRKLPQLVDVNSDSQDKGVQTRLVIDRDRAATLGINVEMVDAVLNDSFGQRQVSTIFNPLNQYRVVMEVDQQYQQSPEILRQVQVIGNDGQRVPLSAFSHYEPSRAPLEVNHQGQFAATTLSFNLAPGAQIGPTREAIMQALEPLHIPVDVQTSFEGNAGAVQDTQNQMPWLILLALLAVYIVLGILYESYVHPLTILSTLPSAGVGALLALILCRSELSLIALIGIILLIGIVKKNAIMMIDFALEAERNHGLSPREAILEACMMRFRPIMMTTLAALLGALPLIFGIGGDAALRRPLGITIVGGLIGSQLLTLYTTPVVYLYLDRLRHWVNQKRGVRTDGALETPL " 1807 UPDATE OXA-70 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1806 UPDATE OXA-14 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TATCGCGTGTCTTTCGAGTACGGCATTAGCTGGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTCTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATGACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAACGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAGCAATGGGAAAGAGACTTGACCTTAAGAGGGGCAATACAAGTTTCAGCTGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATACCTTAAAAAATTTTCCTATGGCAACCAGAATATCAGTGGTGGCATTGACAAATTCTGGTTGGAAGACCAGCTTAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATATTTAAATAAATTGTCAGCATCTAAAGAAAACCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCGGCACCTGAATATCTAGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGGTGGGTTGAGAAGGAGACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAGTAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGAAAGTGAGGGCATCATTGGTGGCTA " 1805 UPDATE TEM-131 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1804 UPDATE OXA-107 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1803 UPDATE QnrVC3 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAAAAATCAAAGCAATTATATAATCAAGTGAACTTCTCACATCAGGACTTGCAAGAACATATCTTTAGCAATTGTACTTTTATACATTGTAATTTTAAGCGCTCAAACCTCCGAGATACACAGTTCATTAACTGTACTTTCATAGAGCAGGGGGCATTGGAAGGGTGCGATTTTTCTTATGCTGATCTTCGAGATGCTTCATTTAAAAACTGTCAGCTTTCAATGTCCCATTTTAAGGGGGCAAATTGCTTTGGTATTGAACTGAGAGATTGTGATCTTAAAGGAGCAAATTTTACTCAAGTTAGTTTTGTAAATCAGGTTTCGAATAAAATGTACTTTTGTTCTGCATACATAACAGGTTGTAACTTATCCTATGCCAATTTTGAGCAGCAGCTTATTGAAAAATGTGACCTGTTCGAAAATAGATGGATTGGTGCAAATCTTCGAGGCGCTTCATTTACAGAATCATATTTAAGCCGTGGTGATTTTTCGGAAGACTGCTGGGAACAGTTTAGAGTACAAGGCTGTGATTTAAGCCATTCAGAGCTTTATGGTTTAGATCCTCGAAAGATTGATCTTACGGGTGTAAAAATATGCTCGTGGCAACAGGAACAGTTACTGGAGCAATTAGGGGTAATCATTGTTCCTGACTAA " 1802 UPDATE OXA-168 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1801 UPDATE AAC(6')-Ib11 antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAACACAATACATATCAACAGCAACGATTCCGTCACACTGCGCCTCATGACTGAGCATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGAGTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAACAGTACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTCACTCCATACATTGCAATGCTGAATGGAGAGCCGATTGGGTATGCCCAGTCGTACGTTGCTCTTGGAAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCAGGAGTACGCGGAATAGACCTGTCACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGAACCAAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCACCAAGATCCAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCTACGAGAAAGCGGGGTTTGAGAGGCAAGGTACCGTAACCACCCCAGATGGTCCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGCGAACACGCAGTGATGCCTAA " 1800 UPDATE SHV-120 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1809 UPDATE QnrB5 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1808 UPDATE tet(A) antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; tigecycline; glycylcycline; tetracycline antibiotic; tetracycline; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 42743 UPDATED strand with + UPDATED accession with NC_002134.1 UPDATED fmin with 41537 UPDATED sequence with ATGAATAGTTCGACAAAGATCGCATTGGTAATTACGTTACTCGATGCCATGGGGATTGGCCTTATCATGCCAGTCTTGCCAACGTTATTACGTGAATTTATTGCTTCGGAAGATATCGCTAACCACTTTGGCGTATTGCTTGCACTTTATGCGTTAATGCAGGTTATCTTTGCTCCTTGGCTTGGAAAAATGTCTGACCGATTTGGTCGGCGCCCAGTGCTGTTGTTGTCATTAATAGGCGCATCGCTGGATTACTTATTGCTGGCTTTTTCAAGTGCGCTTTGGATGCTGTATTTAGGCCGTTTGCTTTCAGGGATCACAGGAGCTACTGGGGCTGTCGCGGCATCGGTCATTGCCGATACCACCTCAGCTTCTCAACGCGTGAAGTGGTTCGGTTGGTTAGGGGCAAGTTTTGGGCTTGGTTTAATAGCGGGGCCTATTATTGGTGGTTTTGCAGGAGAGATTTCACCGCATAGTCCCTTTTTTATCGCTGCGTTGCTAAATATTGTCACTTTCCTTGTGGTTATGTTTTGGTTCCGTGAAACCAAAAATACACGTGATAATACAGATACCGAAGTAGGGGTTGAGACGCAATCGAATTCGGTATACATCACTTTATTTAAAACGATGCCCATTTTGTTGATTATTTATTTTTCAGCGCAATTGATAGGCCAAATTCCCGCAACGGTGTGGGTGCTATTTACCGAAAATCGTTTTGGATGGAATAGCATGATGGTTGGCTTTTCATTAGCGGGTCTTGGTCTTTTACACTCAGTATTCCAAGCCTTTGTGGCAGGAAGAATAGCCACTAAATGGGGCGAAAAAACGGCAGTACTGCTCGGATTTATTGCAGATAGTAGTGCATTTGCCTTTTTAGCGTTTATATCTGAAGGTTGGTTAGTTTTCCCTGTTTTAATTTTATTGGCTGGTGGTGGGATCGCTTTACCTGCATTACAGGGAGTGATGTCTATCCAAACAAAGAGTCATCAGCAAGGTGCTTTACAGGGATTATTGGTGAGCCTTACCAATGCAACCGGTGTTATTGGCCCATTACTGTTTGCTGTTATTTATAATCATTCACTACCAATTTGGGATGGCTGGATTTGGATTATTGGTTTAGCGTTTTACTGTATTATTATCCTGCTATCGATGACCTTCATGTTAACCCCTCAAGCTCAGGGGAGTAAACAGGAGACAAGTGCTTAG UPDATED NCBI_taxonomy_name with Proteobacteria UPDATED NCBI_taxonomy_id with 1224 UPDATED NCBI_taxonomy_cvterm_id with 40546 UPDATED accession with WP_001089072.1 UPDATED sequence with MNSSTKIALVITLLDAMGIGLIMPVLPTLLREFIASEDIANHFGVLLALYALMQVIFAPWLGKMSDRFGRRPVLLLSLIGASLDYLLLAFSSALWMLYLGRLLSGITGATGAVAASVIADTTSASQRVKWFGWLGASFGLGLIAGPIIGGFAGEISPHSPFFIAALLNIVTFLVVMFWFRETKNTRDNTDTEVGVETQSNSVYITLFKTMPILLIIYFSAQLIGQIPATVWVLFTENRFGWNSMMVGFSLAGLGLLHSVFQAFVAGRIATKWGEKTAVLLGFIADSSAFAFLAFISEGWLVFPVLILLAGGGIALPALQGVMSIQTKSHQQGALQGLLVSLTNATGVIGPLLFAVIYNHSLPIWDGWIWIIGLAFYCIIILLSMTFMLTPQAQGSKQETSA " 1256 UPDATE bmr antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; acridine dye; puromycin; acriflavin; nucleoside antibiotic; fluoroquinolone antibiotic; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAGAAGAAAAATATTACCTTAACTATATTATTAACCAATTTATTTATTGCTTTTTTGGGGATCGGGCTTGTGATTCCAGTAACGCCGACCATTATGAATGAATTGCATTTATCGGGGACCGCGGTCGGCTATATGGTTGCCTGCTTCGCTATTACACAGCTCATTGTCTCACCAATAGCCGGACGATGGGTTGATCGCTTCGGGCGCAAGATCATGATCGTAATCGGCCTGTTGTTCTTTAGTGTGTCGGAGTTTTTGTTCGGCATTGGAAAAACAGTTGAGATGTTATTTATCTCCCGTATGCTGGGCGGTATCAGCGCACCGTTCATTATGCCCGGGGTCACGGCTTTTATTGCAGATATCACGACCATTAAAACACGGCCAAAAGCGCTCGGTTATATGTCAGCCGCTATTTCAACAGGATTTATTATCGGCCCCGGCATCGGGGGATTTTTAGCAGAAGTCCATTCCCGGCTGCCTTTTTTCTTTGCGGCAGCTTTTGCACTGTTAGCAGCCATTTTATCAATCCTCACGCTGCGCGAGCCGGAACGAAACCCTGAAAATCAGGAAATAAAAGGACAGAAGACAGGCTTTAAACGAATTTTTGCCCCCATGTATTTCATAGCTTTTCTCATTATCTTAATTTCGTCTTTTGGTTTAGCATCATTTGAATCTTTATTTGCATTATTCGTGGATCATAAATTCGGATTTACGGCCAGCGACATTGCCATTATGATTACAGGAGGAGCGATTGTTGGCGCCATTACGCAAGTCGTCTTATTCGACCGCTTCACAAGATGGTTTGGCGAAATTCATTTAATTCGGTACAGCTTAATTCTCTCGACGAGTCTGGTATTCTTGCTGACAACGGTACATTCATATGTTGCGATTCTGCTGGTGACAGTCACCGTATTTGTCGGATTTGATCTCATGCGGCCTGCGGTAACGACTTACCTGTCAAAGATTGCGGGAAATGAACAGGGGTTTGCCGGCGGTATGAATTCAATGTTTACAAGTATCGGCAATGTATTCGGGCCTATTATCGGCGGAATGCTGTTCGATATAGATGTAAACTATCCTTTCTACTTTGCAACGGTCACCTTAGCCATAGGGATTGCACTGACCATTGCTTGGAAAGCGCCTGCACATCTTAAAGCCAGCACGTGA " 1948 UPDATE TEM-167 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1949 UPDATE cphA6 carbapenem; CphA beta-lactamase; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1257 UPDATE QnrB68 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1942 UPDATE BJP-1 carbapenem; antibiotic inactivation; BJP beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2173201 UPDATED strand with - UPDATED accession with AP012279.1 UPDATED fmin with 2172316 UPDATED sequence with ATGAAGAAGCTCACGGCCGCGCTGTGTGCGCTGGCGTTTTTCGCAACGGGCGCGCAGGCGCAGACGGTCAAGGATTTCATTGCGGCGGTCACCAAGAAATGGACCACGCCGTTCGAGCCGTTCCAGCTGATCGACAACATCTATTATGTCGGCACCGACGGCATCGCCGTCTACGTCATCAAGACCTCGCAAGGCCTGATCCTGATGGACACGGCGCTTCCACAGTCTACCGGCATGATCAAGGACAACATCACGAAGCTCGGCCTGAAGGTCGCCGACATCAAGATCATCCTCAACACGCACGCGCATTTCGATCACACCGGCGGCTTCGCCGAGGTCAAGAAGGAGACCGGCGCGCAGCTCATCGCCGGCGAGCGCGACAAGCCGCTGCTCGAAGGCGGCTACTATCCCGGCGACGAGAAGAACGAGGATCTCGCCTTCCCCGCGGTCAAGGTCGATCGCACCGTGAAGGAAGGCGATAAGGTCACGCTTGGTGAGACCACGCTGACGGCGCACGCCACTCCCGGCCACTCGCCGGGCTGCACGAGCTGGGAGATGACCGTCAAGGACGGCGGCCAGGACCGCCAGGTGCTGTTCTTCTGCAGCGGCACGGTGGCGCTAAACCGGCTGGTCGGCCAGCCAACCCACGCCGGCATCGTCGACGACTATCGCGCGACCTATGCCAAGGTGAAGGCGATGAAGATCGACGTCCTGCTCGGACCGCATCCCGAAGTCTACGGCATGCAGGCCAAGCGCGCGGCAATGAAGGACGGCGCACCGAACCCGTTCGTCAAGCCCGGCGAGCTCGCGACCTACGCGACCAGCCTGTCGGAGGACTTCGACAAGCAGCTCGCCAAGCAGACAGCGGCGCTAGAGAAGAAATAG UPDATED NCBI_taxonomy_name with Bradyrhizobium sp. S23321 UPDATED NCBI_taxonomy_id with 335659 UPDATED NCBI_taxonomy_cvterm_id with 39673 UPDATED accession with BAL75272.1 UPDATED sequence with MKKLTAALCALAFFATGAQAQTVKDFIAAVTKKWTTPFEPFQLIDNIYYVGTDGIAVYVIKTSQGLILMDTALPQSTGMIKDNITKLGLKVADIKIILNTHAHFDHTGGFAEVKKETGAQLIAGERDKPLLEGGYYPGDEKNEDLAFPAVKVDRTVKEGDKVTLGETTLTAHATPGHSPGCTSWEMTVKDGGQDRQVLFFCSGTVALNRLVGQPTHAGIVDDYRATYAKVKAMKIDVLLGPHPEVYGMQAKRAAMKDGAPNPFVKPGELATYATSLSEDFDKQLAKQTAALEKK " 1943 UPDATE Mycobacterium tuberculosis kasA mutant conferring resistance to isoniazid isoniazid; antibiotic target alteration; triclosan; antibiotic resistant kasA; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with GTGAGTCAGCCTTCCACCGCTAATGGCGGTTTCCCCAGCGTTGTGGTGACCGCCGTCACAGCGACGACGTCGATCTCGCCGGACATCGAGAGCACGTGGAAGGGTCTGTTGGCCGGCGAGAGCGGCATCCACGCACTCGAAGACGAGTTCGTCACCAAGTGGGATCTAGCGGTCAAGATCGGCGGTCACCTCAAGGATCCGGTCGACAGCCACATGGGCCGACTCGACATGCGACGCATGTCGTACGTCCAGCGGATGGGCAAGTTGCTGGGCGGACAGCTATGGGAGTCCGCCGGCAGCCCGGAGGTCGATCCAGACCGGTTCGCCGTTGTTGTCGGCACCGGTCTAGGTGGAGCCGAGAGGATTGTCGAGAGCTACGACCTGATGAATGCGGGCGGCCCCCGGAAGGTGTCCCCGCTGGCCGTTCAGATGATCATGCCCAACGGTGCCGCGGCGGTGATCGGTCTGCAGCTTGGGGCCCGCGCCGGGGTGATGACCCCGGTGTCGGCCTGTTCGTCGGGCTCGGAAGCGATCGCCCACGCGTGGCGTCAGATCGTGATGGGCGACGCCGACGTCGCCGTCTGCGGCGGTGTCGAAGGACCCATCGAGGCGCTGCCCATCGCGGCGTTCTCCATGATGCGGGCCATGTCGACCCGCAACGACGAGCCTGAGCGGGCCTCCCGGCCGTTCGACAAGGACCGCGACGGCTTTGTGTTCGGCGAGGCCGGTGCGCTGATGCTCATCGAGACGGAGGAGCACGCCAAAGCCCGTGGCGCCAAGCCGTTGGCCCGATTGCTGGGTGCCGGTATCACCTCGGACGCCTTTCATATGGTGGCGCCCGCGGCCGATGGTGTTCGTGCCGGTAGGGCGATGACTCGCTCGCTGGAGCTGGCCGGGTTGTCGCCGGCGGACATCGACCACGTCAACGCGCACGGCACGGCGACGCCTATCGGCGACGCCGCGGAGGCCAACGCCATCCGCGTCGCCGGTTGTGATCAGGCCGCGGTGTACGCGCCGAAGTCTGCGCTGGGCCACTCGATCGGCGCGGTCGGTGCGCTCGAGTCGGTGCTCACGGTGCTGACGCTGCGCGACGGCGTCATCCCGCCGACCCTGAACTACGAGACACCCGATCCCGAGATCGACCTTGACGTCGTCGCCGGCGAACCGCGCTATGGCGATTACCGCTACGCAGTCAACAACTCGTTCGGGTTCGGCGGCCACAATGTGGCGCTTGCCTTCGGGCGTTACTGA " 1940 UPDATE QnrB30 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1941 UPDATE SHV-98 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1946 UPDATE CTX-M-10 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1947 UPDATE CTX-M-160 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1944 UPDATE CTX-M-148 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATAGCGGTCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGCGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA " 1945 UPDATE SHV-50 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 818 UPDATE SHV-141 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 819 UPDATE CTX-M-68 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTATTAGGAAGTGTGCCGCTGCATGCGCAAACGGTGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGAAGGCTGGGTGTGGCATTGATTAACACGGCGGATAATTCGCAAATACTTTATCGTGCTGATGAGCGTTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTAAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTCGAGATCAAAAAATCTGACCTGGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTCAGCGCGGCCGCGCTACAGTACAGCGATAATGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGATGACACGTTCCGTCTCGACCGCACCGAGCCGACGTTAAACACCGCCATTCCTGGCGATCCGCGTGATACCACTTCACCTCGGGCGATGGCGCAAACGCTGCGTAATCTGACGCTGGGTAAAGCGTTGGGCGACAGCCAACGGGCGCAGCTGGTGACGTGGATGAAAGGCAATACTACCGGTGCCGCGAGTATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGACTATGGTACCACCAACGATATCGCGGTGATTTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA " 1255 UPDATE OXA-119 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCAATCCGATTCCTCACCATACTGCTATCTACTTTTTTTCTTACCTCATTCGTGCATGCGCAAGAACACGTGCTAGAGCGTTCTGACTGGAAGAAGTTCTTCAGCGACCTCCGGGCCGAAGGTGCAATCGTTATTTCAGACGAACGTCAAGCGGAGCATGCTTTATTGGTTTTTGGTCAAGAGCGAGCAGCAAAGCGTTACTCGCCTGCTTCAACCTTCAAGCTTCCACACACACTTTTTGCACTCGATGCAGACGCCGTTCGTGATGAGTTCCAGGTTTTTCGATGGGACGGCGTTAAACGGAGCTTTGCGGGCCATAATCAAGACCAAGACTTGCGATCAGCGATGCGAAATTCTGCGGTCTGGGTTTATGAGCTATTTGCAAAAGAGATCGGAGAGGACAAAGCAAGACGCTATTTAAAGCAAATTGATTATGGCAACGCCGACCCTTCGACAATCAAGGGCGATTACTGGATAGATGGCAATCTTGAAATCTCAGCGCACGAACAGATTTCGTTTCTCAGAAAACTCTATCGAAATCAGCTGCCATTTCAGGTGGAACATCAGCGCTTGGTCAAAGATCTCATGATTACGGAAGCCGGGCGCAATTGGATACTACGCGCAAAGACCGGCTGGGAAGGCAGGTTTGGCTGGTGGGTAGGGTGGGTGGAGTGGCCAACCGGTCCCGTATTCTTCGCGCTGAATATTGATACGCCAAACAGAACGGATGATCTTTTCAAAAGAGAGGCAATCGCGCGGGCAATCCTTCGCTCTATCGACGCATTGCCGCCCAACTAA " 2425 UPDATE hmrM antibiotic efflux; acridine dye; norfloxacin; multidrug and toxic compound extrusion (MATE) transporter; efflux pump complex or subunit conferring antibiotic resistance; acriflavin; fluoroquinolone antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1146068 UPDATED strand with - UPDATED accession with NC_017452.1 UPDATED fmin with 1144673 UPDATED sequence with ATGAATTTTCGTCTTTTATCTCAATACCACACTGATATTAAAAAGTTGATTAAAATTTCCTTGCCTATTTTATTAGCGCAAATTGCACAAAACTCAATGGGATTAGCGGATACCATTATGGCGGGGCGAGTGAGTTCCACTGATATGGCAGCCATTTCTATTGGTGCTTCAATTTGGATGCCATTGATGTTTTTTGGGCAAGGTTTATTGTTGGCATTGCCGCCTACAATTTCTTATTTGAATGGTTCAGGCCAACACCATCGCATTGCACATCAAGTTCGCCAAGGCATTTGGCTTGTGTTAGGCGTGAGTATTCCTTTAGGTTTACTGATTTATTTCTGTGAAATTCCGCTGCAATATATGCAAATGGAAAGCAAAATGTCAGATTTAGCACGCAATTATTTACACGCGATGTTGTGGGGATTGCCAGCTTATTTGATGCTGATTAATTTTCGTTGTTTAAATGATGGGATTGAGAAAACCAAGCCTGCGATGGTCATTACCTTTTTAGGTTTATTGATTAATATTCCGCTTAATTACATTTTTATTTATGGAAAATTTGGTATGCCTGCTTTTGGTGCGGTGGGCTGTGGTATTGCGACAGCTATTGTGAACTGGGCAATGTGCTTAATGATGATTTTCTATTCCTACACGAATACTCAAGAACGTTCACTAAAAGTATTTAGTCAATTAATTGAAATGCCAAATCCGAAAACACTTAAAAAATTACTGCGTTTAGGATTACCCATTGCCATTGCAATTTGTTGCGAAGTGGCGTTATATGCACTTACGTCCTTAATGCTTTCTCCGCTGGGTGCAACTATTGTGGCAAGCCATCAAATTACGCTGAATACTAGTTCTTTTATTTTTATGTTCCCTATGTCGATTGGTATGGCAACGACGATTTTAGTTGGACAAGCATTGGGTGCAGGTTCTCCACAAAATGCGAAGAAAATTGGCTATGCCGCATTATTATTAGGGCTAACTGTGACAATTGTTACTGCATTAATTACGATTTTTTTCCGTTATGAAATTGCATCGATCTTCGTGACAGATGAAATTGTCATCGCCATGGCAGCAAATCTATTATTATTTGCCGCACTTTATCAATTTTCAGATACCATTCAAATGGTGGTTGGTGGTATTTTACGTGGTTATAAAGATACTAAAGTCATTTTATACATTACCCTTTTCTCTTATTGGGTAATTGGTGTGCCACTTGGTTATACGCTAGGTCGTACAGATTGGCTTGTGCCACACATTGATGCGAAAGGTTTCTGGATTGCCTTTGTGGTCTCGCTCACTTTTGCGGCATTCTTACTTTCTTTGAGAATGAAAAAAATGCAAGCTATGAACGACAACGCTATTTTACAACGTTTAGAAAAACTTAAATAA UPDATED NCBI_taxonomy_name with Haemophilus influenzae UPDATED NCBI_taxonomy_id with 727 UPDATED NCBI_taxonomy_cvterm_id with 36768 UPDATED accession with WP_014550864.1 UPDATED sequence with MNFRLLSQYHTDIKKLIKISLPILLAQIAQNSMGLADTIMAGRVSSTDMAAISIGASIWMPLMFFGQGLLLALPPTISYLNGSGQHHRIAHQVRQGIWLVLGVSIPLGLLIYFCEIPLQYMQMESKMSDLARNYLHAMLWGLPAYLMLINFRCLNDGIEKTKPAMVITFLGLLINIPLNYIFIYGKFGMPAFGAVGCGIATAIVNWAMCLMMIFYSYTNTQERSLKVFSQLIEMPNPKTLKKLLRLGLPIAIAICCEVALYALTSLMLSPLGATIVASHQITLNTSSFIFMFPMSIGMATTILVGQALGAGSPQNAKKIGYAALLLGLTVTIVTALITIFFRYEIASIFVTDEIVIAMAANLLLFAALYQFSDTIQMVVGGILRGYKDTKVILYITLFSYWVIGVPLGYTLGRTDWLVPHIDAKGFWIAFVVSLTFAAFLLSLRMKKMQAMNDNAILQRLEKLK " 810 UPDATE mecC antibiotic target replacement; ceftaroline; ampicillin; flucloxacillin; ceftibuten; cefditoren; piperacillin; cefpodoxime; cefixime; cefdinir; meropenem; carbapenem; imipenem; aztreonam; cefradine; isopenicillin N; cefazolin; penicillin N; ceftazidime; cefepime; penicillin; oxacillin; cefmetazole; moxalactam; cloxacillin; cefadroxil; ceftriaxone; methicillin; loracarbef; ceftizoxime; cephalosporin; cefotaxime; cefaclor; phenoxymethylpenicillin; cefonicid; monobactam; cefuroxime; amoxicillin; mezlocillin; azlocillin; cefalexin; doripenem; cefotiam; ertapenem; penam; cefprozil; cephapirin; ceftobiprole; benzylpenicillin; methicillin resistant PBP2; cephamycin; carbenicillin; cefalotin; ceftiofur; mecillinam; propicillin; cefoxitin; dicloxacillin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 37678 UPDATED strand with - UPDATED accession with NC_017349.1 UPDATED fmin with 35680 UPDATED sequence with ATGAAAAAAATTTATATTAGTGTGCTAGTTCTTTTACTAATTATGATTATAATAACTTGGTTATTCAAAGATGACGATATTGAGAAAACAATTAGTTCTATTGAAAAAGGAAACTATAACGAAGTATATAAAAATAGTTCAGAAAAATCTAAACTGGCATATGGAGAAGAAGAAATTGTAGATAGGAATAAAAAAATTTACAAAGATTTAAGTGTCAATAACTTAAAAATTACTAATCATGAAATTAAAAAAACTGGAAAAGATAAAAAGCAAGTTGATGTTAAATATAACATATATACAAAATATGGAACTATACGACGTAATACACAATTAAACTTTATTTATGAAGATAAGCATTGGAAATTAGATTGGAGACCAGACGTAATAGTACCTGGTTTGAAAAATGGACAGAAAATTAATATAGAAACATTAAAATCAGAGCGAGGCAAAATAAAAGATAGAAATGGTATAGAATTAGCTAAAACTGGAAATACATATGAAATCGGTATTGTCCCTAACAAAACACCCAAAGAAAAATATGATGATATTGCTCGTGACTTACAAATTGATACAAAAGCTATAACCAATAAAGTTAATCAAAAATGGGTTCAGCCAGATTCATTTGTACCAATTAAAAAGATAAATAAACAAGATGAATATATAGACAAATTAATTAAATCATACAATTTACAAATAAACACTATAAAAAGCCGTGTTTATCCATTGAACGAAGCAACAGTACACCTTTTAGGTTATGTGGGTCCAATTAATTCTGACGAGTTAAAAAGTAAGCAATTTAGAAACTATAGCAAAAATACTGTTATTGGAAAAAAAGGCTTAGAACGCCTCTATGATAAACAATTGCAAAACACTGATGGTTTTAAGGTATCCATTGCAAATACTTATGACAATAAACCTTTAGACACATTATTGGAGAAAAAGGCTGAAAACGGAAAAGATCTTCATTTAACTATAGATGCTAGAGTACAAGAAAGTATTTATAAACATATGAAAAATGACGATGGATCTGGTACAGCATTACAACCAAAAACTGGAGAAATTTTAGCTTTGGTAAGTACCCCATCGTACGATGTTTATCCATTCATGAATGGATTAAGCAATAATGACTACCGTAAATTAACTAACAATAAAAAAGAGCCTTTGCTCAACAAATTTCAAATCACTACATCACCAGGTTCAACCCAAAAAATATTAACATCTATTATAGCCTTAAAAGAAAATAAACTAGACAAAAATACTAATTTTGATATTTATGGTAAGGGTTGGCAAAAAGATGCATCATGGGGGAATTATAATATCACAAGATTTAAAGTAGTAGACGGCAATATCGATTTAAAGCAAGCAATAGAATCATCAGACAACATATTTTTTGCCCGCATTGCATTAGCATTAGGAGCCAAAAAATTTGAGCAAGGTATGCAAGATTTGGGAATCGGTGAAAATATCCCGAGTGATTATCCCTTTTATAAAGCACAAATCTCAAATAGTAATTTAAAAAATGAAATATTATTAGCAGATTCAGGATATGGCCAAGGCGAGATACTAGTAAACCCTATACAAATTTTATCAATATACAGTGCTTTAGAAAATAACGGAAATATACAAAATCCTCATGTTTTACGTAAAACAAAATCTCAAATATGGAAAAAAGATATTATACCTAAAAAAGACATAGATATATTAACTAATGGTATGGAACGTGTAGTTAATAAAACACATAGGGATGATATATACAAAAATTATGCCCGAATTATTGGTAAATCTGGCACAGCAGAATTAAAAATGAATCAAGGGGAAACTGGAAGACAAATAGGTTGGTTTGTTTCATATAATAAAAATAATCCTAATATGTTAATGGCGATTAATGTTAAAGACGTTCAAAATAAAGGGATGGCCAGCTATAATGCTACTATATCTGGAAAAGTTTATGATGATTTGTATGATAATGGAAAAACTCAATTTGATATAGATCAGTAA UPDATED NCBI_taxonomy_name with Staphylococcus UPDATED NCBI_taxonomy_id with 1279 UPDATED NCBI_taxonomy_cvterm_id with 37074 UPDATED accession with WP_000725529.1 UPDATED sequence with MKKIYISVLVLLLIMIIITWLFKDDDIEKTISSIEKGNYNEVYKNSSEKSKLAYGEEEIVDRNKKIYKDLSVNNLKITNHEIKKTGKDKKQVDVKYNIYTKYGTIRRNTQLNFIYEDKHWKLDWRPDVIVPGLKNGQKINIETLKSERGKIKDRNGIELAKTGNTYEIGIVPNKTPKEKYDDIARDLQIDTKAITNKVNQKWVQPDSFVPIKKINKQDEYIDKLIKSYNLQINTIKSRVYPLNEATVHLLGYVGPINSDELKSKQFRNYSKNTVIGKKGLERLYDKQLQNTDGFKVSIANTYDNKPLDTLLEKKAENGKDLHLTIDARVQESIYKHMKNDDGSGTALQPKTGEILALVSTPSYDVYPFMNGLSNNDYRKLTNNKKEPLLNKFQITTSPGSTQKILTSIIALKENKLDKNTNFDIYGKGWQKDASWGNYNITRFKVVDGNIDLKQAIESSDNIFFARIALALGAKKFEQGMQDLGIGENIPSDYPFYKAQISNSNLKNEILLADSGYGQGEILVNPIQILSIYSALENNGNIQNPHVLRKTKSQIWKKDIIPKKDIDILTNGMERVVNKTHRDDIYKNYARIIGKSGTAELKMNQGETGRQIGWFVSYNKNNPNMLMAINVKDVQNKGMASYNATISGKVYDDLYDNGKTQFDIDQ " 811 UPDATE TEM-26 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 812 UPDATE CMY-10 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAACAACGACAATCCATCCTGTGGGGGGCCGTGGCCACCCTGATGTGGGCCGGTCTGGCCCATGCAGGTGAGGCTTCACCGGTCGATCCCCTGCGCCCCGTGGTGGATGCCAGCATCCAGCCGCTGCTCAAGGAGCACAGGATCCCGGGCATGGCGGTGGCCGTGCTCAAGGATGGCAAGGCCCACTACTTCAATTACGGGGTGGCCAACCGGGAGAGCGGGGCCGGCGTCAGCGAGCAGACCCTGTTCGAGATAGGATCCGTGAGCAAGACCCTGACTGCGACCCTGGGGGCCTATGCGGTGGTCAAGGGAGCGATGCAGCTGGATGACAAGGCGAGCCGGCACGCGCCCTGGCTCAAGGGATCCGCCTTTGACAGCATCACCATGGGGGAGCTTGCCACCTACAGCGCCGGAGGCCTGCCACTGCAATTCCCCGAGGAGGTGGATTCATCCGAGAAGATGCGCGCCTACTACCGCCAGTGGGCCCCTGTCTATTCGCCGGGCTCCCATCGCCAGTACTCCAACCCCAGCATAGGGCTGTTCGGCCACCTGGCGGCGAGCAGCCTGAAGCAGCCGTTTGCCCCCTTGATGGAGCAGACCCTGCTGCCCGGGCTCGGCATGCACCACACCTATGTCAATGTGCCGAAGCAGGCCATGGCGAGTTATGCCTATGGCTATTCGAAAGAGGACAAGCCCATCCGTGTCAACCCTGGCATGCTGGCGGACGAGGCCTATGGCATCAAGACCAGCTCGGCGGATCTGCTGCGTTTTGTGAAGGCCAACATCGGCGGGGTTGATGACAAGGCGTTGCAGCAGGCCATCTCCCTGACCCACCAAGGGCATTACTCGGTAGGCGGGATGACCCAGGGGCTGGGTTGGGAGAGTTACGCCTATCCCGTCACCGAGCAGACATTGCTGGCGGGCAATTCGGCCAAGGTGATCCTCGAAGCCAATCCGACGGCGGCGCCCCGGGAGTCGGGGAGCCAGGTGCTCTTCAACAAGACCGGCTCGACCAATGGCTTTGGCGCCTATGTGGCCTTCGTGCCGGCCAGGGGGATCGGCATCGTCATGCTGGCCAATCGCAACTACCCCATCGAGGCGCGCATCAAGGCGGCCCACGCCATCCTGGCGCAGTTGGCCGGTTGA " 813 UPDATE OXA-216 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 814 UPDATE TEM-113 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 815 UPDATE GOB-1 carbapenem; penam; GOB beta-lactamase; antibiotic inactivation; cephalosporin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGAAATTTTGCTACACTGTTTTTCATGTTCATTTGCTTGGGCTTGAATGCTCAGGTAGTAAAAGAACCTGAAAATATGCCCAAAGAATGGAACCAGGCTTATGAACCATTCAGAATTGCAGGTAATTTATATTACGTAGGAACCTATGATTTGGCTTCTTACCTTATTGTGACAGACAAAGGCAATATTCTCATTAATACAGGAACGGCAGAATCGCTTCCAATAATAAAAGCAAATATCCAAAAGCTCGGGTTTAATTATAAAGACATTAAGATCTTGCTGCTTACTCAGGCTCACTACGACCATACAGGTGCATTACAGGATTTTAAAACAGAAACCGCTGCAAAATTCTATGCCGATAAAGCAGATGTTGATGTCCTGAGAACAGGGGGGAAGTCCGATTATGAAATGGGAAAATATGGTGTGACATTTAAACCTGTTACTCCGGATAAAACATTGAAAGATCAGGATAAAATAAAACTGGGAAATATAACCCTGACTTTGCTTCATCATCCGGGACATACAAAAGGTTCCTGTAGTTTTATTTTTGAAACAAAAGACGAGAAGAGAAAATATAGAGTTTTGATAGCTAATATGCCCTCCGTTATTGTTGATAAGAAATTTTCTGAAGTTACCGCATATCCAAATATTCAGTCCGATTATGCTTATACCTTTGGTGTTATGAAAAAGCTGGATTTTGATATTTGGGTGGCCTCCCATGCAAGTCAGTTCGATCTCCATGAAAAACGTAAAGAAGGAGATCCGTACAATCCGCAATTGTTTATGGATAAGCAAAGCTATTTCCAAAACCTTAATGATTTGGAAAAAAGCTATCTCGACAAAATAAAAAAAGATTCCCAAGATAAATAA " 816 UPDATE OXA-3 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCAATCCGAATCTTTGCAATACTTTTCTCCACTTTTGTTTTTGGCACGTTCGCGCATGCACAAGAAGGCATGCGCGAACGTTCTGACTGGCGGAAGTTTTTCAGCGAATTTCAAGCCAAAGGCACGATAGTTGTGGCAGACGAACGCCAAACAGATCGTGTCATATTGGTTTTTGATCAGGTGCGGTCAGAGAAACGCTACTCGCCGGCCTCGACATTCAAGATTCCACATACACTTTTTGCACTTGACGCAGGCGCTGCACGTGATGAGTTTCAAGTTTTCCGATGGGACGGCATCAAAAGAAGCTTTGCAGCTCACAACCAAGACCAAGACTTGCGATCAGCAATGCGGAATTCTACTGTCTGGATTTATGAGCTATTTGCAAAAGAGATCGGTGAAGACAAGGCTCGACGCTATTTGAAGCAAATCGACTATGGCAACGCCGATCCTTCGACAAGTAATGGCGATTACTGGATAGATGGCAATCTTGCTATCGCGGCACAAGAACAGATTGCATTTCTCAGGAAGCTCTATCATAACGAGTTGCCCTTTCGGGTAGAACATCAGCGCTTGGTCAAGGACCTCATGATTGTGGAAGCCGGTCGCAACTGGATACTGCGCGCAAAGACGGGCTGGGAAGGCCGCATTGGTTGGTGGGTAGGATGGGTTGAGTGGCCGACTGGCCCCGTATTCTTCGCACTGAATATTGATACGCCAAACAGGATGGATGACCTTTTCAAAAGGGAGGCAATAGTGCGGGCAATCCTTCGCTCTATCGAAGCGTTGCCGCCCAACCCGGCAGTCAACTCGGACGCAGCGCGATAA " 817 UPDATE CTX-M-158 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2859 UPDATE PDC-80 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1623 UPDATE GIM-2 penam; GIM beta-lactamase; penem; carbapenem; cephalosporin; antibiotic inactivation; cephamycin; monobactam; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAATGTATTAGTGTTTTTAATATTACTTGTAGCGTTGCCAGCTTTAGCTCAGGGTCATAAACCGCTAGAAGTTATAAAAATTGAAGATGGAGTATATCTTCATACCTCCTTTAAGAATATTGAAGGCTATGGGTTAGTTGATTCGAATGGGTTGGTAGTTCTGGATAATAATCAAGCCTATATTATCGACACACCTTGGTCTGAAGAAGACACGAAGTTGTTATTATCCTGGGCGACTGACAGGGGATACCAGGTTATGGCTAGCATCTCAACTCATTCTCATGGAGATCGCACTGCTGGTATCAAGTTGCTAAATTCAAAGTCAATTCCTACATACACATCAGAGTTAACTAAAAAGCTTCTTGCCCGTGAAGGAAAGCCGGTTCCTACCCACTACTTTAAAGACGACGAATTCACACTGGGAAATGGGCTTATAGAGCTCTACTATCCAGGTGCTGGGCATACAGAGGATAATATTGTTGCTTGGTTACCCAAAAGCAAAATACTATTTGGTGGCTGCCTCGTGAGGAGTCATGAGTGGGAAGGCTTAGGTTACGTAGGCGACGCCTCAATTAGCTCTTGGGCTGACTCAATTAAAAATATTGTATCGAAAAAATATCCCATTCAAATGGTCGTTCCGGGGCATGGCAAAGTTGGAAGTTCAGATATATTAGATCACACCATTGATCTTGCTGAATCAGCTTCTAACAAATTAATGCAACCGACCGCTGAAGCGTCGGCTGATTAA " 1250 UPDATE CTX-M-96 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1622 UPDATE vanWG glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanW; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGATTGAGGTGTATAAATTAACACAAAGAAAAAGACTAACGCAGTTGTTTCCTTTTTTGCTACCTCTCCGCAAATGGCAAAGAAAAAAATATTTTTATTTCAAAATGAAATTTGACGGCAATAGATACGCAAAAAAGACATCTGAGAAATTGTTACCAAACACAGTATTTGAAACATCATCACTTATGCTAAATGAAAATAGTGGATTTGATATGAAGTACCAAATCAATAAGGTACACAACCTAAAACTTGCCGCAAAAACAATCAATAAAGTGATTATTGAGCCGAAAGAAACATTTTCATTTTGGCAGCTTGTACGATGGGCAGACCGTCACGAGAAATATAAGGACGGATTAAATCTTGTTAATGGAAAGATTGTAGGCTCTTATGGCGGAGGTTTGTGTCAATTGAGTAATATGCTATTTTGGCTTTTTTTACACACGCCGCTTGTTATTGTCGAGCGACACGGACACGCAGTTGAGTCTTTCCCATCAACAACCGAAGATTTGCCCTGCGGTACTGATGCTACGATTAACGAAGGTTGGTTAGACCTAAAACTCCGTAACGACACGGACAATACTTTCCAGATTGAGATTAGTTTTGATGACAACTTTATGTATGGTCGAATTTTGTCGCAAAGCTCCGTAAATATTGAATATACGGTTTTTAATTCGTCTGTTTCCTATTTCAAGCGAGAGGAAAAAGTATATCAAATAGCTTCTGTTTGTCGTACAGAAAAAGACAAAATGACTGGTAGTCAGACGGAAAAAGAATTGTATGTCAACCAATGTGAAATAGCCTATAAGCTACCCGATGATGTAAAAATTGAAGAAAGAGGTGTGTAA " 2851 UPDATE Escherichia coli gyrA with mutation conferring resistance to triclosan antibiotic target alteration; triclosan; triclosan resistant gyrA; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2339420 UPDATED strand with - UPDATED accession with U00096.3 UPDATED fmin with 2336792 UPDATED sequence with ATGAGCGACCTTGCGAGAGAAATTACACCGGTCAACATTGAGGAAGAGCTGAAGAGCTCCTATCTGGATTATGCGATGTCGGTCATTGTTGGCCGTGCGCTGCCAGATGTCCGAGATGGCCTGAAGCCGGTACACCGTCGCGTACTTTACGCCATGAACGTACTAGGCAATGACTGGAACAAAGCCTATAAAAAATCTGCCCGTGTCGTTGGTGACGTAATCGGTAAATACCATCCCCATGGTGACTCGGCGGTCTATGACACGATCGTCCGCATGGCGCAGCCATTCTCGCTGCGTTATATGCTGGTAGACGGTCAGGGTAACTTCGGTTCTATCGACGGCGACTCTGCGGCGGCAATGCGTTATACGGAAATCCGTCTGGCGAAAATTGCCCATGAACTGATGGCCGATCTCGAAAAAGAGACGGTCGATTTCGTTGATAACTATGACGGCACGGAAAAAATTCCGGACGTCATGCCAACCAAAATTCCTAACCTGCTGGTGAACGGTTCTTCCGGTATCGCCGTAGGTATGGCAACCAACATCCCGCCGCACAACCTGACGGAAGTCATCAACGGTTGTCTGGCGTATATTGATGATGAAGACATCAGCATTGAAGGGCTGATGGAACACATCCCGGGGCCGGACTTCCCGACGGCGGCAATCATTAACGGTCGTCGCGGTATTGAAGAAGCTTACCGTACCGGTCGCGGCAAGGTGTATATCCGCGCTCGCGCAGAAGTGGAAGTTGACGCCAAAACCGGTCGTGAAACCATTATCGTCCACGAAATTCCGTATCAGGTAAACAAAGCGCGCCTGATCGAGAAGATTGCGGAACTGGTAAAAGAAAAACGCGTGGAAGGCATCAGCGCGCTGCGTGACGAGTCTGACAAAGACGGTATGCGCATCGTGATTGAAGTGAAACGCGATGCGGTCGGTGAAGTTGTGCTCAACAACCTCTACTCCCAGACCCAGTTGCAGGTTTCTTTCGGTATCAACATGGTGGCATTGCACCATGGTCAGCCGAAGATCATGAACCTGAAAGACATCATCGCGGCGTTTGTTCGTCACCGCCGTGAAGTGGTGACCCGTCGTACTATTTTCGAACTGCGTAAAGCTCGCGATCGTGCTCATATCCTTGAAGCATTAGCCGTGGCGCTGGCGAACATCGACCCGATCATCGAACTGATCCGTCATGCGCCGACGCCTGCAGAAGCGAAAACTGCGCTGGTTGCTAATCCGTGGCAGCTGGGCAACGTTGCCGCGATGCTCGAACGTGCTGGCGACGATGCTGCGCGTCCGGAATGGCTGGAGCCAGAGTTCGGCGTGCGTGATGGTCTGTACTACCTGACCGAACAGCAAGCTCAGGCGATTCTGGATCTGCGTTTGCAGAAACTGACCGGTCTTGAGCACGAAAAACTGCTCGACGAATACAAAGAGCTGCTGGATCAGATCGCGGAACTGTTGCGTATTCTTGGTAGCGCCGATCGTCTGATGGAAGTGATCCGTGAAGAGCTGGAGCTGGTTCGTGAACAGTTCGGTGACAAACGTCGTACTGAAATCACCGCCAACAGCGCAGACATCAACCTGGAAGATCTGATCACCCAGGAAGATGTGGTCGTGACGCTCTCTCACCAGGGCTACGTTAAGTATCAGCCGCTTTCTGAATACGAAGCGCAGCGTCGTGGCGGGAAAGGTAAATCTGCCGCACGTATTAAAGAAGAAGACTTTATCGACCGACTGCTGGTGGCGAACACTCACGACCATATTCTGTGCTTCTCCAGCCGTGGTCGCGTCTATTCGATGAAAGTTTATCAGTTGCCGGAAGCCACTCGTGGCGCGCGCGGTCGTCCGATCGTCAACCTGCTGCCGCTGGAGCAGGACGAACGTATCACTGCGATCCTGCCAGTGACCGAGTTTGAAGAAGGCGTGAAAGTCTTCATGGCGACCGCTAACGGTACCGTGAAGAAAACTGTCCTCACCGAGTTCAACCGTCTGCGTACCGCCGGTAAAGTGGCGATCAAACTGGTTGACGGCGATGAGCTGATCGGCGTTGACCTGACCAGCGGCGAAGACGAAGTAATGCTGTTCTCCGCTGAAGGTAAAGTGGTGCGCTTTAAAGAGTCTTCTGTCCGTGCGATGGGCTGCAACACCACCGGTGTTCGCGGTATTCGCTTAGGTGAAGGCGATAAAGTCGTCTCTCTGATCGTGCCTCGTGGCGATGGCGCAATCCTCACCGCAACGCAAAACGGTTACGGTAAACGTACCGCAGTGGCGGAATACCCAACCAAGTCGCGTGCGACGAAAGGGGTTATCTCCATCAAGGTTACCGAACGTAACGGTTTAGTTGTTGGCGCGGTACAGGTAGATGACTGCGACCAGATCATGATGATCACCGATGCCGGTACGCTGGTACGTACTCGCGTTTCGGAAATCAGCATCGTGGGCCGTAACACCCAGGGCGTGATCCTCATCCGTACTGCGGAAGATGAAAACGTAGTGGGTCTGCAACGTGTTGCTGAACCGGTTGACGAGGAAGATCTGGATACCATCGACGGCAGTGCCGCGGAAGGGGACGATGAAATCGCTCCGGAAGTGGACGTTGACGACGAGCCAGAAGAAGAATAA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. MG1655 UPDATED NCBI_taxonomy_id with 511145 UPDATED NCBI_taxonomy_cvterm_id with 36849 UPDATED accession with AAC75291.1 UPDATED sequence with MSDLAREITPVNIEEELKSSYLDYAMSVIVGRALPDVRDGLKPVHRRVLYAMNVLGNDWNKAYKKSARVVGDVIGKYHPHGDSAVYDTIVRMAQPFSLRYMLVDGQGNFGSIDGDSAAAMRYTEIRLAKIAHELMADLEKETVDFVDNYDGTEKIPDVMPTKIPNLLVNGSSGIAVGMATNIPPHNLTEVINGCLAYIDDEDISIEGLMEHIPGPDFPTAAIINGRRGIEEAYRTGRGKVYIRARAEVEVDAKTGRETIIVHEIPYQVNKARLIEKIAELVKEKRVEGISALRDESDKDGMRIVIEVKRDAVGEVVLNNLYSQTQLQVSFGINMVALHHGQPKIMNLKDIIAAFVRHRREVVTRRTIFELRKARDRAHILEALAVALANIDPIIELIRHAPTPAEAKTALVANPWQLGNVAAMLERAGDDAARPEWLEPEFGVRDGLYYLTEQQAQAILDLRLQKLTGLEHEKLLDEYKELLDQIAELLRILGSADRLMEVIREELELVREQFGDKRRTEITANSADINLEDLITQEDVVVTLSHQGYVKYQPLSEYEAQRRGGKGKSAARIKEEDFIDRLLVANTHDHILCFSSRGRVYSMKVYQLPEATRGARGRPIVNLLPLEQDERITAILPVTEFEEGVKVFMATANGTVKKTVLTEFNRLRTAGKVAIKLVDGDELIGVDLTSGEDEVMLFSAEGKVVRFKESSVRAMGCNTTGVRGIRLGEGDKVVSLIVPRGDGAILTATQNGYGKRTAVAEYPTKSRATKGVISIKVTERNGLVVGAVQVDDCDQIMMITDAGTLVRTRVSEISIVGRNTQGVILIRTAEDENVVGLQRVAEPVDEEDLDTIDGSAAEGDDEIAPEVDVDDEPEEE " 2850 UPDATE Salmonella enterica gyrA with mutation conferring resistance to triclosan antibiotic target alteration; triclosan; triclosan resistant gyrA; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2376346 UPDATED strand with - UPDATED accession with NC_003197.2 UPDATED fmin with 2373709 UPDATED sequence with ATGAGCGACCTTGCGAGAGAAATTACACCGGTCAACATTGAGGAGGAGCTGAAGAGCTCCTATCTGGATTATGCGATGTCGGTCATTGTTGGCCGTGCGCTGCCGGATGTCCGAGATGGCCTGAAGCCGGTACACCGTCGCGTACTTTACGCCATGAACGTATTGGGCAATGACTGGAACAAAGCCTATAAAAAATCTGCCCGTGTCGTTGGTGACGTAATCGGTAAATACCATCCCCACGGCGATTCCGCAGTGTATGACACCATCGTTCGTATGGCGCAGCCATTCTCGCTGCGTTACATGCTGGTGGATGGTCAGGGTAACTTCGGTTCTATTGACGGCGACTCCGCGGCGGCAATGCGTTATACGGAGATCCGTCTGGCGAAAATCGCCCACGAACTGATGGCCGATCTCGAAAAAGAGACGGTGGATTTCGTGGATAACTATGACGGTACGGAAAAAATTCCGGACGTCATGCCGACCAAAATTCCGAATCTGCTGGTGAACGGTTCTTCCGGTATCGCAGTAGGTATGGCGACGAATATCCCGCCGCACAACCTGACGGAAGTGATTAACGGCTGCCTGGCGTATATCGACAACGAAGACATCAGCATTGAAGGGCTGATGGAACATATTCCGGGGCCGGACTTCCCGACCGCCGCGATCATCAACGGTCGTCGTGGTATCGAAGAAGCCTACCGCACCGGTCGTGGCAAAGTGTACATTCGCGCCCGCGCGGAAGTTGAAGCTGACGCCAAAACGGGCCGTGAAACCATCATCGTCCATGAAATTCCCTATCAGGTGAACAAAGCGCGCCTGATCGAGAAAATCGCCGAGCTGGTGAAAGATAAACGCGTGGAAGGCATCAGCGCGCTGCGTGACGAATCCGACAAAGACGGGATGCGCATCGTGATTGAAGTGAAACGCGATGCGGTGGGCGAGGTGGTGCTTAATAATCTCTACTCCCAGACCCAGCTACAGGTTTCCTTCGGTATTAACATGGTGGCGCTGCATCACGGCCAGCCGAAGATCATGAACCTGAAAGATATCATTTCAGCGTTCGTGCGCCACCGCCGTGAAGTGGTGACGCGTCGGACTATTTTTGAACTGCGTAAAGCCCGTGACCGTGCGCATATCCTTGAAGCTCTGGCGATTGCGCTGGCCAACATCGACCCGATTATCGAACTGATTCGCCGCGCGCCAACGCCGGCGGAAGCAAAAGCGGCGCTGATTTCGCGTCCGTGGGATCTGGGCAACGTTGCTGCGATGCTGGAGCGCGCTGGTGATGACGCCGCGCGTCCGGAATGGCTGGAGCCAGAATTTGGCGTGCGTGACGGTCAGTACTACCTGACTGAACAGCAGGCGCAGGCGATTCTGGATCTGCGTTTGCAGAAACTGACCGGCCTGGAGCATGAAAAACTGCTCGACGAATACAAAGAGCTGCTGGAGCAGATTGCTGAATTGCTGCACATTCTGGGCAGCGCCGATCGCCTGATGGAAGTGATCCGCGAAGAGATGGAGTTAATTCGCGATCAGTTCGGCGATGAGCGTCGTACCGAAATCACCGCCAACAGCGCCGATATTAATATCGAAGATCTGATTAGCCAGGAAGATGTTGTCGTGACGCTGTCTCACCAGGGTTACGTCAAATATCAACCGCTGACAGATTACGAAGCGCAACGTCGTGGTGGGAAAGGTAAATCTGCCGCGCGTATTAAAGAAGAAGACTTTATCGACCGCCTGCTGGTGGCTAACACCCATGACACCATCCTCTGCTTCTCCAGCCGGGGCCGTCTGTACTGGATGAAGGTCTATCAGCTGCCGGAAGCCAGCCGCGGCGCGCGCGGTCGTCCGATCGTCAACCTGCTGCCGCTGGAAGCCAACGAACGTATCACCGCGATTCTGCCGGTTCGTGAGTATGAAGAAGGCGTCAACGTCTTTATGGCGACCGCCAGCGGTACCGTGAAGAAAACGGCGCTGACCGAATTCAGCCGTCCGCGTTCCGCCGGTATTATCGCGGTGAACCTCAACGACGGCGACGAGCTGATTGGCGTTGACCTGACTTCTGGTTCTGACGAAGTCATGCTGTTCTCGGCCGCGGGTAAAGTGGTGCGCTTCAAAGAAGACGCCGTCCGTGCGATGGGGCGTACCGCGACCGGTGTGCGCGGTATTAAGCTGGCGGGAGACGATAAAGTCGTCTCTCTGATCATCCCACGCGGCGAAGGCGCTATTCTGACCGTAACGCAAAACGGCTACGGGAAGCGTACCGCAGCGGACGAGTACCCGACCAAGTCTCGTGCGACGCAGGGCGTTATCTCTATCAAAGTGACCGAGCGCAACGGTTCCGTTGTCGGTGCGGTACAGGTAGACGATTGCGACCAGATCATGATGATCACGGATGCCGGTACTCTGGTGCGTACCCGTGTGTCCGAGATCAGCGTAGTGGGACGTAATACCCAGGGCGTTATCCTTATCCGCACGGCGGAAGATGAAAACGTGGTGGGTCTGCAACGCGTTGCTGAACCGGTAGATGACGAAGAACTCGACGCTATCGACGGCAGCGTGGCGGAAGGGGATGAGGATATCGCCCCGGAAGCGGAAAGCGATGACGACGTTGCGGATGACGCTGACGAGTAA UPDATED NCBI_taxonomy_name with Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 UPDATED NCBI_taxonomy_id with 99287 UPDATED NCBI_taxonomy_cvterm_id with 35734 UPDATED accession with NP_461214.1 UPDATED sequence with MSDLAREITPVNIEEELKSSYLDYAMSVIVGRALPDVRDGLKPVHRRVLYAMNVLGNDWNKAYKKSARVVGDVIGKYHPHGDSAVYDTIVRMAQPFSLRYMLVDGQGNFGSIDGDSAAAMRYTEIRLAKIAHELMADLEKETVDFVDNYDGTEKIPDVMPTKIPNLLVNGSSGIAVGMATNIPPHNLTEVINGCLAYIDNEDISIEGLMEHIPGPDFPTAAIINGRRGIEEAYRTGRGKVYIRARAEVEADAKTGRETIIVHEIPYQVNKARLIEKIAELVKDKRVEGISALRDESDKDGMRIVIEVKRDAVGEVVLNNLYSQTQLQVSFGINMVALHHGQPKIMNLKDIISAFVRHRREVVTRRTIFELRKARDRAHILEALAIALANIDPIIELIRRAPTPAEAKAALISRPWDLGNVAAMLERAGDDAARPEWLEPEFGVRDGQYYLTEQQAQAILDLRLQKLTGLEHEKLLDEYKELLEQIAELLHILGSADRLMEVIREEMELIRDQFGDERRTEITANSADINIEDLISQEDVVVTLSHQGYVKYQPLTDYEAQRRGGKGKSAARIKEEDFIDRLLVANTHDTILCFSSRGRLYWMKVYQLPEASRGARGRPIVNLLPLEANERITAILPVREYEEGVNVFMATASGTVKKTALTEFSRPRSAGIIAVNLNDGDELIGVDLTSGSDEVMLFSAAGKVVRFKEDAVRAMGRTATGVRGIKLAGDDKVVSLIIPRGEGAILTVTQNGYGKRTAADEYPTKSRATQGVISIKVTERNGSVVGAVQVDDCDQIMMITDAGTLVRTRVSEISVVGRNTQGVILIRTAEDENVVGLQRVAEPVDDEELDAIDGSVAEGDEDIAPEAESDDDVADDADE " 2853 UPDATE PDC-74 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1251 UPDATE CTX-M-157 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2855 UPDATE PDC-76 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1621 UPDATE SHV-45 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2857 UPDATE PDC-78 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2856 UPDATE PDC-77 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1490 UPDATE SHV-107 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1397 UPDATE dfrC iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1129419 UPDATED strand with - UPDATED accession with AE015929.1 UPDATED fmin with 1128933 UPDATED sequence with ATGACATTATCAATAATTGTCGCTCACGATAAACAAAGAGTCATTGGGTACCAAAATCAATTACCTTGGCACTTACCAAATGATTTAAAGCATGTTAAACAACTGACCACTGGGAATACACTTGTAATGGGACGGAAAACTTTTAATTCTATAGGGAAACCATTGCCAAATAGACGTAACGTCGTACTCACTAACCAAGCTTCATTTCACCATGAAGGGGTAGATGTTATAAACTCTCTTGATGAAATTAAAGAGTTATCTGGTCATGTTTTTATATTTGGAGGACAAACGTTATTCGAGGCAATGATTGACCAGGTAGATGATATGTATATCACAGTAATAGATGGAAAGTTTCAAGGAGACACATTCTTTCCACCATACACATTCGAAAACTGGGAAGTCGAATCTTCAGTAGAAGGTCAACTAGATGAAAAAAATACTATACCGCATACATTCTTACATTTAGTGCGTAGAAAAGGGAAATAG UPDATED NCBI_taxonomy_name with Staphylococcus epidermidis ATCC 12228 UPDATED NCBI_taxonomy_id with 176280 UPDATED NCBI_taxonomy_cvterm_id with 37591 UPDATED accession with AAO04716.1 UPDATED sequence with MTLSIIVAHDKQRVIGYQNQLPWHLPNDLKHVKQLTTGNTLVMGRKTFNSIGKPLPNRRNVVLTNQASFHHEGVDVINSLDEIKELSGHVFIFGGQTLFEAMIDQVDDMYITVIDGKFQGDTFFPPYTFENWEVESSVEGQLDEKNTIPHTFLHLVRRKGK " 1492 UPDATE MOX-3 penam; antibiotic inactivation; MOX beta-lactamase; cephamycin; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1493 UPDATE PER-6 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; PER beta-lactamase; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1494 UPDATE LAT-1 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGTTATGCTCCGCTCTGCTGCTGACAGCCTCTTTCTCCACATTTGCTGCCGCAAAAACAGAACAACAGATTGCCGATATCGTTAACCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCCGTTATCTACCAGGGGAAACCCTATTATTTCACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGATCGGTTAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACTGTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAAAAGTGGCAGGGTATCCGCCTGCTGCACTTAGCCACCTATACGGCAGGCGGCCTACCGCTGCAGATCCCCGATGACGTTAGGGATAAAGCCGCATTACTGCATTTTTATCAAAACTGGCAGCCGCAATGGACTCCGGGCGCTAAGCGACTTTACGCTAACTCCAGCATTGGTCTGTTTGGCGCGCTGGCGGTGAAACCTTCAGGAATGAGTTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAGAACGAACAAAAAGATTATGCCTGGGGCTATCGCGAAGGGAAGCCCGTACACGTTTCTCCGGGACGACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATTGATATGGCCCGCTGGGTTCAGGCCAACATGGATGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGCGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCCGCCCCCGCAGTGAAAGCCTCATGGGTGCATAAAACGGGCTCCACTGGTGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGCGGCCTGGCGCATTCTTGAAAAGCTGCAATAA " 1495 UPDATE ACT-4 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGACTAAATCCCTTTGCTGCGCCCTGCTGCTCAGCACCTCCTGCTCGGTATTGGCTGCACCGATGTCAGAAAAACAGCTGGCTGAGGTGGTGGAACGGACCGTTACGCCGCTGATGAAAGCGCAGGCCATTCCGGGTATGGCGGTGGCGGTGATTTATCAGGGCCAGCCGCACTACTTTACCTTCGGTAAAGCCGATGTTGCGGCGAACAAACCTGTCACCCCACAAACCTTGTTCGAACTGGGTTCTATAAGTAAAACCTTTACCGGCGTACTGGGTGGCGATGCCATTGCTCGGGGTGAAATATCGCTGGGCGATCCGGTGACAAAATACTGGCCTGAGCTGACGGGCAAGCAGTGGCAGGGGATCCGCATGCTGGATCTGGCAACCTATACCGCAGGCGGTCTGCCGTTACAGGTACCGGATGAGGTCGCGGATAACGCCTCTCTGCTGCGCTTTTATCAAAACTGGCAGCCGCAGTGGAAGCCGGGTACCACGCGTCTTTACGCCAATACCAGCATCGGCCTTTTTGGCGCGCTGGCGGTCAAACCTTCCGGCATGAGCTATGAACAGGCCATAACGACGCGGGTCTTTAAGCCGCTCAAGCTGGACCATACGTGGATTAACGTTCCGAAAGCGGAAGAGGCGCATTACGCCTGGGGATACCGCGACGGTAAAGCGGTACACGTTTCGCCAGGCATGCTGGACGCTGAAGCCTATGGCGTAAAAACCAACGTGCAGGATATGGCAAGCTGGGTGATGGTCAACATGAAGCCGGACTCCCTTCAGGATAATTCACTCAGGCAAGGCATTGCCCTGGCGCAGTCTCGCTACTGGCGCGTAGGGGCCATGTATCAGGGGTTAGGCTGGGAAATGCTTAACTGGCCGGTCGATGCCAAAACCGTGGTTGAAGGTAGCGACAATAAGGTGGCACTGGCACCGCTGCCCGCAAGAGAAGTGAATCCTCCGGCGCCTCCGGTCAACGCGTCCTGGGTCCATAAAACAGGCTCTACCGGCGGGTTTGGCAGCTACGTGGCCTTTATTCCTGAAAAGCAGCTCGGCATTGTGATGCTGGCGAATAAAAGCTATCCCAACCCAGCACGCGTTGAGGCGGCTTACCGTATTTTGAGCGCGCTGTAG " 1496 UPDATE OXA-224 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAACACAATACATATCAACTTCGCTATTTTTTTAATAATTGCAAATATTATCTACAGCAGCGCCAGTGCATCAACAGATATCTCTACTGTTGCATCTCCATTATTTGAAGGAACTGAAGGTTGTTTTTTACTTTACGATGTATCCACAAACACTGAAATTGCTCAATTCAATAAAGCAAAGTGTGCAACGCAAATGGCACCAGATTCAACTTTCAAGATCGCATTATCACTTATGGCATTTGATGCGGAAATAATAGATCAGAAAACCATATTCAAATGGGATAAAACCCCCAAAGGAATGGAGATCTGGAACAGCAATCATACACCAAAGACGTGGATGCAATTTTCTGTTGTTTGGGTTTCGCAAGAAATAACCCAAAAAATTGGATTAAATAAAATCAAGAATTATCTCAAAGATTTTGATTATGGAAATCAAGACTTCTCTGGAGATAAAGAAAGAAACAACGGATTAACAGAAGCATGGCTCGAAAGTAGCTTAAAAATTTCACCAGAAGAACAAATTCAATTCCTGCGTAAAATTATTAATCACAATCTCCCAGTTAAAAACTCAGCCATAGAAAACACCATAGAGAACATGTATCTACAAGATCTGGAGAATAGTACAAAACTGTATGGGAAAACTGGTGCAGGATTCACAGCAAATAGAACCTTACAAAACGGATGGTTTGAAGGGTTTATTATAAGCAAATCAGGACATAAATATGTTTTTGTGTCCGCACTTACAGGAAACTTGGGGTCGAATTTAACATCAAGCATAAAAGCCAAGAAAAATGCGATCACCATTCTAAACACACTAAATTTATAA " 1497 UPDATE dfrA10 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATATATCACTTATCTTTGCCAATGAATTAATTACCAGAGCATTCGGTAATCAAGGCAAATTACCTTGGCAATTCATTAAAGAAGATATGCAGTTCTTCCAGAAGACTACAGAAAATTCTGTAGTCGTTATGGGATTAAATACATGGAGATCTCTACCTAAGATGAAGAAGCTTGGTAGAGACTTCATTGTCATATCTTCAACTATCACAGAGCACGAAGTGCTCAACAATAATATCCAAATATTCAAATCATTTGAGAGCTTCTTAGAAGCATTCAGAGACACAACCAAACCAATCAATGTCATTGGTGGTGTTGGTTTATTATCTGAAGCGATAGAACATGCTAGCACTGTTTACATGAGTTCTATTCATATGGTTAAACCTGTTCATGCTGATGTGTATGTACCGGTAGAACTAATGAATAAACTCTATAGTGATTTCAAATATCCAGAAAATATTCTATGGGTAGGTGATCCAATAGATTCTGTGTATAGCTTGTCTATTGATAAGTTTGTTAGACCAGCTTCGCTGGTTGGGGTGCCAAATGATATTAATACGTGA " 1498 UPDATE cphA8 carbapenem; CphA beta-lactamase; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1499 UPDATE VEB-6 antibiotic inactivation; monobactam; cephalosporin; VEB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 7311 UPDATED strand with - UPDATED accession with EU259884.2 UPDATED fmin with 6411 UPDATED sequence with ATGAAAATCGTAAAAAGGATATTATTAGTATTGTTAAGTTTATTTTTTACAGTTGTGTATTCAAATGCTCAAGCTGACAACTTAACTTTGAAAATTGAGAATGTTTTAAAGGCAAAAAATGCCAGAATAGGAGTAGCAATATTCAACAGCAATGAGAAGGATACTTTGAAGATTAATAACGACTTCCATTTCCCGATGCAAAGCGTTATGAAATTTCCGATTGCTTTAGCCGTTTTGTCTGAGATAGATAAAGGGAATCTTTCTTTTGAACAAAAAATAGAGATTACCCCTCAAGACCTTTTGCCTAAAATGTGGAGTCCGATTAAAGAGGAATTCCCTAATGGAACAACTTTGACGATTGAACAAATACTAAATTATACAGTATCAGAGAGCGACAATATTGGTTGTGATATTTTGCTAAAATTAATCGGAGGAACTGATTCTGTTCAAAAATTCTTGAATGCTAATCATTTCACTGATATTTCAATCAAAGCAAACGAAGAACAAATGCACAAGGATTGGAATACCCAATATCAAAATTGGGCAACCCCAACAGCGATGAACAAACTGTTAATAGATACTTATAATAATAAGAACCAATTACTTTCTAAAAAAAGTTATGATTTTATTTGGAAAATTATGAGAGAAACAACAACAGGAAGTAACCGATTAAAAGGACAATTACCAAAGAATACAATTGTTGCTCATAAAACAGGGACTTCCGGAATAAATAATGGAATTGCAGCAGCCACTAATGATGTTGGGGTAATTACTTTACCGAATGGACAATTAATTTTTATAAGCGTATTTGTTGCAGAGTCCAAAGAAACTTCGGAAATTAATGAAAAGATTATTTCAGACATTGCAAAAATAACGTGGAATTACTATTTGAATAAATAA UPDATED NCBI_taxonomy_name with Proteus mirabilis UPDATED NCBI_taxonomy_id with 584 UPDATED NCBI_taxonomy_cvterm_id with 36771 UPDATED accession with ACA34904.1 UPDATED sequence with MKIVKRILLVLLSLFFTVVYSNAQADNLTLKIENVLKAKNARIGVAIFNSNEKDTLKINNDFHFPMQSVMKFPIALAVLSEIDKGNLSFEQKIEITPQDLLPKMWSPIKEEFPNGTTLTIEQILNYTVSESDNIGCDILLKLIGGTDSVQKFLNANHFTDISIKANEEQMHKDWNTQYQNWATPTAMNKLLIDTYNNKNQLLSKKSYDFIWKIMRETTTGSNRLKGQLPKNTIVAHKTGTSGINNGIAAATNDVGVITLPNGQLIFISVFVAESKETSEINEKIISDIAKITWNYYLNK " 423 UPDATE DHA-16 antibiotic inactivation; cephalosporin; cephamycin; DHA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1626 UPDATE vgaE dalfopristin; pleuromutilin; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; ABC-F ATP-binding cassette ribosomal protection protein; antibiotic target protection; streptogramin antibiotic; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTATTATTTGAAGGTACATCATTGAAAAAACACATACAAGACAGATTATTATTTGATATAGATTTAATACAAGTACATGAACATCAGCGAATAGGATTAGTAGGTAGGAATGGAACGGGGAAAACAAGTCTATTAAAAATTATTACAGGTGAAGAACTAGTTGATGGAGGGAATGTTAATCATTTTACCTCTGTAAAATTAGTACCACAATTTAAAGAAACAAGATCGGAGAAAAGTGGTGGAGAAATAACGCAACAATATTTGCAATTAGCATTTAATGAAAAGCCAGGATTATTAATTTTAGATGAACCAACGACTCATTTAGATACACAAAGAATTGATTGGTTAGAAAAGAAATTAGCAAACTATCAAGGAGCATTTGTTGTCGTATCACATGATCGGACATTTCTAAATAATGTGTGTACTGAAATATGGGAAATAGAAGATGGTAGTCTAAACGCGTTTAAAGGGGATTATAATGCTTATGCGGAACAAAAGGAATTAATAAAAACACAGCAGCAGATTGCATTTGAAAAGTACGAACGAGAGAAAAAGCAATTAGAAAAAGCAATACGACAAAAAGAGGAAAGAGCACAGCGAGCAACAAAGAAACCTAAAAATCTGAGTTCTTCAGAGGCAAGAATAACAGGAGCTAAAACCCATTATGCCAATATACAGAAAAAGTTGAGGGGTTCTGCAAAAGCATTAGAAACAAGGTTGGAACAACTGGATAGGATTGACAAGGTGAAAGAACTACCTGAAATTAAGATGGATATATTAAATAAAGAAAGTCTAACAAACCAGTCTGTGTTACGCGCTGAAAACATTAAGGGAGAGGTTGACGGACGTAAGCTTTGGAATCCCTTTAGTTTATATTTATATGGCGGCGATAAAGTTGCTATCATTGGGAAAAATGGCACGGGTAAAACAACCTTACTTAAAAAAATAGTTGAGCGAGATGAAAGAATAGCAATCCCAGAAAAGGTGAGGATAGGTTATTTTTCCCAACACCTCACAATTCTCGATGATGATAAAACAATCATAGAAAATATACAATTGACCTCTAGTCAGGATGAAACATTAATTAGAACAGTTTTAGCAAGAATGCATTTTTGGGATGAAGATGTCTATAAAAAGGTCGGCATATTAAGTGGTGGTGAAAAAGTAAAAGTAGCACTAGCTAAACTATTCTTAAGTGACGTGAATATGCTGGTGTTAGATGAACCTACAAATTTTTTAGATATTGAATCTTTAGAAGCGCTAGAAACATTAATGAAAAGTTATCATGGAACGATTCTATTTGTTACTCACGACCGAACGTTAGTAACAAATATAGCTACAAAAATAATTGATATAAAAGATGGTAAGATAACAGTATTCGATGGATCATACGAAGCATATGAAGAGTGGTTAGAGAATCAAACAAAGTCCAACAATGATGATCAACTTTTACTAATCGAAACTAAAATATCTGACGTTCTGGGTAGGTTGAGTTTGGAGCCTTCACGAGAGTTAGAAGATGAATTTCAAAGATTATTGAAAGAAAAGAAAGAACTGACTAAAAAACTATAA DELETED 36001 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. " 1700 UPDATE ACT-28 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGACAAAATCCCTTTGCTGTGCCCTGCTGCTCAGCACCTCCTGCTCTGTTCTCGCCGCGCCGATGTCAGAGAAACAGCTGTCTGACGTGGTGGAACGTACCGTTACCCCCCTGATGAAAGCGCAAGCCATTCCGGGCATGGCGGTAGCGGTGATTTATCAGGGTCAGCCGCACTACTTTACCTTCGGAAAGGCCGATGTTGCGGCGAACAAACCTGTCACCCCGCAAACCCTGTTTGAGCTGGGCTCTATAAGTAAAACCTTCACCGGCGTATTAGGTGGCGATGCGATTGCGCGCGGAGAAATATCGCTGGGCGACCCCGTGACAAAGTACTGGCCCGAGCTAACAGGCAAGCAGTGGCAGGGTATTCGCATGTTGGATCTGGCGACCTACACCGCGGGTGGCCTGCCGCTACAGGTGCCGGATGAGGTCACGGATAACGCCTCCCTGCTGCGTTTCTATCAACACTGGCAACCGCAGTGGAAACCAGGCGCAACGCGTCTTTATGCGAACGCCAGCATCGGGCTTTTTGGCGCCCTCGCGGTTAAACCCTCCGGCATGAGCTTTGAACAGGCCATGACGAAGCGGGTCTTCAAGCCACTCAAACTGGACCATACATGGATTAACGTTCCGAAAGAAGAAGAGGCGCATTACGCCTGGGGATACCGTGATGGTAAAGCAATCCACGTTTCACCGGGAATGCTGGATGCCGAAGCGTATGGTGTCAAAACCAACATCCAGGATATGGCGAGCTGGCTGAAGGCCAACATGAACCCTGACGCCCTTCCGGATTCAACGTTGAAACAGGGTATTGCCCTGGCACAGTCTCGCTACTGGCGCGTGGGTGCCATGTATCAGGGTCTGGGCTGGGAGATGCTCAACTGGCCGGTAGAAGCCAAAACCGTCGTGGAGGGCAGCGATAACAAGGTGGCTCTTGCACCGTTACCGGTGGCAGAAGTGAACCCTCCAGCTCCGCCAGTAAAAGCATCATGGGTACATAAAACAGGCTCGACGGGTGGATTCGGCAGCTATGTCGCATTTATTCCTGAAAAGGAACTCGGCATTGTTATGCTGGCGAACAAGAGCTACCCGAACCCGGCGCGCGTGGAAGCGGCATACCGTATTCTGAGCGCTCTGCAGTAA " 1701 UPDATE Erm(39) antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGTCTTCAGTTCATCACGGCCGGCATGAGAACGGCCAGAATTTTCTGCGCGACCGTCGAGTGGTCGGCGACATCGTGAGGATGGTCTCGCACACAGCGGGTCCCATCGTCGAGATCGGGGCCGGAGACGGCGCCCTCACCCTGCCGTTACAGCGGCTGGGCCGACCGTTGACCGCCATCGAGATCGACCTCCACCGTGCCCGACGGCTCGCCGACCGAACCACTGCCGAGGTGATCGCAACCGACTTCCTGCGGTACCGGCTGCCGCGCACGCCGCACGTGGTGGTGGGCAACCTGCCGTTCCATCTGACCACCGCCATCCTCCGGCGCCTACTGCACGAGAACGGCTGGACCGATGCGATCCTGTTGGTGCAGTGGGAGGTGGCTCGACGGCGGGCCGGTGTCGGCGGCGCCACCATGATGACCGCCCAGTGGTGGCCGTGGTTCGAATTCGGCCTGGCGCGAAAGGTTTCGGCCGACGCGTTCCGGCCGCGGCCGAGTGTGGATGCCGGGCTGCTGACCATTCAGCGCCGAGCTGAGCCGCTACTCCCGTGGGCCGACCGTCGTGCGTATCAGGCGCTGGTCCACAGGGTTTTCACCGGGCGCGGGCGTGGTCTGGCCCAGATTCTGCGGCCCCACGTGCACCCACGGTGGCTGTCTGCCAACGGAATTCACCCGTCGGCTCTGCCCAGAGCGCTGACGGCTCGACAGTGGGTGGCGTTGTTCGATGCCGCCGGCTAG UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 1702 UPDATE MIR-1 antibiotic inactivation; monobactam; cephalosporin; MIR beta-lactamase; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGACAAAATCCCTAAGCTGTGCCCTGCTGCTCAGCGTCGCCAGTTCTGCATTCGCCGCACCGATGTCCGAAAAACAGCTGGCTGAGGTGGTGGAACGTACCGTTACGCCGCTGATGAACGCGCAGGCCATTCCGGGTATGGCGGTGGCGGTAATTTATCAGGGTCAGCCACACTACTTTACCTTCGGTAAAGCCGATGTTGCGGCGAACAAACCCGTCACCCCGCAAACCCTGTTTGAGCTGGGCTCTATAAGTAAAACCTTCACCGGCGTACTGGGCGGCGATGCCATTGCCCGGGGTGAAATAGCGCTGGGCGATCCGGTAGCAAAATACTGGCCTGAGCTCACGGGCAAGCAGTGGCAGGGCATTCGCATGCTGGATCTGGCAACCTATACCGCAGGCGGTCTGCCGTTACAGGTGCCGGATGAGGTCACGGATACCGCCTCTCTGCTGCGCTTTTATCAAAACTGGCAGCCGCAGTGGAAGCCGGGCACCACGCGTCTTTACGCTAACGCCAGCATCGGTCTTTTTGGTGCGCTGGCGGTTAAACCTTCCGGCATGAGCTATGAGCAGGCCATGACGACGCGGGTCTTTAAACCCCTCAAGCTGGACCATACCTGGATTAACGTCCCGAAAGCGGAAGAGGCGCATTTCGCCTGGGGATACCGTGAGGGTAAAGCGGTCCACGTTTCGCCAGGGATGCTGGACGCGGAAGCCTATGGCGTAAAAACTAACGTGAAGGATATGGCGAGCTGGCTGATAGCCAACATGAAGCCGGATTCTCTTCAGGCTCCCTCACTCAAGCAAGGCATTGCTCTGGCGCAGTCTCGCTACTGGCGCGTGGGGGCTATGTATCAGGGGTTAGGCTGGGAGATGCTCAACTGGCCGGTCGATGCCAAAACCGTCGTCGGAGGCAGTGATAACAAGGTGGCGCTGGCACCATTGCCCGTGGCAGAAGTGAATCCACCCGCGCCGCCGGTCAAGGCCTCCTGGGTCCATAAAACAGGCTCGACGGGCGGGTTTGGCAGCTACGTGGCATTTATTCCTGAAAAGCAGCTCGGCATTGTGATGCTGGCGAATAAAAGCTATCCGAACCCGGCACGCGTTGAGGCGGCATACCGTATCCTCGACGCGCTGCAGTAA DELETED 35962 " 1703 UPDATE FosK fosfomycin; fosfomycin thiol transferase; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1704 UPDATE CMY-57 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1705 UPDATE SHV-111 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGTGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTTCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGGATTGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 1706 UPDATE OXA-142 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAACATTTGCCGCATATGTAATTATCGCGTGTCTTTCGAGTACGGCATTAGCTGGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTCTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATGACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAGCGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAGCAATGGGAAAGAGACTTGACCTTAAGAGGGGCAATACAAGTTTCAGCTGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATACCTTAAAAAATTTTCCTATGGCAACCAGAATATCAGTGGTGGCATTGACAAATTCTGGTTGGAAGACCAGCTTAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATATTTAAATAAATTGTCAGCATCTAAAGAAAACCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCGGCACCTGAATATCTAGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGGTGGGTTGAGAAGGAGACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAGTAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGAAAGTGAGGGCATCATTGGTGGCTAA " 1707 UPDATE QnrB4 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1708 UPDATE tet36 chlortetracycline; demeclocycline; oxytetracycline; tetracycline antibiotic; tetracycline; antibiotic target protection; minocycline; tetracycline-resistant ribosomal protection protein; doxycycline; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1709 UPDATE TEM-115 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1996 UPDATE vanXM glycopeptide antibiotic; glycopeptide resistance gene cluster; vanX; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAAAAAGGATTTACCTTTTTAGATGAAATATTAAACGATGTTCGTTGGGACGCTAAATATGCTACGTGGGACAACTTCACTGGAAAACCAATTGATGGATATGAAGTAAATCGAATTATAGGAACATATGAGTTAGCCGATGCGCTATTGAAGGTTCAAGAATTAGCTTTTAACCAAGGTTATGGATTGCTTTTATGGGACGGTTACCGTCCCCAACAAGCTGTAAATTGTTTTTTGCAATGGGCGGCACAGCCGGAAGATAATCGAACAAAGGCAAAATATTATCCCAATATTGACCGAACTGAGATGGTTTCAAAAGGATACGTGGCTTCAAAATCAAGTCATAGCCGCGGAAGTGCAATTGATCTTACACTTTATCGATTAGACACGGACGAACTTGTTCCGATGGGGAGCGGATTTGATTTTATGGATGAGCGCTCTCATCATGAGGCAAAAGGAATTACGAGCAATGAAGCGCAAAACCGTAGATTTTTGCGTTCCATTATGGAAAACAGTGGGTTTGAAGCGTATAGTTTCGAATGGTGGCACTATGTATTGATAAACGAACCTTATCCCTATAGCTGCTTTGATTTTCCTGTCAAATAA " 1392 UPDATE aadA22 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGGGTAGCGGTGACCATCGAAATTTCGAACCAACTATCAGAGGTGCTAAGCGTCATTGAGCGCCATCTGGAATCAACGTTGCTGGCCGTGCATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCATACAGCGATATTGATTTGCTGGTTACGGTGACCGTAAGGCTTGATGAAACAACGCGGCGAGCTTTGATCAACGACCTTTTGGAAACTTCGGCTTCCCCTGGAGAGAGCGAGATTCTCCGCGCTGTAGAAGTCACCATTGTTGTGCACGACGACATCATTCCGTGGCGTTATCCAGCTAAGCGCGAACTGCAATTTGGAGAATGGCAGCGCAATGACATTCTTGCAGGTATCTTCGAGCCAGCCACGATCGACATTGATCTGGCTATCTTGCTGACAAAAGCAAGAGAACATAGCGTTGCCTTGGTAGGTCCAGCGGCGGAGGAACTCTTTGATCCGGTTCCTGAACAGGATCTATTTGAGGCGCTAAATGAAACCTTAACGCTATGGAACTCGCCGCCCGACTGGGCTGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAGTAACCGGCAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATGGAGCGCCTGCCGGCCCAGTATCAGCCCGTCATACTTGAAGCTAGACAGGCTTATCTTGGACAAGAAGAAGATCGCTTGGCCTCGCGCGCAGATCAGTTGGAAGAATTTGTCCACTACGTGAAAGGCGAGATCACCAAGGTAATCGGCAAATAA " 427 UPDATE OCH-7 penam; antibiotic inactivation; penem; cephalosporin; cephamycin; monobactam; OCH beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1390 UPDATE arlR antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; norfloxacin; acridine dye; acriflavin; ciprofloxacin; fluoroquinolone antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1462248 UPDATED strand with - UPDATED accession with NC_009641.1 UPDATED fmin with 1461588 UPDATED sequence with ATGACGCAAATTTTAATAGTAGAAGATGAACAAAACTTAGCAAGATTTCTTGAATTGGAACTCACACATGAAAATTACAATGTGGACACAGAGTATGATGGACAAGACGGTTTAGATAAAGCGCTTAGCCATTACTATGATTTAATCATATTAGATTTAATGTTGCCGTCAATTAATGGCTTAGAAATTTGTCGCAAAATTAGACAACAACAATCTACACCTATCATTATAATTACAGCGAAAAGTGATACGTATGACAAAGTTGCTGGGCTTGATTACGGTGCAGACGATTATATAGTTAAGCCGTTTGATATTGAAGAACTTTTAGCAAGAATTCGTGCAATTTTACGTCGTCAGCCACAAAAGGATATTATCGATGTCAACGGTATTACAATTGATAAGAACGCTTTTAAAGTGACGGTAAATGGCGCAGAAATTGAATTAACAAAAACAGAGTATGATTTACTATATCTTCTAGCTGAAAATAAAAACCATGTTATGCAACGGGAACAAATTTTAAATCATGTATGGGGTTATAATAGTGAAGTAGAAACAAATGTCGTAGATGTTTATATAAGATATTTACGAAACAAGTTAAAACCATACGATCGTGACAAAATGATTGAAACAGTTCGTGGCGTTGGGTATGTGATACGATGA UPDATED NCBI_taxonomy_name with Bacillales UPDATED NCBI_taxonomy_id with 1385 UPDATED NCBI_taxonomy_cvterm_id with 41698 UPDATED accession with WP_000192137.1 UPDATED sequence with MTQILIVEDEQNLARFLELELTHENYNVDTEYDGQDGLDKALSHYYDLIILDLMLPSINGLEICRKIRQQQSTPIIIITAKSDTYDKVAGLDYGADDYIVKPFDIEELLARIRAILRRQPQKDIIDVNGITIDKNAFKVTVNGAEIELTKTEYDLLYLLAENKNHVMQREQILNHVWGYNSEVETNVVDVYIRYLRNKLKPYDRDKMIETVRGVGYVIR " 1128 UPDATE OXA-23 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1129 UPDATE CMY-19 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1120 UPDATE IMI-7 carbapenem; antibiotic inactivation; IMI beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1121 UPDATE APH(3')-VIa antibiotic inactivation; aminoglycoside antibiotic; isepamicin; paromomycin; kanamycin A; APH(3'); gentamicin B; amikacin; ribostamycin; G418; neomycin; butirosin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAATTGCCCAATATTATTCAACAATTTATCGGAAACAGCGTTTTAGAGCCAAATAAAATTGGTCAGTCGCCATCGGATGTTTATTCTTTTAATCGAAATAATGAAACTTTTTTTCTTAAGCGATCTAGCACTTTATATACAGAGACCACATACAGTGTCTCTCGTGAAGCGAAAATGTTGAGTTGGCTCTCTGAGAAATTAAAGGTGCCTGAACTCATCATGACTTTTCAGGATGAGCAGTTTGAATTCATGATCACTAAAGCGATCAATGCAAAACCAATTTCAGCGCTTTTTTTAACAGACCAAGAATTGCTTGCTATCTATAAGGAGGCACTCAATCTGTTAAATTCAATTGCTATTATTGATTGTCCATTTATTTCAAACATTGATCATCGGTTAAAAGAGTCAAAATTTTTTATTGATAACCAACTCCTTGACGATATAGATCAAGATGATTTTGACACTGAATTATGGGGAGACCATAAAACTTACCTAAGTCTATGGAATGAGTTAACCGAGACTCGTGTTGAAGAAAGATTGGTTTTTTCTCATGGCGATATCACGGATAGTAATATTTTTATAGATAAATTCAATGAAATTTATTTTTTAGATCTTGGTCGTGCTGGGTTAGCAGATGAATTTGTAGATATATCCTTTGTTGAACGTTGCCTAAGAGAGGATGCATCGGAGGAAACTGCGAAAATATTTTTAAAGCATTTAAAAAATGATAGACCTGACAAAAGGAATTATTTTTTAAAACTTGATGAATTGAATTGA " 1122 UPDATE OXA-180 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1123 UPDATE FOX-8 antibiotic inactivation; cephamycin; cephalosporin; FOX beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1124 UPDATE TEM-186 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACAACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 1125 UPDATE OKP-B-11 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1126 UPDATE OXA-184 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1127 UPDATE CTX-M-64 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 524 UPDATE dfrA25 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCTGCAAGAGCGAAAAATGGCGTAATCGGTTGCGGTCCTGACATTCCTTGGTCTGCCAAAGGGGAACAGCTTCTTTTCAAAGCACTGACCTATAACCAATGGCTTTTGGTAGGGCGCAAAACATTTGAGTCTATGGGGCCGCTGCCCAATAGGAAATACGCGGTTGTTACCCGCTCAAACTGGACAGCGGCTAATGAAAACGTAGTGGTTTTCCCGTCGATTGACGAAGCGATGGGTAGATTAGGCGAGATCACTGACCATGTCATCGTCGCCGGTGGTGGAGAAATCTACCATGAAACGATACCCATGGCCTCTACTCTGCATGTGTCGACAATCGACGTTGAGCCAGAGGGAGACGTTTTCTTTCCGAACATTCCTGGGAAGTTTGATGTCGTTTTTGAGCAACAATTTACATCAAACATTAACTATTGCTATCAAATCTGGCAAAAGGGTTAA " 525 UPDATE CMY-13 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 4786 UPDATED strand with - UPDATED accession with AY339625 UPDATED fmin with 3640 UPDATED sequence with ATGATGAAAAAATCGTTATGCTGCGCTCTGCTGCTGACAGCCTCTTTCTCCACGTTTGCCTCCGCCAAAACAGAACAACAGATTGCCGATATCGTTAATCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCCATTATCTACCAGGGAAAACCCTATTATTTCACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCAGGGTATCAGCCTGCTGCACTTAGCCACCTATACGGCAGGCGGCCTACCGCTGCAGATCCCCGATGACGTTACTGATAAAGCCGCATTACTGCGTTTTTATCAAAACTGGCAGCCGCAATGGGCCCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGCGCGCTGGCGGTGAAACCCTCAGGAATGAGTTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACAGTTCCGCAGAACGAACAAAAAGATTATGCCTGGGGCTATCGCGAAGGGAAACCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAACGTTACCGATATGGCACGCTGGGTTCAGGTCAACATGGACGCCAGCCGCGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGCGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGTAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCCGCCCCGGCAGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACTGGAGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGCGGCCTGGCGCATTCTTGAAAAGCTGCAATAA UPDATED NCBI_taxonomy_name with Escherichia coli UPDATED NCBI_taxonomy_id with 562 UPDATED NCBI_taxonomy_cvterm_id with 35914 UPDATED accession with AAQ16660.2 UPDATED sequence with MMKKSLCCALLLTASFSTFASAKTEQQIADIVNRTITPLMQEQAIPGMAVAIIYQGKPYYFTWGKADIANNHPVTQQTLFELGSVSKTFNGVLGGDAIARGEIKLSDPVTKYWPELTGKQWQGISLLHLATYTAGGLPLQIPDDVTDKAALLRFYQNWQPQWAPGAKRLYANSSIGLFGALAVKPSGMSYEEAMTRRVLQPLKLAHTWITVPQNEQKDYAWGYREGKPVHVSPGQLDAEAYGVKSNVTDMARWVQVNMDASRVQEKTLQQGIALAQSRYWRIGDMYQGLGWEMLNWPLKADSIINGSDSKVALAALPAVEVNPPAPAVKASWVHKTGSTGGFGSYVAFVPEKNLGIVMLANKSYPNPVRVEAAWRILEKLQ " 526 UPDATE ACT-2 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 527 UPDATE SHV-38 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGTGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGTAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGGATTGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 1018 UPDATE APH(3')-IIc antibiotic inactivation; aminoglycoside antibiotic; paromomycin; kanamycin A; APH(3'); gentamicin B; ribostamycin; G418; neomycin; butirosin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAAGCTTCCAATCCCTTCACTGATGGCCTGCGGCTGCCGCGCGCATGGCAGGAAGCGTTGGCCGATGCGCACATCGAGCGGCAGTCGATCGGCGTGTCGCGCGCGGATGTCGCGCGGGTGCATCGTCCCGGGCAGACCGACGCCTTCCTGAAATCGGAAGTGATCGATGCCTTCAGTGAACTGGGTGATGAGATCGCCCGGCTGCGTTGGCTGCAGGCGCAGGGGCAGTCGGCGCCGACGGTGATTGCCACGACCGAGGAGGGCGGTCGGCGCTGGTTGTTGATGAGCGCGTTGCCCGGCCGCGACTTGGCCTCCTCGCCGGAGCTCGCGCCGAGACGGGTGGCAGAACTGCTGGCTGACGCACTGCGTGGCCTGCATGCCGTGCCTGTAGCCAACTGCCCGTTCGACCAGCAGTTGGCATCGCGCCTGCAGGCCGCACAGGCACGCGTCGAGGCGGGGCTGGTCGATGCCGATGACTTCGACGACGAGCGGCTGGGCCAGAGCCCGCAGCAGGTTTTCGCCGAGCTGCGCGCTACCCGGCCCGCTCATGAAGACCTGGTGGTCAGTCAGGGCGATGCCTGCCTGCCCAACCTGACGGTGACCGATGGGCGGTTCACTGGCTTCATCGATTGTGGCCGGTTGGGCGTGGCCGACCGCTATCAGGACCTGGCCCTGGCCGCGCGCAGCCTGGTCCACAATTTCGGGGAGAGCCGCTGTGTCGCCGCGCTGTTCCAGCGCTACGGTGCGGTCCCTGATGAGCGGCGGCTTGCATTCTATCGGTTGCTTGACGAGTTTTTCTGA " 521 UPDATE OXA-386 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 859 UPDATED strand with - UPDATED accession with KF986254 UPDATED fmin with 34 UPDATED sequence with ATGAAGATTAAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGTCTGCTAATCCAAATCACAGTGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACTACAGAAGTATTTAAGTGGGACGGGCAAAAAAGGCTATTCCCAGAATGGGAAAAGAACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAATGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTAGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAATTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAAACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGCTTAGAACAATTAGGTATTTTATAG UPDATED NCBI_taxonomy_name with Acinetobacter baumannii UPDATED NCBI_taxonomy_id with 470 UPDATED NCBI_taxonomy_cvterm_id with 35507 UPDATED accession with AHL30273.1 UPDATED sequence with MKIKALLLITSAIFISACSPYIVSANPNHSASKSDEKAEKIKNLFNEAHTTGVLVIQQGQTQQSYGNDLARASTEYVPASTFKMLNALIGLEHHKATTTEVFKWDGQKRLFPEWEKNMTLGDAMKASAIPVYQDLARRIGLELMSNEVKRVGYGNADIGTQVDNFWLVGPLKITPQQEAQFAYKLANKTLPFSQKVQDEVQSMLFIEEKNGNKIYAKSGWGWDVNPQVGWLTGWVVQPQGNIVAFSLNLEMKKGIPSSVRKEITYKSLEQLGIL " 522 UPDATE floR antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; florfenicol; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACCACCACACGCCCCGCGTGGGCCTATACGCTGCCGGCAGCACTGCTGCTGATGGCTCCTTTCGACATCCTCGCTTCACTGGCGATGGATATTTATCTCCCTGTCGTTCCAGCGATGCCCGGCATCCTGAACACGACGCCCGCTATGATCCAACTCACGTTGAGCCTCTATATGGTGATGCTCGGCGTGGGCCAGGTGATTTTTGGTCCGCTCTCAGACAGAATCGGGCGACGGCCAATTCTACTTGCGGGCGCAACGGCTTTCGTCATTGCGTCTCTGGGAGCAGCTTGGTCTTCAACTGCACCGGCCTTTGTCGCTTTCCGTCTACTTCAAGCAGTGGGCGCGTCGGCCATGCTGGTGGCGACGTTCGCGACGGTTCGCGACGTTTATGCCAACCGTCCTGAGGGTGTCGTCATCTACGGCCTTTTCAGTTCGGTGCTGGCGTTCGTGCCTGCGCTCGGCCCTATCGCCGGAGCATTGATCGGCGAGTTCTTGGGATGGCAGGCGATATTCATTACTTTGGCTATACTGGCGATGCTCGCACTCCTAAATGCGGGTTTCAGGTGGCACGAAACCCGCCCTCTGGATCAAGTCAAGACGCGCCGATCTGTCTTGCCGATCTTCGCGAGTCCGGCTTTTTGGGTTTACACTGTCGGCTTTAGCGCCGGTATGGGCACCTTCTTCGTCTTCTTCTCGACGGCTCCCCGTGTGCTCATAGGCCAAGCGGAATATTCCGAGATCGGATTCAGCTTTGCCTTCGCCACTGTCGCGCTTGTAATGATCGTGACAACCCGTTTCGCGAAGTCCTTTGTCGCCAGATGGGGCATCGCAGGATGCGTGGCGCGTGGGATGGCGTTGCTTGTTTGCGGAGCGGTCCTGTTGGGGATCGGCGAACTTTACGGCTCGCCGTCATTCCTCACCTTCATCCTACCGATGTGGGTTGTCGCGGTCGGTATTGTCTTCACGGTGTCCGTTACCGCGAACGGCGCTTTGGCAGAGTTCGACGACATCGCGGGATCAGCGGTCGCGTTCTACTTCTGCGTTCAAAGCCTGATAGTCAGCATTGTCGGGACATTGGCGGTGGCACTTTTAAACGGTGACACAGCGTGGCCCGTGATCTGTTACGCCACGGCGATGGCGGTACTGGTTTCGTTGGGGCTGGTGCTCCTTCGGCTCCGTGGGGCTGCCACCGAGAAGTCGCCAGTCGTCTAA " 523 UPDATE OXA-75 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATTCAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATTACAGTGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATAGGCCTTGAGCACCATAAGGCAACCACTACAGAAGTATTTAAGTGGGACGGGCAAAAAAGGCTATTCCCAGAATGGGAAAAGAACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAATGAAGTGAAGCGTATTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAACAAGAGGCACAATTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAAACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATATCTAGCTCTGTTCGAAAAGAGATTACTTATAGAGGTTTAGAACAATTAGGTATTTTATAG " 1014 UPDATE SHV-25 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1015 UPDATE evgA penam; antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; norfloxacin; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; oxacillin; tetracycline antibiotic; cloxacillin; fluoroquinolone antibiotic; tetracycline; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACGCAATAATTATTGATGACCATCCTCTTGCTATCGCAGCAATTCGTAATTTATTGATCAAAAACGATATTGAAATCTTAGCAGAGTTGACTGAAGGCGGAAGTGCCGTTCAGCGGGTGGAAACACTTAAGCCTGATATCGTCATCATTGATGTCGATATCCCCGGAGTTAACGGTATCCAGGTGTTAGAAACGCTGAGGAAGCGCCAATATAGCGGAATTATTATTATCGTCTCCGCTAAAAATGACCATTTTTACGGGAAACATTGTGCTGATGCTGGCGCTAATGGTTTCGTGAGTAAAAAAGAAGGCATGAACAATATCATTGCGGCTATTGAAGCTGCAAAAAATGGCTACTGCTATTTCCCCTTCTCTCTCAACCGGTTTGTTGGAAGTTTAACGTCCGACCAGCAAAAACTCGACTCCTTATCGAAACAAGAAATTAGTGTCATGCGGTATATTCTTGATGGCAAGGATAATAATGACATTGCTGAAAAAATGTTCATCAGCAACAAAACTGTCAGCACTTATAAAAGTCGCCTGATGGAAAAATTAGAATGTAAATCACTGATGGATCTTTACACATTCGCACAACGTAACAAAATCGGCTAA " 1016 UPDATE OXA-255 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAATTTATACTTCCTATCTTCAGCATTTCTACTCTACTTTCTCTCAGTGCATGCTCAACTATTCAAAATAAATTTGAAAAAACTTCTGATATTTCTGATCAGCAACATGAAAAAGCCATTAAAAGCTATTTTGATGAAGCTCAAACACAAGGTGTAATAATTATTAAAGAGGGAAAGAATATTAGAATCTATGGTAATAACCTGGTACGAGCACATACAGAATATGTCCCTGCGTCAACATTTAAGATGCTAAATGCCTTAATTGGATTAGAAAATCATAAAGCTACAACAACTGAGATTTTCAAATGGGATGGTAAAAAAAGATCTTATCCTATGTGGGAAAAAGATATGACTTTAGGTGATGCCATGGCACTTTCAGCAGTTCCTGTATATCAAGAACTTGCAAGACGGACTGGCTTAGATCTAATGCAAAAAGAAGTTAAACGGGTTGGTTTTGGTAATATGAGCATCGGGACACAAGTTAATAACTTCTGGTTAGTTGGCCCCCTCAAGATTACACCAATACAAGAGGCTAATTTTGCCGATGATCTTGCGAATAATCGATTACCCTTTAAATTAGAAACTCAAGAAGAAGTAAAAAAAATGCTTCTGATTAAAGAAGTCAATGGTAGTAAAATTTATGCGAAAAGTGGATGGGGAATGGATGTGACCCCTCAAGTAGGTTGGTTAACAGGTTGGGTAGAAAAATCTAATGGCGAAAAAGTTCCCTTTTCTCTAAACCTAGAAATGAAGCAAGGAATGTCTGGTTCTATTCGTAATGAAATTACTTATAAATCATTAGAAAATTTAGGGATTATATAA " 1017 UPDATE CTX-M-86 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 528 UPDATE OCH-8 penam; antibiotic inactivation; penem; cephalosporin; cephamycin; monobactam; OCH beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGAAAATCTACGACACTTTTGATCGGTTTCCTCACCACTGCCGCTATTATCCCGAATAATGGCGCGCTGGCTACGAGCAAGGCGAATGATGGCGACTTGCGCCGTATTGTCGATGAAACGGTGCGCCCGCTCATGGCCGAGCAGAAAATCCCCGGCATGGCGGTTGCCATAACCATCGACGGCAAGAGCCACTTCTTCGGTTATGGTGTGGCATCGAAAGAAAGCGGGCAAAAAGTCACTGAAGACACGATTTTCGAGATCGGTTCGGTCAGCAAGACCTTCACTGCAATGCTTGGCGGTTACGGGCTGGCGACAGGCGCGTTCTCCCTGTCCGATCCCGCGACCAAATGGGCTCCTGAACTGGCAGGCAGCAGCTTCGACAAGATCACCATGCTTGATCTTGGGACCTACACGCCGGGCGGATTGCCCCTCCAGTTTCCCGATGCTGTCACCGATGACAGTTCGATGCTGGCATATTTCAAGAAATGGAAACCCGATTATCCGGCAGGGACGCAGCGTCGTTATTCGAATCCCAGCATCGGCCTGTTCGGCTATCTGGCGGCACGAAGCATGGACAAGCCGTTCGACGTTTTGATGGAGCAAAAGCTTCTGCCTGCATTCGGCCTGAAGAACACCTTCATCAATGTGCCGGAAAGCCAGATGAAGAACTACGCCTACGGCTATTCCAAAGCCAACAAGCCGATCCGGGTATCGGGCGGGGCGCTGGATGCACAAGCCTATGGCATCAAGACCACCGCGCTTGATCTTGCCCGCTTCGTCGAACTGAACATCGACAGCTCATCTCTGGAGCCTGATTTCCAGAAAGCCGTCGCCGCAACGCATACCGGTTACTACCATGTCGGAGCGAACAATCAGGGACTTGGCTGGGAGTTCTACAACTATCCGACTGCGCTCAAGACACTTCTTGCCGGCAATTCGTCGGACATGGCGCTGAAGTCGCACAAAATCGAGAAATTCGATACACCTCGCCAACCGTCAGCTGATGTGCTGATCAATAAGACAGGCTCAACCAACGGCTTTGGCGCTTATGCGGCCTTTATTCCTGCGAAGAAGATCGGAATTGTTCTGCTTGCCAACCGGAATTATCCGATCGATGAGCGCGTAAAGGCTGCCTATCGGATATTGCAGGCGCTCGACAACAAGCAATAG " 529 UPDATE SHV-185 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1012 UPDATE KPC-5 antibiotic inactivation; penam; carbapenem; cephalosporin; monobactam; KPC beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCACTGTATCGCCGTCTAGTTCTGCTGTCTTGTCTCTCATGGCCGCTGGCTGGCTTTTCTGCCACCGCGCTGACCAACCTCGTCGCGGAACCATTCGCTAAACTCGAACAGGACTTTGGCGGCTCCATCGGTGTGTACGCGATGGATACCGGCTCAGGCGCAACTGTAAGTTACCGCGCTGAGGAGCGCTTCCCACTGTGCAGCTCATTCAAGGGCTTTCTTGCTGCCGCTGTGCTGGCTCGCAGCCAGCAGCAGGCCGGCTTGCTGGACACACCCATCCGTTACGGCAAAAATGCGCTGGTTCGGTGGTCACCCATCTCGGAAAAATATCTGACAACAGGCATGACGGTGGCGGAGCTGTCCGCGGCCGCCGTGCAATACAGTGATAACGCCGCCGCCAATTTGTTGCTGAAGGAGTTGGGCGGCCCGGCCGGGCTGACGGCCTTCATGCGCTCTATCGGCGATACCACGTTCCGTCTGGACCGCTGGGAGCTGGAGCTGAACTCCGCCATCCCAGGCGATGCGCGCGATACCTCATCGCCGCGCGCCGTGACGGAAAGCTTACAAAAACTGACACTGGGCTCTGCACTGGCTGCGCCGCAGCGGCAGCAGTTTGTTGATTGGCTAAAGGGAAACACGACCGGCAACCACCGCATCCGCGCGGCGGTGCCGGCAGACTGGGCAGTCGGAGACAAAACCGGAACCTGCGGAGTGTATGGCACGGCAAATGACTATGCCGTCGTCTGGCCCACTGGGCGCGCACCTATTGTGTTGGCCGTCTACACCCGGGCGCCTAACAAGGATGACAAGCACAGCGAGGCCGTCATCGCCGCTGCGGCTAGACTCGCGCTCGAGGGATTGGGCGTCAACGGGCAGTAA " 1013 UPDATE APH(2'')-IIIa antibiotic inactivation; kanamycin A; gentamicin B; aminoglycoside antibiotic; sisomicin; arbekacin; APH(2''); netilmicin; gentamicin C; amikacin; isepamicin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1234 UPDATE MIR-13 antibiotic inactivation; monobactam; cephalosporin; MIR beta-lactamase; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 35962 " 1235 UPDATE AAC(6')-Ib' antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 676 UPDATED strand with + UPDATED accession with AY660529.1 UPDATED fmin with 121 UPDATED sequence with GTGACCAACAGCAACGATTCCGTCACACTGCGCCTCATGACTGAGCATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGAGTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAACAGTACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTCACTCCATACATTGCAATGCTGAATGGAGAGCCGATTGGGTATGCCCAGTCGTACGTTGCTCTTGGAAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCAGGAGTACGCGGAATAGACCAGTCACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGAACCAAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCACCAAGATCCAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCTACGAGAAAGCGGGGTTTGAGAGGCAAGGTACCGTAACCACCCCAGATGGTCCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGCGAACACGCAGTGTTGCCTAA UPDATED NCBI_taxonomy_name with Pseudomonas aeruginosa UPDATED NCBI_taxonomy_id with 287 UPDATED NCBI_taxonomy_cvterm_id with 36752 UPDATED accession with AAT74613.1 UPDATED sequence with MTNSNDSVTLRLMTEHDLAMLYEWLNRSHIVEWWGGEEARPTLADVQEQYLPSVLAQESVTPYIAMLNGEPIGYAQSYVALGSGDGWWEEETDPGVRGIDQSLANASQLGKGLGTKLVRALVELLFNDPEVTKIQTDPSPSNLRAIRCYEKAGFERQGTVTTPDGPAVYMVQTRQAFERTRSVA " 1236 UPDATE CMY-53 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1237 UPDATE Mycobacterium tuberculosis rpoB mutants conferring resistance to rifampicin rifampin; rifapentine; rifabutin; peptide antibiotic; rifamycin-resistant beta-subunit of RNA polymerase (rpoB); antibiotic target replacement; antibiotic target alteration; rifamycin antibiotic; rifaximin; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 1230 UPDATE CTX-M-33 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 888 UPDATED strand with - UPDATED accession with AY238472.1 UPDATED fmin with 12 UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAGTCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGGCTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA UPDATED NCBI_taxonomy_name with Escherichia coli UPDATED NCBI_taxonomy_id with 562 UPDATED NCBI_taxonomy_cvterm_id with 35914 UPDATED accession with AAO88912.1 UPDATED sequence with MVKKSLRQFTLMATATVTLLLGSVPLYAQTADVQQKLAELERQSGGRLGVALINTADNSQILYRADERFAMCSTSKVMAAAAVLKKSESEPNLLNQRVEIKKSDLVNYSPIAEKHVNGTMSLAELSAAALQYSDNVAMNKLIAHVGGPASVTAFARQLGDETFRLDRTEPTLNTAIPGDPRDTTSPRAMAQTLRNLTLGKALGDSQRAQLVTWMKGNTTGAASIQAGLPASWVVGDKTGSGGYGTTNDIAVIWPKDRAPLILVTYFTQPQPKAESRRDVLASAAKIVTDGL " 1231 UPDATE mel macrolide antibiotic; telithromycin; ABC-F ATP-binding cassette ribosomal protection protein; antibiotic target protection; streptogramin antibiotic; erythromycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1802391 UPDATED strand with - UPDATED accession with NC_012469.1 UPDATED fmin with 1800927 UPDATED sequence with ATGGAATTAATATTAAAAGCAAAAGACATTCGTGTGGAATTCAAAGGACGCGATGTTTTAGATATAAATGAATTAGAAGTATATGATTATGACCGTATTGGTTTAGTAGGAGCAAATGGTGCTGGAAAAAGCACTTTACTCAGGGTACTTTTAGGAGAATTAACTCCCCCAGGATGTAAAATGAATCGTCTGGGTGAACTTGCCTATATTCCCCAGTTGGACGAAGTAACTCTGCAGGAGGAAAAAGATTTTGCACTTGTAGGCAAGCTAGGTGTTGAGCAATTAAATATACAGACTATGAGCGGTGGTGAAGAAACAAGGCTTAAAATAGCACAGGCCTTATCGGCACAGGTTCATGGTATTTTAGCGGATGAACCTACGAGCCATTTAGACCGTGAAGGAATTGATTTTCTAATAGGACAGCTAAAATATTTTACAGGTGCACTGTTAGTTATTAGCCATGACCGCTATTTTCTTGATGAAATAGTAGATAAAATATGGGAACTGAAAGATGGCAAAATCACTGAGTATTGGGGAAACTATTCTGATTATCTTCGTCAGAAAGAGGAAGAACGTAAGAGCCAAGCTGCAGAATACGAACAATTTATTGCGGAACGTGCCCGATTGGAAAGGGCTGCGGAGGAAAAGCGAAAACAGGCTCGTAAAATAGAACAGAAGGCAAAAGGTTCTTCAAAGAAAAAAAGTACTGAAGACGGAGGGCGTTTAGCTCATCAAAAATCAATAGGAAGTAAGGAAAAAAAGATGTATAATGCTGCTAAAACCCTAGAGCACAGGATTGCGGCCTTAGGAAAAGTAGAAGCTCCGGAAGGCATTCGCAGAATTCGTTTCAGGCAAAGTAAAGCATTGGAGCTCCATAATCCATACCCTATAGTCGGTGCAGAAATTAATAAAGTATTTGGGGATAAGGCTCTGTTTGAAAATGCATCTTTTCAAATTCCGTTAGGAGCAAAAGTGGCGTTAACTGGTGGTAATGGAATCGGAAAAACAACTTTAATCCAAATGATCTTAAACCATGAAGAAGGAATTTCTATTTCGCCTAAGGCAAAAATAGGTTACTTTGCACAGAATGGTTACAAGTACAACAGTAATCAGAATGTTATGGAGTTTATGCAGAAGGATTGTGACTACAATATATCAGAAATTCGTTCAGTGCTAGCATCTATGGGGTTCAAACAGAACGATATTGGAAAAAGTTTATCTGTTTTAAGCGGTGGAGAAATTATAAAATTGTTGCTTGCTAAAATGCTCATGGGTAGATATAACATCCTAATAATGGATGAACCCAGTAACTTCCTTGACATACCAAGTTTAGAGGCTTTGGAAATACTAATGAAGGAGTACACCGGAACTATCGTGTTTATCACCCACGATAAACGATTACTCGAAAATGTAGCAGATGTAGTTTATGAAATTAGAGATAAGAAAATAAATCTGAAACATTAA UPDATED NCBI_taxonomy_name with Bacteria UPDATED NCBI_taxonomy_id with 2 UPDATED NCBI_taxonomy_cvterm_id with 35506 UPDATED accession with WP_000420313.1 UPDATED sequence with MELILKAKDIRVEFKGRDVLDINELEVYDYDRIGLVGANGAGKSTLLRVLLGELTPPGCKMNRLGELAYIPQLDEVTLQEEKDFALVGKLGVEQLNIQTMSGGEETRLKIAQALSAQVHGILADEPTSHLDREGIDFLIGQLKYFTGALLVISHDRYFLDEIVDKIWELKDGKITEYWGNYSDYLRQKEEERKSQAAEYEQFIAERARLERAAEEKRKQARKIEQKAKGSSKKKSTEDGGRLAHQKSIGSKEKKMYNAAKTLEHRIAALGKVEAPEGIRRIRFRQSKALELHNPYPIVGAEINKVFGDKALFENASFQIPLGAKVALTGGNGIGKTTLIQMILNHEEGISISPKAKIGYFAQNGYKYNSNQNVMEFMQKDCDYNISEIRSVLASMGFKQNDIGKSLSVLSGGEIIKLLLAKMLMGRYNILIMDEPSNFLDIPSLEALEILMKEYTGTIVFITHDKRLLENVADVVYEIRDKKINLKH DELETED 36001 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. " 1232 UPDATE cmeR antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; macrolide antibiotic; cefotaxime; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; fluoroquinolone antibiotic; fusidic acid; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 337548 UPDATED strand with - UPDATED accession with NC_002163.1 UPDATED fmin with 336915 UPDATED sequence with ATGAACTCAAATAGAACACCATCACAAAAAGTTTTAGCCAGACAAGAAAAAATCAAAGCAGTGGCCTTAGAGCTTTTTTTAACAAAAGGATACCAAGAAACAAGTTTGAGTGATATTATTAAATTATCTGGAGGATCTTATTCTAATATTTATGATGGTTTTAAAAGTAAAGAAGGGCTATTCTTTGAAATTTTAGATGACATATGTAAAAAACACTTTCATCTTATTTATTCCAAAACACAAGAAATTGAAAATGGCACTTTAAAAGAAATTTTAACTTCTTTTGGTTTAGCTTTTATAGAAATTTTCAATCAACCAGAAGCTGTAGCTTTTGGTAAAATTATCTATTCTCAAGTTTATGACAAAGATAGACATCTTGCCAATTGGATAGAAAATAATCAACAAAATTTTTCCTATAACATACTTATGGGTTTTTTCAAGCAACAAAATAATTCTTATATGAAAAAAAATGCAGAAAAACTTGCTGTTCTTTTTTGCACTATGTTAAAAGAACCTTATCATCATCTTAATGTTTTAATTAACGCTCCTTTGAAAAATAAAAAAGAACAAAAAGAACATGTTGAATTTGTTGTAAATGTTTTTCTAAATGGAATCAATAGCTCCAAAGCTTAA UPDATED NCBI_taxonomy_name with Campylobacter jejuni subsp. jejuni NCTC 11168 UPDATED NCBI_taxonomy_id with 192222 UPDATED NCBI_taxonomy_cvterm_id with 36956 UPDATED accession with YP_002343805.1 UPDATED sequence with MNSNRTPSQKVLARQEKIKAVALELFLTKGYQETSLSDIIKLSGGSYSNIYDGFKSKEGLFFEILDDICKKHFHLIYSKTQEIENGTLKEILTSFGLAFIEIFNQPEAVAFGKIIYSQVYDKDRHLANWIENNQQNFSYNILMGFFKQQNNSYMKKNAEKLAVLFCTMLKEPYHHLNVLINAPLKNKKEQKEHVEFVVNVFLNGINSSKA " 1233 UPDATE tet32 chlortetracycline; demeclocycline; oxytetracycline; tetracycline antibiotic; tetracycline; antibiotic target protection; minocycline; tetracycline-resistant ribosomal protection protein; doxycycline; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1238 UPDATE OXA-397 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1239 UPDATE SHV-81 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 438 UPDATE VIM-6 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTCAAACTTTTGAGTAAGTTATTGGTCTATTTGACCGCGTCTATCATGGCTATTGCGAGTCCGCTCGCTTTTTCCGTAGATTCTAGCGGTGAGTATCCGACAGTCAGCGAAATTCCGGTCGGGGAGGTCCGGCTTTACCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCGGTCGTTTGATGGCGCAGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAGAAGCAAATTGGACTTCCTGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCCGAGGTAGAGGGGAGCGAGATTCCCACGCACTCTCTAGAAGGACTCTCATCGAGCGGGGACGCAGTGCGCTTCGGTCCAGTAGAACTCTTCTATCCTGGTGCTGCGCATTCGACCGACAACTTAGTTGTGTACGTCCCGTCTGCGAGTGTGCTCTATGGTGGTTGTGCGATTTATGAGTTGTCACGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCATTGAGCGGATTCAACAACACTACCCGGAAGCACAGTTCGTCATTCCGGGGCACGGCCTGCCGGGCGGTCTAGACTTGCTCAAGCACACAACGAATGTTGTAAAAGCGCACACAAATCGCTCAGTCGTTGAGTAG " 439 UPDATE SHV-83 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 436 UPDATE OXY-4-1 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTGAAAAGTTCGTGGCGTAAAAGCGCCCTGATGGCCGCCGCCGTTCCGCTACTGCTGGCGAGCGGTTCATTATGGGCCAGTGCCGATACTCTCCAGCAGAAGCTGGCTGATTTAGAAAAACGTTCCGGCGGTCGGCTGGGCGTGGCGCTGATTAACACGGCAGATGATTCGCAGACCCTCTATCGCGGCGACGAACGTTTTGCCATGTGCAGCACCGGTAAAGTGATGGCCGCCGCCGCGGTGTTAAAACAGAGCGAAAGCCATCCCGATGTGGTGAATAAAAGGCTGGAGATTAAAAAATCGGATTTAGTGGTCTGGAGCCCGATTACCGAAAAACATCTGCAAAGCGGAATGACCCTGGCGGAACTCAGCGCTGCGGCGCTGCAGTATAGCGACAATACCGCGATGAATAAGATTATCGGTTACCTTGGCGGGCCGGAAAAAGTCACCGCATTCGCCCAGAGCATCGGTGACGTTACTTTTCGTCTCGATCGGATGGAGCCGGCGCTGAACAGCGCGATTCCCGGTGATAAGCGCGATACCACCACCCCATTGGCGATGGCCGAAAGTCTGCGTAAGCTGACGCTGGGCAATGCGCTGGGCGAACAGCAGCGCGCCCAGTTAGTGACATGGCTGAAAGGCAATACCACCGGCGGGCAAAGCATTCGTGCAGGCCTGCCCGCAAGCTGGGCGGTCGGGGATAAAACCGGCGGCGGAGATTACGGCACCACCAACGATATCGCGGTGATCTGGCCGGAAAATCATGCTCCGCTGGTGCTAGTGACCTATTTTACCCAACCGCAGCAGGATGCGAAAAGCCGCAAAGAGGTGCTAGCCGCGGCGGCGAAAATCGTGACCGAAGGGCTTTAA " 437 UPDATE SHV-69 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 434 UPDATE LEN-16 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATGTTCGCCTGTGTGTTATCTCCCTGTTAGCCACCCTGCCACTGGCGGTATACGCCGGTCCACAGCCGCTTGAGCAGATTAAACAAAGCGAAAGCCAGCTGTCGGGCCGCGTGGGGATGGTGGAAATGGATCTGGCCAGCGGCCGCACGCTGGCGGCCTGGCGCGCCGATGAACGCTTTCCCATGGTGAGCACCTTTAAAGTGCTGCTGTGCGGCGCGGTGCTGGCGCGGGTGGATGCCGGGCTCGAACAACTGGATCGGCGGATCCACTACCGCCAGCAGGATCTGGTGGACTACTCCCCGGTCAGCGAAAAACACCTTACCGACGGGATGACGATCGGCGAACTCTGCGCCGCCGCCATCACCCTGAGCGATAACAGCGCTGGCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCGGGATTAACTGCCTTTCTGCGCCAGATCGGTGACAACGTCACCCGTCTTGACCGCTGGGAAACGGCACTGAATGAGGCGCTTCCCGGCGACGCGCGCGACACCACCACCCCGGCCAGCATGGCCGCCACGCTGCGCAAACTACTGACCGCGCAGCATCTGAGCGCCCGTTCGCAACAGCAACTCCTGCAGTGGATGGTGGACGATCGGGTTGCCGGCCCGCTGATCCGCGCCGTGCTGCCGCCGGGCTGGTTTATCGCCGACAAAACCGGGGCTGGCGAACGGGGTGCGCGCGGCATTGTCGCCCTGCTCGGCCCGGACGGCAAACCGGAGCGCATTGTGGTGATCTATCTGCGGGATACCCCGGCGAGTATGGCCGAGCGTAATCAACATATCGCCGGGATCGGCGCAGCGCTGATCGAGCACTGGCAACGCTAA " 435 UPDATE OKP-A-9 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 433 UPDATE ACT-25 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCCCTTTGCTGCGCCCTGCTGCTGGGCCTCTCTTGCTCTGCTCTCGCCGCGCCAGTATCAGAAAAACAGCTGGCGGAGGTGGTCGCGAATACGGTTACCCCGCTGATGAAAGCCCAGTCTGTTCCAGGCATGGCGGTGGCCGTTATTTATCAGGGAAAATCGCACTATTACACGTTTGGCAAGGCCGATATCGCGGCGAATAAACCCGTTACGCCTCAGACCCTGTTCGAGCTGGGTTCTATAAGTAAAACCTTCACCGGCGTTTTAGGTGGGGATGCCATTGCTCGCGGTGAAATTTCGCTGGACGATCCGGTGACCAGATACTGGCCACAGCTGACAGGCAAGCAGTGGCAGGGTATTCGTATGCTGGATCTCGCCACCTACACCGCTGGCGGCCTGCCGCTACAGGTACCGGATGAGGTCACGGATAACGCCTCCCTGCTGCGCTTTTATCAAAACTGGCAGCCGCAGTGGAAGCCTGGCACAACGCGTCTTTACGCCAACGCCAGCATCGGTCTTTTTGGCGCGCTGGCGGTCAAACCTTCTGGCATGCCCTATGAGCAGGCCATGACGACGCGGGTCCTTAAGCCGCTCAAGCTGGACCATACCTGGATTAACGTTCCGAAAGCGGAAGAGGCGCATTACGCCTGGGGCTATCGTGACGGTAAAGCGGTGCGCGTTTCGCCGGGAATGCTGGATGCACAAGCCTATGGCGTGAAAACCAACGTGCAGGATATGGCGAACTGGGTCATGGCAAACATGGCGCCGGAGAAGGTTGCCGATGCCTCACTTAAGCAGGGCATCGCGCTGGCGCAGTCGCGCTACTGGCGTATCGGGTCAATGTATCAGGGTCTGGGCTGGGAGATGCTCAACTGGCCCGTGGAGGCCAACACGGTGGTCGAAGGCAGCGACAGTAAGGTAGCGCTGGCGCCATTACCCGTGGCAGAAGTGAATCCACCGGCTCCCCCGGTCAAAGCGTCCTGGGTCCATAAAACGGGTTCTACTGGCGGATTTGGCAGCTACGTGGCCTTTATTCCTGAAAAGCAGATCGGTATTGTGATGCTCGCGAATAAAAGCTATCCGAACCCGGCACGCGTTGAGGCGGCATACCATATCCTCAAGGCGCTTCAGTAA " 430 UPDATE OXA-87 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 431 UPDATE Escherichia coli marR mutant conferring antibiotic resistance penam; antibiotic efflux; triclosan; rifampin; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; antibiotic target alteration; tetracycline antibiotic; cephalosporin; cefalotin; tigecycline; glycylcycline; ampicillin; fluoroquinolone antibiotic; rifamycin antibiotic; phenicol antibiotic; tetracycline; chloramphenicol; model_sequences "UPDATED sequence with GTGAAAAGTACCAGCGATCTGTTCAATGAAATTATTCCATTGGGTCGCTTAATCCATATGGTTAATCAGAAGAAAGATCGCCTGCTTAACGAGTATCTGTCTCCGCTGGATATTACCGCGGCACAGTTTAAGGTGCTCTGCTCTATCCGCTGCGCGGCGTGTATTACTCCGGTTGAACTGAAAAAGGTATTGTCGGTCGACCTGGGAGCACTGACCCGTATGCTGGATCGCCTGGTCTGTAAAGGCTGGGTGGAAAGGTTGCCGAACCCGAATGACAAGCGCGGCGTACTGGTAAAACTTACCACCGGCGGCGCGGCAATATGTGAACAATGCCATCAATTAGTTGGCCAGGACCTGCACCAAGAATTAACAAAAAACCTGACGGCGGACGAAGTGGCAACACTTGAGTATTTGCTTAAGAAAGTCCTGCCGTAA " 1630 UPDATE IMP-13 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGAAATTATTTGTTTTATGTGTATGCTTCTTTTGTAGCATTACTGCCGCAGGAGCGGCTTTACCTGATTTAAAAATCGAGAAGCTTGAAGAAGGTGTTTTTGTTCATACATCGTTCGAAGAGGTTAACGGTTGGGGGGTTGTTACTAAACACGGTTTAGTGGTGCTTGTAAACACAGACGCCTATCTAATTGACACTCCATTTACTGCTACAGACACTGAAAAATTAGTCAATTGGTTTGTGGAGCGCGGCTATGAAATCAAAGGCACTATTTCATCACATTTCCATAGCGACAGCACAGGAGGAATAGAGTGGCTTAATTCTCAATCTATTCCCACGTATGCATCTGAATTAACAAATGAACTTTTGAAAAAATCCGGTAAGGTACAAGCTAAATATTCATTTAGCGAAGTTAGCTATTGGCTAGTTAAAAATAAAATTGAAGTTTTCTACCCTGGCCCAGGTCACACTCAAGATAACCTAGTGGTTTGGTTGCCTGAAAGTAAAATTTTATTCGGTGGTTGCTTTATTAAACCTCACGGTCTTGGCAATTTAGGTGACGCAAATTTAGAAGCTTGGCCAAAGTCCGCCAAAATATTAATGTCTAAATATGGCAAAGCAAAGCTTGTTGTTTCAAGTCATAGTGAAAAAGGGGACGCATCACTAATGAAACGTACATGGGAACAAGCCCTTAAAGGGCTTAAAGAAAGTAAAAAAACATCATCACCAAGTAACTAA " 559 UPDATE vanXYE glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanXY; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAAAATTATCTACGATTGATTAATGAAAACAATGAAATAAAAGACTCTGAGAGACCAAGTCACCTTGTTCAGGCTCCGTTTGCACAAACAAATATACTAGTTGATCCTATGGTAGCGATACAGCTAGAAAAACTAATAAAGACAACAGGTCTTGATAGCCAAATTATTACCATTGATGGCTATCGTTCAAAGGAGACACAGCAAGCACTTTGGGATGAGACGATTCAAGAAAAAGGGCTTGAATTTGCGCACAAATATGTGGCAAAGCCTGGATGTAGTGAACATGAAATTGGTTTAGCAGTGGATTTGGGGTTAGCTACGAAAGAAAATGATTTTATTCGCCCAAGTTTCACTGATAGTCCGATTGTTGATAAATTTTTAAAGCATATGACAGATTTCGGCTTTATCTTAAGATATCAAAAAGGAAAAGAATCTATTACCAATATAAACTATGAACCATGGCATTTCAGGTATGTAGGGACACCCCATAGTTCGATTATGGTACAGCAAAACTGGGTATTAGAAGAATACATTGAATTCATTGAGTCAATAAGAGGAACTGCTTATGAAGCATAG " 558 UPDATE qacB efflux pump complex or subunit conferring antibiotic resistance; fluoroquinolone antibiotic; major facilitator superfamily (MFS) antibiotic efflux pump; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATTTCATTTTTTACAAAAACTACTGATATGATGACATCAAAAAAAAGATGGGCTGCACTAGTAGTATTAGCTGTTAGTTTGTTTGTTGTTACAATGGATATGACAATATTAATTATGGCTTTACCGGAATTAGTAAGAGAGTTAGAGCCTTCTGGTACCCAACAGTTATGGATAGTTGATATATACTCTCTTGTTTTAGCTGGCTTTATAATTCCATTGAGTGCCTTTGCTGATAAATGGGGAAGAAAAAAAGCATTATTAACTGGATTTGCTTTATTTGGCCTCGTTTCATTAGCTATATTTTTCGCAGAAAGTGCAGAGTTCGTAATAGCTATTCGATTTTTACTTGGTATTGCAGGTGCTTTAATAATGCCAACTACCCTTTCAATGATAAGAGTAATTTTTGAAAACCCTAAAGAAAGGGCCACTGCATTAGCTGTATGGTCAATCGTTTCATCGATAGGTGCTGTTTTTGGACCAATTATCGGAGGAGCTTTACTTGAGCAATTTTCATGGCACTCGGCATTTTTAATTAATGTACCGTTTGCGATAATAGCAGTTGTAGCAGGTTTATTTTTATTACCAGAGTCTAAGTTATCAAAAGAAAAGTCTCACTCGTGGGATATTCCTTCTACAATTTTATCAATTGCAGGCATGATTGGACTGGTATGGAGTATCAAAGAATTTTCAAAAGAAGGACTAGCAGATATTATTCCATGGGTTGTAATAGTATTAGCAATTACCATGATAGTGATATTTGTTAAACGTAATTTATCAAGTTCTGATCCAATGTTAGACGTAAGACTTTTTAAAAAGAGATCATTTTCAGCTGGTACAATTGCTGCATTTATGACAATGTTTGCAATGACATCTGTTTTGTTATTAGCTTCACAATGGTTACAGGTTGTGGAAGAACTTTCTCCTTTTAAAGCTGGCTTATACCTATTACCTATGGCAATAGGAGCTATGGTGTTTGCACCAATTGCACCCGGATTAGCGGCGCGATTTGGACCGAAAATAGTGTTACCTTCCGGAATTGGAATTGCAGCCATTGGCATGTTTATTATGTATTTCTTTGGTCATCCATTATCATATTCTACAATGGCTTTAGCATTAATTTTAGTTGAAGCTGGTACGGCTTCACTAGCAGTTGCATCTGCTCTAATAATGTTAGAAACACCTACATCAAAAGCAGGTAATGCAGCTGCTGTTGAAGAGTCTATGTATGACCTTGGAAATGTTTTTGGTGTAGCAGTACTTGGTAGCCTATCTTCTATGCTTTATCGTGTATTTTTAGATATTTCATCTTTTTCATCAAAAGGTATAGTTGGAGATTTAGCTCATGTAGCTGAAGAATCTGTAGTGGGCGCTGTCGAAGTAGCTAAAGCTACGGGGATAAAACAGCTTGCAAACGAGGCTGTAACATCATTTAATGATGCTTTTGTAGCAACTGCTTTAGTAGGTGGGATTATCATGATTATCATTTCAATAGTTGTCTATTTGTTAATTCCCAAATCACTTGATATAACTAAACAAAAATAG " 555 UPDATE OXA-133 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATAAATATTTTACTTGCTATGTGGTTGCTTCTCTTTTTTTTTCTGGTTGTACGGTTCAGCATAATTTAATAAATGAAACCCAGAGTCAGATTGTTCAAGGACATAATCAGGTGATTCATCAATACTTTGATGAAAAAAACACCTCAGGTGTGCTGGTTATTCAAACAGATAAAAAAATTAATTTGTATGGTAATGCTCTAAGCCGCGCAAATACAGAATATGTGCCAGCCTCTACATTTAAAATGTTGAATGCCCTGATCGGATTGGAGAACCAGAAAACGGATATTAATGAAATATTTAAATGGAAGGGCGAGAAAAGGTCATTTACCACTTGGGAAAAAGACATGACACTAGGAGAAGCCATGAAGCTTTCTGCAGTCCCAGTCTATCAGGAACTTGCAAGACGTATCGGTCTTGATCTCATGCAAAAAGAAGTAGAACGTATTGATTTCGGTAATGCTGAAATTGGACAGCAGGTTGACAATTTCTGGTTGATAGGCCCATTAAAGGTCACGCCTATTCAAGAGGTAGAGTTTGTTTCTCAATTGGCACATACACAGCTTCCATTTAGTGAAAAAGTGCAGGCTAATGTAAAAAATATGCTACTTCTAGAAGAGAATAATGGCTACAAGATTTTTGGAAAGACTGGTTGGGCAATGGATATAAAACCACAAGTGGGCTGGTTGACCGGCTGGGTTGAGCAGCCAGATGGAAAAATTGTCGCTTTTGCATTAAATATGGAAATGCGGTCAGAAATGCCTGCATCTATACGTAATGAATTATTGATGAAATCATTAAAACAGCTGAATATTATTTAA " 554 UPDATE OXA-163 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1961 UPDATE TEM-105 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAATGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 238 UPDATE SHV-137 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACATCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGCATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGCATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATACCCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 239 UPDATE OXA-83 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 234 UPDATE QnrS8 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 235 UPDATE OXA-181 penam; antibiotic inactivation; cephalosporin; amoxicillin; clavulanate; piperacillin; tazobactam; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTGTATTAGCCTTATCGGCTGTGTTTTTGGTGGCATCGATTATCGGAATGCCAGCGGTAGCAAAGGAATGGCAAGAAAACAAAAGTTGGAATGCTCACTTTACTGAACATAAATCACAGGGCGTAGTTGTGCTCTGGAATGAGAATAAGCAGCAAGGATTTACCAATAATCTTAAACGGGCGAACCAAGCATTTTTACCCGCATCTACCTTTAAAATTCCCAATAGCTTGATCGCCCTCGATTTGGGCGTGGTTAAGGATGAACACCAAGTCTTTAAGTGGGATGGACAGACGCGTGATATCGCCGCTTGGAATCGTGACCATGACTTAATTACCGCGATGAAGTACTCAGTTGTGCCTGTTTATCAAGAATTTGCCCGCCAAATTGGTGAGGCACGTATGAGTAAAATGCTGCACGCCTTCGATTATGGCAATGAGGATATCTCGGGCAATGTAGACAGTTTTTGGCTCGATGGTGGTATTCGCATTTCGGCTACCCAGCAAATCGCTTTTTTACGCAAGCTGTATCACAACAAGCTGCACGTTTCTGAGCGTAGTCAGCGCATCGTGAAACAAGCCATGCTGACCGAAGCCAATGGCGACTATATTATTCGGGCTAAAACGGGATACTCGACTAGAATCGAACCTAAGATTGGCTGGTGGGTTGGTTGGGTTGAACTTGATGATAATGTGTGGTTTTTTGCGATGAATATGGATATGCCCACATCGGATGGTTTAGGGCTGCGCCAAGCCATCACAAAAGAAGTGCTCAAACAGGAGAAAATTATTCCCTAG " 236 UPDATE ACT-19 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCCTTTTGCTGCGCCCTGCTGCTCGCCATCTCTGGCTCTGCTCTCGCCGCGCCAGTGTCAGAAAAACAGCTGGCGGAGGTGGTCGCGAATACGGTTACCCCGCTGATGAAAACCCAGGCTATTCCAGGCATGGCGGTGGCCGTTATCTATCAGGGAAAACCGCACTATTACACGTTTGGCGAAGCCGATATTGCGGCCAAAAAACCTGTTACGCCACAGACCCTGTTCGAGCTGGGTTCTATAAGTAAAACCTTCACCGGCGTTTTAGGTGGGGATGCCATTGCTCGCGGTGAAATTTCCCTGGACGATCCGGTGACCAAATTCTGGCCTGAACTGACGGGCAAGCAGTGGCAGGGTATTCGTATGCTGGATCTCGCAACCTACACCGCGGGCGGCCTGCCGCTACAGGTACCGGAAGAGGTCACGGATAACGCCTCCCTGCTGCGCTTTTATCAACACTGGCAACCGCAGTGGAAGCCTGGCACAACGCGTCTTTACGCCAATGCCAGCATCGGACTTTTTGGCGCGCTGGCGGTCAAACCTTCCGGCATGCGCTATGAGCAGGCCATGACGAAGCGGGTCTTCAAGCCGCTCAGGCTGAACCATACCTGGATTAACGTTCCGAAAGCGGAAGCGGCGCATTACGCCTGGGGTTATCGTGACGGTAAAGCGGTCCACATTTCACCGGGTATGCTGGACGCAGAGGCCTATGGCGTGAAAACTAACGTGCAGGATATGGCGAACTGGGTGATGGCGAACATGGCGCCGGAGAACATTGCTGATGCCTCACTCAAGCAGGGCATCGCGCTGGCGCAGTCGCGCTACTGGCGCATCGGGTCAATGTATCAGGGCCTGGGCTGGGAAATGCTCAACTGGCCCGTGGAGGCCAAAATGGTGATCGAGGGCAGCGACAATAAGGTGGCACTGGCGCCGTTGCCCGTGGCAGAAGTGAATCCACCGGCTCCCCCGGTCAAAGCGTCCTGGGTCCATAAAACAGGCTCTACTGGCGGGTTTGGCAGCTACGTGGCATTTATTCCTGAAAAGCAGATCGGTATTGTGATGCTCGCGAATAAAAGCTATCCGAATCCGGCACGCGTTGAGGCGGCATACCATATCCTCGACGCACTACAGTAA " 237 UPDATE Chryseobacterium meningosepticum BlaB carbapenem; penam; antibiotic inactivation; BlaB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 3054321 UPDATED strand with - UPDATED accession with NZ_CP007547.1 UPDATED fmin with 3053571 UPDATED sequence with ATGTTGAAAAAAATAAAAATAAGCTTGATTCTTGCTCTTGGGCTTACCAGTTTGAAGGCATTTGGACAGGAGAATCCTGATGTCAAAATTGAAAAGCTAAAAGATAATCTGTATGTATACACAACCTACAATACATTTAACGGGACTAAATATGCCGCAAATGCAGTATATCTGGTAACTGATAAGGGTGTTGTGGTTATAGACTGTCCGTGGGGAGAAGACAAATTTAAAAGCTTTACGGACGAGATTTATAAAAAACACGGAAAGAAAGTTATTATGAATATTGCAACACATTCTCATGATGATCGTGCCGGAGGTCTTGAATATTTTGGTAAAATAGGTGCAAAAACTTATTCTACTAAAATGACAGATTCTATTTTAGCAAAAGAGAATAAGCCAAGAGCACAATATACTTTTGACAATAATAAATCTTTCAAAGTAGGAAAATCCGAGTTTCAGGTTTACTATCCCGGAAAAGGGCACACAGCAGATAATGTGGTGGTATGGTTTCCAAAAGAAAAAGTATTGGTTGGAGGTTGTATTATAAAAAGTGCTGATTCAAAGGACCTGGGGTATATTGGAGAAGCATATGTAAACGACTGGACGCAGTCTGTACACAATATTCAACAAAAGTTTTCCGGTGCTCAGTACGTTGTTGCAGGGCATGATGATTGGAAAGATCAAAGATCAATACAACATACACTAGACTTAATCAATGAATATCAACAAAAACAAAAGGCTTCAAATTAA UPDATED NCBI_taxonomy_name with Elizabethkingia anophelis UPDATED NCBI_taxonomy_id with 1117645 UPDATED NCBI_taxonomy_cvterm_id with 41081 UPDATED accession with WP_029728367.1 UPDATED sequence with MLKKIKISLILALGLTSLKAFGQENPDVKIEKLKDNLYVYTTYNTFNGTKYAANAVYLVTDKGVVVIDCPWGEDKFKSFTDEIYKKHGKKVIMNIATHSHDDRAGGLEYFGKIGAKTYSTKMTDSILAKENKPRAQYTFDNNKSFKVGKSEFQVYYPGKGHTADNVVVWFPKEKVLVGGCIIKSADSKDLGYIGEAYVNDWTQSVHNIQQKFSGAQYVVAGHDDWKDQRSIQHTLDLINEYQQKQKASN " 230 UPDATE OXA-422 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 231 UPDATE OXA-178 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 232 UPDATE imiH carbapenem; CphA beta-lactamase; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 233 UPDATE LEN-21 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 993 UPDATE AAC(6')-Ib9 antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTACGCAGCAGCAGTCGCCCTAAAACAAAGTTAGGCATCACAAAGTACAGCATCGTGACCAACAGCAACGATTCCGTCACACTGCGCCTCATGACTGAGCATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGAGTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAACAGTACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTCACTCCATACATTGCAATGCTGAATGGAGAGCCGATTGGGTATGCCCAGTCGTACGTTGCTCTTGGAAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCAGGAGTACGCGGAATAGACCAGTCACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGAACCAAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCACCAAGATCCAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCTACGAGAAAGCGGGGTTTGAGAGGCAAGGTACCGTAACCACCCCAGATGGTCCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGCGAACACGCAGTGATGCCTAA " 2228 UPDATE PEDO-1 carbapenem; antibiotic inactivation; subclass B3 PEDO beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2229 UPDATE PEDO-2 carbapenem; antibiotic inactivation; subclass B3 PEDO beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2227 UPDATE VCC-1 carbapenem; monobactam; VCC beta-lactamase; antibiotic inactivation; penam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2224 UPDATE Pseudomonas aeruginosa oprD with mutation conferring resistance to imipenem penam; carbapenem; imipenem; penem; reduced permeability to antibiotic; Outer Membrane Porin (Opr); cephalosporin; cephamycin; monobactam; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 1045314 UPDATED strand with - UPDATED accession with NC_002516.2 UPDATED fmin with 1043982 UPDATED sequence with ATGAAAGTGATGAAGTGGAGCGCCATTGCACTGGCGGTTTCCGCAGGTAGCACTCAGTTCGCCGTGGCCGACGCATTCGTCAGCGATCAGGCCGAAGCGAAGGGGTTCATCGAAGACAGCAGCCTCGACCTGCTGCTCCGCAACTACTATTTCAACCGTGACGGCAAGAGCGGCAGCGGGGACCGCGTCGACTGGACCCAAGGCTTCCTCACCACCTATGAATCCGGCTTCACCCAAGGCACTGTGGGCTTCGGCGTCGATGCCTTCGGCTACCTGGGCCTGAAGCTCGACGGCACCTCCGACAAGACCGGCACCGGCAACCTGCCGGTGATGAACGACGGCAAGCCGCGCGATGACTACAGCCGCGCCGGCGGCGCCGTGAAGGTGCGCATCTCCAAGACCATGCTGAAGTGGGGCGAGATGCAACCGACCGCCCCGGTCTTCGCCGCTGGCGGCAGCCGCCTGTTCCCGCAGACCGCGACCGGCTTCCAGCTGCAGAGCAGCGAATTCGAAGGGCTCGACCTCGAGGCAGGCCACTTCACCGAGGGCAAGGAGCCGACCACCGTCAAATCGCGTGGCGAACTCTATGCCACCTACGCAGGCGAGACCGCCAAGAGCGCCGATTTCATTGGGGGCCGCTACGCAATCACCGATAACCTCAGCGCCTCCCTGTACGGCGCCGAACTCGAAGACATCTATCGCCAGTATTACCTGAACAGCAACTACACCATCCCACTGGCATCCGACCAATCGCTGGGCTTCGATTTCAACATCTACCGCACAAACGATGAAGGCAAGGCCAAGGCCGGCGACATCAGCAACACCACTTGGTCCCTGGCGGCAGCCTACACTCTGGATGCGCACACTTTCACCTTGGCCTACCAGAAGGTCCATGGCGATCAGCCGTTTGATTATATCGGCTTCGGCCGCAACGGCTCTGGCGCAGGTGGCGACTCGATTTTCCTCGCCAACTCTGTCCAGTACTCCGACTTCAACGGCCCTGGCGAGAAATCCTGGCAGGCTCGCTACGACCTGAACCTAGCCTCCTATGGCGTTCCCGGCCTGACTTTCATGGTCCGCTATATCAATGGCAAGGACATCGATGGCACCAAGATGTCTGACAACAACGTCGGCTATAAGAACTACGGCTACGGCGAGGATGGCAAGCACCACGAAACCAACCTCGAAGCCAAGTACGTGGTCCAGTCCGGTCCGGCCAAGGACCTGTCGTTCCGCATCCGCCAGGCCTGGCACCGTGCCAACGCCGACCAGGGCGAAGGCGACCAGAACGAGTTCCGCCTGATCGTCGACTATCCGCTGTCGATCCTGTAA UPDATED NCBI_taxonomy_name with Pseudomonas aeruginosa PAO1 UPDATED NCBI_taxonomy_id with 208964 UPDATED NCBI_taxonomy_cvterm_id with 36804 UPDATED accession with NP_249649.1 UPDATED sequence with MKVMKWSAIALAVSAGSTQFAVADAFVSDQAEAKGFIEDSSLDLLLRNYYFNRDGKSGSGDRVDWTQGFLTTYESGFTQGTVGFGVDAFGYLGLKLDGTSDKTGTGNLPVMNDGKPRDDYSRAGGAVKVRISKTMLKWGEMQPTAPVFAAGGSRLFPQTATGFQLQSSEFEGLDLEAGHFTEGKEPTTVKSRGELYATYAGETAKSADFIGGRYAITDNLSASLYGAELEDIYRQYYLNSNYTIPLASDQSLGFDFNIYRTNDEGKAKAGDISNTTWSLAAAYTLDAHTFTLAYQKVHGDQPFDYIGFGRNGSGAGGDSIFLANSVQYSDFNGPGEKSWQARYDLNLASYGVPGLTFMVRYINGKDIDGTKMSDNNVGYKNYGYGEDGKHHETNLEAKYVVQSGPAKDLSFRIRQAWHRANADQGEGDQNEFRLIVDYPLSIL " 2222 UPDATE VEB-1b antibiotic inactivation; monobactam; cephalosporin; VEB beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2221 UPDATE VEB-1a antibiotic inactivation; monobactam; cephalosporin; VEB beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1 UPDATE PDC-4 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 146 UPDATE OXA-98 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 147 UPDATE OXA-27 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 144 UPDATE IMP-12 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGAAATTATTTGTTTTATGCATTTTTTTGTTTTTAAGTATTACTGCCTCAGGTGAGGTTTTGCCTGATTTGAAAATTGAGAAGCTTGAAGAGGGTGTTTATCTTCATACATCTTTTGAAGAGGTTAGCGGTTGGGGTGTTGTTACTAAACATGGTTTGGTAGTTCTTGTAAATAATGACGCCTATCTAATTGACACTCCATTTACAAATAAAGATACTGAAAAATTAGTTGCTTGGTTTGTAGGGCGCGGCTTTACAATAAAGGGAAGTGTTTCCTCACATTTTCATAGCGACAGTACGGGTGGAATAGAGTGGCTTAATTCTCAATCTATTCCCACGTATGCATCTGAGTTAACAAATGAACTTCTGAAAAAGAACGGTAAGGTGCAAGCTACAAATTCATTTAGCGGGGTTAGTTATTGGCTAGTTAAAAATAAAATTGAAATTTTTTATCCCGGCCCAGGACATACTCAAGATAACGTAGTGGTTTGGCTACCTGAAAACAAAATTTTATTCGGTGGTTGTTTTGTTAAACCGGACGGTCTTGGTAATTTGGATGACGCAAATTTAAAAGCTTGGCCAAAGTCCGCAAAAATATTAATGTCTAAATATGGTAAAGCAAAGTTAGTTGTTTCAGGTCATAGTGAAATTGGGAACGCATCACTCTTGAAACTTACTTGGGAGCAGGCTGTTAAAGGGCTAAAAGAAAGTAAAAAACCATTACTGCCAAGTAACTAA " 145 UPDATE OXA-229 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGTTTAAAATGAAAGGTTTATTTTGTGTCATCCTCAGTAGTTTGGCATTTTCAGGTTGTGTTTATGATTCAAAACTACAACGCCCAGTCATATCAGAGCGAGAAACTGAGATTCCTTTATTATTTGATCAAGCACAGACTCAAGCTGTGTTTGTTACTTATGATGGGATTCATCTAAAAAGTTATGGTAATGATCTAAGCCGAGCAAAGACTGAATATATTCCTGCATCTACATTTAAGATGTTGAATGCTTTAATTGGCTTGCAAAATGCAAAAGCAACCAATACTGAAGTATTTCATTGGAATGGTGAAAAGCGCGCTTTTTCAGCATGGGAAAAAGATATGACTTTGGCAGAAGCGATGCAGGCTTCAGCTGTTCCCGTATATCAGGAGCTTGCTCGACGTATTGGCTTGGAATTGATGCGTGAAGAAGTGAAGCGTGTAGGTTTTGGCAATGCGGAGATTGGTCAGCAAGTCGATAATTTTTGGTTGGTGGGGCCTTTAAAAATCTCTCCTGAACAAGAAGTTCAATTTGCCTATCAACTGGCAATGAAGCAATTGCCTTTTGATTCAAATGTACAGCAACAAGTCAAAGATATGCTTTATATCGAGAGACGTGGTGACAGTAAACTGTATGCTAAAAGTGGTTGGGGAATGGATGTTGAACCTCAAGTGGGTTGGTATACGGGATGGGTTGAACAACCCAATGGCAAGGTGACTGCATTTGCGTTAAATATGAACATGCAAGCAGGTGATGATCCAACTGAACGTAAACAATTAACCTTAAGTATTTTGGACAAATTGGGTCTATTTTTTTATTTAAGATAA " 142 UPDATE tet(E) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 143 UPDATE cphA7 carbapenem; CphA beta-lactamase; antibiotic inactivation; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAGGTTGGATGAAGTGTGGATTGGCCGGCGCCGTGGTGCTGATGGCGAGTTTCTGGGGTGGCAGCGTGCGGGCGGCGGGGATGTCGCTGACGCAGGTGAGCGGCCCTGTGTATGTGGTAGAGGACAACTACTACGTGCAGGAAAATTCCATGGTCTATTTCGGGGCCAAGGGCGTGACTGTGGTGGGGGCGACCTGGACGCCGGACACCGCCCGCGAGCTGCACAAGCTGATCAAACGGGTCAGCCGCAAGCCGGTGCTGGAGGTGATCAACACCAACTACCACACCGACCGGGCTGGCGGTAACGCCTACTGGAAGTCCATCGGTGCCAAGGTGGTGTCGACCCGCCAGACCCGGGATCTGATGAAGAGCGACTGGGCCGAGATTGTTGCCTTTACCCGCAAGGGGCTGCCGGAGTACCCGGATCTGCCGCTGGTGCTGCCCAACGTGGTGCACGATGGCGACTTCACGCTGCAAGAGGGCAAGGTGCGCGCCTTCTACGCGGGCCCGGCCCATACGCCGGACGGCATCTTTGTCTACTTCCCCGACGAGCAGGTGCTCTATGGCAACTGCATTCTCAAGGAGAAGCTGGGCAACCTGAGCTTTGCCGATGTGAAGGCCTATCCACAGACGCTTGAGCGGCTGAAAGCGATGAAGCTGCCGATCAAGACGGTGATCGGCGGTCACGACTCACCGCTGCACGGCCCCGAGCTGATTGATCACTACGAAGCGCTGATCAAGGCCGCACCCCAGTCATAA " 140 UPDATE AAC(6')-IIb antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCATCCCGGCGTTGTTACTCTGCGTCCGATGACCGAAGACGACATCGGTATGCTTCACGAATGGTTGAATCGGCCGCACATTGTCGAATGGTGGGGTGGTGAGCGGCCCTCGCTCGAAGAGGTGAAAGAGGACTATCGGCCCAGCGCGTTGGCCGAAGAAGGAGTGACGCCGTACATCGGTTTGCTTGACGGAACTCCATTCGCGTTCGCACAGTCGTACGTTGCGCTCGGGTCGGGTGGTGGATGGTGGGAGGAAGAGACCGATCCTGGTGTCCGCGGAATCGATCAATCAATCGCCGATTCCGGGCTTCTCGGAAGAGGTTACGGCACTCGGCTGGTGCAGGCGCTTGTTGATTTGCTGTTCGCCGACCCGCAGGTATCCAAGGTTCAGACGGACCCCTCCCCGAACAACATGCGCGCGATACGCTGCTATGAGAAGGCAGGCTTCCGGAAGGTCAAGGTCGTTTCAACACCGGATGGGCCGGCCATGTACATGTTGCACGAGCGTCCGTTGGTGAACGGTTTGCGCAGTGCGGCCTAA " 141 UPDATE vanRB glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanR; vancomycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 148 UPDATE SHV-92 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 149 UPDATE aadA12 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGGGTAGCGGTGACCATCGAAATTTCGAACCAACTATCAGAGGTGCTAAGCGTCATTGAGCGCCATCTGGAATCAACGTTGCTGGCCGTGCATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCATACAGCGATATTGATTTGCTGGTTACGGTGACCGTAAGGCTTGATGAAACAACGCGGCGAGCTTTGATCAACGACCTTTTGGAAACTTCGGCTTCCCCTGGAGAGAGCGAGATTCTCCGCGCTGTAGAAGTCACCATTGTTGTGCACGACGACATCATTCCGTGGCGTTATCCAGCTAAGCGCGAACTGCAATTTGGAGAATGGCAGCGCAATGACATTCTTGCAGGTATCTTCGAGCCAGCCACGATCGACATTGATCTGGCTATCTTGCTGACAAAAGCAAGAGAACATAGCGTTGCCTTGGTAGGTCCAGCGGCGGAGGAACTCTTTGATCCGGTTCCTGAACAGGATCTATTTGAGGCGCTAAATGAAACCTTAACGCTATGGAACTCGCCGCCCGACTGGGCTGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAATAACCGGCAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATAAAACGCCTACCTGCCCAGTATCAGCCCGTCTTACTTGAAGCTAAGCAAGCTTATCTGGGACAAAAAGAAGATCACTTGGCCTCACGCGCAGATCACTTGGAAGAATTTATTCGCTTTGTGAAAGGCGAGATCATCAAGTCAGTTGGTAAATGA " 2083 UPDATE Mycoplasma hominis parC conferring resistance to fluoroquinolone fluoroquinolone self resistant parC; grepafloxacin; trovafloxacin; ofloxacin; norfloxacin; nalidixic acid; lomefloxacin; gatifloxacin; sparfloxacin; levofloxacin; fluoroquinolone resistant parC; antibiotic target alteration; enoxacin; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 663064 UPDATED strand with - UPDATED accession with CP011538.1 UPDATED fmin with 660262 UPDATED sequence with ATGAAAAAAGATAGAAAAGAAGAAATACAAGAAGTTACTGAAAACATTATTGAAAAAAATATGGCCGATATAATGTCTGATAGATTCGGACGTTATTCAAAATACATTATTCAACAAAGAGCAATTCCTGATGCTCGTGATGGACTAAAACCTGTTCAACGTCGGATTTTATATTCAATGTGAAATTTACATTTAAAAAATAGCGAGCCTTTTAAAAAATCAGCTAGAATCGTTGGGGATGTTATCGGACGTTATCACCCTCATGGAGATAGTTCAATATACGAGGCATTAGTCAGAATGGCTCAAGATTGAAAAAGCAATTTCCCATTAATTGAAATGCATGGTAATAAAGGTTCAATTGATGATGACCCTGCCGCTGCAATGCGTTACACTGAATCAAGACTTGAAAAAATTAGTGAACTGATGTTGAGAGATTTAGACAGAAAAGTTGTAAAAATGGCTCCAAACTTTGATGACTCTGAATACGAACCAATTGTTTTGCCGGCCTTATTTCCTAATTTATTAGTTAACGGTGCTAAAGGAATTGCTGCTGGTTTTGCTACAGAAATCCCACCACATAATCTAGGCGAAGTTATTGATGCAACAATTGCATTAATCAAAAATCCTACAATATCAATTGAAGAATTAAGTGAAATAGTTAAAGGCCCAGATTTCCCAACAGGAGCAATTATTAATGGTATAAATGAAATAAAAAAAGCTCTTTCAAGTGGGCAAGGTAGAATTACAATTTCTTCGAAATATCATTACGTTTATGATAAAAAAGATGAATCGAAAATTATTGGTATTGAAATAATTGAAATTCCTTTTGGGGTTGTTAAATCAAAATTAGTTGCCGACATTGATGCAATTGCAATAGATAAAAAAATTTCTGGTATTAAAGAAGTTTTGGACCAAACAGATAGAAATGGAATTTCAATATTTATTCAATTAGAAGATGGTGCAAATGCTGACGCAATAATTGCATACTTAATGAATAAAACCGAACTAAGCATCTCGTATAGTTATAACATGGTTGCAATTGACAATAACCGTCCAGTAATTTTGAATCTCTATAGTGCCTTAATTGCTTATTTAAGTCATTTAAAAGAAGTTAATATAAATGGTATTAATTATGATTTAAAGAAGTTTAAATTGAGACTAGAAATAGTTGAAGGGTTCATTAAAGTAGCCGAAATTTCTGATGAAGTTATACATTTGATTAAAGAAAGCGATAACTCAAAAAAAGGTGTTATCCTTGCATTGATGAATAAATTTAAATTTAGTGAATTGCAAGCAACAGCGATTGCTGAATTAAGATTGTATAAGCTTTCAAGAATGGATCAAATCGAATTTCAAGAAGAAAAGAAAAACCTTGAAATTCAAATTGAAAATTGCAATAAATTATTAAATGATAAATGAGAATTTAATCAATATTTAATAAAGCAATTGCTTGAAATAAAAAATCAATATTCAAAGCCAAGATTAACGGAAATTTCAGATCAAAAAATCGATAAAGAAATTGATCATAAATTATTGACAAAAAATGAAGATTTTTATTTATATATAACCAAAGATGGATATTATAAAAAAATAAGTTTAAAAGTTTATACTAGCAATGAATTAAACACATTCAAATTAAAAGAAGAAGATAATGTTTTCTATTTTGATAAAGTAAACTCATTATCAAAGATATTATTCTTTACAAATTTAGGGAATTATTTTATTATTGATTGCCATTTGTTTAAAGATTGCAATTGAAAAGATCTTGGTCAACATATTTCATCAATAGTAGCTCTAGAAAGCTCAGAAAAAATTATTAGAGTTATAGAAATTACGTCATTCAATAGTTATGCAAACTTTATTTTAATGTCAAAATTAGGATATGCCAAAAAAGTTAATTTAAGAGATTTTGAAAATAAATCTTCTCTTAAAACAAAAACTTGCATGTCGTTTAAGGATGATAATGATGAATTAATAGATGCCCAAATTTCTAATGATGAAAAAATGCTATTTATTTTACTAAATAATGGTATGTATCATTTAGTTTCAGAAAACGAACTAAAGGTTGGAATTTCTTTGAAAGCAAGAGGCATTAGACTTCTTTTAAACTTATATAAACATCCTCAACTTCAAGTAAGTGGTTTTATAACAGTTTCAAAATACAACAATATAATTTATTTAACGCAAGGTGGTTATATAAAATGTTGGGATACTAGCAAATTAGAATTGACCACACGCAATACTCCAAAAATGTTGTTTACGCCACTAAAAAATAATATTTTAGGTCTTCAATCACTTGCTGTTACATTGAGCAATTTAAAAATGTTATACACTGATAATAATGGTAATTTGGCAGAATATGATTGAAAATTTATATTAAAAGATAAGACTAAGGAAAGTAAACTTCTTAAATTAGATTATTCATTTACTAACCCTGGGTATTTTATTACGCCAATAAAAATTAATGAATTAATTGAAGCTGATGAAATAGAGCAGGAAAAAATAAGACAAGAATATCAAGGATATATTGATAAAAATATTGAATTGACCGCTGAACATGCTTTGATTAAAAAATCCTATGATCAAGATATTCAACATTTAAATAATGAAGAACAAGAAGAACTATTTCAAATATCTACAGAAGATATTGAATTACCAAATGTTTCAAATAATGTTAATGACAACCAAAAAGATAAAAAAAATATAGCAACAAAAGAAAGCGTTAGTCAGAAAATACAAGAAATTGAAAAAATAGATCTTGAAACAATAATGCAAAAAATTAAACAAATTAAGAAAAAATAG UPDATED NCBI_taxonomy_name with Mycoplasma hominis UPDATED NCBI_taxonomy_id with 2098 UPDATED NCBI_taxonomy_cvterm_id with 40311 UPDATED accession with AKJ52802.1 UPDATED sequence with MKKDRKEEIQEVTENIIEKNMADIMSDRFGRYSKYIIQQRAIPDARDGLKPVQRRILYSMWNLHLKNSEPFKKSARIVGDVIGRYHPHGDSSIYEALVRMAQDWKSNFPLIEMHGNKGSIDDDPAAAMRYTESRLEKISELMLRDLDRKVVKMAPNFDDSEYEPIVLPALFPNLLVNGAKGIAAGFATEIPPHNLGEVIDATIALIKNPTISIEELSEIVKGPDFPTGAIINGINEIKKALSSGQGRITISSKYHYVYDKKDESKIIGIEIIEIPFGVVKSKLVADIDAIAIDKKISGIKEVLDQTDRNGISIFIQLEDGANADAIIAYLMNKTELSISYSYNMVAIDNNRPVILNLYSALIAYLSHLKEVNINGINYDLKKFKLRLEIVEGFIKVAEISDEVIHLIKESDNSKKGVILALMNKFKFSELQATAIAELRLYKLSRMDQIEFQEEKKNLEIQIENCNKLLNDKWEFNQYLIKQLLEIKNQYSKPRLTEISDQKIDKEIDHKLLTKNEDFYLYITKDGYYKKISLKVYTSNELNTFKLKEEDNVFYFDKVNSLSKILFFTNLGNYFIIDCHLFKDCNWKDLGQHISSIVALESSEKIIRVIEITSFNSYANFILMSKLGYAKKVNLRDFENKSSLKTKTCMSFKDDNDELIDAQISNDEKMLFILLNNGMYHLVSENELKVGISLKARGIRLLLNLYKHPQLQVSGFITVSKYNNIIYLTQGGYIKCWDTSKLELTTRNTPKMLFTPLKNNILGLQSLAVTLSNLKMLYTDNNGNLAEYDWKFILKDKTKESKLLKLDYSFTNPGYFITPIKINELIEADEIEQEKIRQEYQGYIDKNIELTAEHALIKKSYDQDIQHLNNEEQEELFQISTEDIELPNVSNNVNDNQKDKKNIATKESVSQKIQEIEKIDLETIMQKIKQIKKK " 2081 UPDATE patA antibiotic efflux; ATP-binding cassette (ABC) antibiotic efflux pump; norfloxacin; efflux pump complex or subunit conferring antibiotic resistance; ciprofloxacin; fluoroquinolone antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2087 UPDATE aadA13 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2716 UPDATE OpmB kitasamycin; resistance-nodulation-cell division (RND) antibiotic efflux pump; rokitamycin; aztreonam; aminocoumarin antibiotic; novobiocin; macrolide antibiotic; antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; monobactam; tetracycline; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2847779 UPDATED strand with - UPDATED accession with NC_002516.2 UPDATED fmin with 2846282 UPDATED sequence with ATGAAACACACCCCCTCGTTGCTCGCCCTGGCCCTGGTCGCCGCCCTCGGCGGCTGCGCCATCGGCCCCGACTACCAGCGACCGGACCTGGCGGTGCCCGCCGAATTCAAGGAAGCCGAAGGCTGGCGCCGCGCCGAGCCGCGCGACGTGTTCCAGCGCGGCGCCTGGTGGGAGCTGTACGGCGACCAGACCCTGAACGACCTGCAGATGCACCTGGAACGTTCCAACCAGACCCTGGCCCAGTCGGTGGCGCAGTTCCGCCAGGCCGAGGCGCTGGTGCGCGGCGCGCGGGCGGCGTTCTTCCCGTCGATCACCGGCAACGTGGGCAAGACCCGCAGCGGCCAGGGCGGCGGCGACAGCACCGTGTTGCTGCCGGGAGGCTCGACGGTGAGCAGCGGCGGCTCTGGCGCGATCAGCACCAGCTACTCGACCAACCTCAGTGTCAGCTGGGAGGTCGACCTCTGGGGCAAGCTGCGCCGGCAACTGGAGGCCAACCAGGCGAGCCTGCATGCCAGCGCCGCCGACCTCGCCGCGGTGCGCCTCAGCCAGCAGTCGCAACTGGCGCAGAACTACCTGCAACTGCGGGTGATGGACGAACAGATCCGCCTGCTCAACGACACGGTGACGGCCTACGAGCGTTCGCTGAAGGTGGCCGAGAACAAATACCGCGCCGGCATCGTCACCAGGGCCGACGTGGCCCAGGCCCGCACCCAGTTGAAAAGCACCCAGGCCCAGGCCATCGACCTGAAGTACCAGCGTGCCCAGCTGGAGCACGCCATCGCCGTGCTGGTCGGCCTGCCGCCGGCGCAATTCAACCTGCCGCCGGTGGCGAGCGTGCCGAAGCTGCCGGACCTGCCGGCAGTGGTGCCGTCGCAATTGCTCGAACGACGGCCGGACATCGCCTCGGCGGAACGCAAGGTGATTTCCGCCAACGCCCAGATCGGCGTGGCCAAGGCCGCCTATTTCCCCGACCTCACCCTGAGCGCCGCCGGCGGCTACCGCAGCGGCAGCCTGAGCAACTGGATCAGCACGCCGAACCGCTTCTGGTCGATCGGCCCGCAGTTCGCCATGACCCTGTTTGACGGCGGCCTGATCGGCTCCCAGGTGGACCAGGCCGAGGCTACCTACGACCAGACCGTGGCGACCTACCGGCAGACCGTGCTCGACGGTTTCCGCGAGGTGGAGGACTACCTGGTGCAATTGAGCGTCCTCGACGAGGAGAGCGGGGTGCAGCGCGAAGCCCTGGAGTCGGCCCGCGAGGCACTGCGCCTGGCCGAGAACCAGTACAAGGCCGGCACCGTCGACTACACCGACGTGGTCACCAACCAGGCCACCGCGCTGAGCAACGAACGCACCGTGCTGACCCTGCTCGGCAGCCGCCTGACCGCCAGCGTCCAGTTGATCGCGGCAATGGGCGGCGGCTGGGACAGCGCCGACATCGAGCGGACCGACGAGCGGCTCGGCCGGGTCGAAGAGGGCCTGCCGCCTTCGCCCTGA UPDATED NCBI_taxonomy_name with Pseudomonas aeruginosa PAO1 UPDATED NCBI_taxonomy_id with 208964 UPDATED NCBI_taxonomy_cvterm_id with 36804 UPDATED accession with NP_251215.1 UPDATED sequence with MKHTPSLLALALVAALGGCAIGPDYQRPDLAVPAEFKEAEGWRRAEPRDVFQRGAWWELYGDQTLNDLQMHLERSNQTLAQSVAQFRQAEALVRGARAAFFPSITGNVGKTRSGQGGGDSTVLLPGGSTVSSGGSGAISTSYSTNLSVSWEVDLWGKLRRQLEANQASLHASAADLAAVRLSQQSQLAQNYLQLRVMDEQIRLLNDTVTAYERSLKVAENKYRAGIVTRADVAQARTQLKSTQAQAIDLKYQRAQLEHAIAVLVGLPPAQFNLPPVASVPKLPDLPAVVPSQLLERRPDIASAERKVISANAQIGVAKAAYFPDLTLSAAGGYRSGSLSNWISTPNRFWSIGPQFAMTLFDGGLIGSQVDQAEATYDQTVATYRQTVLDGFREVEDYLVQLSVLDEESGVQREALESAREALRLAENQYKAGTVDYTDVVTNQATALSNERTVLTLLGSRLTASVQLIAAMGGGWDSADIERTDERLGRVEEGLPPSP " 2717 UPDATE MuxA kitasamycin; resistance-nodulation-cell division (RND) antibiotic efflux pump; rokitamycin; aztreonam; aminocoumarin antibiotic; novobiocin; macrolide antibiotic; antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; monobactam; tetracycline; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2855291 UPDATED strand with - UPDATED accession with NC_002516.2 UPDATED fmin with 2854010 UPDATED sequence with ATGACTCCAACGACCGGTAAATCCAAGTTCCGTACCCTGCGCCCGTGGCTGATCACCGCCCTGGCCTTCGCCGCCGTGATCGGCCTGGTGATGTGGCTGGCGGCGCCCGCCTCGGCACCGTCCTCCGACGGGCGACCCGGTCGCGGCGGCAAGCCGGGCGCCGCGCTGCCCAAGGCCAACGCGCTCACCGTCGGCGTGGCCAGGGTGGAGCAGGGCGACCTGGCGCTGCATTTCAACGCGCTTGGCACCGTCACCGCCTTCAACACGGTGAACGTCAAGCCGCGGGTCAACGGCGAGCTGGTCAAGGTGCTGTTCCAGGAGGGGCAGGAGGTCAAGGCCGGCGACCTGCTGGCGGTGGTCGACCCGCGCACCTACAAGGCGGCGCTGGCCCAGGCCGAGGGCACGCTGATGCAGAACCAGGCGCAACTGAAGAACGCCGAGATCGACCTGCAGCGCTACAAGGGGCTGTATGCCGAGGACTCGATAGCCAAGCAGACCCTGGATACCCAGGAAGCCCAGGTCCGCCAGTTGCAGGGCACCATCCGTACCAACCAGGGCCAGGTCGACGACGCCCGCCTCAACCTGACCTTCACCGAGGTCCGCGCACCGATTTCCGGGCGCCTCGGCCTGCGCCAGGTGGACATCGGCAACCTGGTCACCAGCGGCGATACCACGCCGCTGGTGGTGATCACCCAGGTCAAGCCGATCTCGGTGGTGTTCAGCCTGCCGCAGCAGCAGATCGGCACCGTCGTCGAGCAGATGAACGGCCCCGGCAAGCTGACGGTCACCGCGCTGGACCGCAACCAGGACAAGGTTCTCGCCGAAGGCACCCTGACCACCCTGGACAACCAGATCGACACCACCACCGGCACGGTCAAGCTCAAGGCGCGCTTCGAGAACGCCGACGGCAAGCTGTTCCCCAACCAGTTCGTCAACGTGCGCCTGCTGGCGCAGACCCTCAAAGGCGTGCTGACCATTCCGGCCAACGCCGTGCAGCGCGGCACCAACGGTATCTATGTCTACGTGGTCGGCGCCGACAACAAGGTCAGCCAGCGCAGCGTCGCCATCGGCACCAGCGAGAACGAGCGGGTGGTGGTGGAAAGCGGCCTGAAGGCCGGCGAGCAGGTGGTGGTGGAAGGCACCGACCGCCTGCGCGACGGTATGGAAGTGCGTGTCGCCGAGGCCTCCCCGCAGGTCCTCGAGGGCGAGCCGCAGAAACCGCAGACTGGCCGCCCCAGCGGCCTCCAGGGCGACTCGGTGGGTAGCGGGAGCGCTGAATGA UPDATED NCBI_taxonomy_name with Pseudomonas aeruginosa PAO1 UPDATED NCBI_taxonomy_id with 208964 UPDATED NCBI_taxonomy_cvterm_id with 36804 UPDATED accession with NP_251218.1 UPDATED sequence with MTPTTGKSKFRTLRPWLITALAFAAVIGLVMWLAAPASAPSSDGRPGRGGKPGAALPKANALTVGVARVEQGDLALHFNALGTVTAFNTVNVKPRVNGELVKVLFQEGQEVKAGDLLAVVDPRTYKAALAQAEGTLMQNQAQLKNAEIDLQRYKGLYAEDSIAKQTLDTQEAQVRQLQGTIRTNQGQVDDARLNLTFTEVRAPISGRLGLRQVDIGNLVTSGDTTPLVVITQVKPISVVFSLPQQQIGTVVEQMNGPGKLTVTALDRNQDKVLAEGTLTTLDNQIDTTTGTVKLKARFENADGKLFPNQFVNVRLLAQTLKGVLTIPANAVQRGTNGIYVYVVGADNKVSQRSVAIGTSENERVVVESGLKAGEQVVVEGTDRLRDGMEVRVAEASPQVLEGEPQKPQTGRPSGLQGDSVGSGSAE " 2718 UPDATE MuxB kitasamycin; resistance-nodulation-cell division (RND) antibiotic efflux pump; rokitamycin; aztreonam; aminocoumarin antibiotic; novobiocin; macrolide antibiotic; antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; monobactam; tetracycline; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2854014 UPDATED strand with - UPDATED accession with NC_002516.2 UPDATED fmin with 2850882 UPDATED sequence with ATGAACCCGTCCCGCCCGTTCATCCTGCGGCCGGTCGCGACCACCCTGCTGATGGTGGCGATCCTGCTCTCGGGCCTGATCGCCTACCGCTTCCTGCCGATCTCGGCGTTGCCGGAAGTGGACTACCCGACCATCCAGGTGGTCACCCTGTACCCCGGCGCCAGCCCGGAGATCATGACCTCGTCGATCACCGCGCCGCTGGAGAACCAGCTCGGGCAGATTCCGGGGCTCAACGAGATGTCTTCCAGCAGTTCCGGCGGCGCCTCGGTGATCACCCTGCAATTCAGCCTGCAGAGCAACCTCGATGTCGCCGAGCAGGAAGTCCAGGCGGCGATCAACGCCGCGCAGAGCCTGCTGCCCAACGACCTGCCGAACCAGCCGGTGTTCAGCAAGGTGAATCCGGCGGACGCACCGATCCTGACCCTGGCGGTGATGTCCGACGGCATGCCGCTGCCGCAGATCCAGGACCTGGTGGATACCCGCCTGGCACAGAAGATCTCGCAGATCTCCGGGGTCGGCCTGGTCAGCATCAGCGGCGGCCAGCGCCCGGCGGTGCGGGTGCGCGCCAACCCGACGGCGCTGGCGGCGGCGGGGCTGAGCCTGGAGGACCTGCGCAGCACGGTGACCAGCAACAACCTCAACGGCCCCAAGGGCAGCTTCGACGGCCCGACCCGTGCCTCGACCCTGGACGCCAACGACCAGTTGCGCTCGGCCGACGCCTACCGCGACCTGATCATCGCCTACAAGAACGGCTCGCCGCTGCGCATCCGCGACGTCGCCAGCGTCGAGGACGACGCCGAGAACGTGCGCCTGGCCGCCTGGGCCAACAACCTGCCGGCGGTGGTGCTGAACATCCAGCGCCAGCCGGGGGCCAACGTGATCGAGGTGGTCGACCGGATCAAGGCGCTGCTGCCGCAGCTGCAATCGACCCTGCCGGGCAATCTCGACGTGCAGGTGCTGACCGACCGCACCACCACCATCCGCGCCTCGGTCAAGGACGTGCAGTTCGAGCTGGCGCTGGCGGTGGCGCTGGTGGTGATGGTCACCTTCCTGTTCCTGCGCAACGTCTACGCCACCCTGATTCCCAGCTTCGCCGTGCCGCTGTCGCTGATCGGTACCTTCGGCGTGATGTACCTGTCCGGCTTCTCGATCAACAACCTGACCCTGATGGCGCTGACCATCGCCACCGGCTTCGTGGTCGACGACGCGATCGTCATGGTGGAGAACATCGCCCGCTACCTGGAGCAGGGCGACTCGCCGCTGGAAGCGGCGCTCAAGGGCTCGAAGCAGATCGGCTTCACCATCATCTCGCTGACTTTCTCGCTGATCGCCGTGCTGATCCCGCTGCTGTTCATGGGCGACGTCGCCGGGCGGCTGTTCCGCGAGTTCGCCATCACCCTGGCGGTGGCGATCCTGATTTCCGGCTTCGTCTCCCTGACCCTTACGCCGATGCTCAGCGCCAAGCTGCTGCGCCACATCGACGAGGACCAGCAGGGCCGCTTCGCGCGCGCCGCGGGGCGGGTCATCGATGGCCTGATCGCACAGTACGCCAAGGCCCTGCGGGTGGTCCTGCGGCACCAGCCGCTGACCCTGCTGGTGGCCATCGCCACCCTGGCGCTGACCGCGCTACTCTACCTGGCCATGCCCAAGGGCTTCTTCCCGGTGCAGGACACCGGGGTGATCCAGGGCGTCGCCGAAGCGCCGCAGTCGATCTCCTTCCAGGCCATGTCCGAGCGCCAGCGCGCCCTTGCCGAGGTGGTGCTGAAGGACCCGGCGGTGGCCAGCCTGTCCTCCTACATCGGCGTCGACGGCAGCAACCCGACCCTCAACACCGGCCGCCTGCTGATCAACCTCAAGCCGCACAGCGAGCGCGACGTCACCGCCAGCGAAGTGATCCAGCGCCTGCAGCCCGAACTCGACCACCTGCCCGGGATCAAGCTGTACATGCAGCCGGTGCAGGACCTGACCATCGAGGACCGGGTCGCCCGCACCCAGTACCAGTTCACCTTGCAGGACGCCGACCCGGACGTGCTCGCCGAGTGGGTGCCGAAGCTGGTGGCGCGGCTGCAGGAGTTGCCGCAGCTCGCCGACGTCGCCAGCGACTGGCAGGACAAGGGCTTGCAGGCCTACCTGAACATCGACCGCGACACCGCCTCGCGCCTCGGCGTGAAGCTCTCCGACATCGACAGCGTGCTCTACAACGCCTTCGGCCAGCGGCTGATCTCGACCATCTTCACCCAGGCCACCCAGTACCGCGTGGTGCTGGAGGTGGCGCCGCAGTTCCAGCTCGGCCCGCAGGCCCTGGAGCAGCTCTACGTGCCGTCCAGCGACGGCACCCAGGTGCGCCTGTCGAGCCTGGCGAAGGTGGAGGAGCGGCATACCCTGCTGGCGATCAACCATATCGCCCAGTTCCCCTCGGCGACCCTGTCGTTCAACCTGGCCAAGGGTTACTCCCTGGGCGAGGCGGTCGAGGCGATCCGTGGCGTCGAGGCCAGCCTGGAGCTGCCGCTGAGCATGCAGGGCAGCTTCCGCGGCGCGGCGCTGGCCTTCGAGGCCTCGCTGTCGAACACGCTGCTGCTGATCCTCGCCTCGGTGGTGACCATGTACATCGTCCTGGGCATCCTCTACGAGAGCTTCATCCATCCGGTGACCATCCTCTCGACCCTGCCCTCGGCCGGGGTCGGCGCGCTGCTGGCGCTGATGCTGGCGGGGCAGGAGATCGGCATCGTGGCGATCATCGGCATCATCCTGCTGATCGGCATCGTCAAGAAGAACGCGATCATGATGATCGATTTCGCCCTCGACGCCGAGCGCAACGAAGGCAAGCCGCCCCATGAGGCGATCTACCAGGCCTGCCTGCTGCGCTTCCGGCCGATCCTGATGACCACCATGGCCGCGCTGCTCGGCGCGCTGCCGCTGATGCTCGCCGGCGGCGCCGGCGCCGAGCTGCGCCAGCCGCTGGGCATCACCATGGTCGGTGGCCTGCTGCTGAGCCAGGTCCTGACCCTGTTCACCACCCCGGTGATCTATCTCTACTTCGACCGCCTGGCCCGTCGCTGGGCGGCCTGGCGCAAGCAGCGCGGGCTGGACCTGAACACCGAGGCCGGGTTCGACGGGGACGCCGGGCGATGA UPDATED NCBI_taxonomy_name with Pseudomonas aeruginosa PAO1 UPDATED NCBI_taxonomy_id with 208964 UPDATED NCBI_taxonomy_cvterm_id with 36804 UPDATED accession with NP_251217.1 UPDATED sequence with MNPSRPFILRPVATTLLMVAILLSGLIAYRFLPISALPEVDYPTIQVVTLYPGASPEIMTSSITAPLENQLGQIPGLNEMSSSSSGGASVITLQFSLQSNLDVAEQEVQAAINAAQSLLPNDLPNQPVFSKVNPADAPILTLAVMSDGMPLPQIQDLVDTRLAQKISQISGVGLVSISGGQRPAVRVRANPTALAAAGLSLEDLRSTVTSNNLNGPKGSFDGPTRASTLDANDQLRSADAYRDLIIAYKNGSPLRIRDVASVEDDAENVRLAAWANNLPAVVLNIQRQPGANVIEVVDRIKALLPQLQSTLPGNLDVQVLTDRTTTIRASVKDVQFELALAVALVVMVTFLFLRNVYATLIPSFAVPLSLIGTFGVMYLSGFSINNLTLMALTIATGFVVDDAIVMVENIARYLEQGDSPLEAALKGSKQIGFTIISLTFSLIAVLIPLLFMGDVAGRLFREFAITLAVAILISGFVSLTLTPMLSAKLLRHIDEDQQGRFARAAGRVIDGLIAQYAKALRVVLRHQPLTLLVAIATLALTALLYLAMPKGFFPVQDTGVIQGVAEAPQSISFQAMSERQRALAEVVLKDPAVASLSSYIGVDGSNPTLNTGRLLINLKPHSERDVTASEVIQRLQPELDHLPGIKLYMQPVQDLTIEDRVARTQYQFTLQDADPDVLAEWVPKLVARLQELPQLADVASDWQDKGLQAYLNIDRDTASRLGVKLSDIDSVLYNAFGQRLISTIFTQATQYRVVLEVAPQFQLGPQALEQLYVPSSDGTQVRLSSLAKVEERHTLLAINHIAQFPSATLSFNLAKGYSLGEAVEAIRGVEASLELPLSMQGSFRGAALAFEASLSNTLLLILASVVTMYIVLGILYESFIHPVTILSTLPSAGVGALLALMLAGQEIGIVAIIGIILLIGIVKKNAIMMIDFALDAERNEGKPPHEAIYQACLLRFRPILMTTMAALLGALPLMLAGGAGAELRQPLGITMVGGLLLSQVLTLFTTPVIYLYFDRLARRWAAWRKQRGLDLNTEAGFDGDAGR " 1832 UPDATE QnrS2 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1833 UPDATE OXA-374 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATTAAAGCCCTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGCGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTCTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGACAACCACCACAGAAGTATTTAAGTGGGACGGGCAAAAAAGGCTATTCCCAGAATGGGAAAAGGACATGACCCTAGGCGACGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAAGGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAATTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCCAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAGACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTAAAGGAAATATTGTAGCATTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGTTTAGAACAATTAGGTATTTTATAG " 1830 UPDATE APH(3'')-Ib antibiotic inactivation; APH(3''); streptomycin; aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TTGAATCGAACTAATATTTTTTTTGGTGAATCGCATTCTGACTGGTTGCCTGTCAGAGGCGGAGAATCTGGTGATTTTGTTTTTCGACGTGGTGACGGGCATGCCTTCGCGAAAATCGCACCTGCTTCCCGCCGCGGTGAGCTCGCTGGAGAGCGTGACCGCCTCATTTGGCTCAAAGGTCGAGGTGTGGCTTGCCCCGAGGTGATCAACTGGCAGGAGGAACAGGAGGGTGCATGCTTGGTGATAACGGCAATTCCGGGAGTACCGGCGGCTGATCTGTCTGGAGCGGATTTGCTCAAAGCGTGGCCGTCAATGGGGCAGCAACTTGGCGCTGTTCACAGCCTATTGGTTGATCAATGTCCGTTTGAGCGCAGGCTGTCGCGAATGTTCGGACGCGCCGTTGATGTGGTGTCCCGCAATGCCGTCAATCCCGACTTCTTACCGGACGAGGACAAGAGTACGCCGCAGCTCGATCTTTTGGCTCGTGTCGAACGAGAGCTACCGGTGCGGCTCGACCAAGAGCGCACCGATATGGTTGTTTGCCATGGTGATCCCTGCATGCCGAACTTCATGGTGGACCCTAAAACTCTTCAATGCACGGGTCTGATCGACCTTGGGCGGCTCGGAACAGCAGATCGCTATGCCGATTTGGCACTCATGATTGCTAACGCCGAAGAGAACTGGGCAGCGCCAGATGAAGCAGAGCGCGCCTTCGCTGTCCTATTCAATGTATTGGGGATCGAAGCCCCCGACCGCGAACGCCTTGCCTTCTATCTGCGATTGGACCCTCTGACTTGGGGTTGA " 1831 UPDATE AAC(6')-Iid antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATTATCAGTGAGTTTGATCGTGAGAATATTGTCTTGCGAGATCAGCTTGCAGATCTTTTAAGATTGACTTGGCCTGATGAGTATGGAACAGAGCCGATGAAAGAAGTCGAACAGTTGATGGCTCCAGAACGGATTGCTGTATCGGCGATTGAAGGGGAGGAATTGGTCGGTTTTGTTGGAGCGATCCCTCAATATGGCAAAACAGGGTGGGAGTTACATCCTTTGGTAGTAGCAAGCACACATCGCAAACAACAAATCGGGACACGATTGGTTTCCTACCTGGAAAAAGAAGTCGCTTCATATGGTGGCCTGGTCATCTATCTAGGGACAGATGATGTTGAAGGACAAACAAATTTAGTTGAAACGGATTTATTTGAAGATACCTTTGCAAAGTTACAAGAAATCAAAAATATCAATCATCATCCCTATACATTTTATGAGAAACTTGGCTATCAGATCATCGGTGTGATCCCAGATGCGAATGGGTGGAACCAGCCTGATATTTGGTTAGCAAAACGAGTGGCCAAACGAGAGCCAACGGAATAA " 1836 UPDATE OXA-201 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1837 UPDATE CTX-M-59 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1834 UPDATE TEM-94 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1835 UPDATE tet(38) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1838 UPDATE ACT-5 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1839 UPDATE aadA14 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1325 UPDATED strand with - UPDATED accession with AJ884726.1 UPDATED fmin with 539 UPDATED sequence with ATGACTAATAAGCCCCCTGAGTCGATTGCAGAACAAGTATCCGAGGCTCGATCAATTTTAGAAAATCATCTTGAAACTATTCAGGCGATTCACTTGTTTGGTTCCGCAGTAGATGGTGGATTAAAGCCATTTAGTGATATCGACCTGTTGGTTACGGTGGGCACTCCTTTAAACGAGTCAACCAGAGCTGCATTGATGTCCGATTTGTTGGCGGTATCCGCTTTCCCTGGCACCGATTCAAAACGCCGTGCACTTGAGGTGACGGTGCTGACTCAGGAAGACGTAGTGCCGTGGCGATATCCAGCGAAACGGCAAATGCAATTTGGTGAATGGTTGCGTGATGATATCAATGCGAGGATTTTCGAGCCCGCACTGATGGATCATGACCTCGCCATCTTGCTGACGAAAGTGCGGCGACATAGCGTTGCCTTGTACGGCCCAGCTGCTCACGAATTTTTCGATGAAATTCCTGTCGTCGATGTGCAGCGTTCGTTACTGGAAACATTGACACTCTGGACTACAGAGGCGGATTGGAAAGGGGATGAGAGAAACATCGTTCTCGCCTTGGTGCGTATCTGGTACACCGCAATGACCGGAGAGATTACTTCTAAAGTTGCTGCAGCAGACTGGGCGCTTCAGCGTCTGCCTCGTGAGATCAAAAGCGTTGTTATTGCCGCAAGGGATGCGTATCTGGGGCTGGAAGCCGCAGATCTGGCAGCTTATCCGAAAGAACGGGCAGACCTTCGGAACCATATCCATTCTAGCGTGACGGCGAAACTGCAATAG UPDATED NCBI_taxonomy_name with Pasteurella multocida UPDATED NCBI_taxonomy_id with 747 UPDATED NCBI_taxonomy_cvterm_id with 36867 UPDATED accession with CAI57696.1 UPDATED sequence with MTNKPPESIAEQVSEARSILENHLETIQAIHLFGSAVDGGLKPFSDIDLLVTVGTPLNESTRAALMSDLLAVSAFPGTDSKRRALEVTVLTQEDVVPWRYPAKRQMQFGEWLRDDINARIFEPALMDHDLAILLTKVRRHSVALYGPAAHEFFDEIPVVDVQRSLLETLTLWTTEADWKGDERNIVLALVRIWYTAMTGEITSKVAAADWALQRLPREIKSVVIAARDAYLGLEAADLAAYPKERADLRNHIHSSVTAKLQ " 2406 UPDATE rpsJ tetracycline antibiotic; tetracycline-resistant ribosomal protection protein; antibiotic target protection; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 1807670 UPDATED strand with - UPDATED accession with NC_002946.2 UPDATED fmin with 1807358 UPDATED sequence with ATGGCAAACCAAAAAATCCGTATCCGCCTGAAAGCTTATGATTACGCCCTGATTGACCGTTCTGCACAAGAAATCGTTGAAACTGCAAAACGTACCGGTGCTGTTGTAAAAGGCCCGATTCCTTTGCCGACCAAAATCGAGCGTTTCAACATTTTGCGTTCTCCGCACGTGAACAAAACTTCCCGTGAACAATTGGAAATCCGCACCCATTTGCGCCTGATGGACATCGTGGATTGGACCGATAAAACTACCGATGCGCTGATGAAGCTGGATTTGCCGGCCGGTGTTGATGTAGAAATTAAAGTCCAATAA UPDATED NCBI_taxonomy_name with Neisseria gonorrhoeae FA 1090 UPDATED NCBI_taxonomy_id with 242231 UPDATED NCBI_taxonomy_cvterm_id with 40638 UPDATED accession with YP_208874.1 UPDATED sequence with MANQKIRIRLKAYDYALIDRSAQEIVETAKRTGAVVKGPIPLPTKIERFNILRSPHVNKTSREQLEIRTHLRLMDIVDWTDKTTDALMKLDLPAGVDVEIKVQ " 2407 UPDATE Capnocytophaga gingivalis gyrA conferring resistance to fluoroquinolones antibiotic target alteration; fluoroquinolone antibiotic; nybomycin; fluoroquinolone resistant gyrA; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2156 UPDATE NDM-14 antibiotic inactivation; penam; carbapenem; cephalosporin; cephamycin; NDM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2405 UPDATE Neisseria gonorrhoeae parC conferring resistance to fluoroquinolone ofloxacin; norfloxacin; levofloxacin; fluoroquinolone resistant parC; antibiotic target alteration; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2402 UPDATE Haemophilus parainfluenzae parC conferring resistance to fluoroquinolones ofloxacin; norfloxacin; levofloxacin; fluoroquinolone resistant parC; antibiotic target alteration; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2403 UPDATE Salmonella enterica gyrA conferring resistance to fluoroquinolones nybomycin; nalidixic acid; fluoroquinolone resistant gyrA; ciprofloxacin; antibiotic target alteration; fluoroquinolone antibiotic; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2376346 UPDATED strand with - UPDATED accession with NC_003197.2 UPDATED fmin with 2373709 UPDATED sequence with ATGAGCGACCTTGCGAGAGAAATTACACCGGTCAACATTGAGGAGGAGCTGAAGAGCTCCTATCTGGATTATGCGATGTCGGTCATTGTTGGCCGTGCGCTGCCGGATGTCCGAGATGGCCTGAAGCCGGTACACCGTCGCGTACTTTACGCCATGAACGTATTGGGCAATGACTGGAACAAAGCCTATAAAAAATCTGCCCGTGTCGTTGGTGACGTAATCGGTAAATACCATCCCCACGGCGATTCCGCAGTGTATGACACCATCGTTCGTATGGCGCAGCCATTCTCGCTGCGTTACATGCTGGTGGATGGTCAGGGTAACTTCGGTTCTATTGACGGCGACTCCGCGGCGGCAATGCGTTATACGGAGATCCGTCTGGCGAAAATCGCCCACGAACTGATGGCCGATCTCGAAAAAGAGACGGTGGATTTCGTGGATAACTATGACGGTACGGAAAAAATTCCGGACGTCATGCCGACCAAAATTCCGAATCTGCTGGTGAACGGTTCTTCCGGTATCGCAGTAGGTATGGCGACGAATATCCCGCCGCACAACCTGACGGAAGTGATTAACGGCTGCCTGGCGTATATCGACAACGAAGACATCAGCATTGAAGGGCTGATGGAACATATTCCGGGGCCGGACTTCCCGACCGCCGCGATCATCAACGGTCGTCGTGGTATCGAAGAAGCCTACCGCACCGGTCGTGGCAAAGTGTACATTCGCGCCCGCGCGGAAGTTGAAGCTGACGCCAAAACGGGCCGTGAAACCATCATCGTCCATGAAATTCCCTATCAGGTGAACAAAGCGCGCCTGATCGAGAAAATCGCCGAGCTGGTGAAAGATAAACGCGTGGAAGGCATCAGCGCGCTGCGTGACGAATCCGACAAAGACGGGATGCGCATCGTGATTGAAGTGAAACGCGATGCGGTGGGCGAGGTGGTGCTTAATAATCTCTACTCCCAGACCCAGCTACAGGTTTCCTTCGGTATTAACATGGTGGCGCTGCATCACGGCCAGCCGAAGATCATGAACCTGAAAGATATCATTTCAGCGTTCGTGCGCCACCGCCGTGAAGTGGTGACGCGTCGGACTATTTTTGAACTGCGTAAAGCCCGTGACCGTGCGCATATCCTTGAAGCTCTGGCGATTGCGCTGGCCAACATCGACCCGATTATCGAACTGATTCGCCGCGCGCCAACGCCGGCGGAAGCAAAAGCGGCGCTGATTTCGCGTCCGTGGGATCTGGGCAACGTTGCTGCGATGCTGGAGCGCGCTGGTGATGACGCCGCGCGTCCGGAATGGCTGGAGCCAGAATTTGGCGTGCGTGACGGTCAGTACTACCTGACTGAACAGCAGGCGCAGGCGATTCTGGATCTGCGTTTGCAGAAACTGACCGGCCTGGAGCATGAAAAACTGCTCGACGAATACAAAGAGCTGCTGGAGCAGATTGCTGAATTGCTGCACATTCTGGGCAGCGCCGATCGCCTGATGGAAGTGATCCGCGAAGAGATGGAGTTAATTCGCGATCAGTTCGGCGATGAGCGTCGTACCGAAATCACCGCCAACAGCGCCGATATTAATATCGAAGATCTGATTAGCCAGGAAGATGTTGTCGTGACGCTGTCTCACCAGGGTTACGTCAAATATCAACCGCTGACAGATTACGAAGCGCAACGTCGTGGTGGGAAAGGTAAATCTGCCGCGCGTATTAAAGAAGAAGACTTTATCGACCGCCTGCTGGTGGCTAACACCCATGACACCATCCTCTGCTTCTCCAGCCGGGGCCGTCTGTACTGGATGAAGGTCTATCAGCTGCCGGAAGCCAGCCGCGGCGCGCGCGGTCGTCCGATCGTCAACCTGCTGCCGCTGGAAGCCAACGAACGTATCACCGCGATTCTGCCGGTTCGTGAGTATGAAGAAGGCGTCAACGTCTTTATGGCGACCGCCAGCGGTACCGTGAAGAAAACGGCGCTGACCGAATTCAGCCGTCCGCGTTCCGCCGGTATTATCGCGGTGAACCTCAACGACGGCGACGAGCTGATTGGCGTTGACCTGACTTCTGGTTCTGACGAAGTCATGCTGTTCTCGGCCGCGGGTAAAGTGGTGCGCTTCAAAGAAGACGCCGTCCGTGCGATGGGGCGTACCGCGACCGGTGTGCGCGGTATTAAGCTGGCGGGAGACGATAAAGTCGTCTCTCTGATCATCCCACGCGGCGAAGGCGCTATTCTGACCGTAACGCAAAACGGCTACGGGAAGCGTACCGCAGCGGACGAGTACCCGACCAAGTCTCGTGCGACGCAGGGCGTTATCTCTATCAAAGTGACCGAGCGCAACGGTTCCGTTGTCGGTGCGGTACAGGTAGACGATTGCGACCAGATCATGATGATCACGGATGCCGGTACTCTGGTGCGTACCCGTGTGTCCGAGATCAGCGTAGTGGGACGTAATACCCAGGGCGTTATCCTTATCCGCACGGCGGAAGATGAAAACGTGGTGGGTCTGCAACGCGTTGCTGAACCGGTAGATGACGAAGAACTCGACGCTATCGACGGCAGCGTGGCGGAAGGGGATGAGGATATCGCCCCGGAAGCGGAAAGCGATGACGACGTTGCGGATGACGCTGACGAGTAA UPDATED NCBI_taxonomy_name with Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 UPDATED NCBI_taxonomy_id with 99287 UPDATED NCBI_taxonomy_cvterm_id with 35734 UPDATED accession with NP_461214.1 UPDATED sequence with MSDLAREITPVNIEEELKSSYLDYAMSVIVGRALPDVRDGLKPVHRRVLYAMNVLGNDWNKAYKKSARVVGDVIGKYHPHGDSAVYDTIVRMAQPFSLRYMLVDGQGNFGSIDGDSAAAMRYTEIRLAKIAHELMADLEKETVDFVDNYDGTEKIPDVMPTKIPNLLVNGSSGIAVGMATNIPPHNLTEVINGCLAYIDNEDISIEGLMEHIPGPDFPTAAIINGRRGIEEAYRTGRGKVYIRARAEVEADAKTGRETIIVHEIPYQVNKARLIEKIAELVKDKRVEGISALRDESDKDGMRIVIEVKRDAVGEVVLNNLYSQTQLQVSFGINMVALHHGQPKIMNLKDIISAFVRHRREVVTRRTIFELRKARDRAHILEALAIALANIDPIIELIRRAPTPAEAKAALISRPWDLGNVAAMLERAGDDAARPEWLEPEFGVRDGQYYLTEQQAQAILDLRLQKLTGLEHEKLLDEYKELLEQIAELLHILGSADRLMEVIREEMELIRDQFGDERRTEITANSADINIEDLISQEDVVVTLSHQGYVKYQPLTDYEAQRRGGKGKSAARIKEEDFIDRLLVANTHDTILCFSSRGRLYWMKVYQLPEASRGARGRPIVNLLPLEANERITAILPVREYEEGVNVFMATASGTVKKTALTEFSRPRSAGIIAVNLNDGDELIGVDLTSGSDEVMLFSAAGKVVRFKEDAVRAMGRTATGVRGIKLAGDDKVVSLIIPRGEGAILTVTQNGYGKRTAADEYPTKSRATQGVISIKVTERNGSVVGAVQVDDCDQIMMITDAGTLVRTRVSEISVVGRNTQGVILIRTAEDENVVGLQRVAEPVDDEELDAIDGSVAEGDEDIAPEAESDDDVADDADE " 2400 UPDATE oqxB antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; trimethoprim; efflux pump complex or subunit conferring antibiotic resistance; diaminopyrimidine antibiotic; tigecycline; glycylcycline; ciprofloxacin; tetracycline antibiotic; nitrofuran antibiotic; fluoroquinolone antibiotic; nitrofurantoin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2401 UPDATE Haemophilus parainfluenzae gyrA conferring resistance to fluoroquinolones antibiotic target alteration; fluoroquinolone antibiotic; nybomycin; fluoroquinolone resistant gyrA; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 933 UPDATE OKP-A-14 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 932 UPDATE GES-8 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGCTTCATTCACGCACTATTACTGGCAGGGATCGCTCACTCTGCATATGCATCGGAAAAATTAACCTTCAAGACCGATCTTGAGAAGCTAGAGCGCGAAAAAGCAGCTCAGATCGGTGTTGCGATCGTCGATCCCCAAGGAGAGATCGTCGCGGGCCACCGAATGGCGCAGCGTTTTGCAATGTGCTCAACGTTCAAGTTTCCGCTAGCCGCGCTGGTCTTTGAAAGAATTGACTCAGGCACCGAGCGGGGGGATCGAAAACTTTCATATGGGCCGGACATGATCGTCGAATGGTCTCCTGCCACGGAGCGGTTTCTAGCATCGGGACACATGACGGTTCTCGAGGCAGCGCAACTGGCGGTGCAGCTTAGCGACAATGGGGCTACTAACCTCTTACTGAGAGAAATTGGCGGACCTGCTGCAATGACGCAGTATTTTCGTAAAATTGGCGACTCTGTGAGTCGGCTAGACCGGAAAGAGCCGGAGATGGGCGACAACACACCTGGCGACCTCAGAGATACAACTACGCCTATTGCTATGGCACGTACTGTGGCTAAAGTCCTCTATGGCGGCGCACTGACGTCCACCTCGACCCACACCATTGAGAGGTGGCTGATCGGAAACCAAACGGGAGACGCGACACTACGAGCGGGTTTTCCTAAAGATTGGGTTGTTGGAGAGAAAACTGGTACCTGCGCCAACGGGGGCCGGAACGACATTGGTTTTTTTAAAGCCCAGGAGAGAGATTACGCTGTAGCGGTGTATACAACGGCCCCGAAACTATCGGCCGTAGAACGTGACGAATTAGTTGCCTCTGTCGGTCAAGTTATTACACAACTCATCCTGAGCACGGACAAATAG " 931 UPDATE OXA-316 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 937 UPDATE OXA-242 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 936 UPDATE OKP-A-13 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 935 UPDATE OXA-314 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2409 UPDATE Neisseria meningititis PBP2 conferring resistance to beta-lactam ceftaroline; ampicillin; flucloxacillin; ceftibuten; cefditoren; piperacillin; cefpodoxime; cefixime; cefdinir; meropenem; carbapenem; imipenem; aztreonam; cefradine; isopenicillin N; cefazolin; penicillin N; ceftazidime; cefepime; penicillin; antibiotic target alteration; oxacillin; cefmetazole; moxalactam; cloxacillin; cefadroxil; ceftriaxone; methicillin; loracarbef; ceftizoxime; cephalosporin; cefotaxime; cefaclor; Penicillin-binding protein mutations conferring resistance to beta-lactam antibiotics; cefonicid; monobactam; cefuroxime; amoxicillin; mezlocillin; azlocillin; cefalexin; doripenem; cefotiam; ertapenem; penam; cefprozil; cephapirin; ceftobiprole; benzylpenicillin; phenoxymethylpenicillin; cephamycin; carbenicillin; cefalotin; ceftiofur; mecillinam; propicillin; cefoxitin; dicloxacillin; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 1955 UPDATE OXA-29 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGAAACTAAGCGTACTTCTATGGTTGACACTATTTTATTGCGGAACTATTTGGGCCCAAAGTACTTGCTTTTTGGTACAGGAAAATCAAACTGTGCTAAAGCACGAGGGTAAAGATTGCAATAAGCGTTTTGCGCCAGAATCAACCTTTAAAATTGCTTTGAGTCTTATGGGTTTTGATTCAGGAATATTAAAAGACACACTCAATCCGGAATGGCCGTACAAAAAAGAATATGAACTTTATCTTAATGTTTGGAAATATCCTCATAATCCACGTACCTGGATAAGAGATTCCTGTGTTTGGTATTCACAAGTTCTAACACAACAATTAGGTATGACTCGATTTAAGAATTATGTTGATGCATTTCACTATGGCAATCAGGATATTTCCGGCGACAAAGGTCAGAATAATGGATTAACCCATTCCTGGCTATCAAGCTCGCTTGCCATCTCACCAAGTGAGCAAATTCAGTTTCTGCAAAAAATAGTCAATAAAAAACTATCCGTGAATCCCAAAGCTTTCACTATGACTAAAGACATTCTATATATTCAAGAATTAGCGGGTGGTTGGAAACTGTATGGAAAAACAGGGAATGGTCGACAGTTAACAAAAGACAAAAGCCAAAAACTATCACTACAACACGGATGGTTCATCGGCTGGATTGAGAAAGATGGTCGTGTGATTACCTTTACGAAACACATTGCAGATAGTAAAAAACATGTAACCTTCGCCAGTTTCAGAGCGAAAAATGAGACCCTGAATCAATTATTTTACTTAATTAATGAATTGGAAAAATAA " 1954 UPDATE TEM-154 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1957 UPDATE VIM-18 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTCAAACTTTTGAGTAAGTTATTGGTCTATTTGACCGCGTCTATCATGGCTATTGCGAGTCCGCTCGCTTTTTCCGTAGATTCTAGCGGTGAGTATCCGACAGTCAGCGAAATTCCGGTCGGGGAGGTCCGGCTTTACCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCGGTCGTTTGATGGCGCAGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAGAAGCAAATTGGACTTCCTGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCGAACGAGATTCCCACGCACTCTCTAGAAGGACTCTCATCGAGCGGGGACGCAGTGCGCTTCGGTCCAGTAGAACTCTTCTATCCTGGTGCTGCGCATTCGACCGACAACTTAGTTGTGTACGTCCCGTCTGCGAGTGTGCTCTATGGTGGTTGTGCGATTTATGAGTTGTCACGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCATTGAGCGGATTCAACAACACTACCCGGAAGCACAGTTCGTCATTCCGGGGCACGGCCTGCCGGGCGGTCTAGACTTGCTCAAGCACACAACGAATGTTGTAAAAGCGCACACAAATCGCTCAGTCGTTGAGTAG " 1956 UPDATE IMI-1 carbapenem; antibiotic inactivation; IMI beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCACTTAATGTAAAACCAAGTAGAATAGCCATCTTGTTTAGCTCTTGTTTAGTTTCAATATCATTTTTCTCACAGGCCAATACAAAGGGCATCGATGAGATTAAAGACCTTGAAACAGATTTCAATGGTAGAATTGGTGTCTACGCTTTAGACACTGGCTCAGGCAAATCATTTTCATACAAAGCAAATGAACGATTTCCATTATGTAGTTCTTTCAAAGGTTTTTTAGCTGCTGCTGTATTAAAAGGCTCTCAAGATAATCAACTAAATCTTAATCAGATCGTGAATTATAATACAAGAAGTTTAGAGTTCCATTCACCCATCACAACTAAATATAAAGATAATGGAATGTCATTAGGTGATATGGCTGCTGCAGCTTTACAATATAGCGACAATGGTGCTACTAATATTATCCTTGAACGATATATCGGTGGTCCTGAGGGTATGACTAAATTCATGCGGTCGATTGGAGATAAAGATTTTAGACTCGATCGTTGGGAGTTAGATCTAAACACAGCTATTCCTGGCGATGAACGTGACACATCTACACCTGCAGCAGTAGCTAAGAGCCTGAAAACCCTTGCACTGGGTAACATACTCAATGAGCGTGAAAAGGAAACCTATCAGACATGGTTAAAGGGTAACACAACCGGTGCAGCGCGTATTCGTGCTAGCGTACCAAGCGATTGGGTAGTTGGCGATAAAACTGGTAGTTGCGGTGCATACGGTACGGCAAATGATTATGCGGTAGTCTGGCCAAAGAACCGAGCTCCTCTTATAATTTCTGTATACACTACAAAAAACGAAAAAGAAGCCAAGCATGAGGATAAAGTAATCGCAGAAGCTTCAAGAATCGCAATTGATAACCTTAAATAA " 1951 UPDATE TEM-76 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGGGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 1950 UPDATE arr-1 antibiotic inactivation; rifampin; rifapentine; rifabutin; rifampin ADP-ribosyltransferase (Arr); rifaximin; rifamycin antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1953 UPDATE SHV-155 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1952 UPDATE OXA-1 penam; antibiotic inactivation; cephalosporin; cefalotin; amoxicillin; piperacillin; tazobactam; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2230 UPDATED strand with - UPDATED accession with JN420336.1 UPDATED fmin with 1399 UPDATED sequence with ATGAAAAACACAATACATATCAACTTCGCTATTTTTTTAATAATTGCAAATATTATCTACAGCAGCGCCAGTGCATCAACAGATATCTCTACTGTTGCATCTCCATTATTTGAAGGAACTGAAGGTTGTTTTTTACTTTACGATGCATCCACAAACGCTGAAATTGCTCAATTCAATAAAGCAAAGTGTGCAACGCAAATGGCACCAGATTCAACTTTCAAGATCGCATTATCACTTATGGCATTTGATGCGGAAATAATAGATCAGAAAACCATATTCAAATGGGATAAAACCCCCAAAGGAATGGAGATCTGGAACAGCAATCATACACCAAAGACGTGGATGCAATTTTCTGTTGTTTGGGTTTCGCAAGAAATAACCCAAAAAATTGGATTAAATAAAATCAAGAATTATCTCAAAGATTTTGATTATGGAAATCAAGACTTCTCTGGAGATAAAGAAAGAAACAACGGATTAACAGAAGCATGGCTCGAAAGTAGCTTAAAAATTTCACCAGAAGAACAAATTCAATTCCTGCGTAAAATTATTAATCACAATCTCCCAGTTAAAAACTCAGCCATAGAAAACACCATAGAGAACATGTATCTACAAGATCTGGATAATAGTACAAAACTGTATGGGAAAACTGGTGCAGGATTCACAGCAAATAGAACCTTACAAAACGGATGGTTTGAAGGGTTTATTATAAGCAAATCAGGACATAAATATGTTTTTGTGTCCGCACTTACAGGAAACTTGGGGTCGAATTTAACATCAAGCATAAAAGCCAAGAAAAATGCGATCACCATTCTAAACACACTAAATTTATAA UPDATED NCBI_taxonomy_name with Klebsiella pneumoniae UPDATED NCBI_taxonomy_id with 573 UPDATED NCBI_taxonomy_cvterm_id with 35915 UPDATED accession with AFB82783.1 UPDATED sequence with MKNTIHINFAIFLIIANIIYSSASASTDISTVASPLFEGTEGCFLLYDASTNAEIAQFNKAKCATQMAPDSTFKIALSLMAFDAEIIDQKTIFKWDKTPKGMEIWNSNHTPKTWMQFSVVWVSQEITQKIGLNKIKNYLKDFDYGNQDFSGDKERNNGLTEAWLESSLKISPEEQIQFLRKIINHNLPVKNSAIENTIENMYLQDLDNSTKLYGKTGAGFTANRTLQNGWFEGFIISKSGHKYVFVSALTGNLGSNLTSSIKAKKNAITILNTLNL " 1959 UPDATE ACT-7 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1958 UPDATE VIM-33 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 829 UPDATE DHA-17 antibiotic inactivation; cephalosporin; cephamycin; DHA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 828 UPDATE TEM-83 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGTTGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATCGTTGTGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACAAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 825 UPDATE SHV-20 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 824 UPDATE vanD glycopeptide antibiotic; glycopeptide resistance gene cluster; van ligase; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTATAAGCTTAAAATTGCAGTCCTGTTTGGAGGCTGCTCAGAGGAACATGATGTTTCAGTGAAATCTGCGATGGAGGTTGCAGCAAATATAAACAAGGAAAAATACCAGCCGTTTTATATTGGAATCACAAAATCCGGCGCATGGAAACTATGCGATAAGCCCTGCCGGGACTGGGAGAACTATGCGGGATACCCGGCTGTGATTTCTCCGGACAGAAGGATCCATGGCCTGCTGATACAAAAGGACGGCGGATATGAGAGCCAGCCTGTAGACGTGGTGCTTCCGATGATTCATGGAAAATTTGGCGAGGACGGAACCATACAGGGTCTGCTTGAGCTGTCCGGCATTCCTTATGTGGGATGCGACATTCAAAGTTCTGTAATCTGTATGGATAAGTCGCTCGCTTATATGGTTGTGAAAAATGCGGGAATTGAGGTACCTGGGTTTCGAGTTCTACAAAAGGGGGACAGCCTGGAAGCAGAGACGCTCTCGTATCCGGTCTTTGTAAAGCCTGCCCGTTCCGGCTCCTCTTTTGGCGTGAATAAGGTATGCCGGGCAGAGGAACTGCAGGCAGCGGTCACAGAGGCGGGTAAGTATGACAGCAAAATATTGGTTGAGGAGGCCGTTTCCGGGAGTGAGGTAGGATGTGCCATACTGGGAAACGGAAACGATCTCATCACCGGCGAGGTCGATCAGATTGAATTGAAACACGGGTTTTTTAAGATCCATCAGGAAGCACAGCCGGAAAAGGGGTCTGAAAATGCTGTGATTAGAGTTCCAGCCGCCCTGCCGGATGAAGTTAGGGAGCAGATTCAGGAAACGGCGAAGAAGATTTACCGGGTACTTGGCTGCAGAGGTCTGGCCCGCATTGATTTGTTTTTACGGGAGGATGGAAGCATTGTCCTGAATGAAGTGAACACCATGCCCGGATTTACTTCCTATAGCCGTTATCCACGCATGATGACAGCAGCAGGGTTTACGCTTTCTGAAATATTGGACCGCTTGATTGGACTTTCACTTAGGAGGTAA " 827 UPDATE QnrB55 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 826 UPDATE TolC tetracycline antibiotic; antibiotic efflux; ATP-binding cassette (ABC) antibiotic efflux pump; major facilitator superfamily (MFS) antibiotic efflux pump; resistance-nodulation-cell division (RND) antibiotic efflux pump; norfloxacin; nalidixic acid; aminocoumarin antibiotic; macrolide antibiotic; cephalosporin; cefalotin; oxacillin; ciprofloxacin; cloxacillin; rifamycin antibiotic; rifampin; ampicillin; penam; triclosan; novobiocin; efflux pump complex or subunit conferring antibiotic resistance; cephamycin; tigecycline; glycylcycline; fluoroquinolone antibiotic; erythromycin; phenicol antibiotic; tetracycline; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 821 UPDATE Mycobacterium tuberculosis embB mutants conferring resistance to rifampicin rifampin; polyamine antibiotic; rifamycin-resistant arabinosyltransferase; ethambutol; antibiotic target alteration; rifamycin antibiotic; model_description; ARO_name "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED ARO_name with Mycobacterium tuberculosis embB with mutation conferring resistance to rifampicin " 820 UPDATE mdtB efflux pump complex or subunit conferring antibiotic resistance; antibiotic efflux; aminocoumarin antibiotic; resistance-nodulation-cell division (RND) antibiotic efflux pump; novobiocin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAGGTGTTACCCCCGAGCAGCACAGGCGGCCCGTCGCGCCTGTTTATTATGCGTCCTGTGGCCACCACGCTGCTGATGGTGGCGATCTTACTCGCCGGGATTATCGGTTATCGCGCCCTGCCCGTTTCGGCGCTGCCGGAAGTGGACTATCCGACCATTCAGGTGGTCACGCTCTACCCAGGTGCCAGCCCGGATGTCATGACCTCTGCCGTTACCGCGCCGCTAGAACGCCAGTTCGGGCAGATGTCTGGCCTGAAACAGATGTCGTCGCAAAGTTCCGGCGGTGCGTCAGTTATCACTTTGCAGTTCCAGCTAACATTACCGCTCGATGTCGCCGAGCAGGAAGTGCAGGCCGCGATTAACGCTGCGACCAACTTGTTGCCGAGCGATCTGCCTAACCCGCCGGTTTACAGCAAAGTGAACCCGGCAGATCCGCCGATCATGACGCTCGCCGTCACCTCAACCGCCATGCCGATGACGCAAGTGGAAGATATGGTGGAAACCCGCGTCGCGCAGAAAATCTCGCAGATTTCCGGCGTCGGCCTGGTGACGCTTTCCGGCGGTCAGCGTCCGGCTGTTCGCGTCAAACTTAACGCTCAGGCGATTGCCGCCCTCGGCCTGACCAGCGAAACCGTGCGCACCGCCATTACCGGCGCTAACGTTAACTCGGCAAAAGGTAGCCTCGACGGCCCTTCCCGTGCGGTCACGCTTTCCGCGAACGACCAGATGCAATCCGCCGAAGAGTATCGCCAGCTAATCATCGCCTACCAGAACGGCGCGCCAATTCGTCTGGGCGATGTCGCAACTGTAGAGCAAGGTGCAGAAAACAGCTGGCTCGGCGCGTGGGCGAACAAAGAACAGGCCATTGTGATGAATGTTCAGCGCCAGCCCGGTGCTAACATTATCTCCACCGCCGACAGCATTCGGCAGATGCTGCCACAGCTCACTGAGAGTCTGCCGAAATCGGTGAAGGTGACAGTGCTTTCCGATCGCACCACCAATATCCGCGCATCCGTCGATGATACTCAGTTTGAATTGATGATGGCTATCGCGCTGGTAGTCATGATTATCTACCTGTTTTTGCGCAATATTCCGGCGACCATCATTCCCGGTGTTGCTGTACCGCTGTCGTTAATCGGCACTTTCGCGGTTATGGTGTTTCTCGATTTTTCAATCAATAACCTGACACTGATGGCGTTAACTATCGCCACCGGATTCGTGGTCGATGACGCCATCGTGGTGATCGAAAACATTTCCCGCTATATCGAAAAAGGCGAAAAACCGTTGGCGGCGGCGCTCAAGGGCGCAGGTGAAATCGGCTTTACCATTATCTCGCTGACCTTCTCACTGATTGCGGTGTTGATCCCACTGCTGTTTATGGGCGATATCGTCGGGCGACTGTTCCGCGAATTTGCTATTACCCTGGCGGTAGCGATTTTGATCTCAGCGGTGGTGTCGCTGACCCTGACACCGATGATGTGCGCGCGGATGCTCAGCCAGGAGTCGTTGCGTAAACAGAACCGCTTCTCCCGTGCCTCGGAAAAAATGTTCGACAGGATAATCGCCGCCTATGGTCGTGGACTGGCGAAAGTGCTGAATCATCCGTGGCTGACCTTAAGCGTGGCACTCAGCACGCTGCTGCTTAGCGTGCTGCTGTGGGTGTTCATTCCGAAAGGTTTCTTCCCGGTACAGGACAATGGCATTATTCAGGGCACTTTGCAGGCACCGCAATCCAGCTCCTTTGCCAATATGGCCCAGCGACAACGCCAGGTCGCGGACGTGATTTTGCAGGATCCGGCAGTGCAAAGCCTGACCTCATTTGTTGGCGTTGATGGCACTAACCCGTCGCTGAACAGTGCACGTTTACAAATCAACCTCAAACCGTTGGATGAACGTGATGATCGGGTGCAAAAAGTCATCGCCCGTCTGCAAACGGCGGTAGATAAAGTGCCGGGCGTCGATCTCTTCCTGCAACCAACGCAGGATCTGACTATTGATACTCAGGTCAGCCGCACCCAGTACCAGTTTACCTTGCAGGCCACGTCACTGGATGCGCTCAGTACCTGGGTGCCACAGTTGATGGAAAAACTCCAGCAACTGCCACAGCTTTCTGATGTCTCCAGCGACTGGCAGGACAAAGGGCTGGTGGCGTATGTCAATGTTGATCGCGACAGCGCCAGCCGTCTGGGGATCAGCATGGCGGATGTCGATAACGCCCTGTACAACGCGTTTGGTCAGCGGCTGATTTCCACTATTTATACTCAGGCCAACCAGTATCGCGTGGTGCTGGAGCACAACACCGAAAATACCCCAGGCCTCGCGGCGCTGGATACCATTCGCCTGACCAGCAGCGACGGCGGCGTGGTGCCGCTAAGCTCAATTGCCAAAATTGAGCAGCGTTTTGCGCCGCTCTCCATCAACCATCTGGATCAGTTCCCGGTAACGACCATCTCCTTTAACGTGCCGGATAACTATTCGCTGGGCGATGCGGTGCAGGCGATTATGGACACCGAAAAGACGCTGAATCTGCCGGTGGATATCACCACGCAGTTCCAGGGCAGCACCCTCGCCTTCCAGTCGGCGCTGGGCAGCACTGTCTGGCTGATTGTCGCGGCGGTGGTGGCGATGTATATCGTGCTCGGCATTCTGTACGAGAGCTTTATTCACCCGATCACCATTCTCTCGACGCTACCCACCGCAGGGGTTGGCGCACTGCTGGCGTTGCTGATTGCTGGTAGCGAACTGGATGTGATTGCGATTATCGGCATTATTTTGCTGATCGGTATCGTGAAGAAGAACGCCATCATGATGATCGACTTCGCGCTGGCTGCTGAGCGCGAGCAAGGCATGTCGCCGCGCGAGGCAATCTACCAGGCTTGTCTGTTGCGTTTTCGTCCGATCCTGATGACCACTCTGGCGGCTCTGCTTGGCGCGCTGCCGCTGATGTTGAGTACCGGGGTCGGCGCGGAACTGCGTCGTCCGTTAGGTATCGGCATGGTCGGCGGTCTGATTGTCAGCCAGGTGCTGACGCTGTTTACCACGCCGGTGATTTATTTGCTGTTCGACCGCCTGGCATTGTGGACCAAAAGCCGCTTTGCCCGTCATGAAGAGGAGGCGTAA " 822 UPDATE QnrD1 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAAAAGCACTTTATCAATGAAAAGTTTTCACGAGATCAATTTACGGGGAATAGAGTTAAAAATATTGCCTTTTCAAATTGTGATTTTTCAGGGGTTGATTTAACTGATACTGAATTTGTTGATTGTAGTTTTTACGACAGGAATAGCTTGGAAGGGTGTGATTTTAATAGAGCCAAACTAAAAAACGCTAGCTTTAAAAGCTGCGATTTATCAATGAGTAATTTTAAAAACATTAGCGCCTTAGGTCTTGAAATTAGTGAGTGTTTAGCTCAAGGAGCTGATTTTCGAGGGGCTAATTTTATGAATATGATAACTACAAGGTCATGGTTTTGTAGTGCTTATATAACCAAGACAAATCTTAGTTACGCTAATTTTTCTAGAGTCATATTAGAAAAGTGCGAACTGTGGGAAAATCGCTGGAATGGCACTGTGATAACTGGCGCCGTGTTTCGTGGCTCCGATCTTTCTTGTGGGGAGTTTTCATCGTTTGATTGGTCTTTGGCTGATTTTACTGGTTGTGATTTAACGGGTGGGGCGCTTGGCGAGCTTGATGCAAGGCGAATTAATTTAGATGGAGTGAAGTTGGATGGAGAGCAGGCGCTTCAGCTTGTTGAGAGTTTAGGTGTTATTGTTCACCGATAA " 1536 UPDATE OXA-421 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2033 UPDATED strand with - UPDATED accession with KM401566.1 UPDATED fmin with 1211 UPDATED sequence with ATGACTAAAAAAACTCTTTTCTTTGCCATTGGTACGATGTTTTTATCGGCGTGTTCTTTTAATACCGTAGAACAACATCAAATACAGTCAATTTCTACCAATAAAAACTCAGAGAAAATTCAATCATTGTTTGATCAAGCACAAACTACAGGTGTTTTAATTATAAAACGTGGCCAAACAGAGGAAGTCTATGGTAATGATCTTAAAAGAGCATCAACCGAATATGTTCCCGCCTCTACCTTTAAAATGTTAAATGCTTTGATCGGCCTTGAGCATCATAAAGCAACACCAACTGAAGTATTTAAATGGGATGGGCAAAAGCGTTTATTTCCCGATTGGGAAAAAGACATGACATTAGGCGATGCTATGAAAGCTTCTGCTATTCCAGTTTATCAGGAACTAGCTCGACGAATTGGCCTTGATCTTATGTCTAAAGAGGTAAAGCGTATTGATTTCGGTAATGCTGATATTGGTTCAAAAATAGATAATTTTTGGCTTGTTGGCCCACTTAAAATTACACCTCAACAAGAAGCCCAGTTTGCTTATGAACTAGCCCACAAAACTCTTCCCTTTAGCAAAAATGTGCAAGAACAAGTTCAATCTATGTTGTTCATAGAAGAAAAAAATGGACGAAAAATTTATGCTAAAAGTGGTTGGGGATGGGATGTTGAACCACAAGTTGGTTGGTTTACAGGCTGGGTGGTTCAACCACAAGGAGAAATTGTAGCGTTCGCACTTAATTTAGAAATGAAAAAAGGAATACCTAGTTCTATTCGAAAAGAAATTGCTTATAAAGGATTAGAACAATTAGGTATTTTATAA UPDATED NCBI_taxonomy_name with Acinetobacter pittii UPDATED NCBI_taxonomy_id with 48296 UPDATED NCBI_taxonomy_cvterm_id with 36787 UPDATED accession with AIZ00987.1 UPDATED sequence with MTKKTLFFAIGTMFLSACSFNTVEQHQIQSISTNKNSEKIQSLFDQAQTTGVLIIKRGQTEEVYGNDLKRASTEYVPASTFKMLNALIGLEHHKATPTEVFKWDGQKRLFPDWEKDMTLGDAMKASAIPVYQELARRIGLDLMSKEVKRIDFGNADIGSKIDNFWLVGPLKITPQQEAQFAYELAHKTLPFSKNVQEQVQSMLFIEEKNGRKIYAKSGWGWDVEPQVGWFTGWVVQPQGEIVAFALNLEMKKGIPSSIRKEIAYKGLEQLGIL " 1483 UPDATE AAC(3)-Xa kanamycin A; antibiotic inactivation; AAC(3); aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 3565 UPDATED strand with - UPDATED accession with AB028210.1 UPDATED fmin with 2710 UPDATED sequence with ATGGACGAGACGGAACTGCTGCGACGCTCCGACGGGCCCGTGACCCGGGACCGGATCCGGCACGACCTGGCCGCGCTCGGCCTCGTCCCGGGCGACACCGTGATGTTCCATACGCGGCTGTCCGCGATCGGCTACGTCTCCGGAGGCCCCCAGACCGTCATCGACGCCCTGCTGGACGTGGTGGGACCGACCGGCACTCTGTTGGTCACCTGCGGCTGGAACGACGCTCCGCCCTACGACTTCACCGACTGGCCTCCCGCCTGGCAGGAGGCCGTACGCGCCCACCACCCCGCGTTCGACCCGCGGACGAGCGAGGCCGAGCACGCCAACGGCCGCCTTCCGGAGGCCCTGCGCCGCAGACCGGGGGCCGTACGCAGTCGCCACCCCGACGTGAGTCTCGCGGCGCTCGGCGCCTCGGCCCCCGCTCTGATGGACGCCCACCCCTGGGACGATCCGCACGGTCCCGGCAGCCCGCTGGCGCGCCTGGTCGCCCTCGGCGGCCGGGTGCTGCTGCTCGGCGCGCCCCGGGACACGATGACGCTGCTGCACCACGCCGAGGCGCTGGCCCAGGCCCCCGGCAAGCGGTTCGTGACGTACGAGCAGCCCATCGAGGTGGCGGGCGAGCGGGTCTGGCGCACCTTCCGGGACATCGACTCCGAGCACGGTGCGTTCGACTACTCCTCGGCCGTGCCCGAGGGGCAGGACCCCTTCGCGGTGATCGTCGGTTCCATGCTCGCCGCGGGCATCGGACGGGAGGGCTTCGTCGGGGCGGCCAGGAGCCGGCTGTTCGACGCCGCCCCGGCCGTCGAGTTCGGCGTCCGCTGGATCGAGGAGCACCTGAACCGGGACCGCTGA UPDATED NCBI_taxonomy_name with Streptomyces griseus UPDATED NCBI_taxonomy_id with 1911 UPDATED NCBI_taxonomy_cvterm_id with 36903 UPDATED accession with BAA78619.1 UPDATED sequence with MDETELLRRSDGPVTRDRIRHDLAALGLVPGDTVMFHTRLSAIGYVSGGPQTVIDALLDVVGPTGTLLVTCGWNDAPPYDFTDWPPAWQEAVRAHHPAFDPRTSEAEHANGRLPEALRRRPGAVRSRHPDVSLAALGASAPALMDAHPWDDPHGPGSPLARLVALGGRVLLLGAPRDTMTLLHHAEALAQAPGKRFVTYEQPIEVAGERVWRTFRDIDSEHGAFDYSSAVPEGQDPFAVIVGSMLAAGIGREGFVGAARSRLFDAAPAVEFGVRWIEEHLNRDR " 1482 UPDATE SME-1 carbapenem; antibiotic inactivation; SME beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1481 UPDATE OXY-1-4 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTGAAAAGTTCGTGGCGTAAAACCGCCCTGATGGCCGCCGCCGTTCCGCTGCTGCTGGCGAGCGGTTCATTATGGGCCAGTGCCGATGCTATCCAGCAAAAGCTGGCTGATTTAGAAAAACGTTCCGGCGGTCGGCTGGGCGTAGCGCTGATTAACACGGCAGATGATTCGCAAACCCTCTATCGCGGCGATGAACGTTTTGCCATGTGCAGCACCGGTAAAGTGATGGCCGCCGCCGCGGTGTTAAAACAGAGCGAAAGCAATCCAGAGGTGGTGAATAAAAGGCTGGAGATTAAAAAATCGGATTTAGTGGTCTGGAGCCCGATCACCGAAAAACATCTGCAAAGCGGAATGACCCTGGCGGAACTCAGCGCGGCGGCGCTGCAGTACAGCGACAATACCGCGATGAATAAGATGATTAGCTACCTTGGCGGACCGGAAAAGGTGACCGCATTCGCCCAGAGTATCGGGGATGTCACTTTTCGTCTCGATCGTACGGAGCCGGCGCTGAACAGCGCGATTCCCGGCGATAAGCGCGATACCACCACCCCGTTGGCGATGGCCGAAAGCCTGCGCAAGCTGACGCTGGGCAATGCGCTGGGCGAACAGCAGCGCGCCCAGTTAGTGACGTGGCTAAAAGGCAATACCACCGGCGGGCAAAGCATTCGCGCAGGCCTGCCCGCAAGCTGGGTGGTCGGGGATAAAACCGGCGCCGGAGATTACGGCACCACCAACGATATCGCGGTGATCTGGCCGGAAAATCATGCCCCGCTGGTGCTGGTGACCTATTTTACCCAGCCGCAGCAGGATGCGAAAAGCCGCAAAGAGGTGTTAGCCGCGGCGGCAAAAATCGTCACCGAAGGGCTTTAA " 1480 UPDATE EXO-1 penam; antibiotic inactivation; EXO beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1487 UPDATE SHV-48 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1486 UPDATE CARB-12 penam; antibiotic inactivation; CARB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGTTTTTATTGGTATTTTCGCTTTTAATACCATCCGTGGTTTTTGCAAGTAGTTCAAAGTTTCGGCAAGTTGAACAAGACGTTAAGGCAATTGAAGTTTCTCTTTCTGCTCGTATAGGTGTTTCCGTTCTTGATACTCAAAATGGAGAATACTGGGATTACAATGGCAATCAGCGCTTCCCGTTGACAAGTACTTTTAAAACAATAGCTTGCGCTAAATTACTATATGATGCTGAGCAAGGAAAAGTTAATCCCAATAGTACAGTCGAGATTAAGAAAGCAGATCTTGTGACCTATTCCCCTGTAATAGAAAAGCAAGTAGGGCAGGCAATCACACTCGATGATGCGTGCTTCGCAACTATGACTACAAGTGATAATACTGCGGCAAATATCATCCTAAGTGCTGTAGGTGGCTCCAAAGGCGTTACTGATTTTTTAAGACAAATTGGGGACAAAGAGACTCGTCTAGACCGTATTGAGCCTGATTTAAATGAAGGTAAGCTCGGTGATTTGAGGGATACGACAACTCCTAAGGCAATAGCCAGTACTTTGAATAAATTTTTATTTGGTTCAGCGCTATCTGAAATGAACAAAAAAAAATTAGAGTCTTGGATGGTGAACAATCAAGTCACTGGTAATTTACTACGTTCAGTATTGCCGGCGGGATGGAACATTGCGGATCGTTCAGGTGCTGGCGGATTTGGTGCTCGGAGTATTACAGCAGTTGTGTGGAGTGAGCATCAAGCCCCAATTATTGTGAGCATCTATCTAGCTCAAACACAGGCTTCAATGGCAGAGCGAAATGATGCGATTGTTAAAATTGGTCGTTCAATTTTTGACGTTTATACATCACAGTCGCGCTGA " 1485 UPDATE MOX-8 penam; antibiotic inactivation; MOX beta-lactamase; cephamycin; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1484 UPDATE ACT-27 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCCCTTTGCTGCGCCCTGCTGCTCGGCATCTCTTGCTCTGCTCTCGCCGCGCCAGTGTCAGAAAAACAGCTGGCGGAGGTGGTCGCGAATACGGTTACCCCGCTGATGAAAGCCCAGTCTGTTCCAGGCATGGCGGTGGCCGTTATTTATCAGGGAAAACCGCACTATTACACGTTTGGCAAGGCCGATATCGCGGCGAATAAACCCGTTACGCCTCAGACCCTGTTCGAGCTGGGTTCTATAAGTAAAACCTTCACCGGCGTTTTAGGTGGGGATGCCATTGCTCGCGGTGAAATTTCGCTGGACGATCCGGTGACCAGATACTGGCCAGAGCTGACGGGCAAGCAGTGGCAGGGTATTCGTATGCTGGATCTCGCCACCTACACCGCTGGCGGCCTGCCGCTACAGGTACCGGATGAGGTCACGGATAACGCCTCCCTGCTGCGCTTTTATCAAAACTGGCAGCCGCAGTGGAAGCCTGGCACAACGCGTCTTTACGCCAACGCCAGCATCGGTCTTTTTGGTGCGCTGGCGGTCAAACCTTCTGGCATGCCCTATGAGCAGGCCATGACGACGCGGGTCCTTAAGCCGCTCAAGCTGGACCATACCTGGATTAACGTGCCGAAAGCGGAAGAGGCGCATTACGCCTGGGGCTATCGTGACGGTAAAGCGGTGCGCGTTTCGCCGGGTATGCTGGATGCACAAGCCTATGGCGTGAAAACCAACGTGCAGGATATGGCGAACTGGGTCATGGCAAACATGGCGCCGGAGAACGTTGCTGATGCCTCACTTAAGCAGGGCATCGCGCTGGCGCAGTCGCGCTACTGGCGTATCGGGTCAATGTATCAGGGTCTGGGCTGGGAGATGCTCAACTGGCCCGTGGAGGCCAACACGGTGGTCGAGGGCAGCGACAGTAAGGTAGCGCTGGCGCCGTTGCCCGTGGTAGAAGTGAATCCACCGGCTCCCCCGGTCAAAGCGTCCTGGGTCCATAAAACGGGCTCTACTGGCGGGTTTGGCAGCTACGTGGCCTTTATTCCTGAAAAGCAGATCGGTATTGTGATGCTCGCGAATACAAGCTATCCGAACCCGGCACGCGTTGAGGCGGCATACCATATCCTCGAGGCGCTACAGTAA " 1489 UPDATE CMY-37 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1488 UPDATE TEM-75 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 797 UPDATE TEM-55 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1712 UPDATE IMP-41 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 795 UPDATE OXA-324 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 794 UPDATE Staphylococcus aureus rpoC conferring resistance to daptomycin peptide antibiotic; antibiotic target alteration; daptomycin resistant beta prime subunit of RNA polymerase (rpoC); daptomycin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with TTGATTGATGTAAATAATTTCCATTATATGAAAATAGGATTGGCTTCACCTGAAAAAATCCGTTCTTGGTCTTTTGGTGAAGTTAAAAAACCTGAAACAATCAACTACCGTACATTAAAACCTGAAAAAGATGGTCTATTCTGTGAAAGAATTTTCGGACCTACAAAAGACTGGGAATGTAGTTGTGGTAAATACAAACGTGTTCGCTACAAAGGCATGGTCTGTGACAGATGTGGAGTTGAAGTAACTAAATCTAAAGTACGTCGTGAAAGAATGGGTCACATTGAACTTGCTGCTCCAGTTTCTCACATTTGGTATTTCAAAGGTATACCAAGTCGTATGGGATTATTACTTGACATGTCACCAAGAGCATTAGAAGAAGTTATTTACTTTGCTTCTTATGTTGTTGTAGATCCAGGTCCAACTGGTTTAGAAAAGAAAACTTTATTATCTGAAGCTGAATTCAGAGATTATTATGATAAATACCCAGGTCAATTCGTTGCAAAAATGGGTGCAGAAGGTATTAAAGATTTACTTGAAGAGATTGATCTTGACGAAGAACTTAAATTGTTACGCGATGAGTTGGAATCAGCTACTGGTCAAAGACTTACTCGTGCAATTAAACGTTTAGAAGTTGTTGAATCATTCCGTAATTCAGGTAACAAACCTTCATGGATGATTTTAGATGTACTTCCAATCATCCCACCAGAAATTCGTCCAATGGTTCAATTAGATGGTGGACGATTTGCAACAAGTGACTTAAACGACTTATACCGTCGTGTAATTAATCGAAATAATCGTTTGAAACGTTTATTAGATTTAGGTGCACCTGGTATCATCGTTCAAAACGAAAAACGTATGTTACAAGAAGCCGTTGACGCTTTAATTGATAATGGTCGTCGTGGTCGTCCAGTTACTGGCCCAGGTAACCGTCCATTAAAATCTTTATCTCATATGTTAAAAGGTAAACAAGGTCGTTTCCGTCAAAACCTACTTGGTAAACGTGTTGACTATTCAGGACGTTCAGTTATCGCGGTAGGTCCAAGCTTGAAAATGTACCAATGTGGTTTACCGAAAGAAATGGCACTTGAACTATTTAAACCATTTGTAATGAAAGAATTAGTTCAACGTGAAATTGCAACTAACATTAAAAATGCGAAGAGTAAAATCGAACGCATGGATGATGAAGTTTGGGACGTATTGGAAGAAGTAATTAGAGAACATCCTGTATTACTTAACCGTGCACCAACACTTCATAGACTTGGTATTCAAGCATTTGAACCAACTTTAGTTGAAGGTCGTGCGATTCGTCTACATCCACTTGTAACAACAGCTTATAACGCTGACTTTGATGGTGACCAAATGGCGGTTCACGTTCCTTTATCAAAAGAGGCACAAGCTGAAGCAAGAATGTTGATGTTAGCAGCACAAAACATCTTGAACCCTAAAGATGGTAAACCAGTAGTTACACCATCACAAGATATGGTACTTGGTAACTATTACCTTACTTTAGAAAGAAAAGATGCAGTAAATACAGGCGCAATCTTTAATAATACAAATGAAGTGTTAAAAGCATATGCAAATGGCTTTGTACATTTACACACAAGAATTGGTGTACATGCAAGTTCATTCAACAACCCAACATTTACTGAAGAACAAAACAAAAAGATTCTTGCTACGTCAGTAGGTAAAATTATATTCAATGAAATCATTCCGGATTCATTTGCTTATATTAATGAACCTACGCAAGAAAACTTAGAAAGAAAGACACCAAACAGATACTTCATCGATCCTACAACTTTAGGTGAAGGTGGATTAAAAGAATACTTTGAAAATGAAGAATTAATTGAACCTTTCAACAAAAAATTCTTAGGTAATATTATTGCAGAAGTATTCAACAGATTTAGCATCACTGATACATCAATGATGTTAGACCGTATGAAAGACTTAGGATTCAAATTCTCATCTAAAGCTGGTATTACAGTAGGTGTTGCTGATATCGTAGTATTACCTGATAAGCAACAAATACTTGATGAGCATGAAAAATTAGTCGACAGAATTACAAAACAATTCAATCGTGGTTTAATCACTGAAGAAGAAAGATATAATGCAGTTGTTGAAATTTGGACAGATGCAAAAGATCAAATTCAAGGTGAATTGATGCAATCACTTGATAAAACTAACCCAATCTTCATGATGAGTGATTCAGGTGCCCGTGGTAACGCATCTAACTTTACACAGTTAGCAGGTATGCGTGGATTGATGGCCGCACCATCTGGTAAGATTATCGAATTACCAATCACATCTTCATTCCGTGAAGGTTTAACAGTACTTGAATACTTCATCTCAACTCACGGTGCGCGTAAAGGTCTTGCCGATACAGCACTTAAGACAGCTGACTCAGGATATCTTACTCGTCGTCTTGTTGACGTGGCACAAGATGTTATTGTTCGTGAAGAAGACTGTGGTACAGATAGAGGTTTATTAGTTTCTGATATTAAAGAAGGTACAGAAATGATTGAACCATTTATCGAACGTATTGAAGGTCGTTATTCTAAAGAAACAATTCGTCATCCTGAAACTGATGAAGTTATCATTCGTCCTGATGAATTAATTACACCTGAAATTGCTAAGAAAATTACAGATGCTGGTATTGAACAAATGTATATTCGCTCAGCATTTACTTGTAACGCAAGACACGGTGTTTGTGAAAAATGTTACGGTAAAAACCTTGCTACTGGTGAAAAAGTTGAAGTTGGTGAAGCAGTTGGTACAATTGCAGCCCAATCTATCGGTGAACCAGGTACACAGCTTACAATGCGTACATTCCATACAGGTGGGGTAGCAGGTAGCGATATCACACAAGGTCTTCCTCGTATTCAAGAGATTTTCGAAGCACGTAACCCTAAAGGTCAAGCGGTAATTACGGAAATCGAAGGTGTCGTAGAAGATATTAAATTAGCAAAAGATAGACAACAAGAAATTGTTGTTAAAGGTGCTAATGAAACAAGATCATATCTTGCTTCAGGTACTTCAAGAATTATTGTAGAAATCGGTCAACCAGTACAACGTGGTGAAGTATTAACTGAAGGTTCTATTGAACCTAAGAATTACTTATCTGTTGCTGGATTAAACGCGACTGAAAGCTACTTATTAAAAGAAGTACAAAAAGTTTACCGTATGCAAGGGGTAGAAATCGACGATAAACACGTTGAGGTTATGGTTCGACAAATGTTACGTAAAGTTAGAATTATCGAAGCAGGTGATACGAAGTTATTACCAGGTTCATTAGTTGATATTCACAACTTTACAGATGCAAATAGAGAAGCATTTAAACACCGCAAGCGCCCTGCAACAGCTAAACCAGTATTACTTGGTATTACTAAAGCATCACTTGAAACAGAAAGTTTCTTATCTGCAGCATCATTCCAAGAAACAACAAGAGTTCTAACAGATGCAGCAATTAAAGGTAAGCGTGATGACTTATTAGGTCTTAAAGAAAACGTAATTATCGGTAAGCTAATTCCAGCTGGTACTGGTATGAGACGTTATAGCGACGTAAAATACGAAAAAACAGCTAAACCAGTTGCAGAAGTTGAATCTCAAACTGAAGTAACGGAATAA " 793 UPDATE IMP-34 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 792 UPDATE OXY-1-1 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTGAAAAGTTCGTGGCGTAAAACCGCCCTGATGGCCGCCGCCGCCGTTCCGCTGCTGCTGGCGAGCGGTTCATTATGGGCCAGTGCCGATGCTATCCAGCAAAAGCTGGCTGATTTAGAAAAACGTTCCGGCGGTCGGCTGGGCGTAGCGCTGATTAACACGGCAGATGATTCGCAAACCCTCTATCGCGGCGATGAACGTTTTGCCATGTGCAGCACCGGTAAAGTGATGGCCGCCGCCGCGGTGTTAAAACAGAGCGAAAGCAATCCAGAGGTGGTGAATAAAAGGCTGGAGATTAAAAAATCGGATTTAGTGGTCTGGAGCCCGATCACCGAAAAACATCTGCAAAGCGGAATGACCCTGGCGGAACTCAGCGCGGCGGCGCTGCAGTACAGCGACAATACCGCGATGAATAAGATGATTAGCTACCTTGGCGGACCGGAAAAGGTGACCGCATTCGCCCAGAGTATCGGGGATGTCACTTTTCGTCTCGATCGTACGGAGCCGGCGCTGAACAGCGCGATTCCCGGCGATAAGCGCGATACCACCACCCCGTTGGCGATGGCCGAAAGCCTGCGCAAGCTGACGCTGGGCAATGCGCTGGGCGAACAGCAGCGCGCCCAGTTAGTGACGTGGCTAAAAGGCAATACCACCGGCGGGCAAAGCATTCGCGCAGGCCTGCCCGCAAGCTGGGCGGTCGGGGATAAAACCGGCGCCGGAGATTACGGCACCACCAACGATATCGCGGTGATCTGGCCGGAAAATCATGCCCCGCTGGTGCTGGTGACCTATTTTACCCAGCCGCAGCAGGATGCGAAAAGCCGCAAAGAGGTGTTAGCCGCGGCGGCAAAAATCGTCACCGAAGGGCTTTAA " 791 UPDATE SHV-14 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATTTTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCAGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGTGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 790 UPDATE CMY-32 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1719 UPDATE ceoA efflux pump complex or subunit conferring antibiotic resistance; fluoroquinolone antibiotic; aminoglycoside antibiotic; resistance-nodulation-cell division (RND) antibiotic efflux pump; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCCATCCTACGCACCTCCCGTTCCCGAATCGCGACCGCGGCGATCGTCACGCTCGCCGTCGTCGGCCTCGGCACGTTCGGCGCGATGCGCGTGAGCGCGAACGCCCCCGAGAAAGCGGCGGCGCCGCTGCCCGAAGTCGACGTCGCGACCGTCGTGCCGCAGACCGTGACCGACTGGCAAAGCTATTCGGGCCGCCTCGAGGCGGTCGAGAAAGTCGACGTGCGCCCGCAGGTGTCGGGCACGATCGTCGCGGTGAACTTCAAGGACGGCGCGCTCGTGAAGAAAGGCGACGTGCTGTTCGTGATCGACCCGCGCCCGTACCAGGCGGAAGTCGACCGCGCCGCCGCGCAGCTCGCGGCCGCGCAGGCCCGCAACGGCTACGCGCAGACCGACTGGCAGCGCGCGCAGCGGCTGATCGGCGACAACGCGATCGCGAAGCGCGACTACGACGAGAAGCAGAACGCGGCGCGCGAAGCGAAACGCGAACCTGAAGGCCGCCGAAGCCGCGCTGGAAACGGCGCGCATCAATCTCGGCTATACGCGCATCACCGCGCCGGTGTCGGGCCGCGTGTCGCGCGCGGAAATCACGCTCGGCAACGTCGTGTCGGCCGGCGCGTCGGCCGCGCCGCTGACGACGCTGGTATCGGTGTCGCCGATCTACGCGTCGTTCGACGCCGACGAGCAGACCTACCTGCAATACATCAACGGCGCGCGCAGCGGCCGCAAGGTGCCGGTCGAGCTCGGCCTCGCGAACGAAACCGGCTACTCGCGCAGCGGCGAGATCGATTCGGTCGACAACCGGCTCGACACGTCGTCCGGCACGATCCGCGTGCGCGCCCGCTTCGACAACGCGGACGGCACCCTGGTCCCGGGCCTCTACGCACGCGTGAAGGTGGGCGGCAGCGCGCCGCACGAGGCGCTGCTCGTCGACGACGCGGCGATCAACACCGACCAGGACAAGAAGTTCGTGTTCGTCGTCGACCAGCAGGGCCGCGTGTCGTATCGCGAAGTGCAGCAAGGGATGCAGCACGGCAACCGGCGCGTGATCGTGAGCGGGCTGTCGGCCGGCGACCGCGTGGTCGTGAACGGCACGCAGCGCGTGCGTCCGGGCGAGCAGGTGAAGCCGCACATGGTCCCGATGACGGGCGGCGATGCGCCGTCCGCGCCGTCGCGAGCACCGCGAAGCCGGCCGCACCGGCGAAGGCGGATTCGTAA " 1718 UPDATE DIM-1 carbapenem; antibiotic inactivation; cephalosporin; DIM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGAACACATTTTACAGCGTTATTACTTCTATTCAGCTTGTCTTCGCTTGCTAACGACGAGGTACCTGAGCTAAGAATCGAGAAAGTAAAAGAGAACATCTTTTTGCACACATCATACAGTCGTGTGAATGGGTTTGGTTTGGTCAGTTCAAACGGCCTTGTTGTCATAGATAAGGGTAATGCTTTCATTGTTGATACACCTTGGTCAGACCGAGATACAGAAACGCTCGTACATTGGATTCGTAAAAATGGTTATGAGCTACTGGGGAGTGTTTCTACTCATTGGCATGAGGATAGAACCGCAGGAATTAAATGGCTTAATGACCAATCAATTTCTACGTATGCCACGACTTCAACCAACCATCTCTTGAAAGAAAATAAAAAAGAGCCAGCGAAATACACCTTGAAAGGAAATGAGTCCACATTGGTTGACGGCCTTATCGAAGTATTTTATCCAGGAGGTGGTCATACAATAGACAACGTAGTGGTGTGGTTGCCAAAGTCGAAAATCTTATTTGGCGGCTGTTTTGTGCGTAGCCTTGATTCCGAGGGGTTAGGCTACACTGGTGAAGCCCATATTGATCAATGGTCCCGATCAGCTCAGAATGCTCTGTCTAGGTACTCAGAAGCCCAGATAGTAATTCCTGGCCATGGGAAAATCGGGGATATAGCGCTGTTAAAACACACCAAAAGTCTGGCTGAGACAGCCTCTAACAAATCAATCCAGCCGAACGCTAACGCGTCGGCTGATTGA " 799 UPDATE CTX-M-31 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGACTCAGAGCATTCGCCGCTCAATGTTAACGGTGATGGCGACGCTACCCCTGCTATTTAGCAGCGCAACGCTGCATGCGCAGGCGAACAGCGTGCAACAGCAGCTGGAAGCCCTGGAGAAAAGTTCGGGAGGTCGGCTTGGCGTTGCGCTGATTAACACCGCCGATAATTCGCAGATTCTCTACCGTGCCGATGAACGTTTTGCGATGTGCAGTACCAGTAAGGTGATGGCGGCCGCGGCGGTGCTTAAACAGAGCGAGAGCGATAAGCACCTGCTAAATCAGCGCGTTGAAATCAAGAAGAGCGACCTGGTTAACTACAATCCCATTGCGGAGAAACACGTTAACGGCACGATGACGCTGGCTGAGCTTGGCGCAGCGGCGCTGCAGTATAGCGACAATACTGCCATGAATAAGCTGATTGCCCATCTGGGTGGTCCCGATAAAGTGACGGCGTTTGCTCGCTCGTTGGGTGATGAGTCCTTCCGTCTGGACAGAACCGAGCCCACGCTCAATACCGCCATTCCAGGCGACCCGCGTGATACCACCACGCCGCTCGCGATGGCGCAGACCCTGAAAAATCTGACGCTGGGTAAAGCGCTGGCGGAAACTCAGCGGGCACAGTTGGTGACGTGGCTTAAGGGCAATACTACCGGTAGCGCGAGCATTCGGGCGGGTCTGCCGAAATCATGGGTAGTGGGCGATAAAACCGGCAGCGGAGATTATGGCACCACCAACGATATCGCGGTTATCTGGCCGGAAAACCACGCACCGCTGGTTCTGGTGACCTACTTTACCCAACCGGAGCAGAAGGCGGAAAGCCGTCGGGATATTCTGGCTGCGGCGGCGAAAATCGTAACCCACGGTTTCTGA " 798 UPDATE cmeC antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; macrolide antibiotic; cefotaxime; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; fluoroquinolone antibiotic; fusidic acid; erythromycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 612 UPDATE PDC-7 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2412 UPDATE Shigella flexneri parC conferring resistance to fluoroquinolones ofloxacin; norfloxacin; nalidixic acid; levofloxacin; fluoroquinolone resistant parC; antibiotic target alteration; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 3161413 UPDATED strand with - UPDATED accession with NC_004337.2 UPDATED fmin with 3159154 UPDATED sequence with ATGAGCGATATGGCAGAGCGCCTTGCGCTACATGAATTTACGGAAAACGCCTACTTAAACTACTCCATGTACGTGATCATGGACCGTGCGTTGCCGTTTATTGGTGATGGTCTGAAACCTGTTCAGCGCCGCATTGTGTATGCGATGTCTGAACTGGGCCTGAATGCCAGCGCCAAATTTAAAAAATCGGCCCGTACCGTCGGTGACGTACTGGGTAAATACCATCCGCACGGCGATAGCGCCTGTTATGAAGCGATGGTCCTGATGGCGCAGCCGTTCTCTTACCGTTATCCGCTGGTTGATGGTCAGGGGAACTGGGGCGCGCCGGACGATCCGAAATCGTTCGCGGCAATGCGTTACACCGAATCCCGGTTGTCGAAATATTCCGAGCTGCTATTGAGCGAGCTGGGGCAGGGGACGGCTGACTGGGTGCCAAACTTCGACGGCACTTTGCAGGAGCCGAAAATGCTACCTGCCCGTCTGCCAAACATTTTGCTTAACGGCACCACCGGTATTGCCGTCGGCATGGCGACCGATATTCCACCGCATAACCTGCGTGAAGTAGCTCAGGCGGCAATCGCATTAATCGACCAGCCGAAAACTACGCTCGATCAGCTGCTGGATATCGTGCAGGGGCCGGATTATCCGACTGAAGCGGAAATTATCACTTCGCGCGCCGAGATTCGTAAAATCTACGAGAACGGACGTGGTTCAGTGCGTATGCGCGCGGTGTGGAAGAAAGAAGATGGCGCGGTGGTTATCAGCGCATTACCGCATCAGGTTTCAGGTGCGCGCGTACTGGAGCAAATTGCTGCGCAAATGCGCAACAAAAAGCTGCCGATGGTTGACGATCTGCGCGATGAATCTGACCACGAGAACCCGACCCGTCTGGTGATTGTGCCGCGTTCCAACCGCGTGGATATGGATCAGGTGATGAACCACCTCTTCGCTACCACCGATCTGGAAAAGAGCTATCGCATTAACCTCAATATGATCGGTCTGGATGGTCGTCCGGCGGTGAAAAACCTGCTGGAAATCCTCTCCGAATGGCTGGTGTTCCGTCGCGATACCGTGCGCCGCCGACTGAACTATCGTCTGGAGAAAGTCCTCAAGCGCCTGCATATCCTGGAAGGTTTGCTGGTGGCGTTTCTCAACATCGACGAAGTGATTGAGATCATTCGTAACGAAGATGAACCGAAACCGGCGCTGATGTCGCGGTTTGGCCTTACGGAAACCCAGGCGGAAGCGATCCTCGAACTGAAACTGCGTCATCTTGCCAAACTGGAAGAGATGAAGATTCGCGGTGAGCAGAGTGAGCTGGAAAAAGAGCGCGACCAGTTGCAGGGCATTTTGGCTTCCGAGCGTAAAATGAATAACCTGCTGAAGAAAGAACTGCAGGCAGACGCGCAAGCCTACGGTGACGATCGTCGTTCGCCGTTGCAGGAACGCGAAGAAGCGAAAGCGATGAGCGAGCACGACATGCTGCCGTCTGAACCTGTCACCATTGTGCTGTCGCAGATGGGCTGGGTACGCAGCGCTAAAGGCCATGATATCGACGCGCCGGGCCTGAATTATAAAGCGGGTGATAGCTTCAAAGCGGCGGTGAAAGGTAAGAGTAACCAACCGGTAGTGTTTGTTGATTCCACCGGTCGTAGCTATGCCATCGACCCGATTACGCTGCCGTCGGCGCGTGGTCAGGGCGAACCACTCACCGGCAAATTAACGTTGCCGCCTGGGGCGACCGTTGACCATATGCTGATGGAAAGCGACGATCAGAAACTGCTGATGGCTTCCGATGCGGGTTACGGTTTCGTCTGCACCTTTAACGATCTGGTAGCGCGTAACCGTGCGGGTAAGGCTTTGATCACCTTACCGGAAAATGCCCATGTTATGCCGCCGGTGGTGATTGAAGATGCTTCCGATATGCTGCTGGCAATCACTCAGGCAGGCCGTATGTTGATGTTCCCGGTAAGCGATCTGCCGCAGCTGTCGAAGGGCAAAGGCAACAAGATTATCAACATTCCATCGGCAGAAGCCGCGCGTGGCGAGGATGGTCTGGCGCAACTGTACGTTCTGCCGCCGCAAAGCACGCTGACCATTCATGTTGGGAAACGCAAAATTAAACTGCGTCCGGAAGAGCTACAGAAAGTCACTGGCGAACGTGGACGCCGCGGTACGTTGATGCGCGGTTTGCAGCGTATCGATCGTGTTGAGATCGACTCTCCTCGCCGTGCCAGCAGCGGTGATAGCGAAGAGTAA UPDATED NCBI_taxonomy_name with Shigella flexneri 2a str. 301 UPDATED NCBI_taxonomy_id with 198214 UPDATED NCBI_taxonomy_cvterm_id with 40665 UPDATED accession with NP_708834.1 UPDATED sequence with MSDMAERLALHEFTENAYLNYSMYVIMDRALPFIGDGLKPVQRRIVYAMSELGLNASAKFKKSARTVGDVLGKYHPHGDSACYEAMVLMAQPFSYRYPLVDGQGNWGAPDDPKSFAAMRYTESRLSKYSELLLSELGQGTADWVPNFDGTLQEPKMLPARLPNILLNGTTGIAVGMATDIPPHNLREVAQAAIALIDQPKTTLDQLLDIVQGPDYPTEAEIITSRAEIRKIYENGRGSVRMRAVWKKEDGAVVISALPHQVSGARVLEQIAAQMRNKKLPMVDDLRDESDHENPTRLVIVPRSNRVDMDQVMNHLFATTDLEKSYRINLNMIGLDGRPAVKNLLEILSEWLVFRRDTVRRRLNYRLEKVLKRLHILEGLLVAFLNIDEVIEIIRNEDEPKPALMSRFGLTETQAEAILELKLRHLAKLEEMKIRGEQSELEKERDQLQGILASERKMNNLLKKELQADAQAYGDDRRSPLQEREEAKAMSEHDMLPSEPVTIVLSQMGWVRSAKGHDIDAPGLNYKAGDSFKAAVKGKSNQPVVFVDSTGRSYAIDPITLPSARGQGEPLTGKLTLPPGATVDHMLMESDDQKLLMASDAGYGFVCTFNDLVARNRAGKALITLPENAHVMPPVVIEDASDMLLAITQAGRMLMFPVSDLPQLSKGKGNKIINIPSAEAARGEDGLAQLYVLPPQSTLTIHVGKRKIKLRPEELQKVTGERGRRGTLMRGLQRIDRVEIDSPRRASSGDSEE " 613 UPDATE VEB-4 antibiotic inactivation; monobactam; cephalosporin; VEB beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 610 UPDATE SHV-153 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1139 UPDATE dfrA12 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACTCGGAATCAGTACGCATTTATCTCGTTGCTGCGATGGGAGCCAATCGGGTTATTGGCAATGGTCCTAATATCCCCTGGAAAATTCCGGGTGAGCAGAAGATTTTTCGCAGACTCACTGAGGGAAAAGTCGTTGTCATGGGGCGAAAGACCTTTGAGTCTATCGGCAAGCCTCTACCGAACCGTCACACATTGGTAATCTCACGCCAAGCTAACTACCGCGCCACTGGCTGCGTAGTTGTTTCAACGCTGTCGCACGCTATCGCTTTGGCATCCGAACTCGGCAATGAACTCTACGTCGCGGGCGGAGCTGAGATATACACTCTGGCACTACCTCACGCCCACGGCGTGTTTCTATCTGAGGTACATCAAACCTTCGAGGGTGACGCCTTCTTCCCAATGCTCAACGAAACAGAATTCGAGCTTGTCTCAACCGAAACCATTCAAGCTGTAATTCCGTACACCCACTCCGTTTATGCGCGTCGAAACGGCTAA " 1138 UPDATE tet(D) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 204554 UPDATED strand with - UPDATED accession with BX664015.1 UPDATED fmin with 204137 UPDATED sequence with ATGTATATTGAACAGCATTCTCGCTATCAAAATAAAGCTAATAACATCCAATTAAGATATGATGATAAGCAGTTTCATACAACGGTTATCAAAGATGTTCTATTATGGATTGAACATAATTTAGATCAGTCTTTACTGCTTGATGATGTGGCGAATAAAGCGGGTTATACCAAGTGGTATTTTCAGCGGCTGTTCAAAAAAGTAACAGGGGTCACACTGGCTAGCTATATTCGTGCTCGTCGTTTGACGAAAGCGGCTGTTGAGTTGAGGTTGACGAAAAAAACTATCCTTGAGATCGCATTAAAATATCAATTTGATTCCCAACAATCTTTTACACGTCGATTTAAGTACATTTTTAAGGTTACACCAAGTTATTATCGGCGTAATAAATTATGGGAATTGGAGGCAATGCACTGA UPDATED NCBI_taxonomy_name with Serratia marcescens UPDATED NCBI_taxonomy_id with 615 UPDATED NCBI_taxonomy_cvterm_id with 36783 UPDATED accession with CAE51745.1 UPDATED sequence with MYIEQHSRYQNKANNIQLRYDDKQFHTTVIKDVLLWIEHNLDQSLLLDDVANKAGYTKWYFQRLFKKVTGVTLASYIRARRLTKAAVELRLTKKTILEIALKYQFDSQQSFTRRFKYIFKVTPSYYRRNKLWELEAMH " 1133 UPDATE SHV-109 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCGGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACAAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAACTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAGCGGGGTGCGCGCGGCATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATATGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 1132 UPDATE OXA-88 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATTAAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGCGCTTCAAAATCTGATAAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACCACAGAAGTATTTAAGTGGGATGGTAAAAAAAGGTTATTCCCAGAATGGGAAAAGGACATGACCCTAGGCGATGCCATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAGCTCATGTCTAAGGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAGTTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAAACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGTTTAGAACAATTAGGTATTTTATAG " 1131 UPDATE AAC(3)-Ic antibiotic inactivation; AAC(3); sisomicin; gentamicin B; gentamicin C; aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATCTCTACTCAAACCAAGATTACCCGCCTCAACTCTCAAGACGTTGGTGTAATGCGGGCAATGCTAGGCATGTTCGGCGAGGCTTTTGAGGACGCTGAGAACTATTGCCGCGCTCAACCAAGCGACAGTTACCTACAAGACTTACTGTGTGGCTCTGGCTTCATCGCAATCGCTGCGTTACAGGGGCAAGAGGTCATCGGTGGGCTCGCCGCGTATGTGCTCCCAAAGTTTGAACAACAGCGCAAAGAAATCTATATCTACGACTTAGGCGTGCAGGGAGCCTATCGCCGACGAGGCATCGCCACAGCCTTGATCAATGAACTCCAGCGTATCGCACATGATATTGGCGCTTATGTAATTTTTGTCCAGGCTGACTATGGGGACGATCCTGCGGTAGCGCTCTACACAAAACTCGGTATCCGGGAGGACGTGATGCACTTTGACATAGAACCTCAACCTGCTGCCTAA " 1130 UPDATE PDC-9 antibiotic inactivation; cephalosporin; carbapenem; ceftazidime; PDC beta-lactamase; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1137 UPDATE TEM-90 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1136 UPDATE MIR-6 antibiotic inactivation; monobactam; cephalosporin; MIR beta-lactamase; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 35962 " 1135 UPDATE Staphylococcus aureus parE conferring resistance to aminocoumarin aminocoumarin resistant parE; clorobiocin; aminocoumarin antibiotic; novobiocin; coumermycin A1; antibiotic target alteration; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 617 UPDATE OXA-147 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAACATTTGCCGCATATGTAATTACTGCGTGTCTTTCAAGTACGGCATTAGCTAGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTTTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATAACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAACGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAACAATGGGAAAGAGACTTGAGCTTAAGAGGGGCAATACAAGTTTCAGCGGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATACCTTAAAAAATTTTCATATGGCAACCAGAATATCAGTGGTGGCATTGACAAATTCTTGTTGGAGGGTCAGCTAAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATTTTTAAATAAATTGTCAGCATCAAAAGAAAATCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCTGCGCCTGAATATCTTGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGTTGGGTTGAGAAGGGAACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAATAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGCAAGTGAGGGCATCATTGGTGGCTAA " 2060 UPDATE FosC2 fosfomycin; antibiotic inactivation; fosC phosphotransferase family; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 614 UPDATE SFB-1 penam; antibiotic inactivation; cephalosporin; SHW beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2061 UPDATE VIM-7 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTTCAAATTCGCAGCTTTCTGGTTGGTATCAGTGCATTCGTCATGGCCGTACTTGGATCAGCAGCATATTCCGCACAGCCTGGCGGTGAATATCCGACAGTAGATGACATACCGGTAGGGGAAGTTCGGCTGTACAAGATTGGCGATGGCGTTTGGTCGCATATCGCAACTCAGAAACTCGGTGACACGGTGTACTCGTCTAATGGACTTATCGTCCGCGATGCTGATGAGTTGCTTCTTATTGATACAGCGTGGGGGGCGAAGAACACGGTAGCCCTTCTCGCGGAGATTGAAAAGCAAATTGGACTTCCAGTAACGCGCTCAATTTCTACGCACTTCCATGACGATCGAGTCGGTGGAGTTGATGTCCTCCGGGCGGCTGGAGTGGCAACGTACACCTCACCCTTGACACGCCAGCTGGCCGAAGCGGCGGGAAACGAGGTGCCTGCGCACTCTCTAAAAGCGCTCTCCTCTAGTGGAGATGTGGTGCGCTTCGGTCCCGTAGAGGTTTTCTATCCTGGTGCTGCGCATTCGGGCGACAATCTTGTGGTATACGTGCCGGCCGTGCGCGTACTGTTTGGTGGCTGTGCAGTTCATGAGGCGTCACGCGAATCCGCGGGTAATGTTGCCGATGCCAATTTGGCAGAATGGCCTGCTACCATTAAACGAATTCAACAGCGGTATCCGGAAGCAGAGGTCGTCATCCCCGGCCACGGTCTACCGGGCGGTCTGGAATTGCTCCAACACACAACTAACGTTGTCAAAACGCACAAAGTACGCCCGGTGGCCGAGTAA " 1277 UPDATE GES-16 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGCTTCATTCACGCACTATTACTGGCAGGGATCGCTCACTCTGCATATGCGTCGGAAAAATTAACCTTCAAGACCGATCTTGAGAAGCTAGAGCGCGAAAAAGCAGCTGAGATCGGTGTTGCGATCGTCGATCCCCAAGGAGAGATCGTCGCGGGCCACCGAATGGCGCAGCGTTTTGCAATGTGCTCAACGTTCAAGTTTCCGCTAGCCGCGCTGGTCTTTGAAAGAATTGACTCAGGCACCGAGCGGGGGGATCGAAAACTTTCATATGGGCCGGACATGATCGTCGAATGGTCTCCTGCCACGGAGCGGTTTCTAGCATCGGGACACATGACGGTTCTCGAGGCAGCGCAAGCTGCGGTGCAGCTTAGCGACAATGGGGCTACTAACCTCTTACTGAGAGAAATTGGCGGACCTGCTGCAATGACGCAGTATTTTCGTAAAATTGGCGACTCTGTGAGTCGGCTAGACCGGAAAGAGCCGGAGATGAGCGACAACACACCTGGCGACCTCAGAGATACAACTACGCCTATTGCTATGGCACGTACTGTGGCTAAAGTCCTCTATGGCGGCGCACTGACGTCCACCTCGACCCACACCATTGAGAGGTGGCTGATCGGAAACCAAACGGGAGACGCGACGCTACGAGCGGGTTTTCCTAAAGATTGGGTTGTTGGAGAGAAAACTGGTACCTGCGCCAACGGGGGCCGGAACGACATTGGTTTTTTTAAAGCCCAGGAGAGAGATTACGCTGTAGCGGTGTATACAACGGCCCCGAAACTATCGGCCGTAGAACGTGACGAATTAGTTGCCTCTGTCGGTCAAGTTATTACACAACTCATCCTGAGCACGGACAAATAG " 2063 UPDATE blaR1 penam; antibiotic inactivation; blaZ beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 3230 UPDATED strand with - UPDATED accession with EF540343.1 UPDATED fmin with 1463 UPDATED sequence with ATGACGTTACCGCATATTTTACTTTCTCTTGTATTAATAACGGCAACGATTCTAGTGATCTTTTTTGTAAGAGCGGTTTTTTATAAACAATTATCAGCAAAATGGCGTTATCATTTATGGTTTTTACTCATTACTGTGTTGACGCTTCCGTTTATACCGATTCATCTATTGACGGGCTTGTCTTTTTTTGACCAGGGGCGTCAACAGATTACCCCTTCAGCACAGAAGCGTTTCGGTTTTGCGGATCAAAATGAGCAATGGATGGTTGATTTTGGCACGTCTGTTAGTCGCTTTGACGATACATTCATTCATGCAGTGTTTGTTTCCATCTGGATTGGTGGAATGATTTTTTTCCTTTTATTGACTTTATACCATTATGCAAAGCTACAACGACTAGTAAAAGCGGCAAGTCGTATACAAAATCAAAAAGTCGAAAACGCGTTTAGCGATTGTATGGCAGAATTGCAAATAACGAATAAATTAACCAATTTAGAATCCCCTGCCATTCAAACGCCAATGACCTTTGGATGGTTAAAGACGTACATCTTGTTGCCCAAAAATATCGAATTGTATCTATCTGATGATGAAATCAGACATGTGTTGTTGCATGAGTTGCACCATTATAAAAGCAAACATATTAAAGTGAACTATATATTTGTCGTTTACCAAATTGTTTATTGGTTTCATCCTTTAGTATGGAAAGCCTTTAAAGAGATGCGTCTTGATCGGGAATTAGCTTGTGATACGGAGGTCTTGCTTACATTGGGACAGCGGGAGTATAAAGCGTATGGCCAGACGATCATGCGTTTTCTGGAAAGAAATTCTCGATTTTTATACTTAACGAACCCACTGCATAGTTCGAAAAAAGCTTTTAAAAATACGAAATCTTATAACATTGCTTTCTTTTACTGGCGAGTCAAAAGCGGCGCCCAATTAAAAAAGCCATGGGTGGTTTTTGCTGGTCTCACCCGTTTTTGCATTGCTCAATTTCCTTTTTTAACGGCAACCGCTGTTTCTACAGAGCGCTACCAATTTGATGAAAGCCAGGCGGTTGTTGAAGATTACAGCACTTATTTTGCAGGAAATGAGGGTAGTTTTGTATTATATAGCTTAACCAGCGACCAGTTCGAAATCTATAATAAAGAAAAAAGTGTAAGAAGAGTCTCCCCCAATTCTTCCTATAAAATTTACACCGCGCTCATGGCATTGGAACTAGGCGTGATTGGGCGAGATGATTCATGGTTAGAGTGGGATGGAGTCGAATACGAGGATGAAGCCTGGAATAGCGGGCAAGATTTGAAATCGGCGATGAGCCAGTCAGTCACTTGGTACTTTCAAGAGTTAGACGAGCGGATCAAACAAAGGAACATCCAATCTTTTGTAAACCAATTAGACTATGGGAATAAAGATCTTTCCGGTGGATTAAATCACTATTGGCTGGAATCTTCCTTGAAAATATCACCGGTAGAACAAGTGGAGCTTCTCCATTCCTTCTATACAAACCAACTGGACTTTAAAGAAGAGCATGTGCAATTCGTTAAAGAGGTTATGAAACTTGAAGAAAATCAAAAGGGAACGCTTTATGGAAAAACCGGGACTGGCATTGTGAACGGCCATGCAATAAATGGTTGGTTTATTGGATTTGTCGAAACTGAAACGGATACGTACTTTTTTGCGACAAACATTCAACAGAAGATCATGCATATGGAAGCACGGCTGCTGAAATCACTTTATCCATTCTGTCAAGCAAAGGAATTTATTGATTAG UPDATED NCBI_taxonomy_name with Bacillus clausii UPDATED NCBI_taxonomy_id with 79880 UPDATED NCBI_taxonomy_cvterm_id with 36882 UPDATED accession with ABU39979.1 UPDATED sequence with MTLPHILLSLVLITATILVIFFVRAVFYKQLSAKWRYHLWFLLITVLTLPFIPIHLLTGLSFFDQGRQQITPSAQKRFGFADQNEQWMVDFGTSVSRFDDTFIHAVFVSIWIGGMIFFLLLTLYHYAKLQRLVKAASRIQNQKVENAFSDCMAELQITNKLTNLESPAIQTPMTFGWLKTYILLPKNIELYLSDDEIRHVLLHELHHYKSKHIKVNYIFVVYQIVYWFHPLVWKAFKEMRLDRELACDTEVLLTLGQREYKAYGQTIMRFLERNSRFLYLTNPLHSSKKAFKNTKSYNIAFFYWRVKSGAQLKKPWVVFAGLTRFCIAQFPFLTATAVSTERYQFDESQAVVEDYSTYFAGNEGSFVLYSLTSDQFEIYNKEKSVRRVSPNSSYKIYTALMALELGVIGRDDSWLEWDGVEYEDEAWNSGQDLKSAMSQSVTWYFQELDERIKQRNIQSFVNQLDYGNKDLSGGLNHYWLESSLKISPVEQVELLHSFYTNQLDFKEEHVQFVKEVMKLEENQKGTLYGKTGTGIVNGHAINGWFIGFVETETDTYFFATNIQQKIMHMEARLLKSLYPFCQAKEFID " 2064 UPDATE TEM-196 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2065 UPDATE CMY-5 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 519 UPDATE VIM-26 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTAAAAGTTATTAGTAGTTTATTGGTCTACATGACCGCGTCTGTCATGGCTGTCGCAAGTCCGTTAGCCCATTCCGGGGAGCCGAGTGGTGAGTATCCGACAGTCAACGAAATTCCGGTCGGAGAGGTCCGACTTTACCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTTTGATGGCGCGGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAAAAGCAAATTGGACTTCCCGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCCGAGGCAGAGGGGAACGAGATTCCCACGCATTCTCTAGAAGGACTCTCATCGAGCGGGGACGCAGTGCGCTTCGGTCCAGTAGAGCTCTTCTATCCTGGTGCTGCGCATTCGACCGACAATCTGGTTGTATACGTCCCGTCAGCGAACGTGCTATACGGTGGTTGTGCCGTTCTTGAGTTGTCAAGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCGTTGAGCGGATTCAAAAACACTACCCGGAAGCAGAGGTCGTCATTCCCGGGCACGGTCTACCGGGCGGTCTAGACTTGCTCCAGCACACAGCGAACGTTGTCAAAGCACACAAAAATCGCTCAGTCGCCGAGTAG " 518 UPDATE vanXYN glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanXY; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCATAATTTTTATTTACAGCTTGTAAACCAACAACACCCTTGGAAATCATTTAATCATTCGCCACAGCTTGTTCAAGCGACCTATGCGGAAGAAAAGATTTTAATAGATTCCAAGGTTAACCATCAATTCAATCAGTTACTTGAAACACTACAATTAACTGATCGCATCATGATCGTTGATGGTCATCGAACGGTTGCTGAGCAAAAACATTTGTGGAACTATTCTTTAAACGCACATGGGGTGAATTATACAAAAAGTTATGTAGCATCTCCTGGCTGTAGTGAACATCATACGGGACTAGCAATTGATCTCGGTCTACGAAAGACAGAACATGATCTCATTGCGCCACGCTTCGAGGGACCAGAAGCCGAACTGTTTTTACAACATATGAAAGATTATGGATTTATTTTACGCTATCCTAAAAATAAGCAAAAAATTACAGGAATTGCTTATGAGCCTTGGCATTTTCGCTATGTAGGTACCCCTCATAGTCAAATCATCATGGACCACGGATGGACCTTAGAAGAGTATATTGAATTTTTAAAACATCAAATTGAGGCGGTCTCATGA " 2066 UPDATE Escherichia coli soxS with mutation conferring antibiotic resistance penem; antibiotic target alteration; tetracycline antibiotic; antibiotic efflux; ATP-binding cassette (ABC) antibiotic efflux pump; major facilitator superfamily (MFS) antibiotic efflux pump; resistance-nodulation-cell division (RND) antibiotic efflux pump; norfloxacin; reduced permeability to antibiotic; carbapenem; cephalosporin; cefalotin; ciprofloxacin; protein(s) and two-component regulatory system modulating antibiotic efflux; rifampin; ampicillin; penam; triclosan; efflux pump complex or subunit conferring antibiotic resistance; cephamycin; tigecycline; glycylcycline; General Bacterial Porin with reduced permeability to beta-lactams; monobactam; fluoroquinolone antibiotic; chloramphenicol; phenicol antibiotic; tetracycline; rifamycin antibiotic; model_sequences "UPDATED fmax with 4277383 UPDATED strand with - UPDATED accession with NC_000913.3 UPDATED fmin with 4277059 UPDATED sequence with ATGTCCCATCAGAAAATTATTCAGGATCTTATCGCATGGATTGACGAGCATATTGACCAGCCGCTTAACATTGATGTAGTCGCAAAAAAATCAGGCTATTCAAAGTGGTACTTGCAACGAATGTTCCGCACGGTGACGCATCAGACGCTTGGCGATTACATTCGCCAACGCCGCCTGTTACTGGCCGCCGTTGAGTTGCGCACCACCGAGCGTCCGATTTTTGATATCGCAATGGACCTGGGTTATGTCTCGCAGCAGACCTTCTCCCGCGTTTTCCGTCGGCAGTTTGATCGCACTCCCAGCGATTATCGCCACCGCCTGTAA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. MG1655 UPDATED NCBI_taxonomy_id with 511145 UPDATED NCBI_taxonomy_cvterm_id with 36849 UPDATED accession with NP_418486.1 UPDATED sequence with MSHQKIIQDLIAWIDEHIDQPLNIDVVAKKSGYSKWYLQRMFRTVTHQTLGDYIRQRRLLLAAVELRTTERPIFDIAMDLGYVSQQTFSRVFRRQFDRTPSDYRHRL " 1009 UPDATE IND-1 carbapenem; antibiotic inactivation; IND beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAAAGCATCCGTTTTTTTATTGTTTCGATATTGTTGAGCCCTTTTGCAAGTGCACAGGTAAAAGATTTTGTAATAGAACCACCCATCAAAAATAACCTGCATATTTATAAAACTTTTGGAGTATTTGGTGGTAAAGAATATTCTGCAAATTCAATGTATCTGGTTACTAAAAAAGGAGTTGTTCTCTTTGATGTTCCATGGGAAAAAATACAGTACCAAAGCCTCATGGATACCATTAAAAAACGTCATAATTTACCGGTTGTAGCGGTATTTGCCACACACTCCCATGATGACCGCGCCGGTGACCTTAGTTTTTTCAATAATAAAGGGATTAAAACATATGCAACTGCCAAAACCAACGAGTTCTTGAAAAAAGACGGAAAAGCAACATCCACAGAAATCATCAAAACCGGAAAACCGTACCGCATTGGCGGAGAAGAATTTGTGGTAGATTTTCTTGGTGAAGGGCATACTGCTGATAATGTAGTGGTATGGTTCCCTAAATACAATGTATTGGATGGTGGCTGTCTTGTAAAAAGTAATTCAGCTACTGATTTAGGATATATTAAGGAAGCCAATGTAGAACAGTGGCCCAAAACTATAAATAAATTAAAAGCCAAATATTCTAAAGCAACATTAATTATTCCGGGACATGATGAATGGAAAGGCGGTGGACATGTTGAACACACTTTAGAACTTCTGAATAAAAAATAG " 1008 UPDATE BEL-1 penam; monobactam; cephalosporin; antibiotic inactivation; BEL beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAACTGCTGCTCTACCCGTTATTGCTGTTCCTTGTCATTCCAGCCTTTGCCCAGGCGGACTTTGAACATGCCATTTCAGATCTTGAGGCGCACAATCAAGCCAAGATCGGAGTGGCCCTAGTTAGTGAAAATGGCAACCTGATTCAAGGGTATCGTGCGAATGAAAGGTTCGCGATGTGCTCAACTTTCAAGTTGCCGTTGGCCGCTCTTGTTCTGAGTCGCATTGACGCTGGGGAAGAGAATCCTGAGCGCAAGCTTCATTACGATTCCGCGTTCCTTGAAGAGTACGCCCCAGCCGCAAAACGGTATGTGGCAACTGGATATATGACTGTAACTGAGGCAATTCAATCCGCCCTCCAACTCAGCGACAATGCCGCAGCTAACCTGCTGTTAAAAGAGGTTGGCGGCCCACCTTTATTGACAAAGTATTTCCGTAGCCTGGGTGATAAAGTAAGTCGCCTTGATCGTATTGAACCGACTTTGAACACCAATACGCCCGGCGATGAAAGAGATACAACAACGCCCATGTCCATGGCACAGACTGTGTCAAAGCTGATTTTTGGAGACACGTTGACATATAAATCCAAGGGGCAGCTAAGGCGATTACTCATCGGCAATCAGACCGGGGACAAAACCATTCGAGCTGGCTTGCCTGATTCATGGGTAACGGGTGACAAGACAGGCTCGTGTGCGAATGGCGGCCGTAACGATGTGGCGTTTTTTATAACCACTGCCGGAAAAAAATATGTTCTTTCTGTATATACCAATGCACCTGAATTGCAAGGCGAGGAAAGGGCGTTATTAATTGCTTCTGTAGCAAAGTTAGCACGTCAATATGTTGTTCACTGA " 1007 UPDATE OKP-A-8 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1006 UPDATE tet(V) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1721 UPDATED strand with - UPDATED accession with AF030344.1 UPDATED fmin with 461 UPDATED sequence with GTGCGCTCGCCGCGTCCGGTCGCAGGCTGGCGCGTACTCGCACCGTTCCGGATCCGCGAGTACCGCCTGCTGATCGCCGCGGTCACGCTGTCGATCTTCGCCGAGGGCATGTGGTCTGTGGTCATGGCGCTGCAGGTGATCGCGATCGACAACGATCCGGCGTCACTGTCGCTGGTCGCGACGTGCCTCGGTGTCGGCCTGGTCGCGTTCGTCCTCGTCGGCGGCATCACCGCGGACCGGATCAACCAGCGCACCATCATCATTGCCGTCGAGGTGGTCAACTTCGTCACGGTCGCGGTGATCTCCGCGCTGGCCCTGCTGGGCGTGCTGAAGATCTGGCACATGGCCGTTGCCGCAGGCATTCTCGGCATCGCGGCGGCGTTCTTCTTCCCGGCCTACAGCGCGATCCTGCCGCGCATCCTGCCGCCCGAACAGCTGCTGGCCGCCAACGGTGTCGAGGGCGTGGTACGCCCGGTGTTCCAGCGTTCGGTGGGCCCCGCGGTGGCCGGCATGGTCATCGGTGCAACGATGCCGTCGATCGGCGCGGTCGTGGTGGCGGTGCTGTTCGCGCTCGGCCTGGCGCTGCTGGTCGCGACCCGTCCGCCCGCCCAGCCCGCCTCCGAGCACCATGAGCGCCCGCACGTATTGCGGGACCTGCGTGAAGGTTTCGCCTTCGTCCTGAAGACACCGTGGCTGCTGTGGACCGTGCTGTTCGCGAGCATGTTCGTGCTCGTCGTGCTGGGACCCATCGAGGTGCTGCTGCCGTTCATCGCACAGGACCGCTTCGCCGACGGCGCCCGCGCCTACGGTTTCATCCTGGCGTTCTTCGGTATCGGCAGTGCGATGGGCGCGCTGACGGTGTCGTCGCGGCGCATGCCGCGCCGCTATCTCACGACCATGATGCTGATGTGGGGTCTCGGCTCGATTCCCCTTGTGATCGTGGGATATACATCGTCGTTCCCGCTGATGGCCGCTGCGACGTTCGTCATCGGCGTCACCGACGGCGCTGGCATGGTGATCTGGGGAACGCTGCTGCAACGGCGTGTGCCCACCGAGATGCTGGGCCGCGTGTCGAGCCTGGACTTCTTCGTATCGCTGGCGTTCATGCCGTTGTCATTCGCGATCGTGGGTCCGCTGTCGAAGGTGGTCTCGATGGAGGTGATCTTCGCGACGGCGGGTCTGGTGCCCGTGGCGATCGCGGCCGTGGCGTTCACCGCGGCGCGCATGCACCGTGACGAGGTGGCGAACCCACTGCTGTGA UPDATED NCBI_taxonomy_name with Mycobacterium smegmatis str. MC2 155 UPDATED NCBI_taxonomy_id with 246196 UPDATED NCBI_taxonomy_cvterm_id with 36769 UPDATED accession with AAB84282.1 UPDATED sequence with MRSPRPVAGWRVLAPFRIREYRLLIAAVTLSIFAEGMWSVVMALQVIAIDNDPASLSLVATCLGVGLVAFVLVGGITADRINQRTIIIAVEVVNFVTVAVISALALLGVLKIWHMAVAAGILGIAAAFFFPAYSAILPRILPPEQLLAANGVEGVVRPVFQRSVGPAVAGMVIGATMPSIGAVVVAVLFALGLALLVATRPPAQPASEHHERPHVLRDLREGFAFVLKTPWLLWTVLFASMFVLVVLGPIEVLLPFIAQDRFADGARAYGFILAFFGIGSAMGALTVSSRRMPRRYLTTMMLMWGLGSIPLVIVGYTSSFPLMAAATFVIGVTDGAGMVIWGTLLQRRVPTEMLGRVSSLDFFVSLAFMPLSFAIVGPLSKVVSMEVIFATAGLVPVAIAAVAFTAARMHRDEVANPLL " 513 UPDATE CARB-19 penam; antibiotic inactivation; CARB beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1004 UPDATE vanRD glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanR; vancomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATGAAAAAATCTTAGTGGTTGACGATGAAAAAGAGTTGGCCGACTTAGTTGAAGTGTACCTGAAAAACGATGGATATACCGTTTATAAATTTTATAATGGCAGGGACGCATTAAATTGCATTGAATCCGTGGAACTGGATTTAGCCATACTGGATATCATGCTCCCGGATATTGACGGTTTTCAAATCTGCCAGAAAATCCGGGAGAAGTTCTACTTCCCTGTTATCATGCTGACAGCGAAAGTAGAAGATGGGGATAAAATCATGGGGCTGTCCGTTGCAGATGATTATATTACGAAGCCGTTTAATCCGCTGGAAGTGGTTGCGAGGGTAAAGGCACAGCTAAGGCAGTACATGCGGTACAAGCAGCCCTGCATAAAGCAGGAGGCTGAACGCACGGAATACGATATCCGGGGGATGACAATCAGCAAGAGCAGCCATAAGTGTATCTTGTTTGGAAAGGAAATTCAACTGACACCAACGGAATTTTCGATCCTTTGGTATCTGTGCGAGCGTCAGGGAACGGTAGTTTCTACGGAGGAATTATTCGAGGCAGTATGGGGCGAGCGGTATTTTGACAGCAATAATACCGTGATGGCGCATATTGGGCGTCTCAGAGAGAAAATGAAGGAACCGTCAAGAAACCCGAAGTTCATAAAAACCGTGTGGGGAGTTGGATATACCATTGAAAAATAA " 515 UPDATE mgtA antibiotic inactivation; methymycin; macrolide antibiotic; mgt macrolide glycotransferase; tylosin; azithromycin; erythromycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1002 UPDATE AAC(6')-Ib4 antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGACCAACAGCAACGATTCCGTCACACTGCGCCTCATGACTGAGCATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGAGTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAACAGTACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTCACTCCATACATTGCAATGCTGAATGGAGAGCCGATTGGGTATGCCCAGTCGTACGTTGCTCTTGGAAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCAGGAGTACGCGGAATAGACCAGTCACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGAACCAAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCACCAAGATCCAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCTACGAGAAAGCGGGGTTTGAGAGGCAAGGTACCGTAACCACCCCAGATGGTCCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGCGAACACGCAGTGATGCCTAA " 1001 UPDATE Staphylococcus aureus mprF with mutation conferring resistance to daptomycin peptide antibiotic; antibiotic target alteration; daptomycin; daptomycin resistant mprF; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 1000 UPDATE AAC(6')-Ib-Hangzhou antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 623 UPDATE OXA-68 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 622 UPDATE DHA-7 antibiotic inactivation; cephalosporin; cephamycin; DHA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1225 UPDATE TEM-178 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 620 UPDATE OXA-320 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1223 UPDATE vph peptide antibiotic; viomycin phosphotransferase; antibiotic inactivation; tuberactinomycin; viomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGAATCATTGAGACGCACCGCGATCTGCTGAGCCGGCTCCTGCCCGGGGACACCGTGGGCGGACTCGCCGTCCACGAGGGGCAGTTCCACCATGTGGTGATCGGATCGCACCGGGTGGTCTGCTTCGCCCGCACCCGGGCGGCCGCCGACCGTCTGCCCGGCAGGGCGGACGTCCTGCGCGCTCTTGCCGGGATCGACCTCGGGTTTCGCACGCCGCAGCCGCTGTCCGAGGGCGGCGCCCAGGGCACGGACGAGCCGCCGTACCTGGTGCTGAGCCGCATTCCCGGAGCACCGTTGGAGGACGATGTGCTCACCAGCCCGGAGGTGGCGGAGGCCGTCGCCCGACAGTACGCGACCCTGCTGTCCGGGCTCGCGGCGGCGGGCGACGAGGAGAAGGTGCGCGCCGCGCTGCCGGAGGCTCCCGCGAACGAGTGGCAGGAGTTCGCCACGGGGGTGCGTACCGAACTGTTCCCGCTGATGTCCGACGGCGGCCGGGAGCGTGCCGAGCGCGAGCTCGCCGCGCTCGACGCCCTGCCCCATCTCACCTCCGCGGTGGTCCACGGTGACCTCGGCGGCGAGAACGTCCTGTGGGAGACGGTGGACGGAGTGCCGCGCATGAGCGGCGTCGTCGACTGGGACGAGGTCGGCATCGGCGACCCGGCTGAGGACCTGGCCGCCATCGGGGCGAGCTACGGCGAGGAACTGCTGGGCCGAGTGCTCGCGCTCGGCGGCTGGGCCGACAACGGAACGGCCGAGCGGATCTCGGCGATCCGAGGCACCTTCGCACTCCAGCAGGCCCTCTACGCGCAGCGCGACGGCGACGAGGAGGAACTCGCCGACGGCCTCAGCGGCTACCGGTAG " 626 UPDATE vanHB glycopeptide antibiotic; glycopeptide resistance gene cluster; vanH; antibiotic target alteration; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 625 UPDATE QnrB46 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 624 UPDATE Mycobacterium leprae rpoB mutations conferring resistance to rifampicin rifampin; rifapentine; rifabutin; peptide antibiotic; rifamycin-resistant beta-subunit of RNA polymerase (rpoB); antibiotic target replacement; antibiotic target alteration; rifamycin antibiotic; rifaximin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2276805 UPDATED strand with - UPDATED accession with AL450380 UPDATED fmin with 2273268 UPDATED sequence with GTGCTGGAAGGATGCATCTTGCCAGATTTCGGCCAGAGCAAGACAGACGTTAGTCCTAGCCAGAGTCGCCCCCAAAGTTCGCCCAACAACTCCGTGCCCGGCGCGCCCAACCGAATTTCATTTGCCAAGCTCCGCGAACCGCTTGAGGTTCCGGGGCTACTTGATGTGCAGACTGATTCATTTGAGTGGTTGATCGGATCGCCGTGCTGGCGTGCAGCGGCCGCAAGCCGCGGCGATCTCAAGCCGGTGGGTGGTCTCGAAGAGGTGCTCTACGAGCTGTCGCCGATCGAGGATTTCTCCGGCTCAATGTCATTGTCTTTCTCCGATCCCCGTTTTGACGAAGTCAAGGCGCCCGTCGAAGAGTGCAAAGACAAGGACATGACGTACGCGGCCCCGCTGTTCGTCACGGCCGAGTTCATCAACAACAACACCGGGGAGATCAAGAGCCAGACGGTGTTTATGGGCGACTTCCCTATGATGACTGAGAAGGGAACCTTCATCATCAACGGGACCGAGCGTGTCGTCGTTAGCCAGCTGGTGCGCTCCCCTGGAGTATACTTCGACGAGACGATCGACAAGTCCACAGAAAAGACGCTGCATAGTGTCAAGGTGATTCCCAGCCGCGGTGCCTGGTTGGAATTCGATGTCGATAAACGCGACACCGTCGGTGTCCGCATTGACCGGAAGCGCCGGCAACCCGTCACGGTGCTTCTCAAAGCGCTAGGTTGGACCAGTGAGCAGATCACCGAGCGTTTCGGTTTCTCCGAGATCATGCGCTCGACGCTGGAGAAGGACAACACAGTTGGCACCGACGAGGCGCTGCTAGACATCTATCGTAAGTTGCGCCCAGGTGAGCCGCCGACTAAGGAGTCCGCGCAGACGCTGTTGGAGAACCTGTTCTTCAAGGAGAAACGCTACGACCTGGCCAGGGTTGGTCGTTACAAGGTCAACAAGAAGCTCGGGTTGCACGCCGGTGAGTTGATCACGTCGTCCACGCTGACCGAAGAGGATGTCGTCGCCACCATAGAGTACCTGGTTCGTCTGCATGAGGGTCAGTCGACAATGACTGTCCCAGGTGGGGTAGAAGTGCCAGTGGAAACTGACGATATCGACCACTTCGGCAACCGCCGGCTGCGCACGGTCGGCGAATTGATCCAGAACCAGATCCGGGTCGGTATGTCGCGGATGGAGCGGGTGGTCCGGGAGCGGATGACCACCCAGGACGTCGAGGCGATCACGCCGCAGACGCTGATCAATATCCGTCCGGTGGTCGCCGCTATCAAGGAATTCTTCGGCACCAGCCAGCTGTCGCAGTTCATGGATCAGAACAACCCTCTGTCGGGCCTGACCCACAAGCGCCGGCTGTCGGCGCTGGGCCCGGGTGGTTTGTCGCGTGAGCGTGCCGGGCTAGAGGTCCGTGACGTGCACCCTTCGCACTACGGCCGGATGTGCCCGATCGAGACTCCGGAGGGCCCGAACATAGGTCTGATCGGTTCATTGTCGGTGTACGCGCGGGTCAACCCCTTCGGGTTCATCGAAACACCGTACCGCAAAGTGGTTGACGGTGTGGTCAGCGACGAGATCGAATACTTGACCGCTGACGAGGAAGACCGCCATGTCGTGGCGCAGGCCAACTCGCCGATCGACGAGGCCGGCCGCTTCCTCGAGCCGCGCGTGTTGGTGCGCCGCAAGGCGGGCGAGGTGGAGTACGTGGCCTCGTCCGAGGTGGATTACATGGATGTCTCGCCACGCCAGATGGTGTCGGTGGCCACAGCGATGATTCCGTTCCTTGAGCACGACGACGCCAACCGTGCCCTGATGGGCGCTAACATGCAGCGCCAAGCGGTTCCGTTGGTGCGCAGCGAAGCACCGTTGGTGGGTACCGGTATGGAGTTGCGCGCGGCCATCGACGCTGGCCACGTCGTCGTTGCGGAGAAGTCCGGGGTGATCGAGGAGGTTTCCGCCGACTACATCACCGTGATGGCCGATGACGGCACCCGGCGGACTTATCGGATGCGTAAGTTCGCGCGCTCCAACCACGGCACCTGCGCCAACCAGTCCCCGATCGTGGATGCGGGGGATCGGGTCGAGGCCGGCCAAGTGATTGCTGACGGTCCGTGCACTGAGAACGGCGAGATGGCGTTGGGCAAGAACTTGCTGGTGGCGATCATGCCGTGGGAGGGTCACAACTACGAGGATGCGATCATCCTGTCTAACCGACTGGTCGAAGAGGACGTGCTTACTTCGATTCACATTGAGGAGCATGAGATCGACGCCCGTGACACCAAGCTGGGTGCTGAGGAGATCACCCGGGACATTCCCAACGTCTCCGATGAGGTGCTAGCCGACTTGGACGAGCGGGGCATCGTGCGGATTGGCGCGGAGGTTCGTGACGGTGATATCCTGGTTGGCAAGGTCACCCCGAAGGGGGAAACTGAGCTGACACCGGAAGAGCGGTTGCTGCGGGCGATCTTCGGCGAAAAGGCCCGCGAGGTCCGTGACACGTCGCTGAAGGTGCCACACGGCGAATCCGGCAAGGTGATCGGCATTCGGGTGTTCTCCCATGAGGATGACGACGAGCTGCCCGCCGGCGTCAACGAGCTGGTCCGTGTCTACGTAGCCCAGAAGCGCAAGATCTCTGACGGTGACAAGCTGGCTGGGCGGCACGGCAACAAGGGCGTGATCGGCAAGATCCTGCCTGCCGAGGATATGCCGTTTCTGCCAGACGGCACCCCGGTGGACATCATCCTCAACACTCACGGGGTGCCGCGGCGGATGAACGTCGGTCAGATCTTGGAAACCCACCTTGGGTGGGTAGCCAAGTCCGGCTGGAAGATCGACGTGGCCGGCGGTATACCGGATTGGGCGGTCAACTTGCCTGAGGAGTTGTTGCACGCTGCGCCCAACCAGATCGTGTCGACCCCGGTGTTCGACGGCGCCAAGGAAGAGGAACTACAGGGCCTGTTGTCCTCCACGTTGCCCAACCGCGACGGCGATGTGATGGTGGGCGGCGACGGCAAGGCGGTGCTCTTCGATGGGCGCAGCGGTGAGCCGTTCCCTTATCCGGTGACGGTTGGCTACATGTACATCATGAAGCTGCACCACTTGGTGGACGACAAGATCCACGCCCGCTCCACCGGCCCGTACTCGATGATTACCCAGCAGCCGTTGGGTGGTAAGGCACAGTTCGGTGGCCAGCGATTCGGTGAGATGGAGTGCTGGGCCATGCAGGCCTACGGTGCGGCCTACACGCTGCAGGAGCTGTTGACCATCAAGTCCGACGACACCGTCGGTCGGGTCAAGGTTTACGAGGCTATCGTTAAGGGTGAGAACATCCCCGAGCCGGGCATCCCCGAGTCGTTCAAGGTGCTGCTCAAGGAGTTACAGTCGCTGTGTCTCAACGTCGAGGTGCTGTCGTCCGACGGTGCGGCGATCGAGTTGCGCGAAGGTGAGGATGAGGACCTCGAGCGGGCTGCGGCCAACCTCGGTATCAACTTGTCCCGCAACGAATCGGCGTCCATAGAAGATCTGGCTTAG UPDATED NCBI_taxonomy_name with Mycobacterium leprae UPDATED NCBI_taxonomy_id with 1769 UPDATED NCBI_taxonomy_cvterm_id with 40074 UPDATED accession with CAC30845.1 UPDATED sequence with MLEGCILPDFGQSKTDVSPSQSRPQSSPNNSVPGAPNRISFAKLREPLEVPGLLDVQTDSFEWLIGSPCWRAAAASRGDLKPVGGLEEVLYELSPIEDFSGSMSLSFSDPRFDEVKAPVEECKDKDMTYAAPLFVTAEFINNNTGEIKSQTVFMGDFPMMTEKGTFIINGTERVVVSQLVRSPGVYFDETIDKSTEKTLHSVKVIPSRGAWLEFDVDKRDTVGVRIDRKRRQPVTVLLKALGWTSEQITERFGFSEIMRSTLEKDNTVGTDEALLDIYRKLRPGEPPTKESAQTLLENLFFKEKRYDLARVGRYKVNKKLGLHAGELITSSTLTEEDVVATIEYLVRLHEGQSTMTVPGGVEVPVETDDIDHFGNRRLRTVGELIQNQIRVGMSRMERVVRERMTTQDVEAITPQTLINIRPVVAAIKEFFGTSQLSQFMDQNNPLSGLTHKRRLSALGPGGLSRERAGLEVRDVHPSHYGRMCPIETPEGPNIGLIGSLSVYARVNPFGFIETPYRKVVDGVVSDEIEYLTADEEDRHVVAQANSPIDEAGRFLEPRVLVRRKAGEVEYVASSEVDYMDVSPRQMVSVATAMIPFLEHDDANRALMGANMQRQAVPLVRSEAPLVGTGMELRAAIDAGHVVVAEKSGVIEEVSADYITVMADDGTRRTYRMRKFARSNHGTCANQSPIVDAGDRVEAGQVIADGPCTENGEMALGKNLLVAIMPWEGHNYEDAIILSNRLVEEDVLTSIHIEEHEIDARDTKLGAEEITRDIPNVSDEVLADLDERGIVRIGAEVRDGDILVGKVTPKGETELTPEERLLRAIFGEKAREVRDTSLKVPHGESGKVIGIRVFSHEDDDELPAGVNELVRVYVAQKRKISDGDKLAGRHGNKGVIGKILPAEDMPFLPDGTPVDIILNTHGVPRRMNVGQILETHLGWVAKSGWKIDVAGGIPDWAVNLPEELLHAAPNQIVSTPVFDGAKEEELQGLLSSTLPNRDGDVMVGGDGKAVLFDGRSGEPFPYPVTVGYMYIMKLHHLVDDKIHARSTGPYSMITQQPLGGKAQFGGQRFGEMECWAMQAYGAAYTLQELLTIKSDDTVGRVKVYEAIVKGENIPEPGIPESFKVLLKELQSLCLNVEVLSSDGAAIELREGEDEDLERAAANLGINLSRNESASIEDLA " 629 UPDATE VIM-28 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 628 UPDATE catB10 antibiotic inactivation; thiamphenicol; chloramphenicol acetyltransferase (CAT); azidamfenicol; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACCAACTATTTTGAAAGTCCATTTAAAGGCAAACTGCTGGCCGACCAGGTAAAGAACCCGAACATCAAAGTCGGACGGTATAGCTATTATTCCGGCTATTACCATGGCCATTCGTTTGACGAGTGCGCTCGCTTTCTCTTGCCAGATCGCGATGACATCGACCAACTGATCGTTGGTAGCTTCTGTTCCATCGGCACGGGCGCCTCCTTCATCATGGCCGGAAATCAGGGGCACCGTTATGACTGGGCGTCTTCTTTTCCCTTCTTCTACATGAAAGAGGAGCCAGCATTCTCGGGCGCACTTGATGCATTCCAAAAAGCCGGTGACACAGTCATCGGAAGTGATGTCTGGATAGGCTCTGAGGCCATGATCATGCCCGGCATCAACGTCGGTCATGGCGCTGTGATTGGAAGCCGCGCTTTGGTCACGAAAGATGTGGAGCCGTACACTATCGTTGGCGGAAATCCCGCCAAACCGATCAAGAAACGCTTCTCCGACGAGGAGATCGCCATGCTTTTGAAAATGAATTGGTGGGATTGGCCAACTGAAAAAATTGAGGAAGCAATGCCTTTGCTATGCTCATCCAACATCGTTGGGCTGCATCGATACTGGCAAGGCTTTGCCGTCTAA " 1229 UPDATE CTX-M-6 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGACTCAGAGCATTCGCCGCTCAATGTTAACGGTGATGGCGACGCTACCCCTGCTATTTAGCAGCGCAACGCTGCATGCGCAGGCGAACAGCGTGCAACAGCAGCTGGAAGCCCTGGAGAAAAGTTCGGGAGGTCGGCTTGGCGTTGCGCTGATTAACACCGCCGATAATTCGCAGATTCTCTACCTGGCCGATGAGCGTTTTGCGATGTGCAGTACCAGTAAGGTGATGGCGGCCGCGGCGGTGCTTAAACAGAGCGAGAGCGATAAGCACCTGCTAAATCAGCGCGTTGAAATCAAGGCGAGCGACCTGGTTAACTACAATCCCATTGCGGAGAAACACGTTAACGGCACGATGACGCTGGCTGAGCTTGGCGCAGGCGCCCTGCAGTATAGCGACAATACTGCCATGAATAAGCTGATTGCCCATCTGGGTGGGCCCGATAAAGTGACGGCGTTTGCCCGCTCGTTGGGTGATGAGACCTTCCGTCTGGACAGAACCGAGCCCACGCTCAATAGCGCCATTCCAGGCGACCCGCGTGATACCACCACGCCGCTCGCGATGGCGCAGACCCTGAAAAATCTGACGCTGGGTAAAGCGCTGGCGGAAACTCAGCGGGCACAGTTGGTGACGTGGCTTAAGGGCAATACTACCGGTAGCGCGAGCATTCGGGCGGGTCTGCCGAAATGTTGGGTAGTGGGCGATAAAACCGGCAGCGGAGATTATGGCACCACCAACGATATCGCGGTTATCTGGCCGGAAAACCACGCACCGCTGGTTCTGGTGACCTACTTTACCCAACCGGAGCAGAAGGCGGAAAGCCGTCGGGATGTTCTGGCTGCGGCGGCGAAAATCGTAACCCACGGTTTCTGA " 1228 UPDATE CMY-30 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2882 UPDATE tet(W/N/W) chlortetracycline; tetracycline antibiotic; antibiotic target protection; minocycline; tetracycline-resistant ribosomal protection protein; tetracycline; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2880 UPDATE QepA4 efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2881 UPDATE tet(59) antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; chlortetracycline; oxytetracycline; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; tetracycline; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2886 UPDATE Haemophilus influenzae PBP3 conferring resistance to beta-lactam antibiotics ceftaroline; ampicillin; flucloxacillin; ceftibuten; cefditoren; piperacillin; cefpodoxime; cefixime; cefdinir; meropenem; carbapenem; imipenem; aztreonam; cefradine; isopenicillin N; cefazolin; penicillin N; ceftazidime; cefepime; penicillin; antibiotic target alteration; oxacillin; cefmetazole; moxalactam; cloxacillin; cefadroxil; ceftriaxone; methicillin; loracarbef; ceftizoxime; cephalosporin; cefotaxime; cefaclor; Penicillin-binding protein mutations conferring resistance to beta-lactam antibiotics; cefonicid; monobactam; cefuroxime; amoxicillin; mezlocillin; azlocillin; cefalexin; doripenem; cefotiam; ertapenem; penam; cefprozil; cephapirin; ceftobiprole; benzylpenicillin; phenoxymethylpenicillin; cephamycin; carbenicillin; cefalotin; ceftiofur; mecillinam; propicillin; cefoxitin; dicloxacillin; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2884 UPDATE RSA-1 carbapenem; antibiotic inactivation; cephalosporin; RSA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2885 UPDATE RSA-2 carbapenem; antibiotic inactivation; cephalosporin; RSA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2888 UPDATE HERA-1 penam; HERA beta-lactamase; antibiotic inactivation; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with penam UPDATED category_aro_cvterm_id with 36017 UPDATED category_aro_accession with 3000008 UPDATED category_aro_class_name with Drug Class UPDATED category_aro_description with Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. " 2889 UPDATE TRU-1 penam; antibiotic inactivation; cephalosporin; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with penam UPDATED category_aro_cvterm_id with 36017 UPDATED category_aro_accession with 3000008 UPDATED category_aro_class_name with Drug Class UPDATED category_aro_description with Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. UPDATED category_aro_name with cephalosporin UPDATED category_aro_cvterm_id with 35951 UPDATED category_aro_accession with 0000032 UPDATED category_aro_class_name with Drug Class UPDATED category_aro_description with Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. " 2 UPDATE CblA-1 antibiotic inactivation; CblA beta-lactamase; cephaloridine; cephalosporin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAGCATATTTCATCGCCATACTTACCTTATTCACTTGTATAGCTACCGTCGTCCGGGCGCAGCAAATGTCTGAACTTGAAAACCGGATTGACAGTCTGCTCAATGGCAAGAAAGCCACCGTTGGTATAGCCGTATGGACAGACAAAGGAGACATGCTCCGGTATAACGACCATGTACACTTCCCCTTGCTCAGTGTATTCAAATTCCATGTGGCACTGGCCGTACTGGACAAGATGGATAAGCAAAGCATCAGTCTGGACAGCATTGTTTCCATAAAGGCATCCCAAATGCCGCCCAATACCTACAGCCCCCTGCGGAAGAAGTTTCCCGACCAGGATTTCACGATTACGCTTAGGGAACTGATGCAATACAGCATTTCCCAAAGCGACAACAATGCCTGCGACATCTTGATAGAATATGCAGGAGGCATCAAACATATCAACGACTATATCCACCGGTTGAGTATCGACTCCTTCAACCTCTCGGAAACAGAAGACGGCATGCACTCCAGCTTCGAGGCTGTATACCGCAACTGGAGTACTCCTTCCGCTATGGTCCGACTACTGAGAACGGCTGATGAAAAAGAGTTGTTCTCCAACAAGGAGCTGAAAGACTTCTTGTGGCAGACCATGATAGATACTGAAACCGGTGCCAACAAACTGAAAGGTATGTTGCCAGCCAAAACCGTGGTAGGACACAAGACCGGCTCTTCCGACCGCAATGCCGACGGTATGAAAACTGCAGATAATGATGCCGGCCTCGTTATCCTTCCCGACGGCCGGAAATACTACATTGCCGCCTTCGTCATGGACTCATACGAGACGGATGAGGACAATGCGAACATCATCGCCCGCATATCACGCATGGTATATGATGCGATGAGATGA " 1286 UPDATE SHV-34 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATTTTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCAGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGGACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGTGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTAGCGAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGGATTGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 11 UPDATE Erm(34) antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 10 UPDATE CARB-5 penam; antibiotic inactivation; CARB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACGTACGTAAACACAAGGCTAGTTTTTTTAGCGTAGTAATTACTTTTTTATGTCTCACGCTATCATTAAATGCTAATGCAACAGACTCAGTACTTGAAGCGGTTACCAATGCTGAAACTGAATTAGGCGCTAGAATTGGTCTAGCTGTGCATGATTTGGAAACGGGAAAACGTTGGGAACATAAATCTAATGAACGTTTTCCTCTAAGTAGTACCTTTAAAACACTTGCCTGTGCAAACGTTCTTCAAAGAGTTGATCTAGGTAAAGAAAGAATTGATAGAGTTGTGAGATTCTCTGAAAGCAATCTCGTTACATACTCACCTGTAACAGAAAAACATGTGGGTAAAAAAGGGATGTCGCTCGCAGAGCTGTGTCAGGCCACATTATCAACCAGTGATAATTCAGCTGCCAATTTTATTCTACAAGCGATTGGTGGACCTAAGGCTCTAACGAAATTTTTGCGTTCCATTGGCGACGATACTACGCGCCTTGATCGCTGGGAAACAGAACTTAACGAAGCGGTGCCTGGAGATAAGCGAGACACGACAACACCAATTGCAATGGTAACGACACTTGAAAAGTTACTAATTGACGAAACACTATCTATCAAATCTCGTCAACAACTAGAATCTTGGCTTAAAGGTAATGAGGTTGGCGATGCATTGTTTCGTAAAGGCGTTCCAAGTGACTGGATAGTAGCAGATAGAACAGGCGCTGGTGGTTATGGGTCGCGTGCTATTACTGCGGTGATGTGGCCTCCAAATCGCAAGCCTATCGTAGCCGCTCTATACATTACAGAGACAGACGCCTCGTTTGAAGAAAGAAATGCTGTCATTGCAAAAATTGGTGAGCAAATAGCGAAGACAGTATTAATGGAGAATAGCCGTAACTGA " 13 UPDATE LRA-12 penam; antibiotic inactivation; subclass B3 LRA beta-lactamase; cephalosporin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATGTTCAAAATTGTATGGTAAAAGCCGTTTCCGTTAGCATCATTTTATTTGCATCCCTTTCCCTTGCTGCGCAAAAGGTAAAGGAACCAACCGTTAGTAACGCAGACTGGTCAAAGCCGTACCGGCCCTTTAGAATTGCCGGCAATTTATATTACATCGGTACATATGATCTCGCTTGTTATCTTATTACTACTAAACAGGGTAATATCATTGTCAATACCGGGCTGGCGGCTTCTGCATTACAAATAAAAAATAATATCAAAGCGTTAGGCTTTAAGTTAACTGACACCAAAATACTCTTAACAACACAGGCCCATTATGACCATTTGGGTGCAATGGCTGAAATTAAGAAAATAACAGGCGCAAAGCTCATGGCAGATGAGGGCGATGCGACGGTAATGGCTGATGGAGGCAGTTCTGATTACGCCTTCGGCGGGCATGGCAGTATGTTTGAACCTATAATAGCAGACCGCCTGCTGCATGATAAGGATACCATTCAGTTAGGGGATACAAAATTGGTGATGTTGCATCATCCCGGTCACACGAAGGGTTCCTGCAGTTTTTTATTTGATACAAAAGATGAGCAACGATCTTACAGGATATTAATCGCCAACATGCCTACCATCGTTATTGAAAAAAAATTTAGTGAAGTAAGTAGTTATCCCGGCATTGCTAAAGACTATGCCTATACTTTACAGGCAATGAAAAATCTTTCTTTTGATATATGGGTTGCATCTCATGCCAGCCAGTTTAGTATGCATAGCAAACACAAGCCGGGCGATGGGTATAATCCCAAGTCTTTTATGGACAGGAAGGGTTATGATGAATCTTTGGATAAGCTGCAAAAAGAGTATGAAAAGCACTTGAATGAAAATTGA " 12 UPDATE TEM-126 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 15 UPDATE TEM-59 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATAAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGGGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAG " 14 UPDATE TEM-72 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 17 UPDATE tet(45) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 16 UPDATE KPC-10 antibiotic inactivation; penam; carbapenem; cephalosporin; monobactam; KPC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 19 UPDATE IMP-2 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 18 UPDATE OXA-212 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 928 UPDATE carA ABC-F ATP-binding cassette ribosomal protection protein; antibiotic target protection; macrolide antibiotic; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 36298 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. " 201 UPDATE OCH-3 penam; antibiotic inactivation; penem; cephalosporin; cephamycin; monobactam; OCH beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 200 UPDATE LEN-14 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 203 UPDATE OXY-2-8 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 202 UPDATE SHV-101 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 205 UPDATE APH(4)-Ia antibiotic inactivation; hygromycin B; aminoglycoside antibiotic; APH(4); plazomicin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAGCCTGAACTCACCGCGACGTCTGTCGAGAAGTTTCTGATCGAAAAGTTCGACAGCGTCTCCGACCTGATGCAGCTCTCGGAGGGCGAAGAATCTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATATGTCCTGCGGGTAAATAGCTGCGCCGATGGTTTCTACAAAGATCGTTATGTTTATCGGCACTTTGCATCGGCCGCGCTCCCGATTCCGGAAGTGCTTGACATTGGGGAATTCAGCGAGAGCCTGACCTATTGCATCTCCCGCCGTGCACAGGGTGTCACGTTGCAAGACCTGCCTGAAACCGAACTGCCCGCTGTTCTGCAGCCGGTCGCGGAGGCCATGGATGCGATCGCTGCGGCCGATCTTAGCCAGACGAGCGGGTTCGGCCCATTCGGACCGCAAGGAATCGGTCAATACACTACATGGCGTGATTTCATATGCGCGATTGCTGATCCCCATGTGTATCACTGGCAAACTGTGATGGACGACACCGTCAGTGCGTCCGTCGCGCAGGCTCTCGATGAGCTGATGCTTTGGGCCGAGGACTGCCCCGAAGTCCGGCACCTCGTGCACGCGGATTTCGGCTCCAACAATGTCCTGACGGACAATGGCCGCATAACAGCGGTCATTGACTGGAGCGAGGCGATGTTCGGGGATTCCCAATACGAGGTCGCCAACATCTTCTTCTGGAGGCCGTGGTTGGCTTGTATGGAGCAGCAGACGCGCTACTTCGAGCGGAGGCATCCGGAGCTTGCAGGATCGCCGCGGCTCCGGGCGTATATGCTCCGCATTGGTCTTGACCAACTCTATCAGAGCTTGGTTGACGGCAATTTCGATGATGCAGCTTGGGCGCAGGGTCGATGCGACGCAATCGTCCGATCCGGAGCCGGGACTGTCGGGCGTACACAAATCGCCCGCAGAAGCGCGGCCGTCTGGACCGATGGCTGTGTAGAAGTACTCGCCGATAGTGGAAACCGACGCCCCAGCACTCGTCCGAGGGCAAAGGAATAG UPDATED category_aro_name with plazomicin UPDATED category_aro_cvterm_id with 40307 UPDATED category_aro_accession with 3003675 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Plazomicin is a neoglycoside, or next-generation, aminoglycoside, that has been identified as a potentially useful agent to combat drug-resistant bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa. " 204 UPDATE VIM-43 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 207 UPDATE GES-12 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 206 UPDATE FomA fosfomycin; antibiotic inactivation; Fom phosphotransferase family; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACGCCCGATTTCTTGGCCATCAAGGTTGGCGGCAGCCTGTTCTCCCGCAAGGACGAACCCGGCAGCCTGGACGACGACGCGGTGACGCCGTTCGCCAGGAACTTCGCCCGGCTCGCCGAGACCTACCGGGGCCGGATGGTTCTCATCAGCGGCGGCGGCGCCTTCGGCCACGGGGCCATCCGTGACCACGACAGCACGCACGCGTTCTCCCTCGCCGGCCTGACCGAGGCCACCTTCGAGGTGAAGAAGCGGTGGGCCGAGAAGCTCCGCGGGATCGGCGTGGACGCCTTCCCGCTCCAGCTGGCGGCCATGTGCACGCTCCGCAACGGCATACCGCAGCTCCGGTCCGAGGTCCTCCGGGACGTCCTCGACCACGGCGCGCTGCCCGTCCTCGCCGGCGACGCCCTGTTCGACGAGCACGGAAAGCTGTGGGCGTTCTCCAGCGACCGCGTCCCCGAGGTCCTCCTGCCCATGGTCGAGGGGCGCCTCCGGGTCGTCACCCTGACCGACGTCGACGGCATCGTGACCGACGGCGCCGGCGGCGACACGATCCTGCCCGAGGTCGACGCCCGGTCCCCCGAGCAGGCGTACGCCGCGCTCTGGGGCAGCAGCGAATGGGACGCCACCGGCGCCATGCACACCAAGCTCGACGCACTGGTCACCTGCGCCCGCCGCGGTGCCGAGTGCTTCATCATGCGGGGCGACCCCGGCAGCGACCTGGAGTTCCTGACCGCCCCCTTCTCCTCCTGGCCGGCGCACGTGCGGTCCACCAGGATCACCACGACTGCTTCTGCGTAA " 209 UPDATE AAC(3)-Ib/AAC(6')-Ib'' antibiotic inactivation; kanamycin A; AAC(3); AAC(6'); isepamicin; aminoglycoside antibiotic; sisomicin; arbekacin; gentamicin B; netilmicin; gentamicin C; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGCATCATTGCAACCGTCAAGATCGGCCCTGACGAAATTTCAGCCATGAGGGCTGTGCTCGATCTCTTCGGCAAAGAGTTTGAGGACATTCCAACCTACTCTGATCGCCAGCCGACCAATGAGTATCTTGCCAATCTTCTGCACAGCGAGACGTTCATCGCGCTCGCTGCTTTTGACCGCGGAACAGCAATAGGTGGGCTCGCAGCCTACGTTCTACCCAAGTTCGAGCAAGCGCGAAGCGAGATCTACATTTATGACTTGGCAGTCGCTTCCAGCCATCGAAGGCTAGGAGTCGCAACTGCCCTGATTAGCCACCTGAAGCGTGTGGCGGTTGAACTTGGCGCGTATGTAATCTATGTGCAAGCAGACTACGGTGACGATCCGGCAGTCGCTCTCTACACAAAGCTTGGAGTTCGGGAAGACGTCATGCACTTCGACATTGATCCATTGACCAACAGCAACGATTCCGTCACACTGCGCCTCATGACTGAGCATGACCTTGCGATGCTCTATGAGTGGGTAAATCGATCTCATATCGTCGAGTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAACAGTACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTCACTCCATACATTGCAATGCTGAATGGAGAGCCGATTGGGTATGCCCAGTCGTACGTTGCTCTTGGAGGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCAGGAGTACGCGGAATAGACCAGTCACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGAACCAAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCACCAAGATCCAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCTACGAGAAAGCGGGGTTTGAGAGGCAAGGTACCGTAACCACCCCAGATGGTCCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGCGAACACGCAGTGATGCCTAA " 208 UPDATE CMY-105 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCACTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGCATGGCCGTGGCAATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAATTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATGAAGTTACGGATAAAGCCGAATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGTGGTAAAACCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAATTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACAGGTGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATAGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGCGTCGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA " 1573 UPDATE SHV-110 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1572 UPDATE OXA-205 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCAATCCGATTCCTCACCATACTGCTATCTACTTTTTTTCTTACCTCATTCGTGCATGCGCAAGAACACGTGGTAGTCCGTTCTGACTGGAAGAAGTTCTTCAGCGACCTCCAGGCCGAAGGTGCAATCGTTATTGCAGACGAACGTCAAGCGGAGCATGCTTTATTGGTTTTTGGTCAAGAGCGAGCAGCAAAGCGTTACTCGCCTGCTTCAACCTTCAAGCTTCCACACACACTTTTTGCACTCGATGCAGGCGCCGTTCGTGATGAGTTCCAGGTTTTTCGATGGGATGGCGTTAAGCGGAGCTTTGCGGGCCACAATCAAGACCAAGACTTGCGATCAGCGATGCGAAATTCTGCGGTCTGGGTTTATGAGCTATTTGCAAAAGAGATCGGAGAGGACAACGCAAGACGCTATTTAAAGCAAATTGACTATGGCAACGCCGACCCTTCGACAATTAAGGGCAATTACTGGATAGATGGCAATCTTGAAATCTCAGCGCACGAACAGATTTCGTTTCTCAGAAAACTTTATCGAAATCAGCTGCCATTTCAGGTGGAACACCAGCGCTTGGTCAAATATCTCATGATTACGGAAGCCGGGCGCAACTGGATACTACGCGCAAAGACTGGCTGGGAAGGCAGGTTTGGCTGGTGGATAGGGTGGGTTGAATGGCCAACCGGTCCCGTATTCTTCGCGCTGAATATTGATACGCCAAACAGAACGGATGATCTTTTCAAAAGAGAGGCAATCGCGCGGGCAATCCTTCGCTCTATCGACGCGTTGCCGCCCAACTAA " 1571 UPDATE vanSE glycopeptide antibiotic; vanS; antibiotic target alteration; vancomycin; glycopeptide resistance gene cluster; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TTGAAAAATAATCTAACAGTGCAGATTACAAAAAAATATTTCTATACAATGATCATAATAACAACTATTCTAGTGATCCTTCCTTTGGTAGCCAAAATGTTTCTTTCTCTTCGAGTATGGCAGGGTACTGAATTTTTTTACCCAATATTATATATTTTAAATAGATCATTAGGAGTCTGGTTGATTGTAACACCGTTATTTATTTGGTTGATAGTGACTTATATGTTCTTTAGAAAAATGATTAGCTATTTAGAGGAAATGATAGTGGCTACTAAGAGTTTAATTGAAACACCGAATGAAAAAATAGTGTTAAGAGTTGAATTAGCAGAGTTTGAGAATGAAATTAATCATATTCGTATAGATAGTTTAGAGAATAAAAAGATGGCCGAAGAAGCAGGAAAAAAAAGAGATGATCTTCTAACCTATTTAGCACATGACTTGAGAACTCCTTTGACGAGTATTATTGGATATATCTCACTACTTCAAAATGAACAAACCTACTTGGAATTAGATTCTACAAAAAGGAAAAATTATATAGACATCATTTCAGACAAAGCTAACAGATTAGAGCATCTGCTCAATGATTTTTTTGAAATTGCAAAAACAGGCAAAAGTAGAGAAGAGGTGTATAAAGAAGAAGTAGATTTAAGCTTGATGTTAAGCCAAATTAGTTCTGAATTTTTGCCTCTTTTAGACGAGAAGAAGCTTGAGTGGGATTTTAAGATTGAACCAAATGTCTTTGTCCAATTAAATATTAATAAATTTGAACGAGTGTTGGATAATCTTATTAGAAATGCTATATCATACTCGCTCAATGATACAACGATAAAACTTACATTAGAGAAAGTAGATGAGAAAGTAGTAGTATCTGTAGGAAATATAACTGATAAGGTATCAGAAAAGGACATAGACCAGCTATTTGAACCATTTTACAGAGGAGATAAATCGAGAAATACAAAAACAGGGAATGCTGGTCTAGGGTTAGCAATTGCCAAACAAATTATTAGTGAGCATGGTGGAACTATCGAGGCAGAACTACAAAATAATGATTTCAAAGTATCAATTATTTTGTAA " 1570 UPDATE OprA antibiotic efflux; tobramycin; resistance-nodulation-cell division (RND) antibiotic efflux pump; ofloxacin; norfloxacin; meropenem; macrolide antibiotic; carbapenem; efflux pump complex or subunit conferring antibiotic resistance; arbekacin; ciprofloxacin; tetracycline antibiotic; gentamicin C; amikacin; aminoglycoside antibiotic; fluoroquinolone antibiotic; tetracycline; erythromycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2231 UPDATE CPS-1 carbapenem; antibiotic inactivation; CPS beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2230 UPDATE PEDO-3 carbapenem; antibiotic inactivation; subclass B1 PEDO beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2233 UPDATE MSI-1 carbapenem; antibiotic inactivation; MSI beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2232 UPDATE ESP-1 carbapenem; antibiotic inactivation; ESP beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2235 UPDATE SPG-1 carbapenem; SPG beta-lacatamase; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2234 UPDATE MSI-OXA MSI-OXA family beta-lactamase; carbapenem; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1576 UPDATE OXA-17 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TATCGCGTGTCTTTCGAGTACGGCATTAGCTGGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTCTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATGACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAGCGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAGCAATGGGAAAGAGACTTGACCTTAAGAGGGGCAATACAAGTTTCAGCTGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATACCTTAAAAAATTTTCCTATGGCAACCAGAATATCAGTGGTGGCATTGACAAATTCTGGTTGGAAGGCCAGCTTAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATATTTAAATAAATTGTCAGCATCTAAAGAAAACCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCGGCACCTGAATATCTAGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGGTGGGTTGAGAAGGAGACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAGTAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGAAAGTGAGGGCATCATTGGTGGCTA " 1575 UPDATE OXA-91 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATTAAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGTCTGCTAATCCAAATCACAGTGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACTACAGAAGTATTTAAGTGGGACGGGCAAAAAAGGCTATTCCCAGAATGGGAAAAGAACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAATGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAATTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAGACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGTTTAGAACAATTAGGTATTTTATAG " 1574 UPDATE Mycobacterium tuberculosis inhA mutations conferring resistance to isoniazid antibiotic resistant inhA; isoniazid; triclosan; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with ATGACAGGACTGCTGGACGGCAAACGGATTCTGGTTAGCGGAATCATCACCGACTCGTCGATCGCGTTTCACATCGCACGGGTAGCCCAGGAGCAGGGCGCCCAGCTGGTGCTCACCGGGTTCGACCGGCTGCGGCTGATTCAGCGCATCACCGACCGGCTGCCGGCAAAGGCCCCGCTGCTCGAACTCGACGTGCAAAACGAGGAGCACCTGGCCAGCTTGGCCGGCCGGGTGACCGAGGCGATCGGGGCGGGCAACAAGCTCGACGGGGTGGTGCATTCGATTGGGTTCATGCCGCAGACCGGGATGGGCATCAACCCGTTCTTCGACGCGCCCTACGCGGATGTGTCCAAGGGCATCCACATCTCGGCGTATTCGTATGCTTCGATGGCCAAGGCGCTGCTGCCGATCATGAACCCCGGAGGTTCCATCGTCGGCATGGACTTCGACCCGAGCCGGGCGATGCCGGCCTACAACTGGATGACGGTCGCCAAGAGCGCGTTGGAGTCGGTCAACAGGTTCGTGGCGCGCGAGGCCGGCAAGTACGGTGTGCGTTCGAATCTCGTTGCCGCAGGCCCTATCCGGACGCTGGCGATGAGTGCGATCGTCGGCGGTGCGCTCGGCGAGGAGGCCGGCGCCCAGATCCAGCTGCTCGAGGAGGGCTGGGATCAGCGCGCTCCGATCGGCTGGAACATGAAGGATGCGACGCCGGTCGCCAAGACGGTGTGCGCGCTGCTGTCTGACTGGCTGCCGGCGACCACGGGTGACATCATCTACGCCGACGGCGGCGCGCACACCCAATTGCTCTAG " 2092 UPDATE Enterobacter aerogenes acrR with mutation conferring multidrug antibiotic resistance penam; antibiotic efflux; triclosan; rifampin; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; antibiotic target alteration; tetracycline antibiotic; cephalosporin; cefalotin; tigecycline; glycylcycline; ampicillin; fluoroquinolone antibiotic; rifamycin antibiotic; phenicol antibiotic; tetracycline; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 1287 UPDATED strand with - UPDATED accession with AJ306389.1 UPDATED fmin with 636 UPDATED sequence with ATGGCACGAAAAACCAAACAACAGGCACTTGAAACCCGGCAACTGATTCTTGACGTCGCCCTGCGATTGTTTTCGCAGCAAGGGGTATCATCTACCTCGTTGGCCGCGATTGCAAAAGCTGCTGGAGTGACCAGGGGCGCTATATACTGGCATTTCAAAAACAAATCCGATCTGTTTAATGAAATATGGAGTCTTTCTGACGCCAGCATTAGCGATCTCGAAGTTGAGTATCGGGCAAAATTCCCTAACGATCCACTGTCAGTTGTTCGCGAAATACTGGTTTATATCCTCGAAGCGACGGTAGTAGAGGAGCGTAGGCGCCTGATGATGGAAATCATCTTCCATAAATGCGAATTTGTCGGAGAAATGGCCGTTGTCCAACAAGCGCAGCGCAGTTTATGGCTTGAAAGCTACGATCGTATTGAGCAAACATTAAAAGATTGTATCACTGCTCAACAATTACCTGCGAATTTACTCACTCGCCGTGCGGCAATTCTGATGCGCAGTTATCTTTCCGGATTAATGGAAAACTGGCTCTTTGCACCAGAGAGTTTTAACCTTCATGCGGAAGCCCGTGCTTATGTCGATGCGCTGATTGAGATGTATCAGACCTGCCCGTCGCTACGAAGTTCGTCTGAGGTCATGGCCTGA UPDATED NCBI_taxonomy_name with Enterobacter aerogenes UPDATED NCBI_taxonomy_id with 548 UPDATED NCBI_taxonomy_cvterm_id with 36770 UPDATED accession with CAC35723.1 UPDATED sequence with MARKTKQQALETRQLILDVALRLFSQQGVSSTSLAAIAKAAGVTRGAIYWHFKNKSDLFNEIWSLSDASISDLEVEYRAKFPNDPLSVVREILVYILEATVVEERRRLMMEIIFHKCEFVGEMAVVQQAQRSLWLESYDRIEQTLKDCITAQQLPANLLTRRAAILMRSYLSGLMENWLFAPESFNLHAEARAYVDALIEMYQTCPSLRSSSEVMA " 2525 UPDATE AAC(6')-34 antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2524 UPDATE AAC(2')-IIb antibiotic inactivation; aminoglycoside antibiotic; AAC(2'); kasugamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2527 UPDATE mphI antibiotic inactivation; macrolide phosphotransferase (MPH); macrolide antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2526 UPDATE vgbC virginiamycin S2; pristinamycin IB; quinupristin; vernamycin B-gamma; ostreogrycin B3; vernamycin C; pristinamycin IA; antibiotic inactivation; streptogramin antibiotic; streptogramin vgb lyase; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2521 UPDATE BahA Bah amidohydrolase; peptide antibiotic; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2520 UPDATE CatU antibiotic inactivation; thiamphenicol; chloramphenicol acetyltransferase (CAT); azidamfenicol; phenicol antibiotic; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2523 UPDATE VatI dalfopristin; antibiotic inactivation; streptogramin vat acetyltransferase; pristinamycin IIA; madumycin II; griseoviridin; streptogramin antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2522 UPDATE TaeA pleuromutilin; ATP-binding cassette (ABC) antibiotic efflux pump; antibiotic efflux; pleuromutilin antibiotic; efflux pump complex or subunit conferring antibiotic resistance; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2529 UPDATE cpaA antibiotic inactivation; capreomycin; aminoglycoside antibiotic; cpa acetyltransferase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2528 UPDATE rphB antibiotic inactivation; rifampin; rifapentine; rifampin phosphotransferase; rifabutin; rifaximin; rifamycin antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1829 UPDATE CMY-87 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1828 UPDATE GES-6 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1825 UPDATE CTX-M-27 antibiotic inactivation; ceftazidime; cefalotin; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1824 UPDATE oleI antibiotic inactivation; ole glycosyltransferase; macrolide antibiotic; oleandomycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1827 UPDATE SHV-5 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTACTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTAGCAAGCGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATACCCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 1826 UPDATE ykkC antibiotic efflux; small multidrug resistance (SMR) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; streptomycin; aminoglycoside antibiotic; phenicol antibiotic; tetracycline; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAATGGGGATTGGTCGTGCTTGCCGCTGTTTTCGAGGTTGTTTGGGTGATAGGCTTAAAGCACGCTGACTCAGCCTTAACATGGAGCGGCACTGCCATCGGCATCATATTCAGCTTTTACCTTCTAATGAAGGCGACTCACAGTCTGCCTGTTGGTACCGTGTATGCCGTCTTTACCGGGCTCGGCACAGCGGGAACAGTACTTAGTGAAATCGTTCTTTTTCATGAACCGGTTGGATGGCCGAAGCTATTGTTAATTGGCGTGCTCTTAATCGGTGTAATCGGGTTGAAGCTTGTGACACAGGATGAGACAGAGGAAAAAGGAGGCGAGGCATAA " 1821 UPDATE AAC(6')-Ir antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1820 UPDATE bacA peptide antibiotic; undecaprenyl pyrophosphate related proteins; bacitracin B; bacitracin F; bacitracin A; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 3204131 UPDATED strand with - UPDATED accession with U00096.3 UPDATED fmin with 3203309 UPDATED sequence with ATGAGCGATATGCACTCGCTGCTGATAGCGGCAATATTGGGTGTGGTCGAAGGATTGACAGAATTTCTGCCGGTATCCAGCACGGGCCATATGATTATTGTCGGTCACTTGTTGGGGTTTGAGGGCGACACGGCGAAAACCTTTGAAGTTGTGATCCAGTTAGGATCAATTCTGGCGGTAGTAGTGATGTTCTGGCGGCGTCTGTTTGGCCTGATTGGCATCCACTTTGGCCGCCCGTTGCAGCACGAAGGTGAAAGCAAAGGTCGTTTAACGCTGATCCACATTTTGCTGGGGATGATTCCGGCGGTGGTATTGGGGCTGTTGTTCCACGACACGATTAAGTCATTGTTTAACCCGATAAATGTGATGTATGCGCTGGTCGTTGGCGGTTTGTTGCTGATTGCCGCCGAATGCCTGAAGCCGAAAGAGCCGCGTGCGCCGGGTCTTGATGATATGACCTATCGTCAGGCATTTATGATTGGCTGTTTCCAGTGTCTGGCGCTGTGGCCGGGTTTCTCCCGTTCCGGGGCGACCATTTCAGGTGGGATGCTGATGGGGGTGAGCCGTTACGCTGCTTCCGAGTTTTCGTTCCTGCTGGCGGTGCCGATGATGATGGGCGCAACGGCGCTCGATCTCTACAAAAGCTGGGGCTTCCTGACAAGCGGCGATATCCCGATGTTTGCCGTTGGGTTTATCACCGCTTTTGTGGTGGCGCTGATAGCGATTAAAACCTTCCTGCAATTGATTAAGCGCATTTCGTTTATCCCGTTCGCCATTTATCGCTTTATTGTGGCGGCTGCGGTGTATGTCGTGTTCTTTTAA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. MG1655 UPDATED NCBI_taxonomy_id with 511145 UPDATED NCBI_taxonomy_cvterm_id with 36849 UPDATED accession with AAC76093.1 UPDATED sequence with MSDMHSLLIAAILGVVEGLTEFLPVSSTGHMIIVGHLLGFEGDTAKTFEVVIQLGSILAVVVMFWRRLFGLIGIHFGRPLQHEGESKGRLTLIHILLGMIPAVVLGLLFHDTIKSLFNPINVMYALVVGGLLLIAAECLKPKEPRAPGLDDMTYRQAFMIGCFQCLALWPGFSRSGATISGGMLMGVSRYAASEFSFLLAVPMMMGATALDLYKSWGFLTSGDIPMFAVGFITAFVVALIAIKTFLQLIKRISFIPFAIYRFIVAAAVYVVFF " 1823 UPDATE OXY-1-3 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1822 UPDATE Staphylococcus aureus gyrB conferring resistance to aminocoumarin clorobiocin; aminocoumarin antibiotic; novobiocin; coumermycin A1; antibiotic target alteration; aminocoumarin resistant gyrB; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with GTGACTGCATTGTCAGATGTAAACAACACGGATAATTATGGTGCTGGGCAAATACAAGTATTAGAAGGTTTAGAAGCAGTACGTAAAAGACCAGGTATGTATATAGGATCGACTTCAGAGAGAGGTTTGCACCATTTAGTGTGGGAAATTGTCGATAATAGTATCGATGAAGCATTAGCTGGTTATGCAAATCAAATTGAAGTTGTTATTGAAAAAGATAACTGGATTAAAGTAACGGATAACGGACGTGGTATCCCAGTTGATATTCAAGAAAAAATGGGACGTCCAGCTGTCGAAGTTATTTTAACTGTTTTACATGCTGGTGGTAAATTCGGCGGTGGCGGATACAAAGTATCTGGTGGTTTACATGGTGTTGGTTCATCAGTTGTAAACGCATTGTCACAAGACTTAGAAGTATATGTACACAGAAATGAGACTATATATCATCAAGCATATAAAAAAGGTGTACCTCAATTTGACTTAAAAGAAGTTGGCACAACTGATAAGACAGGTACTGTCATTCGTTTTAAAGCAGATGGAGAAATCTTCACAGAGACAACTGTATACAACTATGAAACATTACAGCAACGTATTAGAGAGCTTGCTTTCTTAAACAAAGGAATTCAAATCACATTAAGAGATGAACGTGATGAAGAAAACGTTAGAGAAGACTCCTATCACTATGAGGGCGGTATTAAATCTTATGTTGAGTTATTGAACGAAAATAAAGAACCTATTCATGATGAGCCGATTTATATTCATCAATCTAAAGATGATATTGAAGTAGAAATTGCGATTCAATATAACTCAGGATATGCCACAAATCTTTTAACTTACGCAAATAACATTCATACGTACGAAGGTGGTACGCATGAAGACGGATTCAAACGTGCATTAACGCGTGTCTTAAATAGTTATGGTTTAAGTAGCAAGATTATGAAAGAAGACAAAGATAGACTTTCTGGTGAAGATACACGTGAAGGTATGACAGCAATTATATCTATCAAACATGGTGATCCTCAATTCGAAGGTCAAACGAAGACAAAATTAGGTAATTCTGAAGTGCGTCAAGTTGTAGATAAATTATTCTCAGAGCACTTTGAACGATTTTTATATGAAAATCCACAAGTCGCACGTACAGTGGTTGAAAAAGGTATTATGGCGGCACGTGCACGTGTTGCTGCGAAAAAAGCGCGTGAAGTAACACGTCGTAAATCAGCGTTAGATGTAGCAAGTCTTCCAGGTAAATTAGCCGATTGCTCTAGTAAAAGTCCTGAAGAATGTGAGATTTTCTTAGTCGAAGGGGACTCTGCCGGGGGGTCTACAAAATCTGGTCGTGACTCTAGAACGCAGGCGATTTTACCATTACGAGGTAAGATATTAAATGTTGAAAAGGCACGATTAGATAGAATTTTGAATAACAATGAAATTCGTCAAATGATCACAGCATTTGGTACAGGAATCGGTGGCGACTTTGATCTAGCGAAAGCAAGATATCACAAAATCGTCATTATGACTGATGCCGATGTGGATGGAGCGCATATTAGAACATTGTTATTAACATTCTTCTATCGATTTATGAGACCGTTAATTGAAGCAGGCTATGTGTATATTGCACAGCCACCGTTGTATAAACTGACACAAGGTAAACAAAAGTATTATGTATACAATGATAGGGAACTTGATAAACTTAAATCTGAATTGAATCCAACACCAAAATGGTCTATTGCACGATACAAAGGTCTTGGAGAAATGAATGCAGATCAATTATGGGAAACAACAATGAACCCTGAGCACCGCGCTCTTTTACAAGTAAAACTTGAAGATGCGATTGAAGCGGACCAAACATTTGAAATGTTAATGGGTGACGTTGTAGAAAACCGTAGACAATTTATAGAAGATAATGCAGTTTATGCAAACTTAGACTTCTAA " 2147 UPDATE Escherichia coli EF-Tu mutants conferring resistance to Enacyloxin IIa pulvomycin; elfamycin resistant EF-Tu; GE2270A; LFF571; elfamycin antibiotic; enacyloxin IIa; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 3471329 UPDATED strand with - UPDATED accession with NC_000913.3 UPDATED fmin with 3470144 UPDATED sequence with GTGTCTAAAGAAAAATTTGAACGTACAAAACCGCACGTTAACGTTGGTACTATCGGCCACGTTGACCACGGTAAAACTACTCTGACCGCTGCAATCACCACCGTACTGGCTAAAACCTACGGCGGTGCTGCTCGTGCATTCGACCAGATCGATAACGCGCCGGAAGAAAAAGCTCGTGGTATCACCATCAACACTTCTCACGTTGAATACGACACCCCGACCCGTCACTACGCACACGTAGACTGCCCGGGGCACGCCGACTATGTTAAAAACATGATCACCGGTGCTGCTCAGATGGACGGCGCGATCCTGGTAGTTGCTGCGACTGACGGCCCGATGCCGCAGACTCGTGAGCACATCCTGCTGGGTCGTCAGGTAGGCGTTCCGTACATCATCGTGTTCCTGAACAAATGCGACATGGTTGATGACGAAGAGCTGCTGGAACTGGTTGAAATGGAAGTTCGTGAACTTCTGTCTCAGTACGACTTCCCGGGCGACGACACTCCGATCGTTCGTGGTTCTGCTCTGAAAGCGCTGGAAGGCGACGCAGAGTGGGAAGCGAAAATCCTGGAACTGGCTGGCTTCCTGGATTCTTATATTCCGGAACCAGAGCGTGCGATTGACAAGCCGTTCCTGCTGCCGATCGAAGACGTATTCTCCATCTCCGGTCGTGGTACCGTTGTTACCGGTCGTGTAGAACGCGGTATCATCAAAGTTGGTGAAGAAGTTGAAATCGTTGGTATCAAAGAGACTCAGAAGTCTACCTGTACTGGCGTTGAAATGTTCCGCAAACTGCTGGACGAAGGCCGTGCTGGTGAGAACGTAGGTGTTCTGCTGCGTGGTATCAAACGTGAAGAAATCGAACGTGGTCAGGTACTGGCTAAGCCGGGCACCATCAAGCCGCACACCAAGTTCGAATCTGAAGTGTACATTCTGTCCAAAGATGAAGGCGGCCGTCATACTCCGTTCTTCAAAGGCTACCGTCCGCAGTTCTACTTCCGTACTACTGACGTGACTGGTACCATCGAACTGCCGGAAGGCGTAGAGATGGTAATGCCGGGCGACAACATCAAAATGGTTGTTACCCTGATCCACCCGATCGCGATGGACGACGGTCTGCGTTTCGCAATCCGTGAAGGCGGCCGTACCGTTGGCGCGGGCGTTGTTGCTAAAGTTCTGGGCTAA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. MG1655 UPDATED NCBI_taxonomy_id with 511145 UPDATED NCBI_taxonomy_cvterm_id with 36849 UPDATED accession with NP_417798.1 UPDATED sequence with MSKEKFERTKPHVNVGTIGHVDHGKTTLTAAITTVLAKTYGGAARAFDQIDNAPEEKARGITINTSHVEYDTPTRHYAHVDCPGHADYVKNMITGAAQMDGAILVVAATDGPMPQTREHILLGRQVGVPYIIVFLNKCDMVDDEELLELVEMEVRELLSQYDFPGDDTPIVRGSALKALEGDAEWEAKILELAGFLDSYIPEPERAIDKPFLLPIEDVFSISGRGTVVTGRVERGIIKVGEEVEIVGIKETQKSTCTGVEMFRKLLDEGRAGENVGVLLRGIKREEIERGQVLAKPGTIKPHTKFESEVYILSKDEGGRHTPFFKGYRPQFYFRTTDVTGTIELPEGVEMVMPGDNIKMVVTLIHPIAMDDGLRFAIREGGRTVGAGVVAKVLG " 929 UPDATE GES-10 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGCTTCATTCACGCACTATTACTGGCAGGGACCGCTCACTCTGCATATGCGTCGGAAAAATTAACCTTCAAGACCGATCTTGAGAAGCTAGAGCGCGAAAAAGCAGCTCAGATCGGTGTTGCGATCGTCGATCCCCAAGGAGAGATCGTCGCGGGCCACCGAACGGCGCAGCGCTTTGCAATGTGCTCAACGTTCAAGTTTCCGCTAGCCGCGCTGGTCTTTGAAAGAATTGACTCAGGCACCGAGCGGGGGGATCGAAAACTTTCATATGGGCCGGACATGATCGTCGAATGGTCTCCTGCCACGGAGCGGTTTCTAGCATCGGGACACATGACGGTTCTCGAGGCAGCGCAAGCTGCGGTGCAGCTTTGCGACAATGGGGCTACTAACCTCTTACTGAGAGAAATTGGCGGACCTGCTGCAATGACGCAGTATTTTCGTAAAATTGGCGACTCTGTGAGTCGGCTAGACCGGAAAGAGCCGGAGATGGGCGACAACACACCTGGCGACCTCAGAGATACAACTACGCCTATTGCTATGGCACGTACTGTGGCTAAAGTCCTCTATGGCGGCGCACTGACGTCCACCTCGACCCACACCATTGAGAGGTGGCTGATCGGAAACCAAACGGGAGACGCGACACTACGAGCGGGTTTTCCTAAAGATTGGGTTGTTGGAGAGAAAACTGGTACCTGCGCCAACGGGGGCCGGAACGACATTGGTTTTTTTAAAGCCCAGGAGAGAGATTACGCTGTAGCGGTGTATACAACGGCCCCGAAACTATCGGCCGTAGAACGTGACGAATTAGTTGCCTCTGTCGGTCAAGTTATTACACAACTCATCCTGAGCACGGACAAATAG " 2144 UPDATE Mycobacterium bovis embB mutations conferring resistance to ethambutol antibiotic target alteration; ethambutol resistant arabinosyltransferase; polyamine antibiotic; ethambutol; model_description; ARO_name "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED ARO_name with Mycobacterium bovis embB with mutation conferring resistance to ethambutol " 2416 UPDATE abcA penam; peptide antibiotic; ATP-binding cassette (ABC) antibiotic efflux pump; antibiotic efflux; daptomycin; cefotaxime; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; methicillin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 4359 UPDATED strand with + UPDATED accession with XM_748018.1 UPDATED fmin with 0 UPDATED sequence with ATGAATGAAAGTCATGAAGCTGGAAAAAATTCCTCTACCAATGTGGAGGAGAGGGAAGAGGAGGTTCTTCGGCTAGCCAGACAGTTCACAGAGCAGAGCAGCTATTCCACGGCGGGACAAACCCCCTTTGCTGCGGAGGCCGGATCGGCCCTGGACCCCAATGGTGAACGCTTCAACGCTCGGGCATGGTGCAAGGCCATGCTGCAGATGCACATTGGGGACAAGGAGGCACACCCACTGCGAACCTTGGGGGTCGCCTTCAGCAATCTCAATGTGCATGGTTTCGGTTCCGACACTGATTACCAGAAAAGCGTCGGCAATGTCTGGTTAAAGACGCTCAGCCTGGCAAGAATAGCATTTGGTCAAAAGCAGCGCAAAGTCGACATTTTGCAGAACTTGGAAGGATTGGTGGAGGCTGGAGAGATGCTCGTCGTACTTGGACCCCCTGGATCTGGATGCTCCACTTTTTTGAAGACCATTGCTGGAGAGACTTACGGCTTTCATGTGGACAAAAACTCAAACATCAATTTCCAAGGCATCGCAAAGCAGATGGCCCACGAGTTCAGGGGTGAAGCCATCTATACCGCAGAGGTTGATGTCCACTTCCCCAAGCTCACGGTTGGAGATACCCTTTATTTCGCGGCTCGTGCCCGAACACCACGACACATTCCTGGGGGGGTGAATGCGACCCAGTATGCCGGCCACATGCGAGACGTGATCATGGCCATGTTTGGTATCAGCCATACGAAGAACACAATTGTCGGAAACGACTTCATCCGCGGTGTATCTGGTGGAGAGCGCAAGCGGGTTAGCATTGCGGAAGCTTGTCTCAGCAATGCACCGCTGCAATGTTGGGACAATTCGACTCGTGGTCTTGATAGTGCGAATGCCATTGAGTTCTGCAAAACCTTACGCATGCAGGCAGATATCAATGGCACCACAGCCTGTGTCTCTCTATATCAAGCTCCCCAGGCTGCGTACGACTATTTCGATAAGGTCCTGGTCCTATACGAAGGTCGCGAGATCTACTTTGGTCCCACATCCATGGCGAAGCACTACTTCCTTCAGATGGGCTTCGTATGCCCTGACCGGCAAACCGATGCCGACTTTCTCACATCTATGACTAGCCATCTTGAGCGTGTTGTTCAGCCTGGTTATGAAGATCGCGTACCTCGAACACCTGATGAGTTCGCTGCACGATGGAAGGCCTCACCACAGCGAGCACAGCTGATGCAACACATCAAGAGTTATAATGCAAAGTTCGCACTGGATGGGGAATACCTGGATAAGTTTAAGCAATCTCGGCGAGCCCAGCAAGCCAAGGCTCAGCGGGTATCATCACCCTACACTCTTTCCTATGTCCAACAGGTGAAACTGTGCCTGTGGCGCGGGTATCAACGATTGAAGGCTGACCCCAGTGTCACAATCTCTTCATTATTCGGAAATACTATCATATCCCTAGTTATCGCCAGTATCTTCTACAACCTCAAGGCTGACACCAGCACCTTTTTTCAGCGTGGTGCTCTTCTCTTCTTTGCTGTTCTTATGAACGCTCTTGGCTGCGGCCTTGAAATGCTGACTCTATACGCGCAACGAGGGATCATCGAGAAGCACTCCCGATACGCTCTCTACCATCCATCTGCTGAAGCTTTTTCATCAATGATAATGGATTTGCCCTATAAGATTCTCAACGCCATTACGTCCAATATAGTTCTGTACTTCATGACCAACTTGAGGAGAGAACCCGGGGCTTTCTTCTTCTTTGTCTTCACTTCGTTCATCCTGACTCTGACCATGTCCATGTTCTTCCGGTCTATGGCATCGCTATCCAGATCCCTTGTCCAAGTTCTGCCCTTCTCCGCCGTGCTACTTCTCGGTCTCAGCATGTACACTGGGTTCGCTATCCCGACTGGATATATGCTGGGCTGGGCTCGCTGGATTGCGTACATCAATCCCATCAGCTATGGCTTTGAGTCACTGATGATCAATGAGTTCCACAACCGCGATTTCCCGTGCATGGACTATGTCCCATCGGGTCCTGGCTATACGGATGTCGGGCTCAACAACCGTGTTTGCTCCACCGTCAGATCAGTGCCTGGACAAGCCTTTGTCAATGGCAATGCTTACATTGAGTCAGCATATAGCTATACCGCTTCTCACAAATGGAGAAACATCGGTGTCATATTCGCTTACATGTTCCTGCTTGGGGCGGTCTATCTCGTTGCTACTGACTTCATCACCGAGAAGAAGCCGAAGGGCGAGATCCTGGTATTTCCTCGCGGACACAAGGCTCTGAAGAAAGGCAAGTCAGATGAGGATCTTGAAGGGGGTGGTGGCCGCAGCGCCACAGTCGAGAAGATCGGCTCAGATGGCCTTGCCATGATTGAACGCCAAACCGCAATCTTCCAGTGGAAGGATGTCTGCTTCGATATCAAGATTGGAAAGGAGAATTGCAGGATTCTTGACCATGTTGACGGATGGGTCAAACCGGGAATCTTGACGGCGCTTATGGGTGTTTCGGGTGCTGGAAAGACCACGCTCTTGGATGTCCTTGCTACGCGCACCACGATGGGGATTATCAGTGGAGAAATGCTCGTCGATGGTCAACCGCGTGATGAGTCCTTTCAACGTAAGACCGGCTATGCTCAGCAACAAGATCTGCATTTGAGTACTGCTACCGTGCGCGAGGCACTTGAGTTCTCTGCTCTTCTACGTCAATCTGCTCACGTTCCTCGTCAAGAGAAGATTGACTACGTGACAGAAGTGATCAAGCTTCTTGACATGACGGAGTATGCTGATGCCGTTATTGGGGTGCCTGGTGAAGGCCTGAACGTTGAGCAACGTAAACGTCTCACAATCGGGGTAGAGCTTGCAGCCAGACCCCAACTCCTCCTTTTCCTAGACGAACCGACCTCAGGACTTGATTCTCAGACATCCTGGGCTATTCTTGATCTCCTCGATAAACTGAAGAAGAACGGCCAGGCTATTTTGTGTACCATCCATCAACCATCTGCCATGCTGTTTCAGCGCTTTGATCGTCTCCTCTTCCTTCAAGCTGGGGGTCGTACTGTCTACTTTGGAGAAATCGGTCAGAACTCGCAAATACTGATTGACTACTTCGTCCGCAACGGTGCCCCTCCATGTCCTCCGGATGCGAATCCTGCCGAATGGATGCTGGATGTGATCGGTGCCGCTCCCGGATCACACACCAGCATCAACTGGTTCGAGACCTGGCGTCGATCCCCCGAATATGCACGAGTCCAAGAGCACCTTGCTGAACTGAAACACGAACGTCGCCACCAAACAAACCTGTTCCGCACTACATCCGGCCAAAAGCGCGAAGACAAAGACAGCTACCGCGAGTTCGCTGCTCCTTTCTGGGCCCAGCTCTACCAAGTCCAAGTACGAGTCTTCCAGCAAATCTGGCGGTCACCCACCTACATCTACTCCAAGACCGCTCTCTGCGTGTTATCCGCTCTCTTCGTCGGCTTCTCCCTTTTCCATACACCCAACACCATCCAAGGCCTCCAGAATCAAATGTTCGGCATCTTCATGCTACTTACCCTGTTCGGCCAGCTTATCCAACAAATCATGCCGCATTTCGTCGCCCAGCGCGCGCTGTATGAAGTCCGCGACCGACCTGCAAAAACCTACTCTTGGAAAGCCTTCCTCATCGCCAACATCGTTGTTGAACTCCCCTGGAACTCGCTCATGTCCGTCCTTATGTTCCTGTGCTGGTACTACCCGATTGGTCTTTACCGCAATGCCGAACCAACTGATGCGGTGCACTTGCGGGGCACGCAAATGTGGCTGATGATCTGGACCTTCCTTCTCTTCTCGTCCACCTTTGCCCATTTTATGATCGCAGCGTTTGACGCCGCCGAGAACGCGGGAAACCTCGGAAACCTGCTTTTCCTGCTTTGTCTGCTTTTCTGCGGCGTGCTAGCGACACCGGATCAGCTCCCACGGTTCTGGATCTTCATGTATCGCGTTTCGCCGTTTACATATCTGGTGAGCGGGATGTTGTCTGTGGGTATATCGAATACGAATGTCACCTGCGCGGACAATGAGTATCTGCGCTTTGACCCCGTCAATGGGACTTGCGGCGAGTACATGGGCTCATACATGTCGAATCTGGGCGGGTACCTTGCAGACGAGATGGCGACTGCGAACTGCAGCTTCTGCCCGATCAAGGAGACGAATGTGTTCCTCGGTAGAGTTTCGTCGAGTTACTCGGATATCTGGAGGAACTTTGGGCTCATGTGGGTATTTATTGTTTTCAATATCTTTGCAGCTTGTTCGCTGTACTGGTGGGTTCGTGTTCCACGAGACAAGAAGCCAGTTGCAAAGGCCGAGTGA UPDATED NCBI_taxonomy_name with Aspergillus fumigatus Af293 UPDATED NCBI_taxonomy_id with 330879 UPDATED NCBI_taxonomy_cvterm_id with 40696 UPDATED accession with XP_753111.1 UPDATED sequence with MNESHEAGKNSSTNVEEREEEVLRLARQFTEQSSYSTAGQTPFAAEAGSALDPNGERFNARAWCKAMLQMHIGDKEAHPLRTLGVAFSNLNVHGFGSDTDYQKSVGNVWLKTLSLARIAFGQKQRKVDILQNLEGLVEAGEMLVVLGPPGSGCSTFLKTIAGETYGFHVDKNSNINFQGIAKQMAHEFRGEAIYTAEVDVHFPKLTVGDTLYFAARARTPRHIPGGVNATQYAGHMRDVIMAMFGISHTKNTIVGNDFIRGVSGGERKRVSIAEACLSNAPLQCWDNSTRGLDSANAIEFCKTLRMQADINGTTACVSLYQAPQAAYDYFDKVLVLYEGREIYFGPTSMAKHYFLQMGFVCPDRQTDADFLTSMTSHLERVVQPGYEDRVPRTPDEFAARWKASPQRAQLMQHIKSYNAKFALDGEYLDKFKQSRRAQQAKAQRVSSPYTLSYVQQVKLCLWRGYQRLKADPSVTISSLFGNTIISLVIASIFYNLKADTSTFFQRGALLFFAVLMNALGCGLEMLTLYAQRGIIEKHSRYALYHPSAEAFSSMIMDLPYKILNAITSNIVLYFMTNLRREPGAFFFFVFTSFILTLTMSMFFRSMASLSRSLVQVLPFSAVLLLGLSMYTGFAIPTGYMLGWARWIAYINPISYGFESLMINEFHNRDFPCMDYVPSGPGYTDVGLNNRVCSTVRSVPGQAFVNGNAYIESAYSYTASHKWRNIGVIFAYMFLLGAVYLVATDFITEKKPKGEILVFPRGHKALKKGKSDEDLEGGGGRSATVEKIGSDGLAMIERQTAIFQWKDVCFDIKIGKENCRILDHVDGWVKPGILTALMGVSGAGKTTLLDVLATRTTMGIISGEMLVDGQPRDESFQRKTGYAQQQDLHLSTATVREALEFSALLRQSAHVPRQEKIDYVTEVIKLLDMTEYADAVIGVPGEGLNVEQRKRLTIGVELAARPQLLLFLDEPTSGLDSQTSWAILDLLDKLKKNGQAILCTIHQPSAMLFQRFDRLLFLQAGGRTVYFGEIGQNSQILIDYFVRNGAPPCPPDANPAEWMLDVIGAAPGSHTSINWFETWRRSPEYARVQEHLAELKHERRHQTNLFRTTSGQKREDKDSYREFAAPFWAQLYQVQVRVFQQIWRSPTYIYSKTALCVLSALFVGFSLFHTPNTIQGLQNQMFGIFMLLTLFGQLIQQIMPHFVAQRALYEVRDRPAKTYSWKAFLIANIVVELPWNSLMSVLMFLCWYYPIGLYRNAEPTDAVHLRGTQMWLMIWTFLLFSSTFAHFMIAAFDAAENAGNLGNLLFLLCLLFCGVLATPDQLPRFWIFMYRVSPFTYLVSGMLSVGISNTNVTCADNEYLRFDPVNGTCGEYMGSYMSNLGGYLADEMATANCSFCPIKETNVFLGRVSSSYSDIWRNFGLMWVFIVFNIFAACSLYWWVRVPRDKKPVAKAE " 920 UPDATE TEM-152 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 921 UPDATE OKP-A-11 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 922 UPDATE AAC(6')-30/AAC(6')-Ib' fusion protein antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACATTCCTGATCCGACCCGTAGAACAAAGTGACGCTGAATCTTGGGAGCGCTTACGCAACCTTTTGTGGGAGGGCGACGACCACAAAAGCGAGATCACACAATTCTTCAACGGCGAAGTAGAAGAACCCAATGAAGTGTTGCTTGCCGTAACCGAAGAAAATGATGCAATAGCGCACATCGAGCTATCGTTGAGGTATGACATTGATGGCTTGACGGGCATCAAGACCGGTTACATCGAAGGCCTTTTTGTAGAGGAGCGGCACCGTGCCGCAGGTGTAGTCCTCAAGCTATTGCGAGCCGCAGAGTTCTGGGCAAGAGATCAAGGATGTCTGGCGTTTGCCTCAGACAGGGATGATCGTGTCATCATCTATGCTCGCTACACGGGAGCGCCACCTAACAATTCATTAGGCATCACAAAGTACAGCATCGTGACCAACAGCAACGATTCCGTCACACTGCGCCTCATGACTGAGCATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGAGTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAACAGTACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTCACTCCATACATTGCAATGCTGAATGGAGAGCCGATTGGGTATGCCCAGTCGTACGTTGCTCTTGGAAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCAGGAGTACGCGGAATAGACCAGTCACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGAACCAAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCACCAAGATCCAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCTACGAGAAAGCGGGGTTTGAGAGGCAAGGTACCGTAACCACCCCAGATGGTCCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGCGAACACGCAGTGTTGCCTAA " 923 UPDATE VIM-25 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTAAAAGTTATTAGTAGTTTATTGGTCTACATGACCGCGTCTGTCATGGCTGTAGCTAGTCCGTTAGCCCATTCCGGGGAGCCGAGTGGTGAGTATCCGACAGTCAACGAAATTCCGGTCGGAGAGGTCCGGCTTTACCAGATTGCTGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTTTGATGGCGCGGTCTACCCATCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCCCTTCTCGCGGAGATTGAGAAGCAAATTGGACTTCCCGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGAAGGCTGGAGTGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCCGAGGCAGAGGGGAACGAGATTCCCACGCACTCTCTAGAAGGACTCTCATCGAGCGGGGACGCAGTGCGCTTCGGTCCAGTAGAGCTCTTCTATCCCGGTGCTGCGCATTCGACCGACAATCTGGTTGTATACGTCCCGTCAGCGAACGTGCTATACGGTGGTTGTGCCGTTCTTGCGTTGTCACGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCGTTGAGCGGATTCAAAAACACTACCCGGAAGCACAGTTCGTCATTCCGGGGCACGGCCTGCCGGGCGGTCTAGACTTGCTCAAGCACACAACGAATGTTGTAAAAGCGCACACAAATCGCTCAGTCGTTGAGTAG " 924 UPDATE AAC(6')-33 antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCGTATGAGTTCTGCGAAATAGGTGAATCAAACGAATATATTATTCTGGCGGCTAGAATCTTAACGAAATCATTCCTAGATATCGGTAATAATTCCTGGCCTGACATGAAAAGTGCTACTAAAGAAGTTGAAGAATGCATTGAGAAGCCAAACATATGTCTTGGAATACATGAAAATGAAAAATTGCTTGGATGGATTGGCCTTAGGCCCATGTACAAATTAACATGGGAATTACATCCCTTGGTAATAAGTACTCAATATCAGAATAAAGGTATTGGAAGACTTTTAATAAATGAATTAGAAAAAAAAGCAAAGCAAATTGGAATAATTGGAATAGTATTGGGAACTGACGATGAATACTTTAAAACTTCATTATCAGCTGTTGATCTTTACGGCGAAAATATTCTTGATGAGATAAGGACTATTAAAAACATAAAAAATCATCCGTACGAATTCTATCAAAAATGTGGGTATTCCATTGTCGGAGTAATACCCGATGCAAATGGAAAAAGGAAGCCAGATATTTGGATGTGGAAGAAGATAAATGATTAG " 925 UPDATE AAC(3)-IIb antibiotic inactivation; AAC(3); gentamicin B; gentamicin C; amikacin; aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACACGATCGAATCGATCACGGCGGACCTGCACGGACTGGGCGTCCGGCCCGGCGACCTGATCATGGTCCATGCATCGCTGAAAGCCGTCGGCCCGGTCGAGGGAGGTGCGGCCTCGGTGGTGTCGGCCCTTCGCGCCGCGGTCGGGTCCGCAGGGACCCTGATGGGTTATGCCTCATGGGACCGCTCGCCCTATGAGGAGACGCTGAACGGCGCGCGGATGGACGAAGAACTGCGCCGCCGGTGGCCACCCTTCGATCTGGCCACATCCGGTACCTATCCCGGCTTCGGCCTGCTCAACCGGTTTCTGCTTGAGGCGCCCGACGCACGGCGCAGCGCGCATCCCGACGCCTCCATGGTCGCGGTCGGCCCCCTTGCCGCCACGCTGACAGAGCCGCACCGGCTTGGGCAGGCGCTGGGCGAAGGCTCGCCGCTGGAGCGCTTCGTCGGGCATGGCGGAAAGGTCCTGCTTCTGGGAGCGCCGCTCGACTCCGTCACCGTGCTGCATTACGCCGAGGCCATCGCCCCCATCCCGAACAAACGCCGCGTGACCTATGAAATGCCGATGCTCGGCCCGGATGGCAGGGTCCGATGGGAGCTGGCCGAGGATTTCGACAGCAACGGCATTCTCGATTGCTTCGCGGTCGATGGGAAGCCGGATGCCGTCGAGACGATCGCCAAGGCTTATGTCGAACTGGGCCGGCATCGGGAAGGCATCGTCGGTCGCGCACCCTCCTATCTGTTTGAAGCGCAGGATATCGTCTCGTTCGGCGTCACCTATCTCGAACAGCATTTCGGCGCGCCCTGA " 926 UPDATE KPC-15 antibiotic inactivation; penam; carbapenem; cephalosporin; monobactam; KPC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2148 UPDATE Ureaplasma urealyticum gyrB conferring resistance to fluoroquinolone aminocoumarin antibiotic; antibiotic target alteration; moxifloxacin; fluoroquinolone resistant gyrB; grepafloxacin; trovafloxacin; ofloxacin; norfloxacin; nalidixic acid; lomefloxacin; gatifloxacin; coumermycin A1; ciprofloxacin; fleroxacin; levofloxacin; sparfloxacin; clorobiocin; novobiocin; Clofazimine; clinafloxacin; enoxacin; pefloxacin; fluoroquinolone antibiotic; cinoxacin; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2411 UPDATE Shigella flexneri gyrA conferring resistance to fluoroquinolones nybomycin; norfloxacin; nalidixic acid; fluoroquinolone resistant gyrA; antibiotic target alteration; fluoroquinolone antibiotic; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2354859 UPDATED strand with - UPDATED accession with NC_004337.2 UPDATED fmin with 2352231 UPDATED sequence with ATGAGCGACCTTGCGAGAGAAATTACACCGGTCAACATTGAGGAAGAGCTAAAGAGCTCCTATCTGGATTATGCGATGTCGGTCATTGTTGGCCGTGCGCTGCCAGATGTCCGAGATGGCCTGAAGCCGGTACACCGTCGCGTACTTTACGCCATGAACGTACTAGGCAATGACTGGAACAAAGCCTATAAAAAATCTGCCCGTGTCGTTGGTGACGTAATCGGTAAATACCATCCCCATGGTGACTCGGCGGTTTATGACACGATCGTCCGTATGGCGCAGCCATTCTCGCTGCGTTACATGCTGGTAGACGGTCAGGGTAACTTCGGTTCCATCGACGGCGACTCTGCGGCGGCAATGCGTTATACGGAAATCCGTCTGGCGAAAATTGCCCATGAACTGATGGCCGATCTCGAAAAAGAGACGGTCGATTTCGTTGATAACTATGACGGCACGGAAAAAATTCCCGACGTCATGCCAACCAAAATTCCTAACCTGCTGGTGAACGGTTCTTCCGGTATCGCCGTAGGTATGGCAACCAACATCCCGCCGCACAACCTGACGGAAGTCATCAACGGTTGTCTGGCGTATATCGATGATGAAGACATCAGCATTGAAGGGCTGATGGAACACATCCCGGGGCCGGACTTCCCGACGGCGGCAATCATTAACGGTCGTCGCGGTATTGAAGAAGCTTACCGTACCGGTCGCGGCAAGGTATATATCCGCGCCCGTGCTGAAGTGGAAGTTGACGCCAAAACCGGACGTGAAACCATTATCGTCCACGAAATTCCGTATCAGGTAAACAAAGCGCGCCTGATCGAGAAGATTGCGGAACTGGTAAAAGAAAAACGCGTGGAAGGCATCAGCGCGCTGCGTGACGAGTCTGACAAAGACGGTATGCGCATCGTGATTGAAGTGAAACGCGATGCGGTCGGTGAAGTTGTGCTCAACAACCTCTACTCCCAGACCCAGTTGCAGGTTTCTTTCGGTATCAACATGGTGGCATTGCACCATGGTCAGCCGAAGATCATGAACCTGAAAGACATCATCGCGGCGTTTGTTCGTCACCGCCGTGAAGTGGTGACCCGTCGTACTATTTTCGAACTGCGTAAAGCTCGCGATCGTGCTCATATCCTTGAAGCATTAGCCGTGGCGCTGGCGAACATTGACCCGATCATCGAACTGATCCGTCATGCGCCGACGCCTGCAGAAGCGAAAACTGCGCTGGTTGCTAATCCGTGGCAGCTGGGCAACGTTGCCGCCATGTTGGAACGTGCTGGCGACGATGCTGCGCGTCCGGAATGGCTGGAGCCAGAGTTCGGCGTGCGTGATGGTCTGTACTACCTGACCGAACAGCAAGCTCAGGCGATTCTGGATCTGCGTTTGCAGAAACTGACCGGCCTTGAGCACGAAAAACTGCTCGACGAATACAAAGAGCTGCTGGATCAGATCGCGGAACTGTTGCGTATTCTTGGTAGCGCCGATCGTCTGATGGAAGTGATCCGCGAAGAGCTGGAGCTGGTTCGTGAACAGTTCGGTGACAAACGTCGTACTGAAATCACCGCCAACAGCGCAGACATCAACCTGGAAGATCTGATCACCCAGGAAGATGTGGTCGTGACGCTCTCTCACCAGGGCTACGTTAAATATCAGCCGCTTTCTGAATACGAAGCGCAGCGTCGTGGCGGGAAAGGTAAATCTGCCGCACGTATTAAAGAAGAAGACTTTATCGACCGACTGCTGGTGGCGAACACGCACGACCATATTCTGTGCTTCTCCAGCCGTGGTCGCGTCTATTCGATGAAAGTTTACCAGTTGCCGGAAGCCACTCGTGGCGCGCGCGGTCGTCCGATCGTCAACCTGCTACCGCTGGAACAGGACGAACGTATCACCGCGATCCTGCCGGTGACCGAGTTTGAAGAAGGCGTGAAAGTCTTCATGGCGACCGCTAACGGTACTGTGAAGAAAACCGTCCTCACCGAATTCAACCGTCTGCGTACCGCCGGTAAAGTGGCGATCAAACTGGTTGACGGCGATGAGCTGATCGGCGTTGATCTGACCAGTGGCGAAGATGAAGTAATGCTGTTCTCCGCCGAAGGTAAAGTGGTGCGCTTTAAAGAGTCTTCTGTCCGTGCGATGGGCTGCAATACCACTGGTGTGCGCGGTATTCGCTTAGGTGAAGGCGATAAAGTCGTCTCTCTGATCGTGCCTCGTGGCGATGGCGCAATCCTCACCGCAACGCAAAACGGTTACGGTAAACGTACTGCAGTGGCGGAATACCCAACCAAGTCGCGTGCGACGAAAGGGGTTATCTCCATCAAGGTTACCGAACGTAACGGTTTAGTGGTTGGCGCGGTGCAGGTAGATGACTGCGACCAGATCATGATGATCACCGATGCCGGTACGCTGGTACGTACTCGCGTTTCAGAAATCAGCATCGTGGGCCGTAACACCCAGGGCGTGATCCTCATCCGTACTGCGGAAGATGAAAACGTAGTGGGTCTGCAGCGTGTTGCTGAACCGGTTGACGAGGAAGATCTGGATACCATCGACGGCAGTGCCGCGGAAGGGGATGATGAAATTGCTCCGGAAGTGGACGTTGACGACGAGCCAGAAGAAGAATAA UPDATED NCBI_taxonomy_name with Shigella flexneri 2a str. 301 UPDATED NCBI_taxonomy_id with 198214 UPDATED NCBI_taxonomy_cvterm_id with 40665 UPDATED accession with NP_708120.1 UPDATED sequence with MSDLAREITPVNIEEELKSSYLDYAMSVIVGRALPDVRDGLKPVHRRVLYAMNVLGNDWNKAYKKSARVVGDVIGKYHPHGDSAVYDTIVRMAQPFSLRYMLVDGQGNFGSIDGDSAAAMRYTEIRLAKIAHELMADLEKETVDFVDNYDGTEKIPDVMPTKIPNLLVNGSSGIAVGMATNIPPHNLTEVINGCLAYIDDEDISIEGLMEHIPGPDFPTAAIINGRRGIEEAYRTGRGKVYIRARAEVEVDAKTGRETIIVHEIPYQVNKARLIEKIAELVKEKRVEGISALRDESDKDGMRIVIEVKRDAVGEVVLNNLYSQTQLQVSFGINMVALHHGQPKIMNLKDIIAAFVRHRREVVTRRTIFELRKARDRAHILEALAVALANIDPIIELIRHAPTPAEAKTALVANPWQLGNVAAMLERAGDDAARPEWLEPEFGVRDGLYYLTEQQAQAILDLRLQKLTGLEHEKLLDEYKELLDQIAELLRILGSADRLMEVIREELELVREQFGDKRRTEITANSADINLEDLITQEDVVVTLSHQGYVKYQPLSEYEAQRRGGKGKSAARIKEEDFIDRLLVANTHDHILCFSSRGRVYSMKVYQLPEATRGARGRPIVNLLPLEQDERITAILPVTEFEEGVKVFMATANGTVKKTVLTEFNRLRTAGKVAIKLVDGDELIGVDLTSGEDEVMLFSAEGKVVRFKESSVRAMGCNTTGVRGIRLGEGDKVVSLIVPRGDGAILTATQNGYGKRTAVAEYPTKSRATKGVISIKVTERNGLVVGAVQVDDCDQIMMITDAGTLVRTRVSEISIVGRNTQGVILIRTAEDENVVGLQRVAEPVDEEDLDTIDGSAAEGDDEIAPEVDVDDEPEEE " 1920 UPDATE vanSF glycopeptide antibiotic; vanS; antibiotic target alteration; vancomycin; glycopeptide resistance gene cluster; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGGTAAAATACTACGAGGCTTTCGTTCAAAAATGATAATATTGTTAGGTTTAAGCATGTTGTTGTCTAGCGCCATAACATACCTACTCTTTAAAGTACTCCAATTGTATTATTATACAAGTGTTGATTATGGAGATACACTAGCTTATTTTCGCAAAATCATACAAAATATTGGAGACTTTAACGTCTTTTTACTGTTATTTATCTTGCTTTCGATATTATTTTTCTTTTTACTTACAAAACCCTATTCTGCCTATTTCAATGAAATTTCAAAAGGAATTCATTATCTCGCTCAGGGTGACTTTAAGCATCGAGTTCAAATATTGTCAAATGATGAATTTAGTGATATTGCACAAAGCATTAATCTGGCAAGTGAAAAATTGGAACAAGCCATAGAAAGGGGTGACTTTTCGGAAAGTAGTAAAGAGCAGTTAGTAGTAAATTTGGCTCATGATTTGCGCACACCTCTTACCTCTGTTTTAGGTTATTTAGATTTAATCCTTAAGGATGATAACTTGACTGAAAATCAGATCAGACATTATTTAACGATTGCCTTTACCAAATCTCAACGCTTAGAAAGGTTAATTGATGAATTATTTGAAATAACTAGGATGAATTATGGCATGTTACCAATTAAAAAGAAACAAATCGATTTAAGTGAGCTACTTATTCAATTGAAAGAAGAGTTGTATCCTGTCTTCGAGAAAAACGATTTGATAGCAAGAATGAATATTACTTCCCCTTTATCTATTATGGGTGATGGAGAGTTATTGGCACGTGTGTTTGAAAATCTTCTGATTAATGCAAATCGCTATGGGTATGAGGGGCAGTATGTAGATATCAACGGTTTTATTGATTCAGAGGAAGTCGTTATTCAAGTTATCAATTATGGGGATGCTATTCCTCCAGATGAACTGCCTCATATTTTTGATATGCTTTTTACTGGTGACAAAGCACGAACTCATCAAGAAAATAGTACAGGTCTCGGTTTATTCATTGCGGAGAATATTGTAGAGCAACACAATGGGACAATAACTGCCGAAAGTGATTTAATACGCACGATATTTGAAGTCCGATTACCAATGGCGGATTCCTAA " 1921 UPDATE EreB antibiotic inactivation; macrolide esterase; macrolide antibiotic; roxithromycin; clarithromycin; azithromycin; erythromycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1922 UPDATE marA penem; tetracycline antibiotic; antibiotic efflux; rifampin; resistance-nodulation-cell division (RND) antibiotic efflux pump; reduced permeability to antibiotic; carbapenem; cephalosporin; cefalotin; protein(s) and two-component regulatory system modulating antibiotic efflux; ampicillin; penam; triclosan; efflux pump complex or subunit conferring antibiotic resistance; cephamycin; tigecycline; glycylcycline; General Bacterial Porin with reduced permeability to beta-lactams; monobactam; fluoroquinolone antibiotic; chloramphenicol; phenicol antibiotic; tetracycline; rifamycin antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCCAGACGCAATACTGACGCTATTACCATTCATAGCATTTTGGACTGGATCGAGGACAACCTGGAATCGCCACTGTCACTGGAGAAAGTGTCAGAGCGTTCGGGTTACTCCAAATGGCACCTGCAACGGATGTTTAAAAAAGAAACCGGTCATTCATTAGGCCAATACATCCGCAGCCGTAAGATGACGGAAATCGCGCAAAAGCTGAAGGAAAGTAACGAGCCGATACTCTATCTGGCAGAACGATATGGCTTCGAGTCGCAACAAACTCTGACCCGAACCTTCAAAAATTACTTTGATGTTCCGCCGCATAAATACCGGATGACCAATATGCAGGGCGAATCGCGCTTTTTACATCCATTAAATCATTACAACAGCTAG " 1923 UPDATE APH(3'')-Ia antibiotic inactivation; APH(3''); streptomycin; aminoglycoside antibiotic; plazomicin; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with plazomicin UPDATED category_aro_cvterm_id with 40307 UPDATED category_aro_accession with 3003675 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Plazomicin is a neoglycoside, or next-generation, aminoglycoside, that has been identified as a potentially useful agent to combat drug-resistant bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa. " 1924 UPDATE vanM glycopeptide antibiotic; glycopeptide resistance gene cluster; van ligase; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATAGATTGAAAATAGCCATCCTGTTTGGGGGTTGCTCAGAAGAGCATAATGTATCGGTAAAATCAGCGGCAGAGATTGCCAACAACATTGATATAGGAAAATATGAACCAATATACATCGGAATAACCCAATCTGGCGTTTGGAAAACATGCGAAAAACCATGTATAGATTGGGATAATGAACACTGTCGCTCGGCAGTACTTTCTCCGGATAAAAAAATGCATGGGTTGCTTATTATGCAAGATAAAGGATATCAAATACAGCGTATAGATGTAGTCTTTTCAGTGTTGCACGGAAAATCGGGTGAAGACGGCGCCATACAAGGATTATTTGAATTGTCTGGTATACCTTATGTAGGCTGTGATATTCAAAGTTCGGCGGTTTGTATGGACAAATCACTGGCATATATTATTGCGAAAAACGCTGGCATAGCTACTCCTGAATTTCAGGTCATTTATAAAGACGATAAGCCAGCGGCAGATTCGTTTACCTATCCCGTTTTTGTTAAGCCAGCACGTTCAGGTTCCTCCTATGGTGTGAATAAAGTTAATAGTGCGGATGAATTGGACTCCGCAATTGACTTGGCAAGACAATATGACAGCAAAATCCTAATTGAGCAGGGTGTTTTAGGTTATGAGGTCGGTTGTGCCGTATTGGGAAACAGTTTCGACTTGATTGTTGGTGAAGTGGATCAAATCAGACTGCAACACGGTATTTTTCGTATTCATCAGGAAGCCGAGCCGGAAAAAGGTTCTGAAAACGCAACTATAACCGTTCCCGCAGAACTATCGGCAGAGGAGCGAGAACGGATAAAAGAAGCGGCAAAAAATATATATAAGGCGCTCGGGTGTAGAGGTCTTTCTCGTGTTGATATGTTTTTACAAGATAACGGCCGCATTGTACTAAATGAAGTCAATACCATGCCTGGTTTCACGTCATACAGCCGTTATCCACGTATGATGGTCTCAGCAGGTATAACAATTCCCGAACTGATTGACCATCTGATTGTATTAGCTGTAAAGGAGTGA " 1925 UPDATE MexB sulfonamide antibiotic; penem; panipenem; tetracycline antibiotic; clavulanate; meropenem; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; aztreonam; nalidixic acid; aminocoumarin antibiotic; cephalosporin; macrolide antibiotic; carbapenem; ceftazidime; ciprofloxacin; cephamycin; ceftriaxone; peptide antibiotic; diaminopyrimidine antibiotic; ticarcillin; ampicillin; amoxicillin; penam; sulfamethoxazole; novobiocin; phenicol antibiotic; efflux pump complex or subunit conferring antibiotic resistance; trimethoprim-sulfamethoxazole; tetracycline; monobactam; fluoroquinolone antibiotic; erythromycin; trimethoprim; azithromycin; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCGAAGTTTTTCATTGATAGGCCCATTTTCGCGTGGGTGATCGCCTTGGTGATCATGCTCGCGGGCGGCCTGTCGATCCTCAGTCTGCCGGTCAACCAGTACCCGGCCATCGCCCCGCCGGCCATCGCCGTGCAGGTGAGCTACCCGGGCGCCTCGGCCGAGACGGTGCAGGACACCGTGGTCCAGGTGATCGAGCAGCAGATGAACGGGATCGACAATCTGCGCTACATCTCCTCGGAGAGTAACTCCGACGGCAGCATGACCACCACCGTGACCTTCGAACAGGGCACCGACCCCGACATCGCCCAGGTCCAGGTGCAGAACAAGCTGCAACTGGCCACCCCGCTACTGCCGCAGGAAGTGCAGCGCCAGGGGATCCGGGTGACCAAGGCGGTGAAGAACTTCCTCATGGTGGTCGGTGTGGTTTCCACCGACGGCAGCATGACCAAGGAAGACCTGTCGAACTACATCGTTTCCAACATCCAGGACCCACTCTCGCGGACCAAGGGCGTCGGTGACTTCCAGGTGTTCGGCTCGCAGTACTCGATGCGCATCTGGCTCGACCCGGCCAAGCTGAACAGCTACCAGCTGACCCCCGGCGACGTGAGCAGCGCGATCCAGGCGCAGAACGTGCAGATTTCCTCCGGCCAGCTCGGCGGCTTGCCGGCGGTCAAGGGCCAGCAGCTCAACGCCACCATCATCGGCAAGACCCGCCTGCAGACCGCGGAGCAATTCGAGAACATCCTGCTCAAGGTCAATCCCGACGGTTCCCAGGTGCGCCTGAAGGACGTCGCCGATGTAGGCCTGGGCGGCCAGGACTACAGCATCAACGCGCAGTTCAACGGCAGCCCGGCGTCCGGTATCGCGATCAAGCTGGCCACCGGCGCCAACGCGCTGGATACCGCCAAGGCGATCCGCCAGACCATCGCCAACCTGGAACCGTTCATGCCGCAGGGCATGAAGGTGGTCTACCCGTACGACACCACCCCGGTGGTCTCGGCCTCGATCCATGAGGTAGTGAAGACCCTCGGCGAGGCGATCCTCCTCGTGTTCCTGGTGATGTACCTGTTCCTGCAGAACTTCCGCGCCACGCTGATCCCGACCATCGCCGTACCGGTGGTGCTGCTGGGGACCTTCGGCGTGCTCGCCGCGTTCGGCTTCTCGATCAACACCCTGACCATGTTCGGCATGGTGCTGGCCATCGGCTTGCTGGTGGACGACGCCATCGTGGTGGTGGAGAACGTCGAGCGGGTGATGGCCGAGGAAGGCCTGTCGCCAAGGGAGGCGGCGCGCAAGTCCATGGGCCAGATCCAGGGCGCGCTGGTCGGTATCGCCATGGTGCTCTCGGCGGTATTCCTGCCGATGGCGTTCTTCGGCGGCTCCACCGGGGTGATCTACCGGCAGTTCTCCATCACCATCGTGTCGGCCATGGCCCTCTCGGTGATCGTGGCGCTGATCCTCACCCCGGCGCTCTGCGCGACCATGCTCAAGCCGATCGAGAAAGGCGACCATGGCGAGCACAAGGGCGGCTTCTTCGGCTGGTTCAACCGGATGTTCCTTTCCACCACCCACGGCTACGAGCGGGGCGTGGCGTCGATCCTCAAGCATCGCGCGCCGTACCTGCTGATCTACGTGGTGATCGTGGCCGGGATGATCTGGATGTTCACCCGCATTCCCACCGCGTTCCTCCCCGACGAGGACCAGGGCGTACTGTTCGCCCAGGTACAGACCCCGCCGGGCTCCAGTGCCGAGCGTACCCAGGTGGTGGTGGACTCGATGCGCGAATACCTGCTGGAGAAGGAAAGCTCTTCGGTCAGCTCGGTGTTCACCGTGACCGGCTTCAACTTCGCCGGCCGCGGCCAGAGTTCGGGCATGGCGTTCATCATGCTCAAGCCCTGGGAAGAGCGTCCCGGTGGCGAGAACAGCGTGTTCGAACTGGCCAAGCGCGCGCAGATGCACTTCTTCAGCTTCAAGGACGCGATGGTGTTCGCCTTCGCGCCGCCGTCGGTACTGGAACTGGGTAACGCCACCGGCTTCGACCTGTTCCTCCAGGACCAGGCGGGTGTCGGCCACGAAGTCCTGCTCCAGGCGCGCAACAAGTTCCTCATGCTCGCCGCGCAGAACCCGGCGCTGCAACGCGTGCGCCCCAACGGCATGAGCGACGAACCGCAGTACAAGCTGGAGATCGACGACGAGAAGGCCAGCGCCCTCGGCGTGTCCCTTGCCGACATCAACAGCACCGTGTCCATCGCCTGGGGTTCCAGCTACGTCAACGATTTCATCGACCGTGGCCGGGTCAAGCGGGTCTACCTGCAGGGCAGGCCGGACGCGCGGATGAACCCGGACGACCTGAGCAAGTGGTACGTGCGCAACGACAAGGGCGAGATGGTGCCGTTCAACGCCTTCGCCACCGGCAAGTGGGAATACGGTTCGCCGAAGCTGGAGCGCTACAATGGCGTGCCGGCGATGGAGATCCTCGGCGAGCCGGCGCCCGGCCTGAGTTCCGGTGACGCCATGGCGGCGGTCGAGGAGATCGTCAAGCAATTGCCGAAAGGCGTTGGCTACTCCTGGACCGGCCTGTCCTACGAGGAGCGCTTGTCCGGCTCGCAGGCGCCGGCGCTGTATGCGCTGTCGCTGCTGGTGGTGTTCCTCTGCCTGGCGGCCCTGTACGAAAGCTGGTCGATTCCGTTCTCGGTGATGCTGGTGGTGCCGTTGGGCGTGATCGGTGCGCTGCTGGCGACGTCCATGCGCGGCCTGTCCAACGACGTGTTCTTCCAGGTGGGCCTGTTGACGACCATCGGCCTGTCGGCGAAGAACGCCATTCTCATCGTGGAGTTCGCCAAGGAGCTGCACGAGCAGGGCAAGGGCATCGTCGAGGCGGCCATCGAAGCCTGCCGCATGCGTCTGCGGCCGATCGTGATGACCTCCCTGGCGTTCATCCTCGGCGTGGTCCCGCTGGCGATCTCCACCGGCGCCGGCTCGGGCAGCCAGCATGCGATCGGTACCGGCGTGATCGGCGGCATGGTCACTGCGACCGTCCTGGCGATCTTCTGGGTACCGCTGTTCTACGTGGCGGTCAGCACGCTGTTCAAGGACGAGGCGTCCAAGCAGCAGGCGTCCGTCGAAAAGGGGCAATGA " 1926 UPDATE CMY-34 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1927 UPDATE SHV-29 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACAAAGCGAAAGCCAGCTGTCGGGCAGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGTGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGTTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGCCGAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGGATTGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 1928 UPDATE OXA-50 penam; antibiotic inactivation; cephalosporin; cefalotin; ampicillin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1929 UPDATE ACT-24 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCTCTTTGCTGCGCCCTGCTGCTCGGCATCTCTTGCTCTGCTCTCGCCGCGCCAGTGTCAGAAAAACAGCTGGCGGAGGTGGTCGCGAATACGATTACCCCGCTGATGAAAGCCCAGTCGATTCCAGGCATGGCGGTGGCCGTTATTTATCAGGGTAAACCGCACTATTATACGTTTGGCAAAGCCGATATCGCGGCCAGCAAACCCGTTACGCCTCAGACTCTGTTCGAGCTGGGTTCTATAAGTAAAACCTTCACCGGGGTTTTAGGAGGGGATGCCATTGCTCGCGGTGAAATTTCGCTGGACGATCCGGTGACCAGATACTGGCCACAGCTGACGGGCAAGCAGTGGCAGGGGATTCGTATGCTGGATCTCGCAACCTACACCGCTGGCGGCCTGCCGCTACAGGTACCGGATGAGGTCACGGATAATGCCGCCCTGCTGCGCTTTTATCAAAACTGGCAGCCGCAGTGGAAGCCTGGCACAACGCGTCTTTACGCCAACGCCAGTATCGGTCTTTTTGGCGCGCTGGCGGTCAAACCTTCCGGCATGGGCTATGAGCAGGCCATGACGACGCGGGTCCTTAAGCCGCTCAAGCTGGACCATACCTGGATTAACGTTCCGAAAGCGGAAGAGGCGCATTACGCCTGGGGCTATCGTGACGGTAAAGCGGTGCGCGTTTCGCCGGGAATGCTGGATGCACAAGCCTATGGCGTGAAAACCAACGTGCAGGATATGGCGAACTGGGTCATGGCAAACATGGCGCCGGAGAACGTTGCTGATGCCTCACTTAAGCAGGGCATCTCGCTGGCGCAGTCGCGCTACTGGCGTATCGGGTCAATGTATCAGGGTCTGGGCTGGGAGATGCTCAACTGGCCCGTGGAGGCCAACACGGTGATCGACGGCAGCGACAGTAAGGTGGCGCTGGCACCGCTGCCCGTGGCAGAAGTGAATCCACCGGCTCCCCCGGTCAAAGCGTCCTGGGTCCATAAAACGGGCTCTACTGGCGGGTTTGGCAGCTACGTGGCCTTTATTCCTGAAAAGCAGATCGGTATTGTGATGCTCGCGAATAAAAGCTATCCGAACCCGGCACGCGTTGAGGCGGCATACCATATCCTCGACGCGCTACAGTAA " 832 UPDATE SHV-161 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 833 UPDATE CfxA5 antibiotic inactivation; cephamycin; CfxA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAAAAAAACAGAAAAAAACAAATCGTAGTTTTGAGTATAGCTTTAGTTTGCATTTTCATCTTGGTATTTTCATTGTTCCATAAATCAGCGACAAAAGATAGCGCAAATCCTCCTTTAACAAATGTTTTGACTGATAGCATTTCTCAAATTGTCTCAGCTTGTCCTGGCGAAATTGGTGTGGCGGTTATTGTTAATAACAGAGATACGGTTAAGGTCAATAATAAGAGTGTTTATCCTATGATGAGTGTGTTTAAGGTTCATCAGGCATTAGCTCTTTGTAATGACTTTGACAATAAAGGAATTTCACTTGATACCTTAGTAAATATAAATAGGGATAAACTTGACCCAAAGACTTGGAGTCCTATGCTGAAAGATTATTCAGGGCCAGTCATATCATTGACAGTGAGAGATTTGCTGCGTTATACTCTTACTCAGAGTGACAACAATGCAAGCAACCTTATGTTTAAGGATATGGTTAATGTCGCTCAAACAGATAGTTTTATAGCCACACTCATTCCTCGTTCAAGTTTTCAGATAGCTTATACGGAAGAGGAAATGTCGGCTGACCATAACAAGGCTTACTCTAACTATACATCTCCTCTTGGTGCTGCAATGTTGATGAATCGTTTGTTTACTGAAGGTCTTATCGATGATGAGAAACAAAGTTTCATTAAGAATACGTTAAAAGAATGCAAAACAGGTGTAGATAGGATAGCAGCTCCACTTCTTGATAAAGAAGGGGTTGTTATAGCGCATAAGACAGGTTCAGGTTGTGTTAATGAAAATGGTGTTCTTGCAGCTCACAATGATGTTGCCTATATATGTCTGCCTAATAATATCAGTTATACCTTAGCGGTATTTGTTAAGGATTTCAAGGGAAATGAATCACAAGCGTCACAATATGTTGCGCATATATCAGCTGTAGTATATTCTTTATTAATGCAAACTTCAGTAAAATCTTAA " 830 UPDATE SHV-157 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 831 UPDATE OKP-B-13 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGCCTTATCTCCCTGATTGCCGCCCTGCCACTGGCGGTATTCGCCAGCCCTCAGCCGCTTGAGCAGATTAAAATCAGCGAAAGTCAGCTGGCGGGCCGGGTGGGCTATGTTGAAATGGATCTGGCCAGCGGCCGCACGCTGGCCGCCTGGCGCGCCAGTGAGCGCTTTCCGCTGATGAGCACCTTTAAAGTGCTGCTCTGCGGCGCGGTGCTGGCCCGGGTGGATGCCGGCGACGAACAGCTGGATCGGCGGATCCACTACCGCCAGCAGGATCTGGTGGACTACTCCCCGGTCAGCGAAAAACACCTTGCCGACGGGATGACCGTTGGCGAACTCTGCGCCGCCGCCATCACCATGAGCGACAACACCGCCGGCAATCTGCTGTTGAAGATCGTCGGCGGCCCCGCGGGATTGACCGCTTTTCTGCGCCAGATCGGTGACAACGTCACCCGTCTTGACCGCTGGGAAACGGAACTCAATGAGGCGCTTCCCGGCGACGTGCGCGACACCACCACCCCGGCCAGCATGGCCACCACCCTGCGCAAGCTGCTAACCACCCCCTCTCTGAGCGCCCGTTCGCAGCAGCAGCTGCTGCAGTGGATGGTTGACGACCGGGTGGCCGGCCCGTTGATCCGCGCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAAACCGGGGCCGGTGAGCGGGGCTCACGCGGCATTGTCGCCCTGCTCGGCCCGGACGGCAAAGCGGAGCGTATCGTGGTGATCTATCTGCGGGATACCGCAGCGACCATGGCCGAACGTAACCAGCAGATCGCCGTGATAGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 836 UPDATE TEM-68 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 837 UPDATE vatH dalfopristin; antibiotic inactivation; streptogramin vat acetyltransferase; pristinamycin IIA; madumycin II; griseoviridin; streptogramin antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCAGAAAAATTAAAAGGACCCAACTCAAATGAAATGTATCCGATTGCCGGAAATAAAAGTGTTCAATTTGTTAAACCGTCATTAACAAGGCCCAATATTATAGTTGGTGAGTTCACTTATTATGATAGCAAGAACGGAGAGCTTTTTGAGGATCAAGTTCTGTATCATTATGAAATTATAGGGGATCGACTGATCATCGGGAAATTTTGTTCAATCGGTCCTGGAGTCACTTTTATTATGAATGGAGCTAATCATCGCATGGATGGCTCCACTTATCCATTTAATATCTTTGGGCATGGGTGGGAAAAGCATACACCTACACTAGATATGCTGCCTTTAAAGGGGGATACTATTGTTGGTAATGACGTATGGATTGGACTAGATGCTACAATTATGCCAGGCGTAAAAATAGGAGACGGCGCGATTATTGCAGCCAAATCTGTAGTAACAAAAGACGTTGACCCCTCCACAATTGTTGGTGGTAATCCTGCAAAACAAATAAAGAAACGATTTTCGGAGTCAAAAATTCAAGAACTATTAAAGATAAAATGGTGGGATTTTGAAGACCAGGTTATTAGCGATAATATTGATGCTATTCTAAGTTTGGATGTTGAAGCGCTTAATAATATTTCTAAAGAAAATGATTAG " 834 UPDATE FosA3 fosfomycin; fosfomycin thiol transferase; antibiotic inactivation; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCTGCAGGGATTGAATCATCTGACGCTGGCGGTCAGCGATCTGGCGTCAAGCCTGGCATTTTATCAGCAGTTACCTGGAATGCGCCTGCACGCCAGCTGGGATAGCGGAGCCTATCTCTCCTGTGGGGCGCTGTGGCTGTGCTTGTCGCTGGATGAGCAGCGGCGTAAAACGCCCCCTCAGGAAAGCGACTATACCCACTACGCCTTCAGCGTGGCGGAAGAAGAGTTTGCCGGGGTGGTGGCTCTGCTGGCGCAGGCGGGGGCTGAGGTATGGAAAGATAACCGCAGTGAAGGGGCGTCTTACTATTTTCTCGACCCTGACGGCCATAAGCTGGAGCTGCATGTGGGGAATCTGGCGCAGCGGCTGGCCGCCTGTCGCGAACGCCCCTACAAGGGGATGGTCTTTTTTGATTGA " 835 UPDATE APH(3')-Ib antibiotic inactivation; aminoglycoside antibiotic; paromomycin; kanamycin A; APH(3'); gentamicin B; lividomycin B; ribostamycin; G418; neomycin; lividomycin A; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGAACGATATTGATCGAGAAGAGCCCTGCGCAGCCGCTGCCGTGCCCGAGAGCATGGCGGCTCACGTGATGGGATACAAATGGGCGCGTGATAAGGTTGGTCAGTCCGGCTGCGCGGTCTATCGGCTGCATAGCAAGTCAGGCGGCTCCGACTTGTTTCTGAAGCACGGCAAAGATGCTTTTGCCGACGACGTGACTGATGAAATGGTGAGATTGCGTTGGCTGGCGGGGCACATTTCTGTGCCCTCCGTTGTAAGCTTCGTTCGCACGCCCAATCAGGCATGGCTCCTGACAACAGCAATACATGGAAAAACGGCATATCAAGTGCTGAAATCGGATTTCGGAGCCCGTCTCGTTGTTGTTGACGCATTGGCGGCGTTCATGCGCCGACTGCATGCGATCCCAGTGAGCGAATGCTCCGTTCAACAGTGGACCACGCATGCAGGCTTGCCCGAGCGCGGGAGTATCGAGGCGGGGGTTGTTGATGTCGATGACTTCGATAAGGAGCGCGAAGGGTGGACGGCCGAACAGGTTTGGGAGGCGATGCATCGCCTCCTACCGCTCGCGCCGGACCCAGTCGTGACGCACGGCGATTTTTCACTCGATAATCTACTTATCGTCGAAGGTAAGGTAGTCGGCTGCATCGACGTTGGGCGGGCTGGTATTGCTGATCGATACCAAGACCTTGCCGTGTTATGGAACTGTCTTGAGGAGTTCGAACCTTCGCTTCAGGAGAGGCTTGTTGCGCAATATGGCATTGCCGATCCGGATAGGCGCAAGCTGCAATTTCATCTCCTGCTGGACGAACTTTTCTAA " 838 UPDATE CTX-M-102 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGAGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGGCTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA " 839 UPDATE CMY-44 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 3 UPDATE Escherichia coli ompF with mutation conferring resistance to beta-lactam antibiotics penam; reduced permeability to antibiotic; penem; carbapenem; cephalosporin; cefepime; cephamycin; General Bacterial Porin with reduced permeability to beta-lactams; monobactam; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 986982 UPDATED strand with - UPDATED accession with NC_000913.3 UPDATED fmin with 985893 UPDATED sequence with ATGATGAAGCGCAATATTCTGGCAGTGATCGTCCCTGCTCTGTTAGTAGCAGGTACTGCAAACGCTGCAGAAATCTATAACAAAGATGGCAACAAAGTAGATCTGTACGGTAAAGCTGTTGGTCTGCATTATTTTTCCAAGGGTAACGGTGAAAACAGTTACGGTGGCAATGGCGACATGACCTATGCCCGTCTTGGTTTTAAAGGGGAAACTCAAATCAATTCCGATCTGACCGGTTATGGTCAGTGGGAATATAACTTCCAGGGTAACAACTCTGAAGGCGCTGACGCTCAAACTGGTAACAAAACGCGTCTGGCATTCGCGGGTCTTAAATACGCTGACGTTGGTTCTTTCGATTACGGCCGTAACTACGGTGTGGTTTATGATGCACTGGGTTACACCGATATGCTGCCAGAATTTGGTGGTGATACTGCATACAGCGATGACTTCTTCGTTGGTCGTGTTGGCGGCGTTGCTACCTATCGTAACTCCAACTTCTTTGGTCTGGTTGATGGCCTGAACTTCGCTGTTCAGTACCTGGGTAAAAACGAGCGTGACACTGCACGCCGTTCTAACGGCGACGGTGTTGGCGGTTCTATCAGCTACGAATACGAAGGCTTTGGTATCGTTGGTGCTTATGGTGCAGCTGACCGTACCAACCTGCAAGAAGCTCAACCTCTTGGCAACGGTAAAAAAGCTGAACAGTGGGCTACTGGTCTGAAGTACGACGCGAACAACATCTACCTGGCAGCGAACTACGGTGAAACCCGTAACGCTACGCCGATCACTAATAAATTTACAAACACCAGCGGCTTCGCCAACAAAACGCAAGACGTTCTGTTAGTTGCGCAATACCAGTTCGATTTCGGTCTGCGTCCGTCCATCGCTTACACCAAATCTAAAGCGAAAGACGTAGAAGGTATCGGTGATGTTGATCTGGTGAACTACTTTGAAGTGGGCGCAACCTACTACTTCAACAAAAACATGTCCACCTATGTTGACTACATCATCAACCAGATCGATTCTGACAACAAACTGGGCGTAGGTTCAGACGACACCGTTGCTGTGGGTATCGTTTACCAGTTCTAA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. MG1655 UPDATED NCBI_taxonomy_id with 511145 UPDATED NCBI_taxonomy_cvterm_id with 36849 UPDATED accession with NP_415449.1 UPDATED sequence with MMKRNILAVIVPALLVAGTANAAEIYNKDGNKVDLYGKAVGLHYFSKGNGENSYGGNGDMTYARLGFKGETQINSDLTGYGQWEYNFQGNNSEGADAQTGNKTRLAFAGLKYADVGSFDYGRNYGVVYDALGYTDMLPEFGGDTAYSDDFFVGRVGGVATYRNSNFFGLVDGLNFAVQYLGKNERDTARRSNGDGVGGSISYEYEGFGIVGAYGAADRTNLQEAQPLGNGKKAEQWATGLKYDANNIYLAANYGETRNATPITNKFTNTSGFANKTQDVLLVAQYQFDFGLRPSIAYTKSKAKDVEGIGDVDLVNYFEVGATYYFNKNMSTYVDYIINQIDSDNKLGVGSDDTVAVGIVYQF " 1267 UPDATE QnrB40 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 784 UPDATE AAC(6')-Iv antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 785 UPDATE OXY-2-9 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 786 UPDATE vanHO glycopeptide antibiotic; glycopeptide resistance gene cluster; vanH; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCCTACAGAGACCTGGGTTTGATCGACAGCGAAGTGATCGCGGAGCGACGCGTCCGAGCGCTCGACGATTCGTCACCCTCGGCCGTCCCGACCACTGGGGTCAGAGTTTTCGGATGCGGTCACGACGAAGCCGTTTTGTTCCGCGAGATGGGAACCCGCCTCGGGATAACGCCAAGCATCACCGAGGAAGCGATCAGTGAAACCAACGCTGAACTGGCGCGTGGCAACCGATGCATCAGCGTGAGCCACAAGACGCAGATCGACAATTCCACGCTGCTGGCGCTGAGCCGAGTCGGAGTGGAGTACATCTCCACCAGAAGCGTCGGGTACAACCACATCGACGTGGAATTCGCGGCGAGCATCGGCATCTCGGTCGGCAACGTCGACTACTCGCCCGACAGCGTGGGCGACTACACACTGATGTTGATGCTGATGACCGTACGCCACGCGAAATCAATTGTCCGCCGCGCCGATACGCATGATTACCGGCTGAATGACACGCGCGGCAGGGAGCTGCGCGACTTGACCGTCGGGGTGATCGGAACAGGGCGCATCGGCACAGCAGTCATCGACCGGCTGCAGGGATTTGGCTGCCGCGTGCTGGCACATGACAGCGGGCCTCACGCCTCCGCCGACTACGTTCCGCTCGATGAACTGCTGCGGCAGAGCGACATTGTCACGCTCCACACTCCACTCACCGCGGACACACACCATCTCCTCGATCGCCAACGCATCGACCAGATGAAGCACGGCGCGTACATCGTCAACACGGGTCGCGGACCGCTGCTCGATACCGAGGCCCTCCTCTCCGCATTGGAGAGCGGCCGGTTGGGCGGCGCGGCGCTCGATGTCGTCGAAGGAGAGGAAGGGATCTTCTACGCCGACTGCAGGAACAGGCTCATCGAGAACAAGGCCCTGGTGCGGCTACAGCGCCTGCCGAATGTGCTGATCAGTCCGCACTCCGCCTACTACACAGACCACGCCCTGAACGACACCGTCGAAAACAGCCTCGTCAACTGCCTGAACTTTGAAAGTGGGAGAACAGCATGA " 787 UPDATE dfrA23 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 7303 UPDATED strand with - UPDATED accession with AJ746361 UPDATED fmin with 6742 UPDATED sequence with ATGCCAACAGTTGAGATTATTGTTGCAGTTGATCCTGTTGGGGGATTTGGCCGGAATGGCCAAATCCCTTGGACGTGCAAGGAAGACATGAAGCGCTTCACCACCATATCCAAAGAGATTCGAGTGTGTGTGATGGGGAAGAACACATACAAAGACATGCTCGATATGCAAATGAAGAAGGAAGGCGCTGAAGAACGAATCAAAGAGAAGGGAATTCTTCCGGAGCGCGAATCTTACGTCGTGTCCTCGACTTTGAAGCCCGAGGACGTCATTGGAGCCACGGTAGTTCCGGACCTACGTGCGGTGCTCAATCAATATCACGACAGCGATCAACGAATAGCTGTCATTGGTGGAGAAAAGCTGTACGTGCAAGCCCTCGCATCTGCCACAAAAGTCCACATGACGGTAATGCACAAGCCATATAACTGCGATCGGACGTTGCCGATGTCATACATCGACAAAAAGTTTGTTGCAGGTCAAGGGTCTATCACCATTCAAACTGCGGTAGATGGTGAGACCCATCCCGTGAAGTTCATCACATATGAGCGCGCTCGGCCGTAA UPDATED NCBI_taxonomy_name with Salmonella enterica subsp. enterica serovar Typhimurium UPDATED NCBI_taxonomy_id with 90371 UPDATED NCBI_taxonomy_cvterm_id with 35732 UPDATED accession with CAG34233.2 UPDATED sequence with MPTVEIIVAVDPVGGFGRNGQIPWTCKEDMKRFTTISKEIRVCVMGKNTYKDMLDMQMKKEGAEERIKEKGILPERESYVVSSTLKPEDVIGATVVPDLRAVLNQYHDSDQRIAVIGGEKLYVQALASATKVHMTVMHKPYNCDRTLPMSYIDKKFVAGQGSITIQTAVDGETHPVKFITYERARP " 780 UPDATE CARB-9 penam; antibiotic inactivation; CARB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGTCTTTGTTGGTATTTGCGCTTTTAATGCCATCTGTAGTTTTTGCAAGCAGTTCAAAATTTCAATCAGTTGAACAAGAAATTAAGGGAATTGAGTCTTCACTCTCTGCTCGTATAGGAGTTGCCATTTTGGATACTCAAAATGGCGAAAGCTGGGATTATAATGGTGATCAACGATTTCCATTAACAAGTACTTTCAAAACAATAGCTTGTGCTAAGTTGCTGTATGATGCAGAGCATGGGAAAGTTAATCTCAATAGTACAGTTGAGGTTAAGAAAGCAGATCTTGTTACGTATTCGCCTGTATTAGAAAAGCAAGTAGGTAAACCAATAACGCTCTCTGATGCATGCTTTGCTACTATGACAACAAGCGACAATACAGCAGCCAATATTGTTATAAATGCTGTGGGTGATCCTAAAAGCATTACTGATTTTCTGAGACAAATTGGTGACAAAGAAACTCGTCTAGATCGTGTCGAGCCTGAGCTCAATGAAGGTAAACTCGGTGATTTGAGGGATACGACAACGCCTAATGCAATAACCAGCACGTTAAATCAATTATTATTTGGTTCCACATTATCTGAAGCTAGTCAGAAAAAATTAGAGTCTTGGATGGTGAACAATCAAGTTACGGGTAATTTATTGAGGTCAGTATTGCCAGTGACGTGGAGTATTGCTGATCGCTCAGGGGCAGGTGGATTTGGTGCTAGGAGTATTACAGCGATTGTGTGGAGTGAAGAAAAAAAACCGATTATCGTAAGTATTTATCTAGCTCAAACCGAGGCTTCAATGGCAGAACGAAATGATGCGATAGTTAAGATTGGTCGTTCAATTTTTGAAGTTTATACATCACAGTCGCGTTGA " 781 UPDATE QnrB25 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 782 UPDATE OXA-63 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCTAAAAAAAATTTTATATTAATATTTATTTTTGTTATTTTAATATCTTGTAAAAATACAGAAAAAATATCAAATGAAACTACATTAATAGATAATATATTTACTAATAGCAATGCTGAAGGAACATTAGTTATATATAATTTAAATGATGATAAATATATAATTCATAATAAAGAAAGAGCTGAACAAAGATTTTATCCAGCATCAACATTTAAAATATATAATAGTTTAATAGGCTTAAATGAAAAAGCAGTTAAAGATGTAGATGAAGTATTTTATAAATTAATGGCGAAAAGTTTTCTCGAATCTTGGGCTAAAGACTCTAATTTAAGATATGCAATTAAAAATTCGCAAGTACCGGCATATAAAGAATTAGCAAGAAGAATAGGTATTAAAAAGATGAAAGAGAATATAGAAAAACTAGATTTTGGTAATAAAAGTATAGGTGATAGTGTAGATACTTTTTGGCTTGAAGGACCTTTGGAAATAAGTGCGATGGAGCAAGTTAAATTATTAACTAAATTAGCTCAAAATGAATTACAGTATCCTATAGAAATACAAAAAGCTATTTCTGATATTACTATTACTAGAGCAAACTTACATATTACGCTTCATGGAAAAACTGGATTAGCTGATTCTAAAAACATGACAACTGAGCCTATTGGTTGGTTCGTAGGCTGGCTTGAAGAAAATGATAATATATACGTCTTTGCTTTAAATATTGATAATATCAATTCAGATGACCTTGCAAAAAGGATAAATATAGTAAAAGAAAGTTTAAAAGCATTAAATTTATTAAAATAA " 1729 UPDATE CTX-M-66 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAATGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGACTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA " 1726 UPDATE FOX-4 antibiotic inactivation; cephamycin; cephalosporin; FOX beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1727 UPDATE SHV-73 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1724 UPDATE vanHM glycopeptide antibiotic; glycopeptide resistance gene cluster; vanH; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTCTTAGTAATGAAAGATATCGGCATTACCATTTATGGATCTGAGCAGGATGAGGCTGATGTGTTCCAGGAAATTTCATCTCGATTTGGCGTTACACCTACCATTGTAAGCTCTCCTATATCAGAAACCAACGTAATGTTAGCCCCTAAAAATAAGTGTATCAGCGTGGGGCACAAGTCTGAGATTCACAAATCTATCCTTATTGCATTGAAGGAATCCGGCGTCAAATATATCTCTACTCGAAGTATTGGTTACAATCATATAGATATGAAGGCAGCGGAAAAAATGGGTATTGCTGTCGAGAACGTCACTTATTCACCAGATAGTGTTGCCGATTATACATTGATGCTGATACTTATGGCAATACGCCATACGAAATCTACTTTGTGCTCTATGGAAAAACATGATTTCAGACTGAACAGCGTCCGTGGTAAAGTACTGCGTGACCTGACAGTAGGTGTACTGGGAACCGGTCATATAGGCAAAGCGGTTATTGAGCGACTACAGGGGTTTGGAGGTCACGTGTTGGCGTACGGCAACAACAAAGAGGCGACGGCAAATTATGTATCCTTCAATGAATTACTGCAAAAAAGTGACATTCTAACCATTCATGTACCCCTTAGCGATGACACATACCATATGATCGGTCACGAACAGATTAAAGCAATGAAACAGGGCGCCTTTCTTATTAATACTGCTCGAGGTGGACTTATAGATACCGAAGTTCTGGTTAAAGCACTGGAGGACGGAAAACTGGGGGGCGCCGCATTAGATGTATTAGAGGGAGAAGAAGGGCTTTTCTACTTTGATTGCACCCAAAAGCCAATTAACAATCAATTTTTGCTGAAACTTCAAAGGATGCCAAATGTGACAATCACACCGCATACGGCTTACTATAGCGAAAAAACGTTACGTGATACTGTTGAAAAAACAGTCAAGAACTGTTTGGAATTTGAGAGGAGAGAGACACATGAATAG " 1725 UPDATE TEM-101 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 788 UPDATE SHV-46 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGAACAGCCAACGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTAGCAAGCGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATACCCCGGCGAGCATGGCCGAGCGAAATCAACAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 789 UPDATE IMP-43 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAGTTATCAGTATTCTTTATGTTTTTGTTTTGTAGCATTGCTGCCTCAGGAGAGGCTTTGCCAGATTTAAAAATTGAGAAGCTTGACGAAGGCGTTTATGTTCATACTTCGTTTGAGGAAGTTAACGGCTGGGGCGTGTTTCCTAAACACGGCTTGGTGGTTCTTGTAAATACTGACGCTTATTTGATTGACACTCCATTTACAGCTAAAGATACTGAAAAGTTAGTTACTTGGTTTGTAGAGCGCGGCTATAAAATAAAAGGCAGTATCTCCTCTCATTTTCATAGCGACAGCACGGGCGGAATAGAGTGGCTTAATTCTCAATCTATTCCAACATATGCATCTGAATTAACAAATGAACTTCTTAAAAAAGACGGTAAGGTACAAGCTAAAAATTCATTTAGCGGAGCCAGCTATTGGTTAGTTAAGAAAAAGATTGAAATTTTTTATCCTGGCCCAGGGCACACTCCAGATAACGTAGTGGTTTGGCTACCTGAACATAGAGTTTTGTTTGGTGGTTGTTTTGTTAAACCGTATGGTCTAGGTAATTTGGGTGACGCAAATTTAGAAGCTTGGCCAAAGTCTGCCAAATTATTAGTGTCCAAATATGGTAAGGCAAAACTGGTTGTTCCAAGTCACAGTGAAGTTGGAGATGCATCACTCTTGAAACGTACATTAGAACAGGCTGTTAAAGGATTAAACGAAAGTAAAAAGCTATCAAAACCAAGTAACTAA " 1720 UPDATE tap tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACGAACACCAAGCGCGGCCCCTTGCTGCTGATCCTGTTCGCCGCGTTGACGGCCGGCGCCGGCAACGGAATCACCATCGTCGCGTTCCCGTGGCTGGTGTTGCAGCACAACGGATCCGCGCTCGACGCCTCGATCGTCGCGATGGCCGGCACCCTGCCGCTGCTGGTGGCCACACTGATCGCCGGGGCGGCGGTGGATTACCTGGGTCGCCGACGGGTTTCGATGATCTCGGATCTGCTCTCGGCGCTGTCGGTCGCTGCGGTACCCGTGCTGGCCCTGATTTTCGGGGTGGACGCGGTCAATGTCGCGGTGCTGGCGGTCCTGGCGGGGCTGGGAGCGTTCTTCGACCCGGCCGGCATGACAGCGCGCGAGACCATGCTGCCCGAGGCCGCGGGCCGGGCCGGTTGGACGCTGGACCATGCCAACTCGGTGTACGAGGCGGTCTTCAACCTGGGCTACATCGTCGGCCCCGGTATCGGCGGCCTGATGATCGCCACGCTCGGCGGGATCAACACCATGTGGGTGACGGCCGGGGCGTTCTGCTGCTCGATCCTGGCCATCTCGGTGCTGCGACTGGAGGGCGCGGGCGCGCCGGACCGCTCGGTGCTGACCGAGGCCGTTTTGGCGGGCATAGTCGAGGGACTGCGATTCGTCTGGTACACACCGGTATTGCGCACCCTGGCCATCGTCGACCTGGTGGCCACCGGCTTGTACATGCCGATGGAATCGGTCCTTTTTCCGAAGTACTTCACGGACCGGAACGAACCCACCGAACTGGGCTGGGTGCTGATGGCGTTGAGCATCGGCGGACTGTTGGGTGCGCTCGGTTACGCCGTGATGTCCAGGTACATGAGCCGACGGGCCACCATGCTGACCGCCGTGATCACCCTCGGGGTGGCGATGACGGTGATCGCCTTCCTGCCACCGCTGCCGCTGATCCTGGTGCTGTGCGCAATCGTCGGCTTCGTCTACGGACCGATCGCACCCATCTACAACTACGTCATGCAGACCACCGCTCCCCAACACCTGCGTGGCCGCGTGGTCGGGGTGATGGGCTCATTGGCCTACGCCGCGGGCCCGCTCGGGCTGATCCTGGCCGGGCCGCTGGCCGACGCCGCAGGCCTGCACGCGACGTTCCTGGCACTGTCCCTACCGATGCTGTTGCTCGGCGTCGTGGCGGTGTTCCTGCCGCGGCTGCGCGAGCTGGACCTAGCATCGAAACCGTGA " 1721 UPDATE Mycobacterium leprae folP with mutation conferring resistance to dapsone sulfadiazine; dapsone resistant dihydropteroate synthase folP; sulfadoxine; sulfacetamide; sulfadimidine; mafenide; sulfamethoxazole; sulfisoxazole; antibiotic target alteration; sulfone antibiotic; sulfamethizole; sulfasalazine; sulfonamide antibiotic; dapsone; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with GTGAGTTTGGCGCCAGTGCAGGTTATTGGGGTTTTGAACGTCACTGACAATTCGTTCTCAGATGGCGGACGTTACCTTGATCCTGACGATGCTGTCCAGCACGGCCTGGCAATGGTCGCGGAAGGCGCGGCGATTGTCGACGTCGGTGGCGAATCGACCCGGCCCGGTGCCATTAGGACCGATCCTCGAGTTGAACTCTCTCGTATCGTTCCTGTCGTAAAAGAACTTGCAGCACAGGGGATTACAGTAAGTATCGATACTACGCGCGCTGATGTTGCACGGGCGGCGCTGCAAAGCGGCGCACGGATCGTCAACGATGTGTCTGGTGGGCGAGCAGATCCCGCGATGGCTCCTCTGGTGGCTGAAGCCGGTGTTGCGTGGGTGTTGATGCACTGGCGACTGATGTCGGCTGAACGGCCGTATGAGGCTCCGAATTACCGCGACGTGGTGGCTGAAGTGCGTGCCGACCTACTGGCTGGTGTCGATCAGGCTGTGGCCGCAGGTGTTGATCCTGGGAGTCTAGTGATCGATCCCGGGCTTGGATTCGCCAAGACGGGACAGCACAATTGGGCGCTGCTGAATGCGTTACCGGAGTTGGTGGCTACTGGGGTCCCGATTCTACTTGGCGCCTCGCGTAAACGGTTCCTGGGTAGGTTATTAGCTGGGGCTGATGGCGCGGTACGACCGCCGGACGGACGTGAGACGGCGACCGCGGTGATTTCCGCACTTGCTGCCCTACACGGGGCTTGGGGTGTTCGGGTGCACGATGTGCGTGCCTCGGTCGACGCACTCAAGGTCGTCGGGGCTTGGCTGCATGCTGGGCCGCAGATTGAAAAGGTTAGATGTGATGGCTGA " 60 UPDATE QnrS6 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 61 UPDATE OXA-330 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 62 UPDATE CMY-42 antibiotic inactivation; cephalosporin; ceftazidime; cephamycin; CMY beta-lactamase; cefoxitin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 63 UPDATE AAC(6')-Ib antibiotic inactivation; kanamycin A; AAC(3); AAC(6'); isepamicin; plazomicin; aminoglycoside antibiotic; sisomicin; arbekacin; gentamicin B; netilmicin; gentamicin C; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGACCAACAGCAACGATTCCGTAACACTGCGCCTCATGACTGAGCATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGAGTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAACAGTACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTCACTCCATACATTGCAATGCTGAATGGAGAGCCGATTGGGTATGCCCAGTCGTACGTTGCTCTTGGAAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCAGGAGTACGCGGAATAGACCAGTCACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGAACCAAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCACCAAGATCCAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCTACGAGAAAGCGGGGTTTGAGAAGCAAGGTACCGTAACCACCCCAGATGGTCCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGCGAACACGCAGTGATGCCTAA UPDATED category_aro_name with plazomicin UPDATED category_aro_cvterm_id with 40307 UPDATED category_aro_accession with 3003675 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Plazomicin is a neoglycoside, or next-generation, aminoglycoside, that has been identified as a potentially useful agent to combat drug-resistant bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa. " 64 UPDATE CMY-70 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCTTCTTTCTCCACGTTTGCCGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCGCTGATGCAGGAGCAGGCAATTCCGGGTATGGCCGTTGCGATTATCTATCAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCGTCCAGTCACGCAACAAACGCTGTTTGAACTCGGATCGGTCAGTAAAACGTTCAACGGTGTGCTGGGCGGCGATGCTATAGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGCAGTACTGGCCTGAACTGACTGGTAAGCAGTGGCAGGGTATCAGCCTGCTGCACTTAGCCACCTACACGGCAGGCGGCCTGCCGCTTCAGGTTCCGGACGACGTTACGGATAAAGCCGCGTTACTACGCTTTTATCAAAACTGGCAGCCGCAATGGGCCCCAGGCGCTAAACGTCTTTATGCTAACTCCAGCATTGGTCTGTTTGGCGCCCTGGCAGTGAAACCCTCAGGCATGAGCTACGAAGAGGCGATGTCCAAACGCGTCCTGCACCCCTTAAAACTGGCGCATACCTGGATTACGGTTCCGCAGAGCGAACAAAAAGATTATGCCTGGGGTTATCGCGAAGGAAAGCCAGTGCATGTATCCCCTGGCCAACTTGATGCCGAAGCATACGGGGTGAAATCGAGCGTTATCGATATGACCCGTTGGGTTCAGGCCAACATGGACGCCAGCCAGGTTCAGGAGAAAACGCTCCAGCAGGGCATCGAGCTTGCGCAGTCACGTTACTGGCGTATTGGCGATATGTACCAGGGCCTGGGCTGGGAGATGCTGAACTGGCCGGTGAAGGCCGACTCGATAATTAGCGGTAGCGACAGCAAAGTGGCACTGGCAGCGCTTCCTGCCGTTGAGGTAAACCCGCCCGCGCCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGCTCCACTGGCGGATTCGGCAGCTACGTTGCTTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAGAGCTACCCAAACCCTGTTCGCGTCGAGGCCGCCTGGCGCATTCTTGAAAAACTGCAGTAA " 65 UPDATE GES-21 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGCTTCATTCACGCTCTATTACTGGCAGGGATCGCTCACTCTGCATATGCGTCGGAAAAATTAACCTTCAAGACCGATCTTGAGAAGCTAGAGCGCGAAAAAGCAGCTCAGATCGGTGTTGCGATCGTCGATCCCCAAGGAGAGATCGTCGCGGGCCACCGAATGGCGCAGCGTTTTGCAATGTGCTCAACGTTCAAGTTTCCGCTAGCCGCGCTGGTCCTTGAAAGAATTGACTCAGGCACCGAGCGGGGGGATCGAAAACTTTCATATGGGCCGGACATGATCGTCGAATGGTCTCCTGCCACGGAGCGGTTTCTAGCATCGGGACACATGACGGTTCTCGAGGCAGCGCAAGCTGCGGTGCAGCTTAGCGACAATGGGGCTACTAACCTCTTACTGAGAGAAATTGGCGGACCTGCTGCAATGACGCAGTATTTTCGTAAAATTGGCGACTCTGTGAGTCGGCTAGACCGGAAAGAGCCGGAGATGAGCGACAACACACCTGGCGACCTCAGAGATACAACTACGCCTATTGCTATGGCACGTACTGTGGCTAAAGTCCTCTATGGCGGCGCACTGACGTCCACCTCGACCCACACCATTGAAAGGTGGCTGATCGGAAACCAAACGGGAGACGCGACACTACGAGCGGGTTTTCCTAAAGATTGGGTTGTTGGAGAGAAAACTGGTACCTGCGCCAACGGGGGCCGGAACGACATTGGTTTTTTTAAAGCCCAGGAGAGAGATTACGCTGTAGCGGTGTATACAACGGCCCCGAAACTATCGGCCGTAGAACGTGACGAATTAGTTGCCTCTGTCGGTCAAGTTATTACACAACTCATCCTGAGCACGGACAAATAG " 66 UPDATE SHV-41 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 67 UPDATE OXA-391 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 68 UPDATE TEM-132 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 69 UPDATE aadA23 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGACCATCGAAATTTCGAACCAACTATCAGAGGTGCTAAGCGTCATTGAGCGCCATCTGGAATCAACGTTGCTGGCCGTGCATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCATACAGCGATATTGATTTGCTGGTTACGGTGACCGTAAGGCTTGATGAAACAACGCGGCGAGCTTTGATCAACGACCTTTTGGAAACTTCGGCTTCCCCTGGAGAGAGCGAGATTCTCCGCGCTGTAGAAGTCACCATTGTTGTGCACGACGACATCATTCCGTGGCGTTATCCAGCTAAGCGCGAACTGCAATTTGGAGAATGGCAGCGCAATGACATTCTTGCAGGTATCTTCGAGCCAGCCACGATCGACATTGATCTGGCTATCTTGCTGACAAAAGCAAGAGAACATAGCGTTGCCTTAGTAGGTCCAGCGGCGGAGGAACTCTTTGATCCGGTTCCTGAACAGGATCTATTTGAGGCGCTAAATGAAACCTTAACGCTATGGAACTCGCCGCCCGACTGGGCTGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAGTAACCGGCAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATGGAGCGCCTGCCGGCCCAGTATCAGCCCGTCATACTTGAAGCTAGACAGGCTTATCTTGGACAAGAAGAAGATCGCTTGGCCTCGCGCGCAGATCAGTTGGAAGAATTTGTCCACTACGTGAAAGGCGAGATCACCAAGGTAGTCGGCAAATAA " 1371 UPDATE CTX-M-26 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1588 UPDATE QnrB50 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACTCTGGCATTAGTTGGCGAAAAAATTGACAGAAAGCGCTTCACCGGTGAGAAAGTTGAAAATAGTACATTTTTTAACTGCGATTTTTCAGGTGCCGACCTGAGCGGCACTGAATTTATCGGCTGCCAGTTCTATGATCGCGAAAGTCAGAAAGGATGCAATTTTAGTCGCGCAATGCTGAAAGATGCCATTTTCAAAAGCTGTGATTTATCAATGGCAGATTTCCGCAACGTCAGCGCATTGGGCATTGAAATTCGCCACTGCCGCGCACAAGGCGCAGATTTCCGCGGTGCAAGCTTTATGAATATGATCACCACGCGCACCTGGTTTTGCAGCGCATATATCACTAATACCAATCTAAGCTACGCCAATTTTTCGAAAGTCGTGTTGGAAAAGTGTGAGCTATGGGAAAACCGCTGGATGGGGACTCAGGTACTGGGTGCGACGTTCAGTGGTTCAGATCTCTCCGGCGGCGAGTTTTCGACTTTCGACTGGCGAGCAGCAAACTTCACACATTGCGATCTGACCAATTCGGAGTTAGGTGACTTAGATATTCGGGGTGTTGATTTACAAGGCGTTAAGTTAGACAACTACCAGGCATCGTTGCTCATGGAGCGGCTTGGCATCGCTGTGATTGGTTAG " 1589 UPDATE PER-3 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; PER beta-lactamase; monobactam; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATGTCATTATAAAAGCTGTAGTTACTGCCTCGACGCTACTGATGGTATCTTTTAGTTCATTCGAAACCTCAGCGCAATCCCCACTGTTAAAAGAGCAAATTGAATCCATAGTCATTGGAAAAAAAGCCACTGTAGGCGTTGCAGTGTGGGGGCCTGACGATCTGGAACCTTTACTGATTAATCCTTTTGAAAAATTCCCAATGCAAAGTGTATTTAAATTGCATTTAGCTATGTTGGTACTGCATCAGGTTGATCAGGGAAAGTTGGATTTAAATCAGACCGTTATCGTAAACAGGGCTAAGGTTTTACAGAATACCTGGGCTCCGATAATGAAAGCGTATCAGGGAGACGAGTTTAGTGTTCCAGTGCAGCAACTGCTGCAATACTCGGTCTCGCTCAGCGATAACGTGGCCTGTGATTTGTTATTTGAACTGGTTGGTGGACCAGCTGCTTTGCATGACTATATCCAGTCTATGGGTATAAAGGAGACCGCTGTGGTCGCAAATGAAGCGCAGATGCACGCCGATGATCAGGTGCAGTATCAAAACTGGACCTCGATGAAAGGTGCTGCAGAGATCCTGAAAAAGTTTGAGCAAAAAACACAGCTGTCTGAAACCTCGCAGGCTTTGTTATGGAAGTGGATGGTCGAAACCACCACAGGACCAGAGCGGTTAAAAGGTTTGTTACCAGCTGGTACTGTGGTCGCACATAAAACTGGTACTTCGGGTATCAAAGCCGGAAAAACTGCGGCCACTAATGATTTAGGTATCATTCTGTTGCCTGATGGACGGCCCTTGCTGGTTGCTGTTTTTGTGAAAGACTCAGCCGAGTCAAGCCGAACCAATGAAGCTATCATTGCGCAGGTTGCTCAGACTGCGTATCAATTTGAATTGAAAAAGCTTTCTGCCCTAAGCCCAAATTAA " 406 UPDATE ACC-4 penam; monobactam; cephalosporin; ACC beta-lactamase; antibiotic inactivation; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 3155 UPDATED strand with - UPDATED accession with EF504260 UPDATED fmin with 1994 UPDATED sequence with ATGCAGAACACATTGAAGCTGTTATCCGTGATTACCTGTCTGGCAGCAACTGTCCAAGGTGCTCTGGCTGCTAATATCGATGAGAGCAAAATTAAAGACACCGTTGATGACCTGATCCAGCCGCTGATGCAGAAGAATAATATTCCCGGTATGTCGGTCGCAGTGACCGTCAACGGTAAAAACTACATTTATAACTATGGGTTAGCGGCAAAACAGCCTCAGCAGCCGGTTACGGAAAATACGTTATTTGAAGTGGGTTCGCTGAGTAAAACGTTTGCTGCCACCTTGGCGTCCTATGCGCAGGTGAGCGGTAAGCTGTCTTTGGATCAAAGCGTTAGCCATTACGTTCCAGAGTTGCGTGGCAGCAGCTTTGACCACGTTAGCGTACTCAATGTGGGCACGCATACCTCAGGCCTACAGCTATTTATGCCGGAAGATATTAAAAATACCACACAGCTGATGGCTTATCTAAAAGCATGGAAACCTGCCGATGCGGCTGGAACCCATCGCGTTTATTCCAATATCGGTACTGGTTTGCTAGGGATGATTGCGGCGAAAAGTCTGGGTGTGAGCTATGAAGATGCGATTGAGAAAACCCTCCTTCCTCAGTTAGGCATGCATCACAGCTACTTGAAGGTTCCGGCTGACCAGATGGAAAACTATGCGTGGGGCTACAACAAGAAAGATGAGCCAGTGCACGGGAATATGGAGATTTTGGGTAACGAAGCTTATGGTATCAAAACCACCTCCAGCGACTTGTTACGCTACGTGCAAGCCAATATGGGGCAGTTAAAGCTTGATGCTAATGCCAAGATGCAACAGGCTCTGACAGCCACCCACACCGGCTATTTCAAATCGGGTGAGATTACTCAGGATCTGATGTGGGAGCAGCTGCCATATCCGGTTTCTCTGCCGAATTTGCTCACCGGTAACGATATGGCGATGACGAAAAGCGTGGCTACGCCGATTGTTCCGCCGTTACCGCCACAGGAAAATGTGTGGATTAATAAGACCGGATCAACTAACGGCTTCGGTGCCTATATTGCGTTTGTTCCTGCTAAGAAGATGGGGATCGTGATGCTGGCTAACAAAAACTACTCAATCGATCAGCGAGTGACGGTGGCGTATAAAATCCTGAGCTCATTGGAAGGGAATAAGTAG UPDATED NCBI_taxonomy_name with Escherichia coli UPDATED NCBI_taxonomy_id with 562 UPDATED NCBI_taxonomy_cvterm_id with 35914 UPDATED accession with ABP49606.1 UPDATED sequence with MQNTLKLLSVITCLAATVQGALAANIDESKIKDTVDDLIQPLMQKNNIPGMSVAVTVNGKNYIYNYGLAAKQPQQPVTENTLFEVGSLSKTFAATLASYAQVSGKLSLDQSVSHYVPELRGSSFDHVSVLNVGTHTSGLQLFMPEDIKNTTQLMAYLKAWKPADAAGTHRVYSNIGTGLLGMIAAKSLGVSYEDAIEKTLLPQLGMHHSYLKVPADQMENYAWGYNKKDEPVHGNMEILGNEAYGIKTTSSDLLRYVQANMGQLKLDANAKMQQALTATHTGYFKSGEITQDLMWEQLPYPVSLPNLLTGNDMAMTKSVATPIVPPLPPQENVWINKTGSTNGFGAYIAFVPAKKMGIVMLANKNYSIDQRVTVAYKILSSLEGNK " 1582 UPDATE dfrA5 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1583 UPDATE QnrVC6 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAAAAATCAAAGCAATTATATAATCAAGTGAACTTCTCACATCAGGACTTGCAAGAACATATCTTTAGCAATTGTACTTTTATACATTGTAATTTTAAGCGCTCAAACCTTCGAGATACACAGTTCATTAACTGTACTTTCATAGAGCAGGGGGCACTGGAAGGGTGCGATTTTTCTTATGCTGATCTTCGAGATGCTTCATTTAAAGATTGTCAGCTTTCAATGTCCCATTTTAAGGGGGCAAATTGCTTTGGTATTGAACTGAGAGATTGTGATCTTAAAGGGGCAAATTTTAGCCAAGTTAGTTTTGTAAATCAGGTTTCGAATAAAATGTACTTTTGCTCTGCATACATAACAGGTTGTAACTTATCCTATGCCAATTTTGAGCAGCAGCTTATTGAAAAATGTGACCTGTTCGAAAATAGATGGATTGGTGCAAATCTTCGAGGCGCTTCATTTAAAGAATCAGATTTAAGTCGTGGCGTTTTTTCAGAAGACTGCTGGGAACAGTTTAGAGTACAAGGCTGTGATTTAAGTCATTCAGAGCTTTATGGTTTAGATCCTCGAAAGATTGATCTTACAGGTGTAAAAATATGCTCGTGGCAACAGGAGCAGTTACTGGAGCAATTAGGGGTAATCATTGTTCCTGACTAA " 1580 UPDATE catIII antibiotic inactivation; thiamphenicol; chloramphenicol acetyltransferase (CAT); azidamfenicol; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACTATACAAAATTTGATGTAAAAAATTGGGTTCGCCGTGAGCATTTTGAGTTTTATCGGCATCGTTTACCATGTGGTTTTAGCTTAACAAGCAAAATTGATATCACGACGTTAAAAAAGTCATTGGATGATTCAGCGTATAAGTTTTATCCGGTAATGATCTATCTGATTGCTCAGGCCGTGAATCAATTTGATGAGTTGAGAATGGCGATAAAAGATGATGAATTGATCGTATGGGATTCAGTCGACCCACAATTCACCGTATTCCATCAAGAAACAGAGACATTTTCAGCACTGAGTTGCCCATACTCATCCGATATTGATCAATTTATGGTGAATTATTTATCGGTAATGGAACGTTATAAAAGTGATACCAAGTTATTTCCTCAAGGGGTAACACCAGAAAATCATTTAAATATTTCAGCATTACCTTGGGTTAATTTTGATAGCTTTAATTTAAATGTTGCTAATTTTACCGATTATTTTGCACCCATTATAACAATGGCAAAATATCAGCAAGAAGGGGATAGACTGTTATTGCCGCTCTCAGTACAGGTTCATCATGCAGTTTGTGATGGCTTCCATGTTGCACGCTTTATTAATCGGCTACAAGAGTTGTGTAACAGTAAATTAAAATAA " 1581 UPDATE ACT-3 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1586 UPDATE CTX-M-32 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 405 UPDATE OXA-202 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1584 UPDATE tet(41) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 3006 UPDATED strand with - UPDATED accession with AY264780.2 UPDATED fmin with 1824 UPDATED sequence with TTGAAAAAACCCATGCTGGTTATTTTGTTGACGGTGTTGCTGGATGCGGTGGGCATCGGTCTGATCATGCCTATTCTACCGGCGCTGTTGCGCTCGCTGGGCGGTCTCGATGCCGGCAGCGTGCATTACGGCGCCCTGCTGGCGGCCTATGCGTTGATGCAATTCCTGTTTTCGCCGATCCTCGGCGCGCTGAGCGATCGTTTCGGGCGGCGGCCGGTGCTGTTGATTTCGCTCGCCGGCGCGGCGGCCGACTACCTGCTGATGGCGTTCGCGCCGACGCTGGCCTGGCTCTATCTGGGGCGGTTGCTGGCGGGCATCACCGGCGCCAACATGGCGGTCGCCACCGCTTACGTCACCGATATTACCCCCGTCGGCCAGCGCGCTCGGCGTTTCGGCCTGGTGGGCGCGGTGTTCGGCGTCGGCTTTATCGTCGGCCCGCTGCTCGGCGGATCGCTGGGCGAATGGCATCTGCATGCGCCCTTCCTGGCGGCGGCGATGATGAATGCCCTCAACCTGGTGATGGCGTTTTTCCTGCTGCCCGAATCGCGTAAATCCCGCCCCCGCGCCGCCGAGAAAATTCGCCTTAATCCCTTCTCGTCATTGCGCCGGCTGCACGGCAAGCCTGGCCTGCTGCCGCTGGCCGGCATTTATCTGGTTATGGCGCTGGTTTCGCAGGCGCCGGCCACGCTGTGGATTTTATACGGTCAGGATCGTTTCGGCTGGAGCATGATGGTGGCGGGCCTGTCGCTGGCCGGCTACGGCGCCTGCCACGCGCTGTCGCAGGCCTTTGCCATCGGCCCGCTGGTCGCGCGGCTCGGCGAGCGCAAGGCGCTGCTGATCGGCCTGGCCGCCGACGCCGTGGGCCTGGCGCTGTTGTCTGTCGCCACGCGCGGCTGGGCGCCGTTCGCCCTGCTGCCGTTCTTCGCCGCGGGCGGCATGGCGTTGCCCGCACTGCAGGCGCTGATGGCGCACAAGGTGGACGACGATCATCAGGGCGAGCTGCAAGGGACGCTCGCCAGCATGGGCAGCCTGATCGGCGTCGCGGGGCCGCTGGTGGCGACGGCGCTGTATGCCGCCACGCGCGATGTCTGGCCTGGGCTGGTGTGGGCGTTGGCCGCCGCCCTGTACCTGGTGGTGCCGCCGCTGCTGGCACGCTCACGCGCCAGGGATGCGGCGCCATAA UPDATED NCBI_taxonomy_name with Serratia marcescens UPDATED NCBI_taxonomy_id with 615 UPDATED NCBI_taxonomy_cvterm_id with 36783 UPDATED accession with AAP93922.1 UPDATED sequence with MKKPMLVILLTVLLDAVGIGLIMPILPALLRSLGGLDAGSVHYGALLAAYALMQFLFSPILGALSDRFGRRPVLLISLAGAAADYLLMAFAPTLAWLYLGRLLAGITGANMAVATAYVTDITPVGQRARRFGLVGAVFGVGFIVGPLLGGSLGEWHLHAPFLAAAMMNALNLVMAFFLLPESRKSRPRAAEKIRLNPFSSLRRLHGKPGLLPLAGIYLVMALVSQAPATLWILYGQDRFGWSMMVAGLSLAGYGACHALSQAFAIGPLVARLGERKALLIGLAADAVGLALLSVATRGWAPFALLPFFAAGGMALPALQALMAHKVDDDHQGELQGTLASMGSLIGVAGPLVATALYAATRDVWPGLVWALAAALYLVVPPLLARSRARDAAP " 1585 UPDATE CMY-73 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 159 UPDATE vgaALC dalfopristin; pleuromutilin; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; ABC-F ATP-binding cassette ribosomal protection protein; antibiotic target protection; streptogramin antibiotic; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 36001 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. " 1038 UPDATE cmlB1 antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGCGCTCTAAAGATTTTTCTTGGCGGTATTCTCTTGCCGCCACGCTATTACTGTTATCACCATTCGACTTGTTGGCATCACTCGGCATGGATATGTATCTGCCTGTGGTGCCTTTCATGGCCGGTGCACTCGGTGCCGGTGCAGGGACGATCCAGCTGACGTTGACGGTATACCTGGTTTTGCTTGGAGCCGGTCAGCTTCTCTTTGGCCCGTTATCGGATCTGCTGGGGCGCCGCCCGGTATTACTCGGTGGTGGAATTACCTATATTTTGGCTTCATTCGGACTCGCCGCAGCTTCATCACCAGAAGTTTTCCTGAGCTTCCGTATTCTTCAAGCCTGCGGTGCTTCGGCATGTCTCGTGTCCACTTTCGCGACCGTACGCGACATATATTCGGGCAGCGAGGAAAGCAACGTTATCTATGGCTTGCTCGGCTCTATGCTTGCGATGGTTCCAGCAATAGGCCCATTGTTAGGAGCGCTGGTCGACGCTTGGCTGGGGTGGCGAGCAATCTTTGGTTTGCTGGGAATCGCAATGATAGGTGCTGTTACCGCAGCTTGGCGATTCTGGCCCGAGACCCGGCGGCAGCGAACGGCAGATTTACAGTGGTCACAGCTATTGCTTCCTGTGAAATGCCTGAACTTCTGGCTGTACACCCTCTGCTACAGCGCGGGAATGGGCAGTTTCTTTGTCTTCTTCTCGACTGCCCCTTGGCTAATGATGGGCAGGCAAGCGTTATCGCAACTTAGCTTCAGCTTGCTGTTTGCGACAGTGGCCATCGCGATGATGGCTACAGCGCGGATCATGGGACGGCTGATTCCCCGATGGGGAAGCCTGAACACTTTACGAGTTGGAATGGGTTGCCTAGTGGTCGGGGCACTGTTGCTTGCTGTCGGCGAGACACTCATACCAAACTCGGTGCTTGGCTTCATCGCCCCAATGTGGCTCGTCGGTGTTGGCATTGCCACTGCGGCCTCGGTGGCACCCAATGGTGCACTTCGAGGGTTTGATCACATCGCTGGAACCGCCACAGCAGTCTACTTCTGCTTGGGTGGGTTACTGCTAGGTGGTATCGGTACTTTCATCATTGCACTTTTACCAAGTGATACCACATGGCCGATCATTGCTTATTGCCTAATCCTCGCAATAGCAGTGCTTTGTCTATCCTGCTTCAACCCCAACAGGCACCATCCCAGCGATGACGAGCATGATTCGCTTGCGACGCAAGACATCGGCCGCTCGCAATCGGGCCATGGTCATGATTAG " 1039 UPDATE dfrB3 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGACCAACACAACAATGGAGTCAGTACTCTAGTTGCTGGCCAGTTTGCGCTCCCATCGCACGCCACGTTTGGCCTGGGAGATCGCGTGCGCAAGAAATCTGGCGCCGCTTGGCAGGGTCAAGTTGTCGGGTGGTACTGCACAAAACTGACCCCTGAAGGCTATGCCGTCGAGTCCGAGTCTCACCCCGGTTCAGTACAGATTTATCCTGTGGCTGCGCTTGAACGCGTGGCCTGA " 508 UPDATE tetA(P) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAATAAACTTTCAGCATATAAAACTTATTTATTATTTTCAGCTATTACAGCAATGTGTTTTTCGTTAGTAGCTACAGTTATGATGGTGTATCACATTGAAATAGTTCATTTAAATCCACTTCAGCTTATACTTGTTGGAACTACTTTGGAATTAGCATGCTTTATATTTGAAATTCCTACAGCTATAGTTGCAGATGTGTATAGTCGTAAACTATCTATTGTTATTGGGGGAGTTTTAACAGGAGTGGGATTTATTTTAGAAGGTTCTATTTCTAGTTTTGTTTTCGTACTTGTAGCACAGATTGTATGGGGATTAGGGTCTACTTTTATCAGTGGCTCGCTTGAAGCTTGGATTGCGGAAGAAGAGAAGAATAAAGATTTAGATGAAATTTATATAAAGGGAGCACAAGCAGGGCAGATAGGAGCATTTATTGGAATAGTACTAAGCACTGTAATAGCTAATTTCTCTGTAAGGCTTCCTATTATAGTTAGTGGAGTTTTATTTATAATTCTTGCATTATTTTTATGGTTATATATGCCAGAAAATAATTTTAAACCATCTGCTCCTGGGGATTTAAATACATTCAAAAAGATGGTATATACATTTAAATCTGGTCTTAAATTTGTAAAAAGTAAATCTATAATTATGATTTTACTTGCAGTAACTTTATTTTATGGATTATCAAGTGAAGGTTATGATAGACTTTCTAATGCGCATTTTTTACAAGATACTACACTTCCTAAACTTGGAAACCTTAGTTCAGTGACTTGGTTTGGAATTTTTGGAATTTTAGGAATGATATTGAGCTTCATAGTAATGCATTTTATGGCAAAGAATCTTAAGAATGAGGATAATAGGAAAAATGGAAAACTATTATTATGCATAAATATACTTTATATATCGTCTATGTTGATATTTGCTCTTACAAGAAACTTTAGTTTAATGTTAATAGCTTATTTGGCAACAAATACCTTTAGAATTATAAATAAACCTATATTCAGTGCGTGGTTAAATGGGCATATAGATGATAATTCTAGAGCTACTGTGCTTTCTATAAATGGACAAATGAATTCCTTAGGTCAAATTTTAGGTGGACCGATTATAGGAATCATAGCTACAAATATTTCAGTAAGTATTGGTATAGTATGTACTTCGTTATTAGTAACACCGGTATTAGTGTTATATATTGTTGCTATGATAATTGATAAAAAGGTGGATGATAGAGTTGGAGGTATTGATTATGAAGAAAATAATTAA " 509 UPDATE FOX-1 antibiotic inactivation; cephamycin; cephalosporin; FOX beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAACAACGACGTGCGTTCGCGCTACTGACGCTGGGTAGCCTGCTGCTAGCCCCTTGTACTTATGCCCGCGGGGAGGCTCCGCTGACCGCCGCTGTGGACGGCATTATCCAGCCGATGCTCAAGGAGTATCGGATCCCGGGGATGGCGGTCGCCGTGCTGAAAGATGGCAAGGCCCACTATTTCAACTATGGGGTTGCCAACCGCGAGAGTGGTCAGCGCGTCAGCGAGCAGACCCTGTTCGAGATTGGCTCGGTCAGCAAGACCCTGACCGCGACCCTCGGTGCCTATGCTGCGGTCAAGGGGGGCTTTGAGCTGGATGACAAGGTGAGCCAGCACGCCCCCTGGCTCAAAGGTTCCGCCTTTGATGGTGTGACCATGGCCGAGCTTGCCACCTACAGTGCGGGTGGTTTGCCGCTGCAGTTCCCCGATGAGGTGGATTCGAATGACAAGATGCGCACTTACTATCGGCACTGGTCACCGGTTTATCCGGCGGGGACCCATCGCCAGTATTCCAACCCCAGCATAGGCCTGTTTGGTCACCTGGCCGCAAATAGTCTGGGCCAGCCATTTGAGCAACTGATGAGCCAGACCCTGCTGCCCAAGCTGGGTTTGCACCACACCTATATTCAGGTGCCGGAGTCGGCCATAGCGAACTATGCCTACGGCTATTCGAAGGAAGATAAGCCCGTCCGGGTCACTCCGGGCGTGCTGGCGGCCGAGGCTTACGGGATCAAGACCGGCTCGGCGGATCTGCTGAAGTTTACCGAGGCCAACATGGGGTATCAGGGAGATGCCGCGCTAAAAACGCGGATCGCGCTGACCCATACCGGTTTCTACTCGGTGGGAGACATGACTCAGGGGCTGGGTTGGGAGAGCTACGCCTATCCGTTGACCGAGCAGGCGCTGCTGGCGGGCAACTCCCCGGCGGTGAGCTTCCAGGCCAATCCGGTTACGCGCTTTGCGGTGCCCAAAGCGATGGGCGAGCAGCGGCTCTATAACAAGACGGGCTCGACTGGCGGCTTTGGCGCCTATGTGGCGTTCGTGCCCGCCAGAGGGATCGCCATCGTCATGCTGGCCAATCGCAACTATCCCATCGAGGCCAGGGTGAAGGCGGCTCACGCCATCCTGAGTCAGTTGGCCGAGTGA " 1032 UPDATE OXA-365 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 507 UPDATE rosB peptide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 24057 UPDATED strand with - UPDATED accession with U46859 UPDATED fmin with 22365 UPDATED sequence with ATGCACCACTCAACACCCTTAATTACCACGATCGTCGGAGGCCTTGTTCTCGCCTTCCTCTTGGGCTCCTTGGCTCACCGCCTGCGCTCATCACCACTGGTGGGGTACCTTGCCGCAGGGGTGCTGGCCGGGCCATTTACGCCAGGTTTCGTTGCTGATACCTCATTAGCACCAGAACTGGCTGAAATTGGTGTTATCTTGTTGATGTTTGGTGTCGGACTTCACTTCTCACTTAAAGACCTCCTCGCAGTAAAAGCCATCGCCATACCCGGTGCTGTGGCACAAATTGCCGTTGCCACCTTACTCGGAATGGGACTGTCTCATTTATTAGGCTGGGATTTGATGACAGGTTTTGTCTTCGGTCTTTGTCTATCAACAGCAAGTACCGTGGTATTACTACGAGCTCTAGAAGAACGGCAACTCATAGATAGCCAGCGGGGGCAAATTGCTATCGGTCGGTCGATTGTCGAAGATTTGGCGATGGTACTCACATTGGTGCTATTACCAGCCTTTGCCGGCGTGATGGGTAACGAAACCACCAGTCTCAGCCAGTTATTCACTGAACTAGCAATAACCATCGGTAAAGTCATTGCCTTCATTACGCTGATGATTGTTGTCGGTCGTCGTTTGGTCCCCTGGATACTGGCTAAAACCGCCAGTACCGGTTCCCGTGAGCTATTTACCTTGGCAGTGCTGGTATTAGCGCTTGGTATTGCTTACGGCGCTGTAGGGCTGTTCGACGTATCCTTTGCTCTCGGTGCATTCTTCGCAGGAATGGTATTGAATGAATCAGAGCTCAGCCACCGTGCGGCGCAAGATACCTTACCGCTACGTGATGCATTTGCCGTACTGTTCTTCGTTTCAGTTGGGATGTTGTTCGACCCAATGATTTTGCTACGTGAACCATTAGCTGTACTGGCTTCACTAGCTATCATTATCTTCGGCAAATCAGCAGCAGCGTTTATATTAGTGCGGATGTTTGGTCACTCAAACGTGTACAGCACTCACCATTTCTGTCCCTGGCGCAAATCGGTGAATTTGCCCTTTATTCTCGCCGGGCTTGGAATTTCTCTCGGTTTAATGTCTGAGCATGGCCGTAATCTGGTGCTGGCGGGCGCAATTTTATCAATTATGCTCAACCCGCTACTGTTTACATTATTAGATCGCTATTTGGCTAAAAACGAGACGATGGAAGATCTGATTCTGGAAGAGGCAGTCGAAGAGGAAAAGCAGATACCCGGTAGATTTGTGCAATCATGCACTGTTAGTCGGTTATGGTCGGGTGGGAGTTTATTAGGTGCAAAACTGCACGCGGAAGGTATTCCATTAGTGGTCATTGAGAACTCTCGACCAAGAGTTGAGGCGCTACGTGAACAAGGCATTAATGCGGTATTAGGCAATGCTGCAAGTGCAGATATTATGTCGCTGGCTCGTTTGGATTGTGCCCTGGTTATTATACTGACCATACCGAATGGCTACGAAGCTGGGGAAATTGTCGCCTCCGCCAGAATTAAACGGCCAGACCTTGAGATAATTGCTCGCGCGCATTATGACGACGAAGTGGTTTATATCTCGGTACGTGGCGCGAACCAGGTTGTGATGGGCGAACGTGAAATTGCCAACAGTATGCTTAATATGTTGAAGATAGAAACGCTGACCGAAGAAGACAAACGCCCGCTTTGCCCAATTTAA UPDATED NCBI_taxonomy_name with Yersinia enterocolitica (type O:8) UPDATED NCBI_taxonomy_id with 34054 UPDATED NCBI_taxonomy_cvterm_id with 39589 UPDATED accession with AAC60780.1 UPDATED sequence with MHHSTPLITTIVGGLVLAFLLGSLAHRLRSSPLVGYLAAGVLAGPFTPGFVADTSLAPELAEIGVILLMFGVGLHFSLKDLLAVKAIAIPGAVAQIAVATLLGMGLSHLLGWDLMTGFVFGLCLSTASTVVLLRALEERQLIDSQRGQIAIGRSIVEDLAMVLTLVLLPAFAGVMGNETTSLSQLFTELAITIGKVIAFITLMIVVGRRLVPWILAKTASTGSRELFTLAVLVLALGIAYGAVGLFDVSFALGAFFAGMVLNESELSHRAAQDTLPLRDAFAVLFFVSVGMLFDPMILLREPLAVLASLAIIIFGKSAAAFILVRMFGHSNVYSTHHFCPWRKSVNLPFILAGLGISLGLMSEHGRNLVLAGAILSIMLNPLLFTLLDRYLAKNETMEDLILEEAVEEEKQIPGRFVQSCTVSRLWSGGSLLGAKLHAEGIPLVVIENSRPRVEALREQGINAVLGNAASADIMSLARLDCALVIILTIPNGYEAGEIVASARIKRPDLEIIARAHYDDEVVYISVRGANQVVMGEREIANSMLNMLKIETLTEEDKRPLCPI " 504 UPDATE TEM-52 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1031 UPDATE APH(6)-Id antibiotic inactivation; APH(6); streptomycin; aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTCATGCCGCCTGTTTTTCCTGCTCATTGGCACGTTTCGCAACCTGTTCTCATTGCGGACACCTTTTCCAGCCTCGTTTGGAAAGTTTCATTGCCAGACGGGACTCCTGCAATCGTCAAGGGATTGAAACCTATAGAAGACATTGCTGATGAACTGCGCGGGGCCGACTATCTGGTATGGCGCAATGGGAGGGGAGCAGTCCGGTTGCTCGGTCGTGAGAACAATCTGATGTTGCTCGAATATGCCGGGGAGCGAATGCTCTCTCACATCGTTGCCGAGCACGGCGACTACCAGGCGACCGAAATTGCAGCGGAACTAATGGCGAAGCTGTATGCCGCATCTGAGGAACCCCTGCCTTCTGCCCTTCTCCCGATCCGGGATCGCTTTGCAGCTTTGTTTCAGCGGGCGCGCGATGATCAAAACGCAGGTTGTCAAACTGACTACGTCCACGCGGCGATTATAGCCGATCAAATGATGAGCAATGCCTCGGAACTGCGTGGGCTACATGGCGATCTGCATCATGAAAACATCATGTTCTCCAGTCGCGGCTGGCTGGTGATAGATCCCGTCGGTCTGGTCGGTGAAGTGGGCTTTGGCGCCGCCAATATGTTCTACGATCCGGCTGACAGAGACGACCTTTGTCTCGATCCTAGACGCATTGCACAGATGGCGGACGCATTCTCTCGTGCGCTGGACGTCGATCCGCGTCGCCTGCTCGACCAGGCGTACGCTTATGGGTGCCTTTCCGCAGCTTGGAACGCGGATGGAGAACAGGAGCAACGCGATCTAGCTATCGCGGCCGCGATCAAGCAGGTGCGACAGACGTCATACTAG " 502 UPDATE aadA17 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGGGTAGCGGTGACCATCGAAATTTCGAACCAACTATCAGAGGTGCTAAGCGTCATCGAGCGCCATCTCGAACCGACGTTGCTGGCCGTACATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCACACAGTGATATTGATTTGCTGGTTACGGTGACCGTAAGGCTTGATGAAACAACGCGGCGAGCTTTGATCAACGACCTTTTGGAAACTTCGGCTTCCCCTGGAGAGAGCGAGATTCTCCGCGCTGTAGAAGTCACCATTGTTGTGCACGACGACATCATTCCGTGGCGTTATCCAGCTAAGCGCGAACTGCAATTTGGAGAATGGCAGCGCAATGACATTCTTGCAGGTATCTTCGAGCCAGCCACGATCGACATTGATCTAGCTATCCTGCTTACAAAAGCAAGAGAACATAGCGTTGCCTTGGTAGGTCCGGCAGCGGAGGAATTCTTTGACCCGGTTCCTGAACAGGATCTATTCGAGGCGCTGAGGGAAACCTTGAAGCTATGGAACTCGCAGCCCGACTGGGCCGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAATAACCGGCAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATAAAACGCCTACCTGCCCAGTATCAGCCCGTCTTACTTGAAGCTAAGCAAGCTTATCTGGGACAAAAAGAAGATCACTTGGCCTCACGCGCAGATCACTTGGAAGAATTTATTCGCTTTGTGAAAGGCGAGATCATCAAGTCAGTTGGTAAATGA " 503 UPDATE CTX-M-69 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 500 UPDATE OXA-164 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 402 UPDATE tet(Y) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1212 UPDATE OXA-141 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 631 UPDATE TEM-21 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 632 UPDATE basR pmr phosphoethanolamine transferase; peptide antibiotic; antibiotic target alteration; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 633 UPDATE OXA-355 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1216 UPDATE SHV-119 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 401 UPDATE ACT-22 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCCCTGTGCTGCGCCCTGCTGCTCAGCACCTCCTGCGCTGCATTAGCCGCACCTATGTCAGAAACACAGCTGGCGAAGGTCGTGGCACGTACCGTTACGCCCCTGATGAAAGCGCAGTCTATTCCGGGTATGGCGGTCGCCGTGATCTATCAGGGCCAGCCGCACTACTTCACCTTCGGCAAGGCCGATGTCGCAGCGAACACACCCGTCACTGCACAAACGCTGTTTGAGCTGGGCTCAATCAGCAAAACCTTCACCGGCGTTCTGGGTGGCGATGCTATTGCTCGCGGTGAAATTTCGCTGAGCGATCCGGTGACCAAATACTGGCCTGAGCTGACCGGCAAACAGTGGCAGGGCGTTCGCATGCTGGACCTGGCAACCTATACTGCCGGTGGCCTGCCGTTACAGGTGCCCGATGAGGTTACCGATAATGCCTCGCTGCTGCGTTTTTACCAGTCCTGGCAACCACAGTGGGCGCCAGGCACCACGCGTCTTTATGCGAATGCCAGCATCGGTCTGTTTGGGGCTCTGGCGGTGAAACCTTCTGGCATGCGCTTTGAGCAGGCGATGACAGAGCGGGTCCTGAAGCCGCTTAACCTGAACCATACGTGGATTAACGTTCCGAAGGCAGAAGAACAGCATTACGCCTGGGGTTATCGTGACGGTAAAGCGGTTCACGTTTCGCCGGGCATGCTCGATGCCGAAGCGTATGGCGTGAAAACCAACGTGAAGGATATGGCGAGCTGGGTAGTGGCTAACATGGCCCCCGATGGCGTACAGGATGCCTCACTGAAGCAGGGCATGGCGCTTGCACAGTCTCGCTACTGGCGCACAGGCTCGATGTACCAGGGCCTGGGCTGGGAGATGCTCAACTGGCCGGTAGAAGCCAAAACCGTGGTGGAGGGCAGCGACAACAAAGTAGCGCTTGCGCCGTTGCCCGTGGCAGAAGTGAACCCTCCTGCTCCACCGGTAAAAGCGTCATGGGTACATAAAACAGGCTCGACGGGCGGATTTGGCAGCTACGTGGCATTTATCCCTGAGAAGAAACTCGGCATTGTTATGCTGGCGAACAAGAGCTACCCGAACCCGGCGCGCGTGGAAGCGGCATACCGTATTCTGAGCGCTCTGCAGTAA " 636 UPDATE CFE-1 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 637 UPDATE OXY-6-2 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 638 UPDATE ACT-16 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCCCTTTGCTGCGCCCTGCTGCTGGGCCTCTCTTGCTCTGCTCTCGCCGCGCCAGTATCAGAAAAACAGCTGGCGGAGGTGGTCGCGAATACGGTTACCCCGCTGATGAAAGCCCAGTCTGTTCCAGGCATGGCGGTGGCCGTTATTTATCAGGGAAAATCGCACTATTACACGTTTGGCAAGGCCGATATCGCGGCGAATAAACCCGTTACGCCTCAGACCCTGTTCGAGCTGGGTTCTATAAGTAAAACCTTCACCGGCGTTTTAGGTGGGGATGCCATTGCTCGCGGTGAAATTTCGCTGGACGATCCGGTGACCAGATACTGGCCACAGCTGACGGGCAAGCAGTGGCAGGGTATTCGTATGCTGGATCTCGCCACCTACACCGCTGGCGGCCTGCCGCTACAGGTACCGGATGAGGTCACGGATAACGCCTCCCTGCTGCGCTTTTATCAAAACTGGCAGCCGCAGTGGAAGCCTGGCACAACGCGTCTTTACGCCAACGCCAGCATCGGTCTTTTTGGTGCGCTGGCGGTCAAACCTTCTGGCATGCCCTATGAGCAGGCCATGACGACGCGGGTCCTTAAGCCGCTCAAGCTGGACCATACCTGGATTAACGTTCCGAAAGCGGAAGAGGCGCATTACGCCTGGGGCTATCGTGACGGTAAAGCGGTGCGCGTTTCGCCGGGAATGCTGGATGCACAAGCCTATGGCGTGAAAACCAACGTGCAGGATATGGCGAACTGGGTCATGGCAAACATGGCGCCGGAGAAGGTTGCCGATGCCTCACTTAAGCAGGGCATCGCGCTGGCGCAGTCGCGCTACTGGCGTATCGGGTCAATGTATCAGGGTCTGGGCTGGGAGATGCTCAACTGGCCCGTGGAGGCCAACACGGTGGTCGAAGGCAGCGACAGTAAGGTAGCGCTGGCGCCGTTACCCGTGGCAGAAGTGAATCCACCGGCTCCCCCGGTCAAAGCGTCCTGGGTCCATAAAACGGGTTCTACCGGCGGGTTTGGCAGCTACGTGGCCTTTATTCCTGAAAAGCAGATCGGTATTGTGATGCTCGCGAATAAAAGCTATCCGAACCCGGCACGCGTTGAGGCGGCATACCATATCCTCGAGGCGCTA " 639 UPDATE AAC(3)-IV antibiotic inactivation; AAC(3); aminoglycoside antibiotic; plazomicin; apramycin; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with plazomicin UPDATED category_aro_cvterm_id with 40307 UPDATED category_aro_accession with 3003675 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Plazomicin is a neoglycoside, or next-generation, aminoglycoside, that has been identified as a potentially useful agent to combat drug-resistant bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa. " 1218 UPDATE TEM-219 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1219 UPDATE vanRN glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanR; vancomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGATACAATTGTAATCGTTGATGATGAGAAAGAAATTGCCAATTTAATGACGACCTTTCTAGAAAATGAAGGATTCAAGGTCATGACCTTTTATAGCGGAAAGGAAGCACTGGATTATATTGATCAAAACGGTGCTTCCTTGGCCATTTTGGATGTGATGTTACCTGATTTAGATGGCTTCCAAATATTACAACACATCCGTCAAACATTCTTTTTCCCCGTATTGATGTTGACCGCAAAAGGAGAAAACTTAGATAAAATCACCGGACTGACTCTAGGCGCAGATGACTACATTACGAAACCTTTCAACCCGCTGGAAGTCGTGGCGCGAGTAAAAACACAACTGCGACGTACTCAGCGTTACGATCAGCCTTCCCATAGTCAATCGGATGAAGAATTTACAAAGGAAGGTTTGGTACTGAAAAAAAACAGCCACCAAGTTTTCTTATTTGATCAAGAAGTGTTGATTACACCCTTGGAGTTTAAGATCCTGCTCTACCTATTTGAGCATCAAGGGACAGTAGTCTCTTCTGAAACATTATTTGAAGAAGTTTGGCAAGAAAAATATTTAGACAATAATAATACAGTAATGGCACATATTGCTCGTTTAAGAGAAAAATTAGGCGAAAAACCAAGAAAACCAAAATATATTAAAACAGTTTGGGGGGTAGGCTATATCATTGAAAAATAA " 1394 UPDATE OXA-257 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2899 UPDATE Vibrio anguillarum chloramphenicol acetyltransferase antibiotic inactivation; phenicol antibiotic; chloramphenicol acetyltransferase (CAT); chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2898 UPDATE Shigella flexneri chloramphenicol acetyltransferase antibiotic inactivation; phenicol antibiotic; chloramphenicol acetyltransferase (CAT); chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 24640 UPDATED strand with - UPDATED accession with AF326777.3 UPDATED fmin with 23980 UPDATED sequence with ATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCNAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAANGGTTTATNGAGAATATGTNTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTTTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAA UPDATED NCBI_taxonomy_name with Shigella flexneri 2a UPDATED NCBI_taxonomy_id with 42897 UPDATED NCBI_taxonomy_cvterm_id with 39537 UPDATED accession with AAL08441.1 UPDATED sequence with MEKKITGYTTVDISQWHRKEHFEAFQSVAQCTYNQTVQLDITAFLKTVKKNKHKFYPAFIHILARLMNAHPEFRMAMKDGELVIWDSVHPCYTVFHEQTETFSSLWSEYHDDFRQFLHIYSXDVACYGENLAYFPKXFXENMXFVSANPWVSFTSFDLNVANMDNFFAPVFTMGKYYTQGDKVLMPLAIQVHHAVCDGFHVGRMLNELQQYCDEWQGGA " 2895 UPDATE Enterococcus faecium chloramphenicol acetyltransferase antibiotic inactivation; phenicol antibiotic; chloramphenicol acetyltransferase (CAT); chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2894 UPDATE Streptococcus suis chloramphenicol acetyltransferase antibiotic inactivation; phenicol antibiotic; chloramphenicol acetyltransferase (CAT); chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2897 UPDATE Enterococcus faecalis chloramphenicol acetyltransferase antibiotic inactivation; phenicol antibiotic; chloramphenicol acetyltransferase (CAT); chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 9582 UPDATED strand with - UPDATED accession with X92945.2 UPDATED fmin with 8934 UPDATED sequence with ATGACTTTTAATATTATTGAATTAGAAAATTGGGATAGAAAAGAATATTTTGAACACTATTTTAATCAGCAAACTACTTATAGCATTACTAAAGAAATTGATATTACTTTGTTTAAAGATATGATAAAAAAGAAAGGATATGAAATTTATCCCTCTTTAATTTATGCAATTATGGAAGTTGTAAATAAAAATAAAGTGTTTAGAACAGGAATTAATAGTGAGAATAAATTAGGTTATTGGGATAAGTTAAATCCTTTGTATACAGTTTTTAATAAGCAAACTGAAAAATTTACTAACATTTGGACTGAATCTGATAAAAACTTCATTTCTTTTTATAATAATTATAAAAATGACTTGCTTGAATATAAAGATAAAGAAGAAATGTTTCCTAAAAAACCGATACCTGAAAACACCATACCGATTTCAATGATTCCTTGGATTGATTTTAGTTCATTTAATTTAAATATTGGTAACAATAGCAGCTTTTTATTGCCTATTATTACGATAGGTAAATTTTATAGTGAGAATAATAAAATTTATATACCAGTTGCTCTGCAACTTCATCATTCTGTATGTGATGGTTACCATGCTTCACTATTTATGAATGAATTTCAAGATATAATTCATAGGGTAGATGATTGGATTTAG UPDATED NCBI_taxonomy_name with Enterococcus faecalis UPDATED NCBI_taxonomy_id with 1351 UPDATED NCBI_taxonomy_cvterm_id with 35918 UPDATED accession with CAA63498.2 UPDATED sequence with MTFNIIELENWDRKEYFEHYFNQQTTYSITKEIDITLFKDMIKKKGYEIYPSLIYAIMEVVNKNKVFRTGINSENKLGYWDKLNPLYTVFNKQTEKFTNIWTESDKNFISFYNNYKNDLLEYKDKEEMFPKKPIPENTIPISMIPWIDFSSFNLNIGNNSSFLLPIITIGKFYSENNKIYIPVALQLHHSVCDGYHASLFMNEFQDIIHRVDDWI " 783 UPDATE NDM-1 penam; antibiotic inactivation; imipenem; cephamycin; carbapenem; cephalosporin; NDM beta-lactamase; amoxicillin; clavulanate; meropenem; ertapenem; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 3219 UPDATED strand with - UPDATED accession with FN396876 UPDATED fmin with 2406 UPDATED sequence with ATGGAATTGCCCAATATTATGCACCCGGTCGCGAAGCTGAGCACCGCATTAGCCGCTGCATTGATGCTGAGCGGGTGCATGCCCGGTGAAATCCGCCCGACGATTGGCCAGCAAATGGAAACTGGCGACCAACGGTTTGGCGATCTGGTTTTCCGCCAGCTCGCACCGAATGTCTGGCAGCACACTTCCTATCTCGACATGCCGGGTTTCGGGGCAGTCGCTTCCAACGGTTTGATCGTCAGGGATGGCGGCCGCGTGCTGGTGGTCGATACCGCCTGGACCGATGACCAGACCGCCCAGATCCTCAACTGGATCAAGCAGGAGATCAACCTGCCGGTCGCGCTGGCGGTGGTGACTCACGCGCATCAGGACAAGATGGGCGGTATGGACGCGCTGCATGCGGCGGGGATTGCGACTTATGCCAATGCGTTGTCGAACCAGCTTGCCCCGCAAGAGGGGATGGTTGCGGCGCAACACAGCCTGACTTTCGCCGCCAATGGCTGGGTCGAACCAGCAACCGCGCCCAACTTTGGCCCGCTCAAGGTATTTTACCCCGGCCCCGGCCACACCAGTGACAATATCACCGTTGGGATCGACGGCACCGACATCGCTTTTGGTGGCTGCCTGATCAAGGACAGCAAGGCCAAGTCGCTCGGCAATCTCGGTGATGCCGACACTGAGCACTACGCCGCGTCAGCGCGCGCGTTTGGTGCGGCGTTCCCCAAGGCCAGCATGATCGTGATGAGCCATTCCGCCCCCGATAGCCGCGCCGCAATCACTCATACGGCCCGCATGGCCGACAAGCTGCGCTGA UPDATED NCBI_taxonomy_name with Klebsiella pneumoniae UPDATED NCBI_taxonomy_id with 573 UPDATED NCBI_taxonomy_cvterm_id with 35915 UPDATED accession with CAZ39946.1 UPDATED sequence with MELPNIMHPVAKLSTALAAALMLSGCMPGEIRPTIGQQMETGDQRFGDLVFRQLAPNVWQHTSYLDMPGFGAVASNGLIVRDGGRVLVVDTAWTDDQTAQILNWIKQEINLPVALAVVTHAHQDKMGGMDALHAAGIATYANALSNQLAPQEGMVAAQHSLTFAANGWVEPATAPNFGPLKVFYPGPGHTSDNITVGIDGTDIAFGGCLIKDSKAKSLGNLGDADTEHYAASARAFGAAFPKASMIVMSHSAPDSRAAITHTARMADKLR " 2891 UPDATE Bacillus clausii chloramphenicol acetyltransferase antibiotic inactivation; phenicol antibiotic; chloramphenicol acetyltransferase (CAT); chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2890 UPDATE Agrobacterium fabrum chloramphenicol acetyltransferase antibiotic inactivation; phenicol antibiotic; chloramphenicol acetyltransferase (CAT); chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2893 UPDATE Campylobacter coli chloramphenicol acetyltransferase antibiotic inactivation; phenicol antibiotic; chloramphenicol acetyltransferase (CAT); chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2892 UPDATE Proteus mirabilis chloramphenicol acetyltransferase antibiotic inactivation; phenicol antibiotic; chloramphenicol acetyltransferase (CAT); chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1454 UPDATE CMY-112 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1455 UPDATE IND-9 carbapenem; antibiotic inactivation; IND beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAAAGCATACAGTTTTTTATTGTTTCCCTATTATTAAGTCCGTTTGCTAATGCTCAGGTAAAGGATTTTGTAATAGAACCTCCTATCAGCAAGAACTTATATATTTATAAAACTTTTGGTGTATTCGGAGGAAAAGAATATTCTGCCAACGCTGTTTACCTTGTCACAAAAAAAGGAGTAGTCCTGTTTGATGTTCCCTGGGAAAAAGTTCAGTACCAAAGCTTGATGGATACCATAAAAAAACGTCATAATTTACCTGTAGTGGCAGTATTTGCTACCCATTCTCATGATGACAGAGCCGGAGATTTAAGCTTCTTCAACAAAAAAGGGATTAAGACCTATGCCACGGCAAAAACCAATGAGTTATTGAAAAAAGAAGGTAAAGCGGTGTCCAGCAATATTATAAATACAGGGAAAGCTTATCATATAGGCGGAGAAGAATTTGTGGTTGATTTTATTGGAGAAGGACATACCGTAGATAATGTAGTGGTATGGTTTCCAAAATATAAAGTTCTTGATGGCGGCTGCTTAGTAAAAAGTACTTCTGCAACAGATTTAGGATATATCAAGGAAGCAAACGTTGAACAATGGCCACAAACTATGAATACTTTAAAATCCAAATACTCTCAGGCAACCTTAATCATTCCGGGACATGACGAATGGAAAGGCGGCGGACATGTAGAACATACATTAGAGCTTTTGAATAAAAAATAA " 1456 UPDATE IMP-15 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACAAGTTATCTGTATTCTTTATGTTTATGTTTTGTAGCATTACTGCCGCAGGAGAGTCTTTGCCAGATTTAAAAATTGAGAAGCTTGACGAAGGTGTTTATGTTCATACTTCGTTTGAAGAAGTTAACGGTTGGGGTGTTGTTCCTAAACACGGCTTGGTGGTTCTTGTAAATACTGAGGCCTATCTGATTGACACTCCATTTACGGCAAAAGATACTGAAAAGTTAGTCACTTGGTTTGTGGAGCGCGGCTATAAAATAAAAGGCAGTATTTCCTCTCATTTTCATAGCGACAGCACGGGCGGAATAGAGTGGCTTAATTCTCAATCTATCCCCACGTATGCATCTGAATTAACAAATGAACTTCTTAAAAAAGACGGTAAGGTACAAGCTAAAAATTCATTTAGCGGAGGTAGCTATTGGCTAGTTAATAATAAGATTGAAGTTTTTTATCCTGGTCCAGGGCACACTCCAGATAACGTAGTGGTTTGGCTACCTGAAAATAGAGTTTTGTTCGGTGGTTGTTTTGTTAAACCGTACGGTCTTGGTAATTTGGGTGACGCAAATTTAGAAGCTTGGCCAAAGTCCGCCAAAATATTAATGTCTAAATATGGTAAAGCAAAGTTGGTTGTTTCAAGTCATAGTGAAACTGGGAACGCATCACTCTTGAAACTTACTTGGGAGCAGGCTGTTAAAGGGCTAAAAGAAAGTAAAAAACCATCACTGCCAAGTAACTAA " 1105 UPDATE AAC(3)-VIa antibiotic inactivation; aminoglycoside antibiotic; gentamicin C; AAC(3); gentamicin B; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACTGATCCCCGCAAAAACGGCGATTTGCACGAACCCGCGACGGCACCCGCGACGCCCTGGTCCAAAAGCGAGCTGGTCCGGCAATTGCGCGACCTCGGCGTGCGCTCAGGCGATATGGTGATGCCGCATGTGTCGTTGCGCGCCGTCGGGCCGCTGGCGGACGGACCGCAGACACTTGTCGATGCGCTGATCGAGGCCGTCGGCCCCACCGGGAATATTCTCGCCTTCGTCTCGTGGCGCGATTCGCCCTATGAACAGACGCTGGGTCATGATGCGCCGCCCGCCGCCATCGCCCAAAGCTGGCCTGCGTTCGACCCCGACCATGCGCCCGCCTACCCCGGCTTTGGCGCGATCAACGAATTTATCCGAACCTATCCGGGGTGTCGGCGCACGGCCCATCCCGACGCATCGATGGCGGCGATCGGGCCCGATGCGGCGTGGCTGGTGGCGCCGCACGAGATGGGCGCCGCTTATGGCCCCCGCTCGCCGATCGCGCGTTTTCTCGCCCACGCAGGAAAAATCCTGTCGATCGGCGCCGGGCCCGATGCAGTCACCGCGCTCCATTATGCCGAAGCGGTGGCGCGGATCGAGGGCAAGCGCCGCGTCACTTATTCGATGCCCTTACTGCGCGAAGGCAAGCGCGTCTGGGTCACCACGTCCGACTGGGATTCGAACGGCATCCTCGACGAATATGCCGCGCCCGACGGCCCCGACGCGGTCGAACGGATCGCCCGCGACTATCTCGCCCGCACCAGGGTTGCGCAAGGCCCGGTCGGCGGCGCGCAATCCCGGCTGATCGACGCGGCCGATATCGTTTCCTTCGGCATCGAATGGCTCGAGGCGCGCCACGCCGCGCCAGCGGCGGCAGCGCTGAAGCCGAAACAACGCCGCGACTGA " 1450 UPDATE Escherichia coli parC conferring resistance to fluoroquinolone fluoroquinolone self resistant parC; grepafloxacin; trovafloxacin; ofloxacin; norfloxacin; nalidixic acid; lomefloxacin; gatifloxacin; sparfloxacin; levofloxacin; fluoroquinolone resistant parC; antibiotic target alteration; enoxacin; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 3165973 UPDATED strand with - UPDATED accession with U00096.3 UPDATED fmin with 3163714 UPDATED sequence with ATGAGCGATATGGCAGAGCGCCTTGCGCTACATGAATTTACGGAAAACGCCTACTTAAACTACTCCATGTACGTGATCATGGACCGTGCGTTGCCGTTTATTGGTGATGGTCTGAAACCTGTTCAGCGCCGCATTGTGTATGCGATGTCTGAACTGGGCCTGAATGCCAGCGCCAAATTTAAAAAATCGGCCCGTACCGTCGGTGACGTACTGGGTAAATACCATCCGCACGGCGATAGCGCCTGTTATGAAGCGATGGTCCTGATGGCGCAACCGTTCTCTTACCGTTATCCGCTGGTTGATGGTCAGGGGAACTGGGGCGCGCCGGACGATCCGAAATCGTTCGCGGCAATGCGTTACACCGAATCCCGGTTGTCGAAATATTCCGAGCTGCTATTGAGCGAGCTGGGGCAGGGGACGGCTGACTGGGTGCCAAACTTCGACGGCACTTTGCAGGAGCCGAAAATGCTACCTGCCCGTCTGCCAAACATTTTGCTTAACGGCACCACCGGTATTGCCGTCGGCATGGCGACCGATATTCCACCGCATAACCTGCGTGAAGTGGCTCAGGCGGCAATCGCATTAATCGACCAGCCGAAAACCACGCTCGATCAGCTGCTGGATATCGTGCAGGGGCCGGATTATCCGACTGAAGCGGAAATTATCACTTCGCGCGCCGAGATCCGTAAAATCTACGAGAACGGACGTGGTTCAGTGCGTATGCGCGCGGTGTGGAAGAAAGAAGATGGCGCGGTGGTTATCAGCGCATTGCCGCATCAGGTTTCAGGTGCGCGCGTACTGGAGCAAATTGCTGCGCAAATGCGCAACAAAAAGCTGCCGATGGTTGACGATCTGCGCGATGAATCTGACCACGAGAACCCGACCCGCCTGGTGATTGTGCCGCGTTCCAACCGCGTGGATATGGATCAGGTGATGAACCACCTCTTCGCTACCACCGATCTGGAAAAGAGCTATCGTATTAACCTTAATATGATCGGTCTGGATGGTCGTCCGGCGGTGAAAAACCTGCTGGAAATCCTCTCCGAATGGCTGGTGTTCCGCCGCGATACCGTGCGCCGCCGACTGAACTATCGTCTGGAGAAAGTCCTCAAGCGCCTGCATATCCTCGAAGGTTTGCTGGTGGCGTTTCTCAATATCGACGAAGTGATTGAGATCATTCGTAATGAAGATGAACCGAAACCGGCGCTGATGTCGCGGTTTGGCCTTACGGAAACCCAGGCGGAAGCGATCCTCGAACTGAAACTGCGTCATCTTGCCAAACTGGAAGAGATGAAGATTCGCGGTGAGCAGAGTGAACTGGAAAAAGAGCGCGACCAGTTGCAGGGCATTTTGGCTTCCGAGCGTAAAATGAATAACCTGCTGAAGAAAGAACTGCAGGCAGACGCGCAAGCCTACGGTGACGATCGTCGTTCGCCGTTGCAGGAACGCGAAGAAGCGAAAGCGATGAGCGAGCACGACATGCTGCCGTCTGAACCTGTCACCATTGTGCTGTCGCAGATGGGCTGGGTACGCAGCGCTAAAGGCCATGATATCGACGCGCCGGGCCTGAATTATAAAGCGGGTGATAGCTTCAAAGCGGCGGTGAAAGGTAAGAGCAACCAACCGGTAGTGTTTGTTGATTCCACCGGTCGTAGCTATGCCATTGACCCGATTACGCTGCCGTCGGCGCGTGGTCAGGGCGAGCCGCTCACCGGCAAATTAACGTTGCCGCCTGGGGCGACCGTTGACCATATGCTGATGGAAAGCGACGATCAGAAACTGCTGATGGCTTCCGATGCGGGTTACGGTTTCGTCTGCACCTTTAACGATCTGGTGGCGCGTAACCGTGCAGGTAAGGCTTTGATCACCTTACCGGAAAATGCCCATGTTATGCCGCCGGTGGTGATTGAAGATGCTTCCGATATGCTGCTGGCAATCACTCAGGCAGGCCGTATGTTGATGTTCCCGGTAAGTGATCTGCCGCAGCTGTCGAAGGGCAAAGGCAACAAGATTATCAACATTCCATCGGCAGAAGCCGCGCGTGGAGAAGATGGTCTGGCGCAATTGTACGTTCTGCCGCCGCAAAGCACGCTGACCATTCATGTTGGGAAACGCAAAATTAAACTGCGCCCGGAAGAGTTACAGAAAGTCACTGGCGAACGTGGACGCCGCGGTACGTTGATGCGCGGTTTGCAGCGTATCGATCGTGTTGAGATCGACTCTCCTCGCCGTGCCAGCAGCGGTGATAGCGAAGAGTAA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. MG1655 UPDATED NCBI_taxonomy_id with 511145 UPDATED NCBI_taxonomy_cvterm_id with 36849 UPDATED accession with AAC76055.1 UPDATED sequence with MSDMAERLALHEFTENAYLNYSMYVIMDRALPFIGDGLKPVQRRIVYAMSELGLNASAKFKKSARTVGDVLGKYHPHGDSACYEAMVLMAQPFSYRYPLVDGQGNWGAPDDPKSFAAMRYTESRLSKYSELLLSELGQGTADWVPNFDGTLQEPKMLPARLPNILLNGTTGIAVGMATDIPPHNLREVAQAAIALIDQPKTTLDQLLDIVQGPDYPTEAEIITSRAEIRKIYENGRGSVRMRAVWKKEDGAVVISALPHQVSGARVLEQIAAQMRNKKLPMVDDLRDESDHENPTRLVIVPRSNRVDMDQVMNHLFATTDLEKSYRINLNMIGLDGRPAVKNLLEILSEWLVFRRDTVRRRLNYRLEKVLKRLHILEGLLVAFLNIDEVIEIIRNEDEPKPALMSRFGLTETQAEAILELKLRHLAKLEEMKIRGEQSELEKERDQLQGILASERKMNNLLKKELQADAQAYGDDRRSPLQEREEAKAMSEHDMLPSEPVTIVLSQMGWVRSAKGHDIDAPGLNYKAGDSFKAAVKGKSNQPVVFVDSTGRSYAIDPITLPSARGQGEPLTGKLTLPPGATVDHMLMESDDQKLLMASDAGYGFVCTFNDLVARNRAGKALITLPENAHVMPPVVIEDASDMLLAITQAGRMLMFPVSDLPQLSKGKGNKIINIPSAEAARGEDGLAQLYVLPPQSTLTIHVGKRKIKLRPEELQKVTGERGRRGTLMRGLQRIDRVEIDSPRRASSGDSEE " 1103 UPDATE CMY-17 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGTTATGCTGCGCTCTGCTGCTGACAGCCTCTTTCTCCACATTTGCTGCCGCAAAAACAGAACAACAGATTGCCGATATCGTTAATCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCCGTTATCTACCAGGGAAAACCCTATTATTTCACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGATCGGTTAGTAAGACGTTTAACGGCGTGTTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCAGGGTATCCGCCTGCTGCACTTAGCCACCTATACGGCAGGCGGCCTACCGCTGCAGATCCCCGATGACGTTAGGGATAAAGCCGCATTACTGCATTTTTATCAAAACTGGCAGCCGCAATGGACTCCGGGCGCTAAGCGACTTTACGCTAACTCCAGCATTGGTCTGTTTGGCGCGCTGGCGGTGAAACCCTCAGGAATGAGTTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAGAACGAACAAAAAGATTATGCCTGGGGCTATCGCGAAGGGAAGCCCGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATTGATATGGCCCGCTGGGTTCAGGCCAACATGGATGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGCGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTTGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCCGCCCCCGCAGTGAAAGCCTCATGGGTGCATAAAACGGGCTCCACTGGTGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGCGGCCTGGCGCATTCTTGAAAAGCTGCAATAA " 1452 UPDATE TEM-216 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1453 UPDATE vanYD glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanY; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGGAACGTCAAAATAACAATGAAAACCAGTATGGAAGGAATCGCAGAAAAGACAAAAGAAAAAAATTGTTTTTTTACAGAGCAGCATGTGCCATGCTCGGTCTGCTCATAGTCTGTGTAATTTTTGGAGCTGTGTATTTTCTCAGAGAGAGTAAAGATCCGGTTCTTCCATCCAAAGAAAATACAAAGACAGGCAAGGACTATTCATTTTTGGCCGACGGTCAGAGTGAGGATGAGTCTCCGATTTCGGAGCCAGCCATATCCAACCGGGCGAATGCGATTGACCTGAACATCATAGCAGCAAATGCCATTGTGATGAATAAAGACACCGATGCGTTATTGTATCAAAAAAAACGGCACGGACAGAATTGCGCCGGCCAGTACAGCAAAGATGATTACGGCGTTGACCGTGCTTGA " 1458 UPDATE TEM-157 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1459 UPDATE CTX-M-78 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1108 UPDATE Enterococcus faecium liaS mutant conferring daptomycin resistance peptide antibiotic; antibiotic target alteration; daptomycin resistant liaS; daptomycin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with ATGATGGGAAAAATATCCAGAGCGATGCTAGCTGTTTATTCGGGGATTGCGGCTTTCCTTATTATTCTATTTTCACTTTTCACTTATTTTTATGCCAGCAATCAAAGTCATTGGTGGGGAGAATTACTGCGTGCACGTTTATTATATGTTCCGCTTATCTTCCATTTGTTAGCCATTTCCTTAGGTGTAGGATTAATTGTCTTTCTATTATTATCACTTATTCAAAAGACAAAATACGGGAAAATCGAAGAAAAGCTGCGTGCACTTTCTTCTGGCAATTATGAATCCAAATTGTTGCTTCTTCCGATCCCAAGTGCATCGGACGATTTATACATCAAAGATATTGATAAGGAAATCACTAAGATAAAAGAAAAAATGATTGAAGTATCTAGTGAATTACAAATTGTAACGAGCCGTCCCCAATATGTAGATGGACAAACCAAAGAAGAAATTTTAGAATTAGAAAGACATCGATTAGCCCGTGAGCTGCATGATTCAGTTTCGCAACAATTGTTTGCAGCAATGATGATGATGTCGGCATTGACGGAGCAAGCAGAAAAAAGCGAGACACCAGAAATGTTTCGCAAGCAGTTGAAAATGGTAGCAGAGATCATCAACGCTTCCCAGTCTGAGATGCGTGCGCTGCTTCTTCATCTACGTCCAGTCAATTTAGAAGAGAAAAGTTTAAAGCAAGGTATCGAGCAGTTATTGAAGGAATTGCAAAATAAAATCCAGATTTCGCTGAAATGGGATGTAGAAGATGTAAAACTATCTAGTTCCATTGAGGATCACTTGTTCCGAATCGTTCAAGAATTGTTATCAAATACATTAAGACATGCTAAAGCCAATGAATTAGAGGTATATTTGCACAAAATAGACAATAATCTTTTGTTACGTATTATTGACGACGGAACAGGGTTTAATATGAATGAAACGAAAACGGGAAGTTATGGATTGAACAATATCAAAGAACGAGTAGCTGGTATTGGTGGAACAGTAAAAATCATTAGTTTTAAAGGTCAAGGTACAAGTGTAGAAATCAAGGTCCCTTTGATGAAGGAGGCATAG " 1109 UPDATE CAU-1 carbapenem; penam; CAU beta-lactamase; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1722 UPDATE TEM-184 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1723 UPDATE IMP-44 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAACTATTTGTTTTATGTATATTTTTGTTTTGTAGCATTACTGCCGCAGGAGCGTCTTTGCCTGATTTAAAAATTGAGAAGCTTGAAGAGGGTGTTTATGTTCATACATCGTTTGAAGAAGTTAACGGCTGGGGTGTTTTTTCTAAACACGGTTTGGTGGTTCTTGTAAATACTGACGCCTATCTGATTGACACTCCATCTACTGCTAAAGATACTGAAAAGTTAGTCAATTGGTTTGTGGAGCGCGGCTATAAAATCAAAGGCAGTATTTCCTCACATTTCCATAGCGACAGCACGGGTGGAATAGAGTGGCTTAATTCTCAATCTATTCCCACGTATGCATCTGTATTAACAAATGAACTTCTCAAAAAAGACGGTAAGGTGCAAGCTAAAAACTCATTTAGCGGAGTTAGCTATTGGCTAGTTAAAAATAAAATTGAAGTTTTTTATCCAGGCCCAGGGCACACTCAAGATAACGTAGTGGTTTGGCTACCTAAAAATAAAATCTTATTTGGTGGTTGTTTTGTTAAACCATATGGTCTTGGTAATCTAGATGACGCAAATGTTGAAGCATGGCCACATTCGGCTGAAAAATTAATATCTAAGTATGGTAATGCAAAACTGGTTGTTCCAAGCCATAGTGACATAGGAGATGCGTCGCTCTTGAAGCTTACGTGGGAACAGGCGGTAAAAGGGCTTAATGAAAGCAAAAAAAGTAACACTGTTCATTAA " 1577 UPDATE AAC(6')-32 antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCCCCGAGCAAAACACCCGTTACCTTGCGCCTCATGACCGAGCGCGACCTACCGATGCTGCATGCATGGCTGAACCGGCCGCACATTGTCGAGTGGTGGGGTGGAGAAGAAGAACGCCCGACTCTTCATGAAGTGGTCAAACACTACCTGCCGAGGGTTTTGGCAGAAGAAGCCGTCACACCATACATCGCGATGTTGGGCGACGAACCCATCGGCTACGCTCAGTCATACGTCGCACTCGGAAGCGGTGATGGATGGTGGGAGGATGAAACCGACCCAGGCGTACGAGGGATAGACCAATTCCTGTCGAACCATACACAGTTGAACCAGGGCCTAGGTACAAAGCTCGTCCAGGCACTCGTTGAACTGCTGTTCTCAGATCCTACCGTGACGAAGATCCAAACCGACCCGGCGCCAAACAACCATCGAGCGATTCGCTGCTACGAGAAAGCTGGCTTTGTTCAGCAAAACGTCATCACCACACCAGACGGCCCAGCCGTCTACATGGTTCAAACCAGGCAGGCCTTCGAGCGTGTGCGCAGTGCTGCCTAA " 958 UPDATE OXA-418 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 216 UPDATE LEN-9 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 217 UPDATE vanXA antibiotic target alteration; glycopeptide resistance gene cluster; teicoplanin; glycopeptide antibiotic; vanX; vancomycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 214 UPDATE SHV-121 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCGCCCTGCCGCTGGTGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACAAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCGTGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 215 UPDATE bcrC peptide antibiotic; undecaprenyl pyrophosphate related proteins; bacitracin B; bacitracin F; bacitracin A; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCTTTTTCAGAATTAAATATTGATGCTTTTCGTTTCATTAATGATTTGGGAAAAGAGTATTCGATGCTGAATCCGGTCGTTTACTTTCTAGCCGAATATATGATGTACTTTCTCGCATTAGGTCTTGTCGTTTATTGGCTGACCCGGACGACAAAAAACAGATTGATGGTCATTTATGCAGTCATCGCATTTGTGGTTGCCGAAATTCTCGGGAAAATCATGGGCTCTCTGCATTCCAACTATCAACCGTTTGCAACGCTTCCGAATGTCAACAAGCTGATAGAGCATGAAATTGACAATTCGTTTCCGAGCGACCATACGATTTTGTTTTTTTCAATTGGTTTTTTAATCTTTCTGTTTCACAAAAAGACGGGCTGGCTGTGGCTTGTACTTGCGTTTGCCGTGGGAATTTCCCGCATTTGGTCGGGCGTTCACTATCCGCTCGACGTTGCGGCGGGAGCCCTTCTTGGCGTGTTGTCAGCTCTGTTTGTATTCTGGACAGCACCGAAGCTGTCATTTATTCATCAAATGCTGTCCCTTTATGAAAAGGTGGAACAGCGGATTGTTCCTTCCAAAAACAAATCGAACGATAAATCGAAGAACTTTTAA " 212 UPDATE Staphylococcus aureus parC conferring resistance to fluoroquinolone fluoroquinolone self resistant parC; grepafloxacin; trovafloxacin; ofloxacin; norfloxacin; nalidixic acid; lomefloxacin; gatifloxacin; sparfloxacin; levofloxacin; fluoroquinolone resistant parC; antibiotic target alteration; enoxacin; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with GTGAGTGAAATAATTCAAGATTTATCACTTGAAGATGTTTTAGGTGATCGCTTTGGAAGATATAGTAAATATATTATTCAAGAGCGTGCATTGCCAGATGTTCGTGATGGTTTAAAACCAGTACAACGTCGTATTTTATATGCAATGTATTCAAGTGGTAATACACACGATAAAAATTTCCGTAAAAGTGCGAAAACAGTCGGTGATGTTATTGGTCAATATCATCCACATGGAGACTTCTCAGTGTACGAAGCAATGGTCCGTTTAAGTCAAGACTGGAAGTTACGACATGTCTTAATAGAAATGCATGGTAATAATGGTAGTATCGATAATGATCCACCAGCGGCAATGCGTTACACTGAAGCTAAGTTAAGCTTACTAGCTGAAGAGTTATTACGTGATATTAATAAAGAGACAGTTTCCTTCATTTCAAACTATGATGATACGACGCTCGAACCAATGGTATTGCCATCAAGATTTCCTAACTTACTAGTGAATGGTTCTACAGGTATATCTGCAGGTTACGCGACAGATATACCACCACATAATTTAGCTGAAGTGATTCAAGCAACACTTAAATATATTGATAATCCGGATATTACAGTCAATCAATTAATGAAATATATTAAAGGTCCTGATTTTCCAACTGGCGGTATTATTCAAGGTATTGATGGTATTAAAAAAGCTTATGAATCAGGTAAAGGTAGAATTATAGTTCGTTCTAAAGTTGAAGAAGAAACTTTACGCAATGGACGTAAACAGTTAATTATTACTGAAATTCCATATGAAGTGAACAAAAGTAGCTTAGTAAAACGTATCGATGAATTACGTGCTGACAAAAAAGTCGATGGTATCGTTGAAGTACGTGATGAAACTGATAGAACTGGTTTACGAATAGCAATTGAATTGAAAAAAGATGTGAACAGTGAATCAATCAAAAATTATCTTTATAAAAACTCTGATTTACAGATTTCATATAATTTCAACATGGTCGCTATTAGTGATGGTCGTCCAAAATTGATGGGTATTCGTCAAATTATAGATAGTTATTTAAATCATCAAATTGAGGTTGTTGCAAATAGAACGAAGTTTGAATTAGATAATGCTGAAAAACGCATGCATATCGTTGAAGGTTTGATTAAAGCGTTGTCAATTTTAGATAAAGTAATCGAATTGATTCGTAGCTCTAAAAACAAGCGTGACGCTAAAGAAAACCTTATCGAAGTATACGAGTTCACAGAAGAACAGGCTGAAGCAATTGTAATGTTACAGTTATATCGTTTAACAAACACTGACATAGTTGCGCTTGAAGGTGAACATAAAGAACTTGAAGCATTAATCAAACAATTACGTCATATTCTTGATAACCATGATGCATTATTGAATGTCATCAAAGAAGAATTGAATGAAATTAAAAAGAAATTCAAATCTGAACGACTGTCTTTAATTGAAGCAGAAATTGAAGAAATTAAAATTGACAAAGAAGTTATGGTGCCTAGTGAAGAAGTTATTTTAAGTATGACACGTCATGGATATATTAAACGTACTTCTATTCGTAGCTATAATGCTAGCGGTGTTGAAGATATTGGTTTAAAAGATGGTGACAGTTTACTTAAACATCAAGAAGTAAATACGCAAGATACCGTACTAGTATTTACAAATAAAGGTCGTTATCTATTTATACCGGTTCATAAATTAGCAGATATTCGTTGGAAAGAATTGGGGCAACATGTATCACAAATAGTTCCTATCGAAGAAGATGAAGTGGTTATTAATGTCTTTAATGAAAAGGACTTTAATACAGATGCATTTTATGTTTTTGCGACTCAAAATGGCATGATTAAGAAAAGTACAGTGCCTCTATTTAAAACAACGCGTTTTAATAAACCTTTAATTGCTACTAAAGTTAAAGAAAATGATGATTTGATTAGTGTTATGCGCTTTGAAAAAGATCAATTAATTACCATCATTACAAATAAAGGTATGTCTTTAACTTATAATACAAGTGAACTATCAGATACCGGATTAAGGGCAGCTGGTGTTAAATCAATAAATCTTAAAGCAGAAGATTTCGTTGTTATGACAGAAGGTGTTTCTGAAAATGATACTATATTGATGGCCACACAACGCGGCTCGTTAAAACGTATTAGTTTTAAAATCTTACAAGTTGCTAAAAGAGCACAACGTGGAATAACTTTATTAAAAGAATTAAAGAAAAATCCACATCGTATAGTAGCTGCACATGTAGTGACAGGTGAACATAGTCAATATACATTATATTCAAAATCAAACGAAGAACATGGTTTAATTAATGATATTCATAAATCTGAACAATATACAAATGGCTCATTCATTGTAGATACCGATGATTTTGGTGAAGTAATAGACATGTATATTAGCTAA " 213 UPDATE OXA-21 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 210 UPDATE SHV-35 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 211 UPDATE TEM-206 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 218 UPDATE npmA antibiotic target alteration; aminoglycoside antibiotic; 16S rRNA methyltransferase (A1408); model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TTGTTAATACTCAAAGGAACAAAGACGGTTGATTTATCAAAAGATGAATTGACAGAAATAATAGGTCAGTTTGATCGTGTGCATATAGATTTGGGTACTGGAGACGGTAGAAATATATATAAACTTGCAATTAATGATCAAAACACTTTCTATATCGGAATAGATCCGGTAAAAGAAAACTTGTTTGATATATCCAAAAAAATTATAAAGAAGCCCTCAAAAGGAGGGCTATCTAATGTGGTGTTTGTTATTGCAGCTGCAGAGTCTCTCCCTTTTGAATTGAAAAACATTGCTGATTCAATTTCCATTTTGTTTCCTTGGGGGACATTGCTTGAATATGTAATTAAACCGAATAGAGATATTCTTTCGAATGTTGCAGATTTGGCTAAAAAAGAAGCTCACTTTGAATTTGTGACCACATACTCAGATTCATACGAAGAAGCGGAAATAAAAAAAAGAGGACTTCCTCTTTTAAGTAAGGCCTATTTTTTGAGCGAACAATACAAAGCTGAATTATCAAACTCAGGTTTTCGCATTGATGATGTTAAGGAATTGGACAATGAGTATGTAAAACAGTTTAATTCTCTTTGGGCAAAGCGATTAGCTTTTGGGCGAAAACGTTCTTTCTTTCGAGTTTCTGGCCATGTTTCAAAACATTAA " 219 UPDATE OKP-A-12 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 957 UPDATE tet(G) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 956 UPDATE TEM-88 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 4 UPDATE SHV-52 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 938 UPDATE QnrB70 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2550 UPDATE Clostridium difficile gyrA conferring resistance to fluoroquinolones antibiotic target alteration; fluoroquinolone antibiotic; nybomycin; fluoroquinolone resistant gyrA; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2396 UPDATE OXA-368 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2397 UPDATE pgpB lipid A phosphatase; peptide antibiotic; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 573902 UPDATED strand with - UPDATED accession with AP009380.1 UPDATED fmin with 573191 UPDATED sequence with TTGGAATACATTCTTGAAGTAGAAAGGAACCTCTTTTTGACTCTGAACGGAGTACAGCATCCTTTGTTGGACGGTTTTTTCTATTTGATCTCGGCCAAATGGACTTGGGTGATAATGTCCATCGCGTTTCTGTTCTTCCTTTTTTATAAGAAACCGACAAAGGAAGCTCTCTTCATCGTAGGAGCAGTCTTATTGAGCGTACTCATCTGCGATCAACTCTCCTCTTCTTTTTTCAAGCCTTTCTTCGCAAGATTCCGCCCTTCGCACCACCCTGATTTTATCGACTATGTGAAGACGGTCTACGGCTATCGGGGAGGAAAGTACGGATTTATCTCAGGGCATACGACGAACTACATATCGCTGGCATTATTTACGAGCCGTATTTTTCGGAATAAATTCTACACGTGGACGATCTGGAGCGTCGTCGCACTCGTCATCTATAGCCGTATTTATATCGGAGTGCATTTCATCACCGATATTATCCCGGGTATCGCCGTCGGACTTATCGTAGGACACTTTGTTTATAAAGTCTATCTGTATGCACGTTCCCGTTGGTTGGGAGCCTCATGCCCTGCCCATCCGTCGGCAGTCTATGCCGGCGATTCCATTCGGCTCTGGACACTTAGCCTCATCGGCTTTGTCTTTGCCATGCTGTGTATGTCCCGCCAGTTGACGGAGATACTACAGTACTATGTCTTCCTGCTCTTCTGA UPDATED NCBI_taxonomy_name with Porphyromonas gingivalis ATCC 33277 UPDATED NCBI_taxonomy_id with 431947 UPDATED NCBI_taxonomy_cvterm_id with 40629 UPDATED accession with BAG33043.1 UPDATED sequence with MEYILEVERNLFLTLNGVQHPLLDGFFYLISAKWTWVIMSIAFLFFLFYKKPTKEALFIVGAVLLSVLICDQLSSSFFKPFFARFRPSHHPDFIDYVKTVYGYRGGKYGFISGHTTNYISLALFTSRIFRNKFYTWTIWSVVALVIYSRIYIGVHFITDIIPGIAVGLIVGHFVYKVYLYARSRWLGASCPAHPSAVYAGDSIRLWTLSLIGFVFAMLCMSRQLTEILQYYVFLLF " 2394 UPDATE Staphylococcus aureus menA with mutation conferring resistance to lysocin peptide antibiotic; antibiotic target alteration; Lysocin E; lysocin resistant menA; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 952740 UPDATED strand with - UPDATED accession with NC_007795.1 UPDATED fmin with 951801 UPDATED sequence with ATGAGTAATCAATATCAGCAATATTCTACAGTTAAGAAATATTGGCATTTAATGCGTCCTCATACATTAACTGCTTCCGTAGTACCCGTTTTAGTTGGTACAGCAGCATCTAAAATATATTTTCTTGGTAGCGAAGATCATATTAAAATCAGCCTATTCATTGCCATGTTACTAGCATGCTTACTTATTCAAGCAGCAACTAATATGTTTAATGAATACTATGATTATAAAAAAGGCCTCGATGATCATGAATCTGTAGGCATTGGTGGTGCCATTGTTCGCAACGGTATGAGCCCAGAGCTTGTGCTACGATTAGCCATTGCATTTTACATCTTAGCAGCAATATTAGGTTTGTTTTTAGCTGCTAACTCTTCATTTTGGTTATTACCAGTTGGATTAGTATGTATGGCTGTTGGTTACCTATATACAGGTGGCCCTTTCCCTATTTCATGGACGCCTTTCGGTGAATTATTCTCAGGCGTATTTATGGGTATGTTTATTATCGTTATTGCATTCTTTATTCAAACTGGCAATATTCAAAGTTATGTAATTTGGTTAAGTGTACCTATAGTAATCACTATCGGTTTAATTAATATGGCTAACAATATTCGCGACCGTGTCAAAGATAAAGCAAGTGGTCGCAAAACTTTACCCATTCTATTAGGTAAAAATGCTTCTTTAACATTTATGGCAATCATGTACTTTATCGCTTATGCCTTTATTGTACTTACGATCATTATTAAACCTGGTGGCTCATTATTTTACTTACTTGCGTTGTTATCATTCCCAATGCCTGTTAAAGTTATCAGACGTTTCAAGAAGAATGATACACCGCCTACAATGATGCCAGCAATGGCTGCTGCTGGTAAAACAAATACATTTTTCGGTTTATTATATGCATTAGGTATTTATATTAGTGCATTATTTGCAGGCATTTAA UPDATED NCBI_taxonomy_name with Staphylococcus aureus subsp. aureus NCTC 8325 UPDATED NCBI_taxonomy_id with 93061 UPDATED NCBI_taxonomy_cvterm_id with 35511 UPDATED accession with YP_499533.1 UPDATED sequence with MSNQYQQYSTVKKYWHLMRPHTLTASVVPVLVGTAASKIYFLGSEDHIKISLFIAMLLACLLIQAATNMFNEYYDYKKGLDDHESVGIGGAIVRNGMSPELVLRLAIAFYILAAILGLFLAANSSFWLLPVGLVCMAVGYLYTGGPFPISWTPFGELFSGVFMGMFIIVIAFFIQTGNIQSYVIWLSVPIVITIGLINMANNIRDRVKDKASGRKTLPILLGKNASLTFMAIMYFIAYAFIVLTIIIKPGGSLFYLLALLSFPMPVKVIRRFKKNDTPPTMMPAMAAAGKTNTFFGLLYALGIYISALFAGI " 2395 UPDATE apmA antibiotic inactivation; aminoglycoside antibiotic; apramycin; amp acetyltransferase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2398 UPDATE TEM-220 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2399 UPDATE oqxA antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; trimethoprim; efflux pump complex or subunit conferring antibiotic resistance; diaminopyrimidine antibiotic; tigecycline; glycylcycline; ciprofloxacin; tetracycline antibiotic; nitrofuran antibiotic; fluoroquinolone antibiotic; nitrofurantoin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2778 UPDATE MCR-2 peptide antibiotic; MCR phosphoethanolamine transferase; antibiotic target alteration; colistin B; colistin A; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2779 UPDATE FosA6 fosfomycin; fosfomycin thiol transferase; antibiotic inactivation; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 59841 UPDATED strand with + UPDATED accession with KU254579.1 UPDATED fmin with 59421 UPDATED sequence with ATGCTGAGTGGACTGAATCACCTGACCCTGGCAGTCAGCCAGCTGGCGCCGAGCGTGGCGTTTTATCAGCAGCTGCTGGGCATGACGCTGCATGCCCGCTGGGACAGCGGGGCTTATCTCTCCTGCGGCGATTTGTGGCTGTGCCTGTCGCTGGATCCGCAGCGGCGCGTTACTCCGCCGGAAGAGAGCGACTACACCCATTATGCGTTTAGTATTAGCGAAGCCGATTTTGCTAGCTTCGCCGCCCGCCTTGAGGCTGCCGGCGTGGCGATCTGGAAGCTGAACCGTAGCGAAGGTGCCTCGCACTATTTCCTCGATCCCGATGGCCATAAGCTGGAGCTGCACGTCGGCAGTCTCGCCCAGCGTCTGGCCGCCTGCCGCGAACAGCAGTATAAGGGGATGGTGTTTTTTGATCAGTGA UPDATED NCBI_taxonomy_name with Escherichia coli UPDATED NCBI_taxonomy_id with 562 UPDATED NCBI_taxonomy_cvterm_id with 35914 UPDATED accession with AMQ12811.1 UPDATED sequence with MLSGLNHLTLAVSQLAPSVAFYQQLLGMTLHARWDSGAYLSCGDLWLCLSLDPQRRVTPPEESDYTHYAFSISEADFASFAARLEAAGVAIWKLNRSEGASHYFLDPDGHKLELHVGSLAQRLAACREQQYKGMVFFDQ " 2770 UPDATE kamB 16S rRNA methyltransferase (A1408); kanamycin A; apramycin; antibiotic target alteration; aminoglycoside antibiotic; neomycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2771 UPDATE QepA2 antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; norfloxacin; efflux pump complex or subunit conferring antibiotic resistance; ciprofloxacin; fluoroquinolone antibiotic; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2773 UPDATE TMB-1 antibiotic inactivation; cephalosporin; carbapenem; ceftazidime; cephamycin; TMB beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2774 UPDATE TMB-2 antibiotic inactivation; cephalosporin; carbapenem; ceftazidime; cephamycin; TMB beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2775 UPDATE Pseudomonas aeruginosa soxR antibiotic target alteration; tetracycline antibiotic; antibiotic efflux; ATP-binding cassette (ABC) antibiotic efflux pump; major facilitator superfamily (MFS) antibiotic efflux pump; resistance-nodulation-cell division (RND) antibiotic efflux pump; norfloxacin; cephalosporin; cefalotin; ciprofloxacin; tigecycline; protein(s) and two-component regulatory system modulating antibiotic efflux; acridine dye; rifampin; ampicillin; penam; triclosan; efflux pump complex or subunit conferring antibiotic resistance; acriflavin; glycylcycline; fluoroquinolone antibiotic; chloramphenicol; phenicol antibiotic; tetracycline; rifamycin antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2503895 UPDATED strand with - UPDATED accession with NC_002516.2 UPDATED fmin with 2503424 UPDATED sequence with ATGAAGAATTCCTGCGCATCTCGTGAACTGAGCGTCGGCGAACTGGCCAGGCGTGCCGGCGTGGCGGTCTCCGCCCTGCATTTCTACGAAACCAAGGGGCTGATCAGCAGCCAGCGCAACGCCGGCAACCAGCGGCGCTTCAGTCGCGAGACGCTACGCCGGGTGGTGGTGATCAAGGTCGCCCAGCGGGTCGGCATTCCCCTCGCGGAGATCGCTCGCGCCCTGCAGACCCTGCCGGCGGGGCGCAGCCCTAGCGCGGCGGACTGGGCGCGCCTGTCGGCGCAGTGGAAGGAGGATCTCACCGAGCGCATCGACAAGCTGCTGCTGTTGCGCGACCAACTGGACGGCTGCATCGGTTGCGGCTGCCTGTCGCTCCAGGCCTGCCCGTTGCGCAACCCCGGCGACCAGCTTTCCGCCGAGGGGCCGGGAGCGCACTGGCTGGACGCCGAGGGCCGCGAGCACGACGGCTAG UPDATED NCBI_taxonomy_name with Pseudomonas aeruginosa PAO1 UPDATED NCBI_taxonomy_id with 208964 UPDATED NCBI_taxonomy_cvterm_id with 36804 UPDATED accession with NP_250963.1 UPDATED sequence with MKNSCASRELSVGELARRAGVAVSALHFYETKGLISSQRNAGNQRRFSRETLRRVVVIKVAQRVGIPLAEIARALQTLPAGRSPSAADWARLSAQWKEDLTERIDKLLLLRDQLDGCIGCGCLSLQACPLRNPGDQLSAEGPGAHWLDAEGREHDG " 1858 UPDATE OXA-387 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1859 UPDATE QnrVC7 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1850 UPDATE FomB fosfomycin; antibiotic inactivation; Fom phosphotransferase family; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCTGGAAAACCTCACGATCCGCAGCAGCCGCGTCGTCGACCTCAACCTGGTCAAGGTCAGGCTGTCCACCAACCTCGAGGACTTCGCGGCGTACTCCTACTTCTCGGCCTTCGCCGAGGACGAGTCCGCGCCCGCCGACTACGAGGTCGTCTGCGTCGACCTGGACCGGGACGACATCCCGGCCGAGCTGTACGCCGACCGGACCGACCGGACCTTCCGCGGCAAGCGGTTCAAGGGCGGCTACTACCTCGTCCACTACTTCGGGGAGCCCGCCCACCTCATCACGGTGGGCCGCACGTTCTACGTGTTCGGCAGGTCCCTCGAGAAGACCGTCTGGCCCTACTTCGTCAAGCACATCCTGACCGTCCACTCCGCGGACCACGGCTTCCTGCACCTGAAGGCGGCGGGCTTCGAACTGCCCGGCGCCGGAGCCACCCTGCTCGTCGGGCGCAACGGCGCGGGGAAGACCGTCTTCCTGGCCCAGGCGTGCCTCAACGGCGCCCGGTTCCTCAGCAACACCCACACGCTGGTCCGGGACGGGGTCGCGCACGGCGTCCCCTCCTCGATCCGGGTGCGCCGCGACCAGTGCTTCGGTGAACTCATCGACAAGCACGACCTGACGGCGCACATGGAGTCGGGCGACTACGTCACCGACTCCTCGACTCTCTTCGAGAGTCCGCAGATCAGCACGGCACGCGTCCGGAACGTCGTCATCGTCGACTACGACCCCGCACGCCCCCAGGGCCTCATGCCGATCTCGCCGGCCGCGGCCGGCACCTTCATGGAGCAGTTCTCCTTCGCGGTCACCACCTACGGCCTCAAGGACGATCTGCTCGCCCACCACGGGGACTTCGACACCTACGTCGACTCCCTGGCCCGGATGCGGGCGCAGCTGACCGAACTGGTCGAGGGCGCGCGCTGCTACCGGGCCAACGCAGACATGCTGGCCAAGGAAGTCCGGGATTCGACGCTCAAGCAGCTTGCCGAATGA " 1851 UPDATE KPC-13 antibiotic inactivation; penam; carbapenem; cephalosporin; monobactam; KPC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1852 UPDATE rmtF antibiotic target alteration; aminoglycoside antibiotic; 16S rRNA methyltransferase (G1405); model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGATGAACGAGCGCAGGCGGCACTGGACGCGCTGCTTTCCGCGAAGAATCTGCGGGACGTATGTCCCGAGACGGTGCGGCGCGTGTTTATGGAGCTTTTGCCGCGATACAGAAAACCGAAGGACGCGGAGAAGGCGGCGCGCACGCATCTGCACCAGATCACCGGCGCGTTCATGACGGCGGACGCGCAGAAAAAGGCGCGGGCATTGCTTGCGCGCTGGAACGAGGGCGACGAATCGGCGCTCGCTGCCGCGCTGTCCCTGCACGCGTCCACGCGCGAGCGCCTGCCGGGCGCGGATGAATGGATGCGGCGCGTTTCGCCGTTTCTGGGCGCGGACGCGCGCGTGCTCGATCTGGCCTGCGGGCTGAACCCGATCCTACTGGGCTCCATGGGCGTGACGAACGCGCTGGGCATGGACATTCATCTGGGCTGCGTGCGACTTGTGAACGAAACGGCGCGGGCGCGCGGCTGGCATACGCGCGCGCGAGCCTGCGACCTGCTGAGCGAGATTCCCGCGGAGGAAGCCGACGCGGCGCTTCTGATGAAGCTCCTGCCCGTGCTGGAAGCCCAGAAAACCGGCCGCGCCGCCGAGCTGCTCGCAAGCCTCCGCGCCCCCAGGCTGGTCGTGACCTTCCCCACCCGCACCCTCGGCGGCCGCGGCGTGGGCATGGAAAAGCACTATGCCGACTGGTTCGAGCGCATCCTCCCCGATACCCTCTCCGTCCGCGACCGATTTACGGTGTCGGACGAGCTGGTGTATCTGGTGGAGCGGACGTAA " 1853 UPDATE OXA-20 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TTGATAATCCGATTTCTAGCACTGCTTTTCTCAGCTGTTGTACTTGTCTCTCTTGGTCATGCACAAGAAAAAACGCATGAGAGCTCTAATTGGGGGAAATACTTTAGTGATTTCAACGCTAAAGGTACAATAGTTGTAGTAGATGAACGCACAAACGGTAATTCCACATCGGTTTATAATGAATCCCGGGCTCAGCAGCGCTATTCGCCTGCGTCCACATTCAAGATTCCGCATACCCTTTTTGCGCTGGATGCAGGGGCGGTTCGCGATGAGTTTCATGTTTTTCGATGGGACGGCGCTAAAAGAAGCTTTGCAGGTCACAATCAAGACCAAAACCTACGATCGGCAATGCGCAATTCTACCGTTTGGGTCTATCAACTATTCGCAAAAGAAATAGGCGAAAACAAAGCACGAAGCTACCTAGAAAAATTAAACTACGGCAATGCAGACCCCTCGACCAAGAGCGGTGACTACTGGATAGATGGAAATCTTGCAATTTCAGCAAATGAACAAATTTCCATCCTAAAGAAGCTTTATCGAAATGAGCTTCCTTTTAGGGTAGAGCACCAACGCTTGGTTAAAGACTTGATGATTGTCGAAGCCAAACGTGATTGGATACTACGTGCCAAAACAGGCTGGGATGGTCAAATGGGTTGGTGGGTCGGTTGGGTAGAGTGGCCTACAGGCCCAGTATTTTTTGCGTTAAATATCGACACGCCAAACAGGATGGAAGACCTTCATAAACGAGAGGCAATTGCGCGTGCTATTCTTCAATCCGTCAATGCTTTGCCACCCAACTAG " 1854 UPDATE rmtA kanamycin A; aminoglycoside antibiotic; isepamicin; 16S rRNA methyltransferase (G1405); sisomicin; arbekacin; gentamicin B; netilmicin; antibiotic target alteration; gentamicin C; amikacin; dibekacin; G418; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1855 UPDATE CTX-M-72 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACGGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGACTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA " 1856 UPDATE QnrB20 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1857 UPDATE VIM-9 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 919 UPDATE PER-1 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; PER beta-lactamase; monobactam; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1211 UPDATED strand with - UPDATED accession with Z21957.1 UPDATED fmin with 284 UPDATED sequence with ATGAATGTCATTATAAAAGCTGTAGTTACTGCCTCGACGCTACTGATGGTATCTTTTAGTTCATTCGAAACCTCAGCGCAATCCCCACTGTTAAAAGAGCAAATTGAATCCATAGTCATTGGAAAAAAAGCCACTGTAGGCGTTGCAGTGTGGGGGCCTGACGATCTGGAACCTTTACTGATTAATCCTTTTGAAAAATTCCCAATGCAAAGTGTATTTAAATTGCATTTAGCTATGTTGGTACTGCATCAGGTTGATCAGGGAAAGTTGGATTTAAATCAGACCGTTATCGTAAACAGGGCTAAGGTTTTACAGAATACCTGGGCTCCGATAATGAAAGCGTATCAGGGAGACGAGTTTAGTGTTCCAGTGCAGCAACTGCTGCAATACTCGGTCTCGCACAGCGATAACGTGGCCTGTGATTTGTTATTTGAACTGGTTGGTGGACCAGCTGCTTTGCATGACTATATCCAGTCTATGGGTATAAAGGAGACCGCTGTGGTCGCAAATGAAGCGCAGATGCACGCCGATGATCAGGTGCAGTATCAAAACTGGACCTCGATGAAAGGTGCTGCAGAGATCCTGAAAAAGTTTGAGCAAAAAACACAGCTGTCTGAAACCTCGCAGGCTTTGTTATGGAAGTGGATGGTCGAAACCACCACAGGACCAGAGCGGTTAAAAGGTTTGTTACCAGCTGGTACTGTGGTCGCACATAAAACTGGTACTTCGGGTATCAAAGCCGGAAAAACTGCGGCCACTAATGATTTAGGTATCATTCTGTTGCCTGATGGACGGCCCTTGCTGGTTGCTGTTTTTGTGAAAGACTCAGCCGAGTCAAGCCGAACCAATGAAGCTATCATTGCGCAGGTTGCTCAGACTGCGTATCAATTTGAATTGAAAAAGCTTTCTGCCCTAAGCCCAAATTAA UPDATED NCBI_taxonomy_name with Pseudomonas aeruginosa UPDATED NCBI_taxonomy_id with 287 UPDATED NCBI_taxonomy_cvterm_id with 36752 UPDATED accession with CAA79968.1 UPDATED sequence with MNVIIKAVVTASTLLMVSFSSFETSAQSPLLKEQIESIVIGKKATVGVAVWGPDDLEPLLINPFEKFPMQSVFKLHLAMLVLHQVDQGKLDLNQTVIVNRAKVLQNTWAPIMKAYQGDEFSVPVQQLLQYSVSHSDNVACDLLFELVGGPAALHDYIQSMGIKETAVVANEAQMHADDQVQYQNWTSMKGAAEILKKFEQKTQLSETSQALLWKWMVETTTGPERLKGLLPAGTVVAHKTGTSGIKAGKTAATNDLGIILLPDGRPLLVAVFVKDSAESSRTNEAIIAQVAQTAYQFELKKLSALSPN " 918 UPDATE TEM-49 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 915 UPDATE SHV-106 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 914 UPDATE ANT(6)-Ia antibiotic inactivation; streptomycin; aminoglycoside antibiotic; ANT(6); model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 61860 UPDATED strand with - UPDATED accession with NC_023287.1 UPDATED fmin with 60996 UPDATED sequence with ATGAGATCAGAAAAAGAAATGATGGATTTAGTACTTTCTTTAGCAGAACAGGATGAACGTATTCGAATTGTGACCCTTGAGGGGTCACGCGCAAATATTAATATACCTAAAGATGAATTTCAGGATTATGATATTACATATTTTGTAAGTGATATAGAACCGTTTATATCTAATGATGACTGGCTTAATCAATTTGGGAATATAATAATGATGCAAAAGCCGGAGGATATGGAATTATTCCCACCTGAAGAAAAGGGATTTTCCTATCTTATGCTATTTGATGATTACAATAAAATTGATCTTACCTTATTGCCCTTGGAAGAGTTAGATAATTACCTAAAGGGCGATAAATTAATAAAGGTTCTAATTGATAAAGATTGTAGAATTAAAAGGGACATAGTTCCGACTGATATAGATTATCATGTAAGAAAGCCAAGCGCAAGGGAGTATGATGATTGCTGCAATGAATTTTGGAATGTAACACCTTATGTTATTAAAGGATTGTGCCGCAAAGAGATACTGTTTGCAATCGATCATCTGAACCAGATTCTACGGTTTGAACTACTTAGGATGATGTCGTGGAAGGTTGGGATAAAGACAGAATTTTCATTAAGTGTTGGGAAAAATTATAAGTATATTAACAAATACATTGATGAAGATCTATGGAATAGATTATTATCTACATATCGCATGGATTCCTATGAAAATATTTGGAAGTCATTATTTATATGCCACCAATTGTTCAGGGAAGTGTCCAAAGAGGTAGCAGAACTACTGGGGTTTGATTATCCAGAGTATGGTAAGAACATAACAAGATATACCGAGGACATGTATAAAAAATATGTTGAAAATGACTATTTTTAA UPDATED NCBI_taxonomy_name with Exiguobacterium sp. S3-2 UPDATED NCBI_taxonomy_id with 1389960 UPDATED NCBI_taxonomy_cvterm_id with 39580 UPDATED accession with YP_008997281.1 UPDATED sequence with MRSEKEMMDLVLSLAEQDERIRIVTLEGSRANINIPKDEFQDYDITYFVSDIEPFISNDDWLNQFGNIIMMQKPEDMELFPPEEKGFSYLMLFDDYNKIDLTLLPLEELDNYLKGDKLIKVLIDKDCRIKRDIVPTDIDYHVRKPSAREYDDCCNEFWNVTPYVIKGLCRKEILFAIDHLNQILRFELLRMMSWKVGIKTEFSLSVGKNYKYINKYIDEDLWNRLLSTYRMDSYENIWKSLFICHQLFREVSKEVAELLGFDYPEYGKNITRYTEDMYKKYVENDYF " 917 UPDATE SHV-186 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 916 UPDATE OXA-36 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATTTTTTCTCTTGCCACTTTCGCGCATGCGCAAGAAGGCACGCTAGAACGTTCTGACTGGAGGAAGTTTTTCAGCGAATTTCAAGCCAAAGGCACGATAGTTGTGGCAGACGAACGCCAAGCGGATCGTGCCATGTTGGTTTTTGATCCTGTGCGATCGAAGAAACGCTACTCGCCTGCATCGACATTCAAGATACCTCATACACTTTTTGCACTTGATGCAGGCGCTGTTCGTGATGAGTTCCAGATTTTTCGATGGGACGGCGTTAACAGGGGCTTTGCAGGCCACAATCAAGACCAAGATTTGCGATCAGCAATGCGGAATTCTACTGTTTGGGTGTATGAGCTATTTGCAAAGGAAATTGGTGATGACAAAGCTCGGCGCTATTTGAAGAAAATCGACTATGGCAACGCCTATCCTTCGACAAGTAATGGCGATTACTGGATAGAAGGCAGCCTTGCAATCTCGGCGCAGGAGCAAATTGCATTTCTCAGGAAGCTCTATCGTAACGAGCTGCCCTTTCGGGTAGAACATCAGCGCTTGGTCAAGGATCTCATGATTGTGGAAGCCGGTCGCAACTGGATACTGCGTGCAAAGACGGGCTGGGAAGGCCGTATGGGTTGGTGGGTAGGATGGGTTGAGTGGCCGACTGGCTCCGTATTCTTCGCACTGAATATTGATACGCCAAACAGAATGGATGATCTTTTCAAGAGGGAGGCAATCGTGCGGGCAATCCTT " 911 UPDATE CMY-50 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 910 UPDATE rphA antibiotic inactivation; rifampin; rifapentine; rifampin phosphotransferase; rifabutin; rifaximin; rifamycin antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGCGGGCGTCTGGTCGTGGATCTTCAGGACGTCGACGCGGCGGGGCTCGCCGAGGTCGGCGGCAAGGGCGCCCACCTGGGCGAGCTGTCCCGGATCGACGGGGTCCGGGTGCCGTCCGGGTTCTGTGTGACGACGCACGCCTTCCGGCGGATCATGGCGGAGGCACCCGAGAGCGGGGAACTCCTCGACCGGCTGTCCCGCGTGGACGAGGGCGACCAGGAGGCGGTCCGATCCCTCGCCGCCCGTCTACGGCAGGTCGTCGGGGCGACGCCCCTCCCGGACGAGGTGGCGGCGGCCGTCACCGGGGCGCTCGCCCGGCACGGTGAGCGGTCCGCGTACGCCGTACGGTCCAGCGCGACGGCCGAGGACCTGCCGACCGCGTCGTTCGCCGGCCAGCAGGACACGTACCTGAACGTCGTCGGCACCGAGGAGATCCTCCGGCACGTCAGCCGGTGCTGGGCCTCCCTGTTCACCGAGCGGGCGGTGACCTACCGCGGGCGTCAGGGCGTCGACCACCGTACGGTCCACATGGGCGTGGTCGTGCAGCGGATGGTCGTGCCGCGGGCGTCCGGCATCCTGTTCACCGCCGACCCGGTGACGGGAGACCGCCGCACGGCGACCGTGGACGCCGGTTTCGGTCTCGGCGAGGCCCTGGTGTCGGGGCTGGTCGACCCGGACGTCCTCACGGTGCGGCACGGCGAGGTCGTCGCGCGGACGATCGCCGCGAAGCGGCGCGCCCTGCACGCCGTGCAGGGCGGTGGGACGCGCGAGACCCCGATCGAGGAACGGCGGCAGCGCGAACCGGTACTGACGGACGATCAGGCCGTGGAGCTGGTCGCGCTCGGGCGGCGGATCGAGGCGCACTTCGGCAGCCCGCAGGACATCGAGTGGTGCCTGGACGACGACGGCTTCCACATCGTGCAGAGCCGGCCGATCACCACGCTGTTCCCCGTGCCCGAGCGGGACGACGACGTCTTCCGCGTCTATCTCTCGGTCGGCCACCAGCAGATGATGACCGACGCCATGAAGCCCCTGGGCCTCTCGATGTGGCGGCTGACGGCCCTGGCACCGATGTACGAGGCCGGCGGGCGGCTGTTCGTCGACGCCACCGCCCGGCTGGCGGTGCCCGGGAGCCGTGCCACTCTCCTGGACGTCGTCGGCCGTGGCGACCCGCTGACCCGGGACGCGCTCGAAACGGTCCTGGAGAACGGCGAGTTCGAGCCGACGCCGGCGGAGACGGACGGAGGCGCGCCGCCCGCCGGTGACGGGGCCGAACCGGACGAGGCCGATCCTTCCATCGTCACCGAGCTGATCGAGCGCAGCCGGCGCTCCCTCGCCGAGCTGGAGCGGGAGATCGGCACGAAGAGCGGTCCCGCCCTGTTCGCGTTCCTGCGGGAGGCGTTCGAGGAGCACAAGCGGGTGGTCGGCGATCCGCTGAACATCCGCGCGATCATGGCGGGCATGGAGGCCACCTGGTGGCTGAACGACCGGCTGGAGGAGTGGCTCGGCGAGAAGAACGCCGCCGACACGCTCACGCTGTCCGCCCCCGACAACGTGACCTCGGAGATGGGGCTGGAGCTGCTCGACGTCGCCGACGTGGTCCGCACGCACCCGGAGGTGGTGGCCTTCCTGGAGGGCGTCGAGGACGACGGCTTCCTGGACGAGCTGCCCAAGGTCCCCGGTGGCGCCGAGGCCCGGGACGCCTTCGAGGCATACCTGGACCGGTACGGCATGCGCTGCGTCGGCGAGATCGACATCACGNGGCCCCCGGTGCGGGAACGGCCCAGCGCGCTCGTGCCGGTCGTCCTCGACCACGTGCGCGCCTTCGGGCCCGGCGCCGCCGCGCGCCGCTTCGAGGACGGCCGGCGCAGGGCGCTCGCGAAGGAGCGTGAGGTGCTGGAGCGGCTGCGGGACCTGCCGGACGGGGAGCGCAGGGCCGACGCGGCGCGCCGGATGATCCGGCAGGTCCGCGCGTTCGCCGGCTACCGGGAGTACCCGAAGTACGCGATCGTCAGCCGCTCCTTCGTCTACCGTCAGGCCCTGCTGCGGGAGGCCGACGAGCTGGTGCGGGCCGGCGTCCTCGCCGACCGGGAGGACGTCCACTACCTGACGTTCGACGAGTTCGAGGAGGCCGTCCGCGTGCGCCGGGTGGACGAGCGGCTGGTGCGGCGCCGCAAGGACGCCTTCCGTTCGTACCAGGCGCTGACCCCGCCCCGCGTCCTCACCTCGGAGGGTGTGGCCCTCTCCGGGGCGTACCGGCGCGACGACGTGCCGGAAGGGGCGCTGGCGGGTCTCGCGGTGTCCGCGGGGACCGTGGAGGGCCGGGCCCGGGTGGTCCTCGACATGGCGGAGGCCGATCTGGAGGCGGGCGACATCCTGGTCACGCGGTTCACGGACCCCAGCTGGTCACCGCTGTTCGTCGGGATCGCGGGCCTGGTGACGGAGGTGGGCGGTCTGATGACCCATGGCGCGGTGATCGCCCGCGAGTACGGTCTGGCGGCCGTGGTCGGGGTGGAGCGGGCCACCCGGCTGATCCGGGACGGGCAGCGCATCCGGGTGCACGGGACGGAGGGCTATATCGAGCTTCTGTCCTGA " 913 UPDATE OXY-6-4 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 912 UPDATE LEN-13 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 516 UPDATE eptA pmr phosphoethanolamine transferase; peptide antibiotic; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 4340268 UPDATED strand with - UPDATED accession with AP009048 UPDATED fmin with 4338624 UPDATED sequence with ATGTTGAAGCGCCTACTAAAAAGACCCTCTTTGAATTTACTCGCCTGGCTATTGTTGGCCGCTTTTTATATCTCTATCTGCCTGAATATTGCCTTTTTTAAACAGGTGTTGCAGGCGCTGCCGCTGGATTCGCTGCATAACGTACTGGTTTTCTTGTCGATGCCGGTCGTCGCTTTCAGCGTGATTAATATTGTCCTGACACTAAGCTCTTTCTTATGGCTTAATCGACCACTGGCCTGCCTGTTTATTCTGGTTGGCGCGGCTGCACAATATTTCATAATGACTTACGGCATCGTCATCGACCGCTCGATGATTGCCAATATTATTGATACCACTCCGGCAGAAAGTTATGCGCTGATGACACCGCAAATGTTATTAACGCTGGGATTCAGCGGCGTGCTTGCTGCGCTGATTGCCTGCTGGATAAAAATCAAACCTGCCACCTCGCGTCTGCGCAGTGTTCTTTTCCGTGGAGCCAATATTCTGGTTTCTGTACTACTGATTTTGCTGGTCGCCGCACTGTTTTATAAAGACTACGCCTCGTTGTTCCGCAATAACAAAGAGCTGGTGAAATCCTTAAGCCCCTCTAACAGCATTGTTGCCAGCTGGTCATGGTACTCCCATCAGCGACTGGCAAATCTGCCGCTGGTGCGAATTGGTGAAGACGCGCACCGCAACCCGTTAATGCAGAACGAAAAACGTAAAAATTTGACCATCCTGATTGTCGGCGAAACCTCGCGGGCGGAGAACTTCTCCCTCAACGGCTACCCGCGTGAAACTAACCCGCGGCTGGCGAAAGATAACGTGGTCTATTTCCCTAATACCGCATCTTGCGGCACGGCAACGGCAGTTTCAGTACCGTGCATGTTCTCGGATATGCCGCGTGAGCACTACAAAGAAGAGCTGGCACAGCACCAGGAAGGCGTGCTGGATATCATTCAGCGAGCGGGCATCAACGTGCTGTGGAATGACAACGATGGCGGCTGTAAAGGTGCCTGCGACCGCGTGCCTCACCAGAACGTCACCGCGCTGAATCTACCTGATCAGTGCATCAACGGCGAATGCTATGACGAAGTGCTGTTCCACGGGCTTGAAGAGTACATCAATAACCTGCAAGGTGATGGCGTGATTGTCTTACACACCATCGGCAGCCACGGTCCGACCTATTACAACCGCTATCCGCCTCAGTTCAGGAAATTTACCCCAACCTGCGACACCAATGAGATCCAGACCTGTACCAAAGAGCAACTGGTGAACACTTACGACAACACGCTGGTTTACGTCGACTATATTGTTGATAAAGCGATTAATCTGCTGAAAGAACATCAGGATAAATTTACCACCAGCCTGGTTTATCTTTCTGACCACGGTGAATCGTTAGGTGAAAATGGCATCTATCTGCACGGTCTGCCTTATGCCATCGCCCCGGATAGCCAAAAACAGGTGCCGATGCTGCTGTGGCTGTCGGAGGATTATCAAAAACGGTATCAGGTTGACCAGAACTGCCTGCAAAAACAGGCGCAAACGCAACACTATTCACAAGACAATTTATTCTCCACGCTATTGGGATTAACTGGCGTTGAGACGAAGTATTACCAGGCTGCGGATGATATTCTGCAAACTTGCAGGAGAGTGAGTGAATGA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. W3110 UPDATED NCBI_taxonomy_id with 316407 UPDATED NCBI_taxonomy_cvterm_id with 36839 UPDATED accession with BAE78116.1 UPDATED sequence with MLKRLLKRPSLNLLAWLLLAAFYISICLNIAFFKQVLQALPLDSLHNVLVFLSMPVVAFSVINIVLTLSSFLWLNRPLACLFILVGAAAQYFIMTYGIVIDRSMIANIIDTTPAESYALMTPQMLLTLGFSGVLAALIACWIKIKPATSRLRSVLFRGANILVSVLLILLVAALFYKDYASLFRNNKELVKSLSPSNSIVASWSWYSHQRLANLPLVRIGEDAHRNPLMQNEKRKNLTILIVGETSRAENFSLNGYPRETNPRLAKDNVVYFPNTASCGTATAVSVPCMFSDMPREHYKEELAQHQEGVLDIIQRAGINVLWNDNDGGCKGACDRVPHQNVTALNLPDQCINGECYDEVLFHGLEEYINNLQGDGVIVLHTIGSHGPTYYNRYPPQFRKFTPTCDTNEIQTCTKEQLVNTYDNTLVYVDYIVDKAINLLKEHQDKFTTSLVYLSDHGESLGENGIYLHGLPYAIAPDSQKQVPMLLWLSEDYQKRYQVDQNCLQKQAQTQHYSQDNLFSTLLGLTGVETKYYQAADDILQTCRRVSE " 1423 UPDATE TEM-15 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1933 UPDATE SHV-160 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1932 UPDATE IMP-32 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAATTATTTGTTTTATGTGTATTCTTCTTCTGCAACATTGCAGTTGCAGAAGAATCTTTGCCTGATTTAAAAATTGAGAAGCTTGAAGAAGGCGTTTATGTTCATACTTCGTTTGAAGAAGTTAAAGGTTGGAGTGTGGTCACTAAACACGGTTTGGTGGTTCTTGTGAAAAATGACGCCTATCTGATTGATACTCCAATTACTGCTAAAGATACTGAAAAATTAGTCAATTGGTTTGTTGAGCGGGGCTATAAAATCAAAGGCAGTATTTCCACACATTTCCATGGTGACAGTACGGCTGGAATAGAGTGGCTTAATTCTCAATCTATCCCCACATATGCTTCTGAATTAACAAATGAACTTCTTAAAAAAGACAATAAGGTACAAGCTAAACACTCTTTTTATGGGGTTAGTTATTCACTAATAAAAAACAAAATTGAAGTTTTTTATCCAGGCCCAGGGCACACTCAAGATAACGTAGTGGTTTGGTTACCTGAAAAGAAAATTTTATTCGGTGGTTGCTTTGTTAAACCGGACGGTCTTGGCTATTTGGGGGACGCAAATTTAGAAGCTTGGCCAAAGTCCGCTAAAATATTAATGTCTAAATATGGTAAAGCAAAACTAGTTGTGTCGAGTCATAGTGATATTGGAGATGTATCACTCTTGAAACGTACATGGGAGCAGGCTGTTAAAGGGCTGAATGAAAGTAAAAAATCATCACAGCCAAGCGACTAA " 1931 UPDATE TEM-150 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGATACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 1930 UPDATE CTX-M-29 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1937 UPDATE OXA-118 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCAATCCGATTCCTCACCATACTGCTATCTACTTTTTTTCTTACCTCATTCGTGCATGCGCAAGAACACGTGCTAGAGCGTTCTGACTGGAAGAAGTTCTTCAGCGACCTCCGGGCCGAAGGTGCAATCGTTATTTCAGACGAACGTCAAGCGGAGCATGCTTTATTGGTTTTTGGTCAAGAGCGAGCAGCAAAGCGTTACTCGCCTGCTTCAACCTTCAAGCTTCCACACACACTTTTTGCACTCGATGCAGACGCCGTTCGTGATGAGTTCCAGGTTTTTCGATGGGACGGCGTTAAACGGAGCTTTGCGGGCCATAATCAAGACCAAGACTTGCGATCAGCGATGCGAAATTCTGCGGTCTGGGTTTATGAGCTATTTGCAAAAGAGATCGGAAAGGACAAAGCAAGACACTATTTAAAGCAAATTGATTATGGCAACGCCGACCCTTCGACAATCAAGGGCGATTACTGGATAGATGGCAATCTTGAAATCTCAGCGCACGAACAGATTTCGTTTCTCAGAAAACTCTATCGAAATCAGCTGCCATTTCAGGTGGAACATCAGCGCTTGGTCAAAGATCTCATGATTACGGAAGCCGGGCGCAACTGGATACTACGCGCAAAGACCGGCTGGGAAGGCAGGTTTGGCTGGTGGGTAGGGTGGGTGGAGTGGCCAACCGGTCCCGTATTCTTCGCGCTGAATATTGATACGCCAAACAGAACGGATGATCTTTTCAAAAGAGAGGCAATCGCGCGGGCAATCCTTCGCTCTATCGACGCATTGCCGCCCAACTAA " 1936 UPDATE CTX-M-43 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1935 UPDATE Mycobacterium tuberculosis gyrA conferring resistance to fluoroquinolones nybomycin; grepafloxacin; trovafloxacin; ofloxacin; norfloxacin; nalidixic acid; lomefloxacin; gatifloxacin; fluoroquinolone resistant gyrA; levofloxacin; sparfloxacin; antibiotic target alteration; enoxacin; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with ATGACAGACACGACGTTGCCGCCTGACGACTCGCTCGACCGGATCGAACCGGTTGACATCGAGCAGGAGATGCAGCGCAGCTACATCGACTATGCGATGAGCGTGATCGTCGGCCGCGCGCTGCCGGAGGTGCGCGACGGGCTCAAGCCCGTGCATCGCCGGGTGCTCTATGCAATGTTCGATTCCGGCTTCCGCCCGGACCGCAGCCACGCCAAGTCGGCCCGGTCGGTTGCCGAGACCATGGGCAACTACCACCCGCACGGCGACGCGTCGATCTACGACAGCCTGGTGCGCATGGCCCAGCCCTGGTCGCTGCGCTACCCGCTGGTGGACGGCCAGGGCAACTTCGGCTCGCCAGGCAATGACCCACCGGCGGCGATGAGGTACACCGAAGCCCGGCTGACCCCGTTGGCGATGGAGATGCTGAGGGAAATCGACGAGGAGACAGTCGATTTCATCCCTAACTACGACGGCCGGGTGCAAGAGCCGACGGTGCTACCCAGCCGGTTCCCCAACCTGCTGGCCAACGGGTCAGGCGGCATCGCGGTCGGCATGGCAACCAATATCCCGCCGCACAACCTGCGTGAGCTGGCCGACGCGGTGTTCTGGGCGCTGGAGAATCACGACGCCGACGAAGAGGAGACCCTGGCCGCGGTCATGGGGCGGGTTAAAGGCCCGGACTTCCCGACCGCCGGACTGATCGTCGGATCCCAGGGCACCGCTGATGCCTACAAAACTGGCCGCGGCTCCATTCGAATGCGCGGAGTTGTTGAGGTAGAAGAGGATTCCCGCGGTCGTACCTCGCTGGTGATCACCGAGTTGCCGTATCAGGTCAACCACGACAACTTCATCACTTCGATCGCCGAACAGGTCCGAGACGGCAAGCTGGCCGGCATTTCCAACATTGAGGACCAGTCTAGCGATCGGGTCGGTTTACGCATCGTCATCGAGATCAAGCGCGATGCGGTGGCCAAGGTGGTGATCAATAACCTTTACAAGCACACCCAGCTGCAGACCAGCTTTGGCGCCAACATGCTAGCGATCGTCGACGGGGTGCCGCGCACGCTGCGGCTGGACCAGCTGATCCGCTATTACGTTGACCACCAACTCGACGTCATTGTGCGGCGCACCACCTACCGGCTGCGCAAGGCAAACGAGCGAGCCCACATTCTGCGCGGCCTGGTTAAAGCGCTCGACGCGCTGGACGAGGTCATTGCACTGATCCGGGCGTCGGAGACCGTCGATATCGCCCGGGCCGGACTGATCGAGCTGCTCGACATCGACGAGATCCAGGCCCAGGCAATCCTGGACATGCAGTTGCGGCGCCTGGCCGCACTGGAACGCCAGCGCATCATCGACGACCTGGCCAAAATCGAGGCCGAGATCGCCGATCTGGAAGACATCCTGGCAAAACCCGAGCGGCAGCGTGGGATCGTGCGCGACGAACTCGCCGAAATCGTGGACAGGCACGGCGACGACCGGCGTACCCGGATCATCGCGGCCGACGGAGACGTCAGCGACGAGGATTTGATCGCCCGCGAGGACGTCGTTGTCACTATCACCGAAACGGGATACGCCAAGCGCACCAAGACCGATCTGTATCGCAGCCAGAAACGCGGCGGCAAGGGCGTGCAGGGTGCGGGGTTGAAGCAGGACGACATCGTCGCGCACTTCTTCGTGTGCTCCACCCACGATTTGATCCTGTTCTTCACCACCCAGGGACGGGTTTATCGGGCCAAGGCCTACGACTTGCCCGAGGCCTCCCGGACGGCGCGCGGGCAGCACGTGGCCAACCTGTTAGCCTTCCAGCCCGAGGAACGCATCGCCCAGGTCATCCAGATTCGCGGCTACACCGACGCCCCGTACCTGGTGCTGGCCACTCGCAACGGGCTGGTGAAAAAGTCCAAGCTGACCGACTTCGACTCCAATCGCTCGGGCGGAATCGTGGCGGTCAACCTGCGCGACAACGACGAGCTGGTCGGTGCGGTGCTGTGTTCGGCCGGCGACGACCTGCTGCTGGTCTCGGCCAACGGGCAGTCCATCAGGTTCTCGGCGACCGACGAGGCGCTGCGGCCAATGGGTCGTGCCACCTCGGGTGTGCAGGGCATGCGGTTCAATATCGACGACCGGCTGCTGTCGCTGAACGTCGTGCGTGAAGGCACCTATCTGCTGGTGGCGACGTCAGGGGGCTATGCGAAACGTACCGCGATCGAGGAATACCCGGTACAGGGCCGCGGCGGTAAAGGTGTGCTGACGGTCATGTACGACCGCCGGCGCGGCAGGTTGGTTGGGGCGTTGATTGTCGACGACGACAGCGAGCTGTATGCCGTCACTTCCGGCGGTGGCGTGATCCGCACCGCGGCACGCCAGGTTCGCAAGGCGGGACGGCAGACCAAGGGTGTTCGGTTGATGAATCTGGGCGAGGGCGACACACTGTTGGCCATCGCGCGCAACGCCGAAGAAAGTGGCGACGATAATGCCGTGGACGCCAACGGCGCAGACCAGACGGGCAATTAA " 1934 UPDATE lnuD antibiotic inactivation; lincosamide nucleotidyltransferase (LNU); lincosamide antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1939 UPDATE AAC(6')-Ix antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1938 UPDATE mtrD penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; penicillin; azithromycin; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1795170 UPDATED strand with - UPDATED accession with NC_003112.2 UPDATED fmin with 1791966 UPDATED sequence with ATGGCTAAATTTTTTATCGACCGCCCCATTTTTGCGTGGGTTATTTCGATTTTCATTATTGCGGCGGGTATTTTCGGCATCAAAAGCCTGCCGGTTTCGCAATATCCGTCCGTCGCCGCCCCGACCATCACCCTGAGGGCCACTTATCCGGGCGCGTCCGCGCAGGTAATGGAAGACAGCGTGCTTTCCGTGATCGAGCGGAATATGAACGGCGTGGAAGGTTTGGATTATATGTCCACTTCCGCCGATTCGAGCGGCAGCGGCAGCGTGAGCCTGACCTTTACGCCCGATACCGACGAGAATCTGGCGCAGGTGGAAGTGCAGAACAAGCTTTCCGAAGTATTGAGCACGCTGCCGGCAACTGTCCAGCAATACGGCGTAACCGTATCCAAGGCGCGTTCCAATTTCCTGATGATTGTGATGCTTTCGTCGGATGTGCAGTCAACCGAAGAGATGAACGACTACGCGCAGCGTAATATCGTTCCCGAGTTGCAGCGTATCGAAGGCGTGGGGCAGGTACGCCTGTTCGGCGCGCAACGCGCGATGCGGATTTGGGTTGATCCTAAGAAACTGCAAAACTACAATTTGTCGTTTGCCGATGTTGGCAGCGCGCTGTCCGCCCAGAACGTCCAGATTTCAGCGGGTTCTATCGGTTCGCTTCCCGCCGTTCGCGGACAGACGGTTACGGCTACCGTAACGGCGCAAGGGCAGTTGGGTACGGCAGAAGAATTCGGCAACGTCATCCTCCGCGCCAATACCGACGGTTCTAATGTTTACCTGAAGGATGTGGCAAGGGTCGGACTGGGTATGGAAGACTATTCTTCCTCAACCCGTCTGAACGGTGTAAATACCACCGGTATGGCGGTGATGCTGTCCAACAGCGGCAATGCGATGGCGACGGCAAAGGCGGTTAAAGAACGCATGGCGACGTTGGAAAAATACTTTCCTCAGGGTATGAGCTGGAAAACCCCTTACGATACTTCCAAATTCGTCGAAATTTCGATTGAAAAAGTGATTCACACTTTAATCGAAGCGATGGTGCTGGTGTTTGTCGTAATGTATCTCTTCCTGCAAAACATCCGTTATACGCTGATTCCGACCATCGTCGTACCGATTTCGCTGTTGGGCGGTTTCGCCTTCATCTCTTATATGGGCATGTCGATTAACGTACTGACCATGTTTGCGATGGTTTTGGTCATCGGCATCGTGGTCGATGACGCGATTGTGGTGGTTGAAAACGTCGAGCGCATTATGGCGGGTGAAGGCTTGCCGCCCAAAGAAGCGACCAAAAAAGCGATGGGTCAGATTTCGGGCGCGGTCATCGGTATTACCGCCGTTCTGATTTCCGTGTTCGTACCGTTGGCGATGTTCAGCGGGGCGACGGGCAATATTTACAAACAGTTTGCCCTGACGATGGCGTCATCAATCGCATTCTCCGCCTTCCTTGCGCTGACCCTTACCCCTGCTTTGTGTGCCACAATGTTGAAGACAATCCCGAAAGGGCATCACGAAGAGAAAAAAGGTTTCTTCGGCTGGTTTAACAAGAAATTCAACAGTTGGACGCACGGTTACGAAGGCCGGGTTGCCAAAGTGCTGCGTAAGACTTTCCGCATGATGGTTGTCTATATCGGCTTGGCGGTTGTGGGCGTGTTCCTGTTTATGCGCCTGCCGACTTCATTCCTGCCGACCGAAGACCAAGGCTTCGTCATGGTCAGCGTGCAACTGCCTGCAGGAGCGACCCAAGAGCGCACCAATGCGACTTTGGCGCAAGTTACCCAACTGGCGAAAAGCATTCCTGAAATAGAAAACATCATTACCGTTTCCGGCTTCAGCTTTTCGGGCAGCGGTCAGAATATGGCGATGGGTTTTGCCATATTGAAAGATTGGAACGAGCGTACCGCGCCCGGCAGCGATGCCGTTGCGATTGCCGGCAAGCTGACGGGTATGATGATGGGGACGCTTAAAGACGGTTTTGGCATCGCCGTCGTCCCGCCTCCGATTCTGGAGTTGGGCAACGGTTCGGGTCTGAGCATCAACCTGCAAGACCGCAACAATACCGGCCATACCGCATTGCTGGCGAAGCGCAACGAGTTGATTCAGAAAATGCGTGCCAGCGGTTTGTTTGACCCCAGCACCGTCCGTGCTGGCGGTTTGGAAGACTCGCCGCAGTTGAAAATCGACATCAACCGTGCCGCGGCGGCGGCGCAAGGCATTTCGTTTGCCGACATCCGCACCGCATTGGCAAGCGCGCTGAGTTCGTCTTATGTCAGCGACTTCCCGAACCAAGGCCGTCTGCAACGCGTGATGGTGCAGGCCGACGAGGATGCCCGTATGCAGCCTGCCGATATTTTGAACCTGACCGTGCCGAACAAATCCGGCGTCGCCGTACCGCTTTCCACCATTGCTACTGTTTCTTGGGAAAACGGTACGGAACAGAGCGTACGCTTCAACGGTTATCCTTCGATGAAGCTGTCCGCTTCGCCTGCAACCGGCGTTTCCACCGGGCAGGCTATGGCGGCGGTTCAAAAAATGGTTGACGAATTGGGCGGCGGTTACAGCCTGGAGTGGGGCGGACAGTCGCGCGAAGAGGCAAAAGGCGGCTCGCAAACCCTGATTTTGTACGGTTTGGCGGTTGCAGCCGTATTTTTGGTACTTGCCGCGCTTTATGAAAGCTGGTCGATTCCGCTGGCGGTCATCCTTGTGATTCCGTTGGGTTTGATCGGTGCGGCTGCGGGCGTAACCGGGCGCAACCTGTTTGAAGGACTGTTGGGCAGCGTTCCCTCGTTCGCCAACGACATCTACTTTCAAGTCGGTTTCGTTACCGTGATGGGTTTGAGTGCGAAAAATGCGATTTTGATTATCGAATTTGCCAAAGACCTTCAAGCGCAAGGGAAAAGCGCGGTTGAAGCCGCTTTGGAAGCCGCCCGCCTGCGTTTCCGTCCGATTATCATGACCTCGTTCGCCTTTATTTTGGGCGTGGTTCCCCTGTATATTGCCGGCGGTGCAAGTTCTGCCAGCCAGCGCGCCATCGGTACAACCGTATTCTGGGGGATGCTCATCGGCACGCTCTTGTCCGTGTTCCTTGTTCCGCTTTTCTATGTGGTGGTGCGCAAATTCTTCAAAGAAACCGCGCACGAACACGAAATGGCAGTAAAACACGCCGCCGAAGCGGGCATCACCGGTTCGGACGACAGCCAACATTAA UPDATED NCBI_taxonomy_name with Neisseria meningitidis MC58 UPDATED NCBI_taxonomy_id with 122586 UPDATED NCBI_taxonomy_cvterm_id with 39597 UPDATED accession with NP_274718.1 UPDATED sequence with MAKFFIDRPIFAWVISIFIIAAGIFGIKSLPVSQYPSVAAPTITLRATYPGASAQVMEDSVLSVIERNMNGVEGLDYMSTSADSSGSGSVSLTFTPDTDENLAQVEVQNKLSEVLSTLPATVQQYGVTVSKARSNFLMIVMLSSDVQSTEEMNDYAQRNIVPELQRIEGVGQVRLFGAQRAMRIWVDPKKLQNYNLSFADVGSALSAQNVQISAGSIGSLPAVRGQTVTATVTAQGQLGTAEEFGNVILRANTDGSNVYLKDVARVGLGMEDYSSSTRLNGVNTTGMAVMLSNSGNAMATAKAVKERMATLEKYFPQGMSWKTPYDTSKFVEISIEKVIHTLIEAMVLVFVVMYLFLQNIRYTLIPTIVVPISLLGGFAFISYMGMSINVLTMFAMVLVIGIVVDDAIVVVENVERIMAGEGLPPKEATKKAMGQISGAVIGITAVLISVFVPLAMFSGATGNIYKQFALTMASSIAFSAFLALTLTPALCATMLKTIPKGHHEEKKGFFGWFNKKFNSWTHGYEGRVAKVLRKTFRMMVVYIGLAVVGVFLFMRLPTSFLPTEDQGFVMVSVQLPAGATQERTNATLAQVTQLAKSIPEIENIITVSGFSFSGSGQNMAMGFAILKDWNERTAPGSDAVAIAGKLTGMMMGTLKDGFGIAVVPPPILELGNGSGLSINLQDRNNTGHTALLAKRNELIQKMRASGLFDPSTVRAGGLEDSPQLKIDINRAAAAAQGISFADIRTALASALSSSYVSDFPNQGRLQRVMVQADEDARMQPADILNLTVPNKSGVAVPLSTIATVSWENGTEQSVRFNGYPSMKLSASPATGVSTGQAMAAVQKMVDELGGGYSLEWGGQSREEAKGGSQTLILYGLAVAAVFLVLAALYESWSIPLAVILVIPLGLIGAAAGVTGRNLFEGLLGSVPSFANDIYFQVGFVTVMGLSAKNAILIIEFAKDLQAQGKSAVEAALEAARLRFRPIIMTSFAFILGVVPLYIAGGASSASQRAIGTTVFWGMLIGTLLSVFLVPLFYVVVRKFFKETAHEHEMAVKHAAEAGITGSDDSQH " 847 UPDATE CTX-M-108 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 846 UPDATE DHA-12 antibiotic inactivation; cephalosporin; cephamycin; DHA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 845 UPDATE TEM-163 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 844 UPDATE CMY-117 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 843 UPDATE QnrB14 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 842 UPDATE ugd pmr phosphoethanolamine transferase; peptide antibiotic; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2099613 UPDATED strand with - UPDATED accession with U00096 UPDATED fmin with 2098446 UPDATED sequence with ATGAAAATCACCATTTCCGGTACTGGCTATGTAGGCTTGTCAAACGGGCTTCTAATCGCACAAAATCATGAGGTTGTGGCATTAGATATTTTACCGTCACGCGTTGCTATGCTGAATGATCGGATATCTCCTATTGTTGATAAGGAAATTCAGCAGTTTTTGCAATCAGATAAAATACACTTTAATGCCACATTAGATAAAAATGAAGCCTACCGGGATGCTGATTATGTCATCATCGCCACTCCAACCGACTATGATCCTAAAACTAATTATTTCAATACATCCAGTGTAGAATCAGTAATTAAAGACGTAGTTGAGATAAATCCTTATGCGGTTATGGTCATCAAATCAACGGTTCCCGTTGGTTTTACCGCAGCGATGCATAAGAAATATCGCACTGAAAATATTATATTCTCCCCGGAATTTCTCCGTGAGGGTAAAGCCCTTTACGATAATCTCCATCCTTCACGTATTGTCATCGGTGAGCGTTCAGAACGCGCAGAACGTTTCGCTGCTCTGTTACAGGAAGGCGCGATTAAGCAAAATATCCCGATGCTGTTTACCGACTCCACTGAAGCAGAAGCGATTAAACTTTTTGCAAACACCTACCTGGCGATGCGCGTGGCGTACTTTAACGAACTGGATAGCTATGCAGAAAGTTTAGGTCTGAATTCCCGTCAAATAATCGAAGGCGTTTGTCTCGACCCACGTATTGGCAACCATTACAACAATCCGTCGTTTGGTTATGGTGGTTATTGTCTGCCGAAAGATACCAAGCAGTTACTGGCGAACTACCAGTCTGTGCCGAATAACCTGATCTCGGCAATTGTCGATGCTAACCGCACGCGTAAAGATTTTATTGCCGATGCCATTTTGTCACGCAAGCCGCAAGTGGTGGGTATTTATCGTCTGATTATGAAGAGCGGTTCAGATAACTTCCGTGCGTCTTCTATTCAGGGGATTATGAAACGTATCAAGGCGAAAGGTGTTGAAGTGATCATCTACGAGCCAGTGATGAAAGAAGACTCATTCTTCAACTCTCGCCTGGAACGTGATCTCGCCACCTTCAAACAACAAGCCGACGTCATTATCTCTAACCGAATGGCAGAAGAGCTTAAGGATGTGGCAGATAAGGTATACACCCGCGATCTCTTTGGCAGCGACTAA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. MG1655 UPDATED NCBI_taxonomy_id with 511145 UPDATED NCBI_taxonomy_cvterm_id with 36849 UPDATED accession with AAC75089.1 UPDATED sequence with MKITISGTGYVGLSNGLLIAQNHEVVALDILPSRVAMLNDRISPIVDKEIQQFLQSDKIHFNATLDKNEAYRDADYVIIATPTDYDPKTNYFNTSSVESVIKDVVEINPYAVMVIKSTVPVGFTAAMHKKYRTENIIFSPEFLREGKALYDNLHPSRIVIGERSERAERFAALLQEGAIKQNIPMLFTDSTEAEAIKLFANTYLAMRVAYFNELDSYAESLGLNSRQIIEGVCLDPRIGNHYNNPSFGYGGYCLPKDTKQLLANYQSVPNNLISAIVDANRTRKDFIADAILSRKPQVVGIYRLIMKSGSDNFRASSIQGIMKRIKAKGVEVIIYEPVMKEDSFFNSRLERDLATFKQQADVIISNRMAEELKDVADKVYTRDLFGSD " 841 UPDATE CTX-M-14 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA " 840 UPDATE CMY-20 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 849 UPDATE OXA-138 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATTAAAACCCTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGCGCTTCAAAATCTGATGTAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACCACAGAAGTATTTAAGTGGGATGGTAAAAAAAGGTTATTCCCAGAATGGGAAAAGGACATGACCCTAGGCGATGCCATGAAAGCTTCCGCTATTCCAGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAGCTCATGTCTAAGGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGGTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAGTTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAACAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAAACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGCTTAGAACAATTAGGTATTTTATAG " 848 UPDATE OKP-A-2 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 459 UPDATE CTX-M-94 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1587 UPDATE OXA-10 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAACATTTGCCGCATATGTAATTATCGCGTGTCTTTCGAGTACGGCATTAGCTGGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTCTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATGACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAACGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAGCAATGGGAAAGAGACTTGACCTTAAGAGGGGCAATACAAGTTTCAGCTGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATACCTTAAAAAATTTTCCTATGGCAACCAGAATATCAGTGGTGGCATTGACAAATTCTGGTTGGAAGGCCAGCTTAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATATTTAAATAAATTGTCAGCATCTAAAGAAAACCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCGGCACCTGAATATCTAGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGGTGGGTTGAGAAGGAGACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAGTAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGAAAGTGAGGGCATCATTGGTGGCTAA " 1739 UPDATE SHV-16 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCACTCATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTACTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAGCGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATACCCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 1738 UPDATE CTX-M-45 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1731 UPDATE mphB antibiotic inactivation; macrolide phosphotransferase (MPH); oleandomycin; dirithromycin; macrolide antibiotic; telithromycin; azithromycin; roxithromycin; spiramycin; clarithromycin; tylosin; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTAAAGATATTAAACAAGTAATCGAGATAGCAAAAAAACACAATCTTTTTCTAAAAGAAGAAACGATACAGTTTAATGAATCAGGGCTTGATTTTCAAGCTGTTTTTGCACAAGATAATAATGGAATTGATTGGGTTCTAAGATTGCCTAGACGGGAAGATGTGATGCCTAGAACAAAGGTAGAAAAACAAGCTTTGGATTTGGTAAATAAGTACGCTATATCCTTTCAGGCACCAAACTGGATCATTTACACAGAGGAACTAATAGCTTATAAAAAGTTAGATGGTGTGCCAGCAGGTACGATAGATCATAACATAGGTAACTATATTTGGGAGATAGACATAAATAATGTTCCAGAATTATTTCACAAGTCGCTAGGCAGGGTGTTAGCAGAGCTTCATAGCATACCTAGTAATAAAGCCGCAGCGCTTGATCTTGTAGTACACACACCAGAAGAAGCAAGAATGTCAATGAAGCAGCGTATGGATGCAGTAAGAGCAAAGTTCGGAGTAGGTGAGAATCTATGGAACAGATGGCAAGCGTGGTTGAATGATGATGATATGTGGCCTAAGAAAACTGGACTGATTCATGGAGATGTACATGCCGGACATACTATGATTGATAAGGATGCCAATGTGACTGGATTAATCGATTGGACTGAAGCGAAGGTTACAGATGTTTCGCATGACTTTATTTTCAACTATAGAGCTTTTGGGGAAGAAGGGTTAGAAGCTTTAATTCTCGCTTATAAGGAAATTGGTGGATATTACTGGCCTAAAATGAAAGAGCATATTATCGAACTTAATGCAGCATACCCAGTTTCAATCGCTGAGTTTGCATTAGTGTCTGGAATTGAGGAATATGAGCAGATGGCAAAGGAAGCATTGGAAGTACAAGGTTCGTAA " 1730 UPDATE OXA-235 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAACTCTTATTTTGTTGCCTTTACTTAGTTGCTTGAGCCTGACAGCCTGTAGCTTGCCTGTTTCAAATTCGTCCTCTCAAATCACTTCAACTCAATCTATTCAAACCATTGCCAAATTATTTGATCAGGCACAAAGCTCTGGCGTTTTAGTAATTCAACGGGGCCCACATCTACAGGTCTATGGCAATGATTTGAGTCGTGCACATACCGAATATATTCCTGCTTCAACCTTTAAAATACTCAATGCCCTGATTGGCCTGCAACATGGTAAAGCCACGACCAATGAAATCTTTAAATGGGATGGCAAGAAGCGCAGTTTTGCAGCCTGGGAAAAAGACATGACTCTCGGCCAAGCCATGCAAGCTTCTGCTGTACCCGTCTATCAGGAACTGGCACGTCGCATTGGTCTGGAACTAATGCAACAGGAAGTGCAACGCATTCGATTTGGTAATCAGCAGATTGGTCAGCATATCGACAACTTCTGGTTAGTCGGACCTTTGAAAATCACCCCGGAACAAGAAGTCGAATTTGCCTCTGCGCTTGCTCAAGAGCAACTTGCCTTTGATCCTCAAGTCCAGCAACAAGTCAAAGCCATGTTACTGTTACAGGAGCGACAAGATTATCGACTATATGCCAAATCTGGTTGGGGTATGGATGTGGAGCCGCAAGTCGGCTGGCTCACCGGCTGGATCGAAACACCTCAGGACGAAATCGTGGCATTTTCACTGAATATGCAGATGCAAAGTAATATGGATCCGGCGATCCGTCTTAAAATTTTGCAGCAGGCCTTGGCCGAATTAGCGCTTTATCCGAAAGCTGAAGGGTAA " 1733 UPDATE OXA-415 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1732 UPDATE SHV-151 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1735 UPDATE vatA dalfopristin; antibiotic inactivation; streptogramin vat acetyltransferase; pristinamycin IIA; madumycin II; griseoviridin; streptogramin antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1734 UPDATE IND-4 carbapenem; antibiotic inactivation; IND beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1737 UPDATE ANT(4')-Ia antibiotic inactivation; aminoglycoside antibiotic; ribostamycin; plazomicin; paromomycin; kanamycin A; gentamicin B; ANT(4'); isepamicin; G418; neomycin; tobramycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATATGAATGGACCTGCATCAATGGCGCAAAAAGAAAGACTTCAAACTTGCCAAGAAATTGCCAAGAGATTACACGAGGTTTATGGCAACGACGTTCTCGCCATTGGCGTCTACGGTTCTGTGTCCAGAGGCACAGATGGCCCTTTCTCAGATATTGAGATGTTTTGCGTACTCCGTGACTCGGCTGAAACGGTAGATAAAAGTTATGAATGGTCAGCTGGACCGTGGAAAGCGGAAGTTAACGTTTGCAGTGCGAGTATACTGTTAAAAGACGCTGCAACCGTTGAAGACCGATGGCCGCTGACACATGGGCCTTACTTCTCTCCGCTTCGTCTCTATGATCCTGAAGGCTTCTTTCAACGCTTGCGGCTCGCAGCGGAATCGCCGACAAAAGAAGATTTCCGCCAAGCTATTCATGAAATTCTTGTAGGGGAAATGTATGAATATGTTGGCAAGCTTCGAAATGTAAATCGAAATGGCCCTTCTACCTACTTGCCATCCTTGGCATTGCGCTTTGCCCACTATGGCGCAATGTTGATCGGCCTCCACAATCAGACACTCTTTTCTACGGGCGCTATGGTTTTGCCTGAAGCGCTGAAACTGCCGCATCGGCCAAAAGGGTTCGACCATGTTGCTGAGTTAGCGATGTCTGGAGACTTAGCACAACCAGCGAAGATCGTGTCAGCGTGCGAAGATTTCTGGAAAGGCCTAGTCGCGTGGGCAGCGGAGCATGATTACGTCATTCACTCAAAACGAATCCCGTTTTGA UPDATED category_aro_name with plazomicin UPDATED category_aro_cvterm_id with 40307 UPDATED category_aro_accession with 3003675 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Plazomicin is a neoglycoside, or next-generation, aminoglycoside, that has been identified as a potentially useful agent to combat drug-resistant bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa. " 1736 UPDATE GES-24 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2404 UPDATE Neisseria gonorrhoeae gyrA conferring resistance to fluoroquinolones antibiotic target alteration; fluoroquinolone antibiotic; nybomycin; fluoroquinolone resistant gyrA; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 621189 UPDATED strand with - UPDATED accession with NC_002946.2 UPDATED fmin with 618438 UPDATED sequence with ATGACCGACGCAACCATCCGCCACGACCACAAATTCGCCCTCGAAACCCTGCCCGTCAGCCTTGAAGACGAAATGCGCAAAAGCTATCTCGACTACGCCATGAGCGTCATTGTCGGGCGCGCGCTGCCGGACGTTCGCGACGGCCTAAAGCCGGTGCACCGGCGCGTACTGTACGCGATGCACGAGCTGAAAAATAACTGGAATGCCGCCTACAAAAAATCGGCGCGCATCGTCGGCGACGTCATCGGTAAATACCACCCCCACGGCGATTCCGCAGTTTACGACACCATCGTCCGTATGGCGCAAAATTTCGCTATGCGTTATGTGCTGATAGACGGACAGGGCAACTTCGGATCGGTGGACGGGCTTGCCGCCGCAGCCATGCGCTATACCGAAATCCGCATGGCGAAAATCTCACATGAAATGCTGGCAGACATTGAGGAAGAAACCGTTAATTTCGGCCCGAACTACGACGGTAGCGAACACGAGCCGCTTGTACTGCCGACCCGTTTCCCCACACTGCTCGTCAACGGCTCGTCCGGTATCGCCGTCGGTATGGCGACCAACATCCCGCCGCACAACCTCACCGACACCATCAACGCCTGTCTGCGTCTTTTGGACGAACCCAAAACCGAAATCGACGAACTGATCGACATTATCCAAGCCCCCGACTTCCCGACCGGGGCAACCATCTACGGCTTGGGCGGCGTGCGCGAAGGCTATAAAACAGGCCGCGGCCGCGTCGTTATACGCGGTAAGACCCATATCGAACCCATAGGCAAAAACGGCGAACGCGAAGCCATCGTTATCGACGAAATCCCCTATCAGGTCAACAAAGCCAAGTTGGTCGAGAAAATCGGCGATTTGGTTCGGGAAAAAACGCTGGAAGGCATTTCCGAGCTCCGCGACGAATCCGACAAATCCGGGATGCGCGTCGTTATCGAGCTGAAACGCAACGAAAATGCCGAAGTCGTCTTAAACCAACTCTACAAACTGACTCCGCTGCAAGACAGTTTCGGCATCAATATGGTTGTTTTGGTCGACGGACAACCGCGCCTGTTAAACCTGAAACAGATTCTCTCCGAATTCCTGCGCCACCGCCGCGAAGTCGTTACCCGACGTACGCTTTTCCGGCTGAAGAAGGCACGCCATGAAGGGCATATCGCCGAAGGCAAAGCCGTCGCACTGTCCAATATCGATGAAATCATCAAGCTCATCAAAGAATCGCCCAACGCGGCCGAGGCCAAAGAAAAACTGCTTGCGCGCCCTTGGCGCAGCAGCCTCGTTGAAGAAATGCTGACGCGTTCCGGTCTGGATTTGGAAATGATGCGTCCGGAAGGATTGGCTGCAAACATTGGTCTGAAAAAACAAGGTTATTACCTGAGCGAGATTCAGGCAGATGCTATTTTACGCATGAGCCTGCGAAACCTGACCGGCCTCGATCAGAAAGAAATTATCGAAAGCTACAAAAACCTGATGGGTAAAATCATCGACTTTGTGGATATCCTCTCCAAACCCGAACGCATTACCCAAATCATCCGTGACGAACTGGAAGAAATCAAAACCAACTATGGCGACGAACGCCGCAGCGAAATCAACCCGTTCGGCGGCGACATTGCCGATGAAGACCTGATTCCGCAACGCGAAATGGTCGTGACCCTGACCCACGGCGGCTATATAAAAACCCAGCCGACCACCGACTATCAGGCTCAGCGTCGCGGCGGGCGCGGCAAACAGGCGGCTGCCACCAAAGACGAAGACTTTATCGAAACCCTGTTTGTTGCCAACACGCATGACTATTTGATGTGTTTTACCAACCTCGGCAAGTGCCACTGGATTAAGGTTTACAAACTGCCCGAAGGCGGACGCAACAGCCGCGGCCGTCCGATTAACAACGTCATCCAGCTGGAAGAAGGCGAAAAAGTCAGCGCGATTCTGGCAGTACGCGAGTTTCCCGAAGACCAATACGTCTTCTTCGCCACCGCGCAGGGAATGGTGAAAAAAGTCCAACTTTCCGCCTTTAAAAACGTCCGCGCCCAAGGCATTAAAGCCATCGCACTCAAAGAAGGCGACTACCTCGTCGGCGCTGCGCAAACAGGCGGTGCGGACGACATTATGTTGTTCTCCAACTTGGGCAAAGCCATCCGCTTCAACGAATACTGGGAAAAATCCGGCAACGACGAAGCGGAAGATGCCGACATCGAAACCGAGATTTCAGACGACCTCGAAGACGAAACCGCCGACAACGAAAACACCCTGCCAAGCGGCAAAAACGGCGTGCGTCCGTCCGGTCGCGGCAGCGGCGGTTTGCGCGGTATGCGCCTGCCTGCCGACGGCAAAATCGTCAGCCTGATTACCTTCGCCCCTGAAACCGAAGAAAGCGGTTTGCAAGTTTTAACCGCCACCGCCAACGGATACGGAAAACGCACCCCGATTGCCGATTACAGCCGCAAAAACAAAGGCGGGCAAGGCAGTATTGCCATTAACACCGGCGAGCGCAACGGCGATTTGGTCGCCGCAACCTTGGTCGGCGAAACCGACGATTTGATGCTGATTACCAGCGGCGGCGTGCTTATCCGTACCAAAGTCGAACAAATCCGCGAAACCGGCCGCGCCGCAGCAGGCGTGAAACTGATTAACTTGGACGAAGGCGAAACCTTGGTATCGCTGGAACGTGTTGCCGAAGACGAATCCGAACTCTCCGGCGCTTCTGTAATTTCCAATGTAACCGAACCGGAAGCCGAGAACTGA UPDATED NCBI_taxonomy_name with Neisseria gonorrhoeae FA 1090 UPDATED NCBI_taxonomy_id with 242231 UPDATED NCBI_taxonomy_cvterm_id with 40638 UPDATED accession with YP_207769.1 UPDATED sequence with MTDATIRHDHKFALETLPVSLEDEMRKSYLDYAMSVIVGRALPDVRDGLKPVHRRVLYAMHELKNNWNAAYKKSARIVGDVIGKYHPHGDSAVYDTIVRMAQNFAMRYVLIDGQGNFGSVDGLAAAAMRYTEIRMAKISHEMLADIEEETVNFGPNYDGSEHEPLVLPTRFPTLLVNGSSGIAVGMATNIPPHNLTDTINACLRLLDEPKTEIDELIDIIQAPDFPTGATIYGLGGVREGYKTGRGRVVIRGKTHIEPIGKNGEREAIVIDEIPYQVNKAKLVEKIGDLVREKTLEGISELRDESDKSGMRVVIELKRNENAEVVLNQLYKLTPLQDSFGINMVVLVDGQPRLLNLKQILSEFLRHRREVVTRRTLFRLKKARHEGHIAEGKAVALSNIDEIIKLIKESPNAAEAKEKLLARPWRSSLVEEMLTRSGLDLEMMRPEGLAANIGLKKQGYYLSEIQADAILRMSLRNLTGLDQKEIIESYKNLMGKIIDFVDILSKPERITQIIRDELEEIKTNYGDERRSEINPFGGDIADEDLIPQREMVVTLTHGGYIKTQPTTDYQAQRRGGRGKQAAATKDEDFIETLFVANTHDYLMCFTNLGKCHWIKVYKLPEGGRNSRGRPINNVIQLEEGEKVSAILAVREFPEDQYVFFATAQGMVKKVQLSAFKNVRAQGIKAIALKEGDYLVGAAQTGGADDIMLFSNLGKAIRFNEYWEKSGNDEAEDADIETEISDDLEDETADNENTLPSGKNGVRPSGRGSGGLRGMRLPADGKIVSLITFAPETEESGLQVLTATANGYGKRTPIADYSRKNKGGQGSIAINTGERNGDLVAATLVGETDDLMLITSGGVLIRTKVEQIRETGRAAAGVKLINLDEGETLVSLERVAEDESELSGASVISNVTEPEAEN " 753 UPDATE SMB-1 SMB beta-lactamase; carbapenem; cephalosporin; antibiotic inactivation; penam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 752 UPDATE vanRM glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanR; vancomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGACGTATATCGATTTTAATTGCTGAAGATGAAGAAGAAATTGCTGATTTGCTTGCCATTCACCTGGAAAAAGAAGGATATGACGTTATTAAAGTACATGACGGACAAGAAGCCCTCCATGTAATCCAGGCTCAATCAATTGATTTGATAATTTTAGATATTATGATGCCGAAAATGGATGGATATGAAGTAACCCGTCAAGTCCGTGCACAGTATAATATGCCAATCATTTTTTTAAGTGCGAAAACTTCTGATTTCGATAAGGTGCATGGTCTAGTGATTGGAGGGGATGATTATATAACAAAGCCATTTACCCCGATTGAATTGGTTGCTCGTGTGAACGCTCAATTGCGGCGCTCTATGAAGTTGAATCACCCCCAAGCAGATGATAAAAAATCTATCTTGGAGTTCGGTGAGATCGTGATTTCTCCTGATCAACGTACAGTTTTTCTTTATGGTGAAAACATCGGGTTAACGCCGAAAGAGTTTGATATTTTGTATTTATTAGCCAGTCATCCAAAGAAAGTTTATAGTGTCGAAAATATTTTCCAGCAAGTTTGGAATGATGCATACTTTGGAGGCGGTAATACGGTAATGGTGCATATTCGCACCTTGCGGAAAAAACTTGGAGAAGATAAGCGAAAAAATAAGTTAATCAAAACTGTGTGGGGAGTGGGGTATACGTTCAATGGCTAA " 751 UPDATE TEM-217 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 750 UPDATE SHV-172 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 757 UPDATE CMY-80 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGTTATGCTGCGCTCTGCTGCTGACAGCCTCATTCTCCACGTTTGCCGCCGCCAAAACAGAACCACAGATTGCCGATATCGTTAATCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCCGTTATCTACCAGGGAAAATCCTATTATTTCACCTGGGGTAAAGCCGATATCACCAATAACCACCCAGTCACGCAGCAAACTCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCAGGGTATCAGCCTGCTGCACTTAGCCACCTACACGGCAGGCGGCCTGCCGCTGCAGATCCCCGATGACGTTACGGATAAAGCCGCATTACTGCGTTTTTATCAAAACTGGCAGCCGCAATGGGCCCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGCGCGCTGGCGGTGAAACCCTCAGGAATGAGTTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTAAAGTTCCGCAAAGCGAACAAAAAGATTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATTGATATGGCCCGCTGGGTTCAGGTCAACATGGACGCCAGCCGCGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGCGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGTAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCCGCCCCCGCAGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACTGGAGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGCGGCCTGGCGTATTCTTGAAAAGCTGCAATAA " 756 UPDATE Enterococcus faecium liaR mutant conferring daptomycin resistance peptide antibiotic; antibiotic target alteration; daptomycin resistant liaR; daptomycin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with ATGATAAAAGTTTTATTAGTAGATGACCATGAAATGGTGCGCTTAGGCGTCTCTTCTTATTTATCTATTCAAGAAGACATTGAAGTAATTGGAGAAGCTGAAAATGGACGACAAGGCTATGAGAAGGCGATGACACTTCGACCGGACGTCATTTTAATGGACTTAGTCATGGAAGAAATGGATGGTATCGAATCAACAAAAGCAATCTTAAAAGATTGGCCAGAAGCTAAAATCATTATCGTAACCAGTTTTATTGATGACGAAAAAGTTTATCCTGCCATTGAAGCAGGTGCAGCAGGGTATTTGTTGAAGACCTCTACCGCACATGAAATTGCTGATGCTATAAGGGCAACGCAACGTGGCGAGCGAGTATTAGAACCAGAAGTGACAACAAAAATGATGGAAAAAATGAGTCGGCGAAATGAGCCTGTATTACATGAAGAACTAACGAATCGGGAAAATGAAATTTTAATGCTGATTTCTGAAGGAAAAAGTAATCAGGAAATAGCGGACGAATTGTTTATTACACTGAAAACAGTAAAAACACATGTTTCCAATATATTGGCTAAGCTAGAAGTGGAAGACCGTACACAAGCCGCTATCTATGCATTCAAACATGGTTTGGTGAAATAA " 755 UPDATE KPC-9 antibiotic inactivation; penam; carbapenem; cephalosporin; monobactam; KPC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 754 UPDATE CTX-M-48 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAATGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA " 759 UPDATE OCH-2 penam; antibiotic inactivation; penem; cephalosporin; cephamycin; monobactam; OCH beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 758 UPDATE OXA-198 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCATAAACACATGAGTAAGCTCTTCATCGCTTTTTTAGCCTTTCTGCTGTCGGTGCCAGCAGCCGCTGAAGACCAGACACTTGCCGAGCTCTTTGCCCAACAAGGCATTGACGGGACTATAGTGATTTCGTCGCTACACAACGGAAAGACATTTATCCACAACGATCCCCGCGCAAAACAGAGATTCTCGACAGCATCCACGTTCAAGATACTGAACACGCTGATCTCGCTCGAAGAAAAAGCCATCTCTGGAAAAGACGATGTGCTGAAATGGGACGGGCATATTTACGATTTTCCAGATTGGAATCGTGACCAGACGCTAGAAAGTGCGTTCAAGGTTTCCTGTGTCTGGTGTTATCAGGCGCTTGCACGCCAGGTCGGCGCGGAGAAGTATCGAAATTATTTACGCAAGTCAGTTTACGGAGAATTACGCGAGCCTTTTGAGGAAACAACATTCTGGCTTGATGGTTCACTTCAAATCAGCGCAATTGAACAAGTGAATTTCCTCAAGAAAGTTCATCTGCGCACTCTCCCATTCAGTGCATCGTCCTACGAAACGCTACGACAAATCATGCTTATCGAGCAAACGCCGGCTTTTACGCTGCGGGCCAAGACAGGCTGGGCAACAAGAGTAAAGCCGCAAGTTGGCTGGTATGTGGGCCATGTCGAAACTCCAACGGATGTATGGTTCTTTGCCACGAATATTGAAGTCCGTGACGAAAAAGACTTGCCCTTACGTCAGAAGCTAACGCGAAAAGCATTACAAGCAAAGGGGATCATCGAATAA " 1595 UPDATE mecB antibiotic target replacement; ceftaroline; ampicillin; flucloxacillin; ceftibuten; cefditoren; piperacillin; cefpodoxime; cefixime; cefdinir; meropenem; carbapenem; imipenem; aztreonam; cefradine; isopenicillin N; cefazolin; penicillin N; ceftazidime; cefepime; penicillin; oxacillin; cefmetazole; moxalactam; cloxacillin; cefadroxil; ceftriaxone; methicillin; loracarbef; ceftizoxime; cephalosporin; cefotaxime; cefaclor; phenoxymethylpenicillin; cefonicid; monobactam; cefuroxime; amoxicillin; mezlocillin; azlocillin; cefalexin; doripenem; cefotiam; ertapenem; penam; cefprozil; cephapirin; ceftobiprole; benzylpenicillin; methicillin resistant PBP2; cephamycin; carbenicillin; cefalotin; ceftiofur; mecillinam; propicillin; cefoxitin; dicloxacillin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 506 UPDATE IMP-5 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1597 UPDATE SHV-2A carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACAAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTACTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGTTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTAGCGAGCGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 1596 UPDATE OXA-24 penam; antibiotic inactivation; BAL30072; cephalosporin; monobactam; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1591 UPDATE CMY-64 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1590 UPDATE QnrB27 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1593 UPDATE CMY-99 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGTTATGCTGCGCTCTGCTGCTGACAGCCTCTTTCTCCACATTTGCTGCCGCAAAAACAGAACAACAGATTGCCGATATCGTTAATCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCCGTTATCTACCAGGGAAAACCCTATTATTTCACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGATCGGTTAGTAAGACGTTTAACGGCGTGTTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCAGGGTATCCGCCTGCTGCACTTAGCCACCTATACGGCAGGCGGCCTACCGCTGCAGATCCCCGATGACGTTAGGGATAAAGCCGCATTACTGCATTTTTATCAAAACTGGCAGCCGCAATGGACTCCGGGCGCTAAGCGACTTTACTCTAACTCCAGCATTGGTCTGTTTGGCGCGCTGGCGGTGAAACCCTCAGGAATGAGTTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAGAACGAACAAAAAGATTATGCCCGGGGCTATCGCGAAGGGAAGCCCGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATTGATATGGCCCGCTGGGTTCAGGCCAACATGGATGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGCGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCCGCCACCGCAGTGAAAGCCTCATGGGTGCATAAAACGGGCTCCACTGGTGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGCGGCCTGGCGCATTCTTGAAAAGCTGCAATAA " 1592 UPDATE dfrA14 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGAACCTTGAAAGTATCATTGATAGCTGCGAAAGCGAAAAACGGCGTGATTGGTTGCGGTCCAGACATACCCTGGTCCGCGAAAGGGGAGCAGCTACTTTTTAAAGCATTGACCTACAATCAGTGGCTTCTGGTGGGTCGCAAGACGTTTGAATCTATGGGCGCACTCCCCAATAGGAAATACGCGGTCGTTACCCGCTCAGGTTGGACATCAAATGATGACAATGTAGTTGTATTTCAGTCAATCGAAGAGGCCATGGACAGGCTAGCTGAATTCACCGGTCACGTTATAGTGTCTGGTGGCGGAGAAATTTACCGAGAAACATTACCCATGGCCTCTACGCTCCACTTATCGACGATCGACATCGAGCCAGAGGGGGATGTTTTCTTCCCGAGTATTCCAAATACCTTCGAAGTTGTTTTTGAGCAACACTTTACTTCAAACATTAACTATTGCTATCAAATTTGGAAAAAGGGTTAA " 1599 UPDATE SHV-23 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1030 UPDATE vanZA vanZ; glycopeptide resistance gene cluster; teicoplanin; antibiotic target alteration; vancomycin; glycopeptide antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1025 UPDATE TEM-136 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1024 UPDATE AAC(6')-Ib-SK antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGGGCACATCGGAGCTGCTGCATCCGCAGGCGCGGGCTCGGGCACAATGCAGGAGTGGAACTGAACGGTGAGAAAGTGCTGCTGCGGCCCGTGCTCGACAGCGATGTGAAGAAGCTCGACAAGATCGTCAGAGAACCCGAGGTGGCCGCTTGGTGGTCGACCCCCGATGACTACGAGGAGATGCTCGCCATCACCCTCGACGGCGAGGTCATCGGGGCAGTGCAGTACGAGGAGGAGGAAGACCCCGAGTTCCGCCACGCGGGCATCGACATCTTCCTCACGGCGAGTCGGCACGGCCTCGGCCTCGGCACGGACACCGTCCGCACCGTGGCACGTTGGCTGATCGACGAGCGGGGACACCACCGGATCACCATCGACCCGGCGGTGGCGAACGCGGGCGCGATCCGCAGCTACAGCAAGGTGGGCTTCAAGCCGGTCGGCGTCATGCGGTCATACGCCCGTGACCACACGAGCGGCGTGTGGCAGGACGCCCTGCTGATGGACCTGCTGGCCGAAGAGCTGGTCTGA " 1027 UPDATE tet(H) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1026 UPDATE SHV-74 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1021 UPDATE CTX-M-54 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCAGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGACTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA " 1020 UPDATE OXA-241 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1023 UPDATE IMP-14 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAATTATTTGTTTTATGTGTATTCTTCTTCTGCAACATTGCAGTTGCAGAAGAATCTTTGCCTGATTTAAAAATTGAGAAGCTTGAAGAAGGCGTTTATGTTCATACTTCGTTTGAAGAAGTTAAAGGTTGGAGTGTGGTCACTAAACACGGTTTGGTGGTTCTTGTGAAAAATGACGCCTATCTGATTGATACTCCAATTACTGCTAAAGATACTGAAAAATTAGTCAATTGGTTTGTTGAGCGGGGCTATAAAATCAAAGGCAGTATTTCAACACATTTCCATGGTGACAGTACGGCTGGAATAGAGTGGCTTAATTCTCAATCTATCCCCACATATGCTTCTGAATTAACAAATGAACTTCTTAAAAAAGACAATAAGGTACAAGCTAAACACTCTTTTAATGGGGTTAGTTATTCACTAATTAAAAACAAAATTGAAGTTTTTTATCCAGGCCCAGGGCACACTCAAGATAACGTAGTGGTTTGGTTACCTGAAAAGAAAATTTTATTCGGTGGTTGCTTTGTTAAACCGGACGGTCTTGGCTATTTGGGGGACGCAAATTTAGAAGCTTGGCCAAAGTCCGCTAAAATATTAATGTCTAAATATGGTAAAGCAAAACTAGTTGTGTCGAGTCATAGTGATATTGGAGATGTATCACTCTTGAAACGTACATGGGAGCAGGCTGTTAAAGGGCTGAATGAAAGTAAAAAATCATCACAGCCAAGCGACTAA " 1022 UPDATE TEM-28 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCATTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTAAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 1036 UPDATE vanWB glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanW; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1029 UPDATE CMY-102 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1028 UPDATE SHV-1 penam; carbapenem; cefazolin; cephalosporin; antibiotic inactivation; ampicillin; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1037 UPDATE cmlA1 antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGCGCTCAAAAAATTTTAGTTGGCGGTACTCCCTTGCCGCCACGGTGTTGTTGTTATCACCGTTCGATTTATTGGCATCACTCGGCATGGACATGTACTTGCCGGCAGTGCCGTTTATGCCAAACGCGCTTGGTACGACAGCGAGCACAATTCAGCTTACGCTGACAACGTACTTGGTCATGATTGGTGCCGGTCAGCTCTTGTTTGGACCGCTATCGGACCGACTGGGGCGCCGCCCCGTTCTACTGGGAGGTGGCCTCGCCTACGTTGTGGCGTCAATGGGCCTCGCTCTTACGTCATCGGCTGAAGTCTTTCTGGGGCTTCGGATTCTTCAGGCTTGTGGTGCCTCGGCGTGCCTTGTTTCCACGTTTGCAACAGTACGTGACATTTACGCAGGTCGCGAGGAAAGTAATGTCATTTACGGCATACTCGGATCCATGCTGGCCATGGTCCCGGCGGTAGGCCCATTGCTCGGAGCGCTCGTCGACATGTGGCTTGGGTGGCGGGCTATCTTTGCGTTTCTAGGTTTGGGCATGATCGCTGCATCTGCAGCAGCGTGGCGATTCTGGCCTGAAACCCGGGTGCAACGAGTTGCGGGCTTGCAATGGTCGCAGCTGCTACTCCCCGTTAAGTGCCTGAACTTCTGGTTGTACACGTTGTGTTACGCCGCTGGAATGGGTAGCTTCTTCGTCTTTTTCTCCATTGCGCCCGGACTAATGATGGGCAGGCAAGGTGTGTCTCAGCTTGGCTTCAGCCTGCTGTTCGCCACAGTGGCAATTGCCATGGTGTTTACAGCTCGTTTTATGGGGCGTGTAATACCCAAGTGGGGCAGCCCAAGCGTCTTGCGAATGGGAATGGGATGCCTGATAGCTGGAGCAGTATTGCTTGCCATCACCGAAATATGGGCTTCGCAGTCCGTGTTAGGCTTTATTTCTCCAATGTGGCTAGTGGGTATTGGTGTCGCCACAGCGGTATCTGTGGCGCCCAATGGCGCTCTTCGAGGATTCGACCATGTTGCTGGAACGGTCACGGCAGTCTACTTCTGCTTGGGCGGTGTACTGCTAGGAAGCATCGGAACGTTGATCATTTCGCTGTTGCCGCGCAACACGGCTTGGCCGGTTGTCGTGTACTGTTTGACCCTTGCAACAGTCGTGCTCGGTCTGTCTTGTGTTTCCCGAGCGGAGGGCTCTCGCGGCCAGGGGGAGCATGATGTGGTCGCGCTACAAAGTGCGGAAAGTACGTCAAATCCCAATCGTTGA " 1034 UPDATE QnrA7 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 501 UPDATE AAC(3)-VIIIa antibiotic inactivation; AAC(3); aminoglycoside antibiotic; neomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGGACGAGAAGGAACTGATCGAGCGCGCCGGCGGCCCCGTCACCCGCGGCCGGCTCGTGCGCGACCTCGAGGCACTCGGCGTCGGCGCCGGCGACACCGTCATGGTGCACACCCGCATGTCGGCGATCGGCTACGTCGTGGGCGGCCCGCAGACCGTGATCGACGCCGTCCGCGACGCCGTCGGCGCCGACGGCACCCTCATGGCCTACTGCGGCTGGAACGACGCCCCGCCCTACGACCTCGCCGAGTGGCCCCCCGCGTGGCGGGAGGCCGCACGAGCCGAGTGGCCCGCCTACGACCCGCTGCTCAGCGAGGCCGACCGGGGCAACGGCCGGGTCCCCGAGGCCCTGCGCCACCAGCCCGGCGCGGTCCGCAGCCGGCACCCCGACGCGAGCTTCGTCGCGGTCGGGCCGGCCGCCCACCCGCTCATGGACGACCACCCCTGGGACGACCCGCACGGACCGGACAGCCCGCTCGCCCGGCTCGCCGGGGCCGGCGGACGGGTACTGCTGCTCGGCGCCCCGCTGGACACCCTGACGCTGCTGCACCACGCGGAGGCACGGGCCGAGGCCCCCGGCAAGCGGTTCGTCGCGTACGAGCAGCCCGTGACCGTCGGCGGGCGACGGGTCTGGCGGCGCTTCCGCGACGTCGACACCAGCCGAGGCGTTCCCTACGGGCGGGTGGTGCCCGAGGGGGTCGTGCCGTTCACCGTCATCGCCCAGGACATGCTCGCAGCCGGGATCGGCCGGACCGGCCGGGTCGCCGCCGCCCCCGTCCACCTCTTCGAGGCCGCCGACGTGGTCCGCTTCGGCGTCGAGTGGATCGAGAGCCGGATGGGGGGCGCGGCCGGCGGGGCGTGA " 605 UPDATE OXA-96 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAATTATTAAAAATATTGAGTTTAGTTTGCTTAAGCATAAGTATTGGGGCTTGTGCTGAGCATAGTATGAGTCGAGCAAAAACAAGTACAATTCCACAAGTGAATAACTCAATCATCGATCAGAATGTTCAAGCGCTTTTTAATGAAATCTCAGCTGATGCTGTGTTTGTCACATATGATGGTCAAAATATTAAAAAATATGGCACGCATTTAGACCGAGCAAAAACAGCTTATATTCCTGCATCTACATTTAAAATTGCCAATGCACTAATTGGTTTAGAAAATCATAAAGCAACATCTACAGAAATATTTAAGTGGGATGGAAAGCCACGTTTTTTTAAAGCATGGGACAAAGATTTTACTTTGGGCGAAGCCATGCAAGCATCTACAGTGCCTGTATATCAAGAATTGGCACGTCGTATTGGTCCAAGCTTAATGCAAAGTGAATTGCAACGTATTGGTTATGGCAATATGCAAATGGGCACGGAAGTTGATCAATTTTGGTTGAAAGGGCCTTTGACAATTACACCTATACAAGAAGTAAAGTTTGTGTATGATTTAGCCCAAGGGCAATTGCCTTTTAAACCTGAAGTTCAGCAACAAGTGAAAGAGATGTTGTATGTAGAGCGCAGAGGGGAGAATCGTCTATATGCTAAAAGTGGCTGGGGAATGGCTGTAGACCCGCAAGTGGGTTGGTATGTGGGTTTTGTTGAAAAGGCAGATGGGCAAGTGGTGGCATTTGCTTTAAATATGCAAATGAAAGCTGGTGATGATATTGCTCTACGTAAACAATTGTCTTTAGATGTGCTAGATAAGTTGGGTGTTTTTCATTATTTATAA " 604 UPDATE OXA-385 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 840 UPDATED strand with - UPDATED accession with KF986253 UPDATED fmin with 15 UPDATED sequence with ATGAACATTAAAGCCCTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGCGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTCTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCAGCCTTGAGCACCATAAGGCAACCGCCACAGAAGTATTTAAGTGGGACGGGCAAAAAAGGCTATTCCCAGAATGGGAAAAGGACATGACCCTAGGCGACGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAAGGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGCCCTTTAAAAATTACTCCTCAGCAAGAGGCACAATTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAGACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGTTTAGAACAATTAGGTATTTTATAG UPDATED NCBI_taxonomy_name with Acinetobacter baumannii UPDATED NCBI_taxonomy_id with 470 UPDATED NCBI_taxonomy_cvterm_id with 35507 UPDATED accession with AHL30272.1 UPDATED sequence with MNIKALLLITSAIFISACSPYIVTANPNHSASKSDEKAEKIKNLFNEAHTTGVLVIQQGQTQQSYGNDLARASTEYVPASTFKMLNALISLEHHKATATEVFKWDGQKRLFPEWEKDMTLGDAMKASAIPVYQDLARRIGLELMSKEVKRVGYGNADIGTQVDNFWLVGPLKITPQQEAQFAYKLANKTLPFSQKVQDEVQSMLFIEEKNGNKIYAKSGWGWDVDPQVGWLTGWVVQPQGNIVAFSLNLEMKKGIPSSVRKEITYKSLEQLGIL " 607 UPDATE TEM-201 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 606 UPDATE IMI-2 carbapenem; antibiotic inactivation; IMI beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 601 UPDATE dfrA20 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGGTATTAAATATAGCTTAATTGTTGCAATTGGGAAACACCGAGAAATGGGTGCTGACAATGATTTGCTTTGGCACTTACCAAGAGATATGCAATTTTTTAAGGAAACGACAACGGGTCACGCTGTTGTAATGGGAAGAAAAAGTTGGGAATCTATTCCTCAGAAGTACAGACCGCTTCCAAATCGTTTAAACTTCGTTTTAACACGAGATAAAAACTATAGTGCAGAAGGTGCAACAGTGATTTATGATTTAAAAGAAGTCGCACAACATCTTGAAGGAAAAAACTTAACATGCTTCATTATTGGTGGTGCTCAAATCTACCAACTGGCCTTAGAAACAGGACTTTTAAATGAAATGTATGTCACACAAGTACATAACACATTTGAAGAAGCTGACACCTTTTTCCCTTTTGTAAATTGGGGAGAATGGGAAGAAGAAGATATTTTAGAACAAGATAAAGATGAAAAACATCTTTATTCATTTAATATAAAGAAATTTACGCGTTAA " 600 UPDATE CMY-2 antibiotic inactivation; cephalosporin; ceftazidime; cephamycin; CMY beta-lactamase; cefoxitin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 603 UPDATE mdtG fosfomycin; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1192954 UPDATED strand with - UPDATED accession with CP000800.1 UPDATED fmin with 1191727 UPDATED sequence with ATGTCACCCTGTGAAAATGACACCCCTATAAACTGGAAACGAAACCTGATCGTCGCCTGGCTAGGCTGTTTTCTTACCGGGGCCGCCTTCAGTCTGGTAATGCCCTTCTTACCCCTCTACGTTGAGCAGCTTGGTGTTACCGGCCACTCCGCCCTGAATATGTGGTCCGGTATTGTCTTCAGCATTACATTTTTATTTTCGGCCATCGCCTCACCGTTTTGGGGTGGACTCGCCGACCGTAAAGGTCGAAAACTCATGCTATTACGCTCTGCTCTCGGCATGGGCATCGTGATGGTGTTGATGGGACTGGCACAAAATATCTGGCAGTTTTTGATCCTACGGGCGCTTCTTGGGTTACTTGGCGGATTTGTCCCCAACGCTAATGCTCTTATCGCCACACAAGTACCGCGTAATAAAAGCGGCTGGGCGCTGGGTACGCTCTCCACAGGCGGCGTTAGTGGTGCGTTGCTCGGCCCAATGGCTGGCGGCCTGCTCGCCGATAGCTACGGCTTACGTCCGGTATTCTTTATTACCGCCAGTGTGCTCATACTCTGCTTTTTCGTCACCCTGTTTTGCATCAGAGAAAAATTCCAGCCGGTCAGCAAAAAAGAGATGCTGCACATGCGGGAAGTGGTGACATCACTTAAAAACCCGAAACTGGTACTCAGCCTGTTTGTCACTACGTTAATCATCCAGGTGGCGACGGGCTCAATTGCCCCCATTCTGACGCTGTATGTCCGCGAACTGGCGGGTAACGTCAGTAACGTCGCCTTTATCAGTGGCATGATCGCCTCGGTGCCAGGCGTGGCGGCTCTGCTAAGTGCACCACGACTCGGCAAACTTGGCGATCGAATCGGACCCGAAAAGATCCTGATTACAGCGCTGATCTTTTCTGTACTGCTGTTGATCCCAATGTCTTACGTTCAGACGCCATTGCAACTTGGGATTTTACGTTTTTTGCTCGGTGCCGCCGATGGTGCACTACTCCCCGCCGTACAGACACTGTTGGTTTACAACTCGAGCAACCAGATCGCCGGGCGTATCTTCAGCTATAACCAATCGTTTCGTGATATTGGCAACGTTACCGGACCATTGATGGGAGCAGCGATTTCAGCGAACTACGGTTTCAGAGCGGTATTTCTCGTCACCGCTGGCGTAGTGTTATTCAACGCAGTCTATTCATGGAACAGTCTACGTCGTCGTCGAATACCCCAGGTATCGAACTGA UPDATED NCBI_taxonomy_name with Escherichia coli O139:H28 str. E24377A UPDATED NCBI_taxonomy_id with 331111 UPDATED NCBI_taxonomy_cvterm_id with 41529 UPDATED accession with ABV18113.1 UPDATED sequence with MSPCENDTPINWKRNLIVAWLGCFLTGAAFSLVMPFLPLYVEQLGVTGHSALNMWSGIVFSITFLFSAIASPFWGGLADRKGRKLMLLRSALGMGIVMVLMGLAQNIWQFLILRALLGLLGGFVPNANALIATQVPRNKSGWALGTLSTGGVSGALLGPMAGGLLADSYGLRPVFFITASVLILCFFVTLFCIREKFQPVSKKEMLHMREVVTSLKNPKLVLSLFVTTLIIQVATGSIAPILTLYVRELAGNVSNVAFISGMIASVPGVAALLSAPRLGKLGDRIGPEKILITALIFSVLLLIPMSYVQTPLQLGILRFLLGAADGALLPAVQTLLVYNSSNQIAGRIFSYNQSFRDIGNVTGPLMGAAISANYGFRAVFLVTAGVVLFNAVYSWNSLRRRRIPQVSN " 602 UPDATE VIM-16 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1205 UPDATE VIM-39 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1207 UPDATE DHA-13 antibiotic inactivation; cephalosporin; cephamycin; DHA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1206 UPDATE QepA1 antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; norfloxacin; efflux pump complex or subunit conferring antibiotic resistance; ciprofloxacin; fluoroquinolone antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 609 UPDATE emrK tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAATTAGAAGACATGATTAGTACAGATGACGCCTATGTCACGGGGAATGCAGATCCAATTTCTGCACAAGTCTCAGGTAGTGTCACTGTCGTTAATCATAAAGATACGAACTACGTTCGACAAGGTGACATTTTAGTTTCACTGGATAAAACTGATGCCACTATCGCACTCAATAAAGCTAAAAATAATCTGGCAAATATTGTTCGGCAAACGAATAAACTATACTTACAGGATAAACAATACAGTGCCGAAGTCGCTTCAGCACGTATTCAGTATCAACAATCTTTAGAAGATTATAACCGTCGAGTGCCGTTAGCGAAGCAGGGGGTTATTTCAAAAGAAACGCTGGAGCATACCAAAGATACGTTAATAAGTAGCAAAGCGGCATTGAATGCCGCTATCCAGGCTTATAAAGCGAATAAAGCTTTAGTAATGAACACACCATTAAACCGTCAGCCACAAGTCGTTGAAGCGGCGGATGCAACTAAAGAAGCCTGGTTGGCGCTTAAACGTACGGATATTAAGAGTCCGGTTACCGGCTATATTGCCCAGAGAAGTGTTCAGGTCGGCGAAACAGTGAGCCCCGGACAATCGTTAATGGCTGTCGTACCGGCACGTCAAATGTGGGTTAATGCCAACTTTAAAGAAACACAACTCACGGATGTACGGATTGGTCAATCGGTCAATATTATCAGCGATCTTTATGGTGAAAATGTTGTGTTTCATGGTCGGGTGACAGGGATCAATATGGGAACCGGCAATGCGTTCTCCTTATTACCTGCACAAAATGCGACAGGGAACTGGATCAAAATCGTTCAGCGTGTACCGGTTGAAGTTTCTCTTGATCCAAAAGAACTCATGGAACACCCCTTGCGTATTGGTTTATCGATGACAGCAACTATTGATACGAAGAACGAAGACATTGCCGAGATGCCTGAGCTGGCTTCAACCGTGACCTCCATGCCGGCTTATACCAGTAAGGCTTTAGTTATCGATACCAGTCCGATAGAAAAAGAAATTAGCAACATTATTTCGCATAATGGACAACTTTAA " 1200 UPDATE msrA quinupristin; macrolide antibiotic; ABC-F ATP-binding cassette ribosomal protection protein; antibiotic target protection; streptogramin antibiotic; erythromycin; ARO_description; model_description; ARO_category "UPDATED ARO_description with MsrA is an ABC-F subfamily ribosomal protection protein expressed in Staphylococcus species which confers resistance to erythromycin and streptogramin B antibiotics through antibiotic target protection mechanisms. It is associated with plasmid DNA. UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 36001 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. " 1203 UPDATE Mycobacterium tuberculosis ndh with mutation conferring resistance to isoniazid isoniazid; antibiotic target alteration; antibiotic resistant ndh; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2103042 UPDATED strand with - UPDATED accession with AL123456.3 UPDATED fmin with 2101650 UPDATED sequence with ATGAGTCCCCAGCAAGAACCCACAGCGCAACCACCTCGTAGGCATCGAGTTGTGATCATCGGATCTGGGTTCGGCGGGCTAAACGCGGCAAAGAAGCTCAAGCGGGCCGACGTTGACATCAAGCTGATCGCGCGCACCACCCATCACCTGTTCCAGCCGCTGCTGTACCAAGTGGCCACCGGGATTATCTCCGAGGGAGAAATCGCTCCGCCGACCCGGGTCGTGCTGCGTAAGCAGCGCAATGTCCAGGTACTGTTGGGCAACGTCACCCACATCGACCTGGCCGGGCAGTGCGTCGTCTCGGAATTGCTCGGTCACACCTACCAAACCCCCTACGACAGCCTGATCGTCGCCGCGGGTGCTGGCCAGTCTTATTTCGGCAACGACCATTTCGCCGAATTCGCACCCGGCATGAAGTCCATCGACGACGCGTTGGAGTTGCGTGGCCGCATATTGAGCGCTTTCGAGCAAGCCGAACGGTCCAGCGATCCGGAACGGCGGGCCAAGCTACTGACATTCACCGTTGTCGGGGCTGGCCCCACCGGTGTTGAAATGGCCGGACAGATCGCCGAGCTGGCCGAGCACACGTTGAAGGGCGCATTCCGGCACATCGACTCGACCAAGGCGCGGGTGATTCTGCTTGACGCCGCCCCGGCGGTGCTGCCACCGATGGGCGCAAAGCTCGGTCAGCGGGCGGCTGCCCGGTTGCAGAAGCTGGGCGTGGAAATCCAGCTGGGTGCGATGGTCACCGACGTCGACCGCAACGGCATCACCGTCAAGGACTCCGACGGCACCGTCCGGCGCATCGAGTCGGCCTGCAAGGTCTGGTCGGCCGGGGTTTCGGCCAGTCGGTTGGGCAGGGACCTTGCCGAGCAATCACGGGTTGAGCTCGACCGGGCCGGCCGGGTCCAAGTGCTGCCCGACCTGTCCATTCCCGGGTACCCGAACGTGTTCGTGGTGGGCGATATGGCCGCTGTGGAGGGTGTGCCGGGTGTGGCGCAGGGCGCCATCCAGGGGGCGAAATACGTCGCCAGCACGATCAAGGCCGAACTGGCCGGCGCCAACCCGGCGGAGCGTGAGCCATTCCAGTACTTCGACAAGGGATCGATGGCCACGGTTTCGAGGTTTTCGGCGGTGGCCAAGATCGGTCCCGTTGAGTTCAGCGGCTTTATCGCCTGGCTGATTTGGCTGGTGCTGCACCTGGCGTACCTGATCGGGTTCAAGACCAAGATCACCACTCTGCTGTCGTGGACGGTGACTTTCCTCAGTACTCGCCGCGGCCAGCTGACCATCACCGACCAGCAGGCATTTGCGCGAACGCGGCTCGAACAGCTGGCCGAGCTGGCCGCCGAGGCGCAGGGCTCAGCGGCAAGCGCTAAGGTGGCCAGCTAG UPDATED NCBI_taxonomy_name with Mycobacterium tuberculosis H37Rv UPDATED NCBI_taxonomy_id with 83332 UPDATED NCBI_taxonomy_cvterm_id with 39507 UPDATED accession with CCP44620.1 UPDATED sequence with MSPQQEPTAQPPRRHRVVIIGSGFGGLNAAKKLKRADVDIKLIARTTHHLFQPLLYQVATGIISEGEIAPPTRVVLRKQRNVQVLLGNVTHIDLAGQCVVSELLGHTYQTPYDSLIVAAGAGQSYFGNDHFAEFAPGMKSIDDALELRGRILSAFEQAERSSDPERRAKLLTFTVVGAGPTGVEMAGQIAELAEHTLKGAFRHIDSTKARVILLDAAPAVLPPMGAKLGQRAAARLQKLGVEIQLGAMVTDVDRNGITVKDSDGTVRRIESACKVWSAGVSASRLGRDLAEQSRVELDRAGRVQVLPDLSIPGYPNVFVVGDMAAVEGVPGVAQGAIQGAKYVASTIKAELAGANPAEREPFQYFDKGSMATVSRFSAVAKIGPVEFSGFIAWLIWLVLHLAYLIGFKTKITTLLSWTVTFLSTRRGQLTITDQQAFARTRLEQLAELAAEAQGSAASAKVAS " 1202 UPDATE CTX-M-28 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1211 UPDATE VIM-1 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTAAAAGTTATTAGTAGTTTATTGGTCTACATGACCGCGTCTGTCATGGCTGTCGCAAGTCCGTTAGCCCATTCCGGGGAGCCGAGTGGTGAGTATCCGACAGTCAACGAAATTCCGGTCGGAGAGGTCCGACTTTACCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTTTGATGGCGCGGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAAAAGCAAATTGGACTTCCCGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCCGAGGCAGAGGGGAACGAGATTCCCACGCATTCTCTAGAAGGACTCTCATCGAGCGGGGACGCAGTGCGCTTCGGTCCAGTAGAGCTCTTCTATCCTGGTGCTGCGCATTCGACCGACAATCTGGTTGTATACGTCCCGTCAGCGAACGTGCTATACGGTGGTTGTGCCGTTCATGAGTTGTCAAGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCGTTGAGCGGATTCAAAAACACTACCCGGAAGCAGAGGTCGTCATTCCCGGGCACGGTCTACCGGGCGGTCTAGACTTGCTCCAGCACACAGCGAACGTTGTCAAAGCACACAAAAATCGCTCAGTCGCCGAGTAG " 634 UPDATE smeF antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; fluoroquinolone antibiotic; phenicol antibiotic; tetracycline; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAAGTGATCCCCATGAAAAGTGCATCCCTGTTCCTCTCCATTGCCGCCACGCTCGCGCTGGCCGGCTGCTCCACCCTGGCGCCGAAGAACACCGCCGTCGCTCCGGCGATTCCTGCGCAGTGGCCGGCCGAGGCCGCGCAGGGCGAGGTGGCCGATGTCGCCGCCGTCGGCTGGCGCGATTTCTTCACCGATGCGCGCCTGCAGCAGGTGATCGAGCAGTCGCTGCAGAACAACCGCGACCTGCGCGTGGCCGTGCTCAATGTCGAGCGCGCGCGTGGCCAGTACCGCGTGCAGCGCGCCGATCGCGTGCCCGGCGTGGCCGTGACCGGCCAGATGGACCGCCGTGGTACCGATGCCGGTGTCACCGAGCAGTTCAGCGCGGGCGTGGGTGTGGCCGAGTTCGAGCTGGACCTGTTCGGTCGCGTGCGCAACCTCAGCGAGGCGGCGCTGCAGCAGTACTTCGCCGTGGCTGCCAACCGCCGCAACGCGCAGCTGAGCCTGGTGGCCGAGACCGCCACCGCGTGGCTGACCTATGGGGCTGATGCGCAGCGGCTGAAGATCGCCGATGCCACGCTGAAGACCTACGAGGATTCGCTGCGCTTGGCCGAGGCCCGCCACGAACGCGGCGGCAGTTCGGCGCTGGAGCTGACCCAGACCCGTACCTTGGTCGAGACCGCACGCACCGATGCCGCGCGCCTGCGCGGCCAGCTGGCCCAGGACCGCAACGCACTGGCGCTGCTGGCCGGTGGCCAGCTCGATCCGGCACTGCTGCCGGACAGCATCGAACCGCAGCTGCTGGCGCTGGCCCCGCCGCCGGCCGGCCTGCCCAGCGACGTGCTGCTGCAGCGCCCGGACATCATGGCCGCCGAACACCAGCTGCTGGCCGCCAATGCCAACATCGGTGCGGCACGCGCAGCGTTCTTCCCGAGCATCTCGCTGACCGGCAGCATCGGCAGCGGCTCCAGCGAACTGTCCAACCTGTTCGACAGCGGCACCCGTGTGTGGAGCTTCCTGCCGAAGATCACCCTGCCGATCTTCCAGGGCGGCAAGCTGCGCGCCAACCTGGCCATCGCCAACGCGGATCGTGATATCGCACTGGCGCAGTACGAGAAGTCGATCCAGGTGGGATTCCGCGAAACGGCCGATGCGCTGGCGTTGAATGTCAGCCTGGATGAGCAGGTGAGTTCACAGCAGCGCCTGGTGGAAGCGGCCGAACAGGCCAATCGCCTGTCGCAGGCACGCTACGACGCGGGGCTGGACAGCTTTGTCACCCTGCTTGACGCGCGGCGTACCGCCTACAACGCGCAGCAGACCCAGCTGCAGGCGCAGTTGGCGCAGCAGGCCAACCGCATCACCCTGTACAAGGTGCTGGGCGGCGGCTGGCACGAGCGCGGGTAA " 1217 UPDATE OXA-139 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1214 UPDATE TEM-134 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1215 UPDATE FosC fosfomycin; antibiotic inactivation; fosC phosphotransferase family; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGACATCGATCATGTTTTCGATGTTGTCGGACATCACGCGGATTTTTGTCGAGCAGGGGCTACGGGTCTATCCCTTTCAAAGCAGTGCCTTGCTGGGCGTCGATGAAGAGGGGCGTGTCACGCTTCATGCGCGCCAGCTGGCAACGGCCATGGCATCGGGTTACATGCCCTTGCTCACTGGGGATCTGCTGCTGCGCGGCGAGCAGGAGGCGCAGGTCTTTTCAAGTGACAATATCGCCCCGTTGCTCGCTGCGGACTTCGAAGTGCGTCGGGTCTTGTATTACTCCGATGTGGCCGGTGTCTACGACCAGGGCAATGCCTTGGTCCCTTGGGTTGGCAATGCCAACGCCGCGTGCATGGAGGCTTGTGTGGGGGCGTCGTCGATGACGGACCTGACCGGTGGCATGCGCAACAAGTTCATGCAGCAGCGCCAGTTGGCACGCCTGGGCGTGGTTTCGGAGGTCTTGTCATTCGAGTGCTTCGACAGGGTGCATCTGTCGTTGTGCGGGTTGCGTCAATTTGGAACCGTGTTCTTGAGCGAGTGA " 1447 UPDATE OKP-A-10 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1110 UPDATE LEN-19 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1445 UPDATE AcrE penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; cephamycin; ciprofloxacin; fluoroquinolone antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACGAAACATGCCAGGTTTTTCCTCCTGCCCTCCTTTATTCTGATCTCCGCGGCTTTAATCGCCGGTTGTAACGATAAGGGAGAAGAGAAAGCTCACGTCGGTGAACCGCAGGTTACCGTTCATATTGTAAAAACGGCCCCGTTAGAAGTTAAGACTGAATTACCAGGCCGCACCAATGCTTATCGTATAGCCGAAGTTCGCCCACAGGTTAGCGGGATCGTACTGAATCGCAATTTCACTGAAGGCAGCGATGTGCAAGCAGGCCAGTCCCTGTACCAGATCGATCCCGCGACCTATCAGGCAAATTATGACAGCGCGAAAGGCGAACTGGCGAAAAGTGAAGCCGCCGCCGCCATCGCGCATTTGACGGTAAAACGTTACGTTCCGCTCGTGGGTACGAAATACATCAGCCAGCAGGAGTACGACCAGGCCATTGCTGATGCTCGTCAGGCCGATGCCGCCGTGATTGCCGCAAAAGCCACAGTCGAAAGCGCTCGCATCAATCTTGCTTATACCAAAGTCACTGCGCCAATTAGCGGACGTATCGGCAAATCGACTGTGACCGAAGGCGCTCTTGTCACTAATGGGCAAACGACTGAACTGGCGACTGTCCAGCAGCTCGATCCTATCTACGTTGATGTGACCCAATCCAGCAACGATTTTATGAGGCTGAAGCAATCCGTAGAGCAAGGAAATTTGCATAAGGAAAACGCCACCAGCAACGTAGAGTTGGTCATGGAAAACGGTCAAACCTATCCCCTGAAAGGTACGCTGCAATTCTCCGATGTGACCGTTGATGAAAGCACCGGCTCCATAACCCTACGTGCTGTCTTCCCTAACCCGCAACATACGCTTTTGCCGGGTATGTTTGTGCGTGCACGGATTGATGAAGGCGTCCAACCTGACGCCATTCTTATCCCGCAACAAGGCGTTAGCCGCACACCGCGTGGTGATGCAACCGTGCTGATTGTTAACGATAAAAGTCAGGTTGAAGCGCGCCCTGTCGTTGCCAGTCAGGCGATTGGCGATAAATGGTTGATTAGTGAAGGACTGAAATCTGGCGATCAAGTCATTGTCAGCGGCCTGCAAAAAGCGCGTCCGGGAGAGCAGGTTAAAGCCACTACCGATACCCCCGCAGATACTGCATCGAAGTAA " 1444 UPDATE IND-12 carbapenem; antibiotic inactivation; IND beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAAAGTATTCAGCTTTTGATGATGTCAATGTTTTTAAGCCCATTGATCAATGCCCAGGTTAAAGATTTTGTAATTGAGCCGCCTGTTAAACCCAACCTGTATCTTTATAAAAGTTTCGGAGTTTTCGGGGGTAAAGAATATTCTGCCAATGCTGTATATCTTACCACTAAGAAAGGAGTTGTCTTATTTGATGTCCCATGGCAAAAGGAACAATATCAAACCCTTATGGACACCATACAAAAGCGTCATCACCTTCCTGTAATTGCTGTATTTGCCACCCACTCTCATGATGACAGAGCGGGTGATCTAAGCTTTTACAATCAAAAAGGAATTAAAACATATGCGACCGCCAAGACCAATGAACTGTTGAAAAAAGACGGAAAAGCAACCTCAACCGAAATTATAAAAACAGGAAAACCTTACAAAATTGGTGGTGAAGAATTTATGGTAGACTTTCTTGGAGAAGGACATACAGTTGATAATGTTGTTGTATGGTTCCCCAAATATAAAGTACTGGACGGAGGATGTCTTGTAAAAAGCAGGACAGCCACTGACCTGGGATATACCGGTGAAGCAAATGTAAAACAATGGCCGGAAACCATGCGAAAACTAAAAACGAAATATGCTCAGGCCACTCTGGTAATCCCGGGACACGACGAATGGAAAGGCGGTGGCCATGTACAGCATTCTCTGGATCTTCTGGATAAGAATAAAAAGCCGGAATAA " 1115 UPDATE OXA-435 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1442 UPDATE mdtN antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; acridine dye; puromycin; acriflavin; nucleoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 4307588 UPDATED strand with - UPDATED accession with AP009048.1 UPDATED fmin with 4306556 UPDATED sequence with ATGGAAAGTACGCCGAAAAAAGCTCCTCGCAGTAAATTCCCTGCTCTGTTAGTGGTTGCGTTGGCGCTGGTTGCCCTTGTTTTCGTTATCTGGCGCGTAGACAGTGCGCCATCAACTAATGACGCTTACGCGTCAGCAGATACCATTGATGTGGTACCGGAAGTCAGCGGCCGCATTGTAGAACTGGCGGTCACCGACAACCAGGCAGTCAAACAGGGCGATTTGCTGTTCCGCATCGACCCGCGCCCGTACGAAGCCAATCTGGCGAAAGCTGAAGCCTCCCTCGCGGCGCTGGATAAGCAAATTATGCTCACCCAGCGTAGCGTTGACGCGCAACAGTTTGGTGCCGACTCGGTTAATGCCACGGTAGAAAAAGCCCGTGCCGCCGCGAAACAGGCCACAGATACATTACGCCGCACCGAGCCATTACTGAAAGAAGGTTTTGTCTCAGCGGAAGATGTTGACCGTGCAAGAACGGCGCAGCGCGCCGCAGAAGCGGATCTTAATGCCGTATTGTTACAGGCGCAGTCAGCCGCCAGCGCCGTCAGCGGCGTGGATGCATTAGTTGCCCAGCGTGCGGCGGTCGAAGCGGATATTGCCCTGACCAAACTGCATCTGGAAATGGCGACCGTTCGCGCGCCGTTTGATGGCCGGGTCATTTCCCTCAAAACCTCCGTCGGGCAATTTGCTTCTGCCATGCGCCCTATTTTTACCCTAATCGACACTCGTCACTGGTATGTGATCGCCAACTTCCGCGAAACCGATCTGAAAAATATTCGCTCAGGTACACCCGCAACGATTCGCCTGATGAGTGACAGCGGCAAAACCTTCGAGGGTAAAGTGGATTCGATTGGCTACGGCGTGCTACCGGATGACGGCGGCCTGGTGCTGGGCGGCCTGCCGAAAGTGTCTCGTTCTATTAACTGGGTCCGCGTTGCCCAGCGTTTTCCGGTCAAAATCATGGTCGATAAACCTGACCCGGAAATGTTCCGCATCGGCGCTTCGGCAGTCGCTAATCTTGAGCCGCAATAA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. W3110 UPDATED NCBI_taxonomy_id with 316407 UPDATED NCBI_taxonomy_cvterm_id with 36839 UPDATED accession with BAE78084.1 UPDATED sequence with MESTPKKAPRSKFPALLVVALALVALVFVIWRVDSAPSTNDAYASADTIDVVPEVSGRIVELAVTDNQAVKQGDLLFRIDPRPYEANLAKAEASLAALDKQIMLTQRSVDAQQFGADSVNATVEKARAAAKQATDTLRRTEPLLKEGFVSAEDVDRARTAQRAAEADLNAVLLQAQSAASAVSGVDALVAQRAAVEADIALTKLHLEMATVRAPFDGRVISLKTSVGQFASAMRPIFTLIDTRHWYVIANFRETDLKNIRSGTPATIRLMSDSGKTFEGKVDSIGYGVLPDDGGLVLGGLPKVSRSINWVRVAQRFPVKIMVDKPDPEMFRIGASAVANLEPQ " 1117 UPDATE ErmD antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGAAAAAAAATCATAAGTACAGAGGAAAAAAGTTAAACCGCGGGGAATCTCCGAATTTTTCCGGACAGCATTTGATGCATAATAAAAAATTAATTGAAGAAATTGTGGATCGGGCAAATATTAGCATAGACGATACGGTTTTAGAGTTAGGAGCGGGAAAAGGGGCTTTGACAACTGTGCTAAGTCAAAAAGCCGGTAAGGTATTGGCAGTGGAAAACGATTCTAAATTCGTTGATATACTCACACGTAAAACAGCACAGCATTCAAATACGAAAATTATTCATCAAGATATCATGAAGATTCATTTACCAAAAGAAAAGTTTGTGGTGGTCTCTAATATTCCCTATGCCATCACAACTCCCATCATGAAAATGCTCTTGAACAATCCTGCAAGCGGATTTCAAAAAGGGATCATCGTAATGGAAAAAGGGGCTGCTAAACGTTTCACATCAAAATTCATTAAAAATTCCTATGTTTTAGCTTGGAGAATGTGGTTTGATATTGGCATTGTCAGAGAAATATCGAAAGAGCATTTTTCTCCCCCTCCAAAAGTGGACTCGGCAATGGTCAGAATAACACGAAAAAAAGACGCGCCTCTATCACATAAACATTATATTGCGTTTCGGGGACTTGCCGAATACGCGCTAAAGGAGCCGAATATCCCTCTCTGTGTTCGTTTACGCGGAATTTTTACCCCGCGTCAAATGAAACACTTAAGAAAAAGTCTAAAAATCAACAATGAAAAAACCGTTGGAACGCTCACCGAAAACCAATGGGCGGTTATTTTTAACACGATGACTCAATATGTAATGCATCACAAATGGCCAAGAGCAAATAAGCGAAAACCCGGAGAAATATAA UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 1116 UPDATE arr-2 antibiotic inactivation; rifampin; rifapentine; rifabutin; rifampin ADP-ribosyltransferase (Arr); rifaximin; rifamycin antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTAAAAGATTGGATTCCCATCTCTCATGATAATTACAAGCAGGTGCAAGGACCGTTCTATCATGGAACCAAAGCCAATTTGGCGATTGGTGACTTGCTAACCACAGGGTTCATCTCTCATTTCGAGGACGGTCGTATTCTTAAGCACATCTACTTTTCAGCCTTGATGGAGCCAGCAGTTTGGGGAGCTGAACTTGCTATGTCACTGTCTGGCCTCGAGGGTCGCGGCTACATATACATAGTTGAGCCAACAGGACCGTTCGAAGACGATCCGAATCTTACGAACAAAAAATTTCCCGGTAATCCAACACAGTCCTATAGAACCTGCGAACCCTTGAGAATTGTTGGCGTTGTTGAAGACTGGGAGGGGCATCCTGTTGAATTAATAAGGGGAATGTTGGATTCGTTAGAGGACTTAAAGCGCCGTGGTTTACACGTCATTGAAGACTAG " 1119 UPDATE EBR-1 beta-lactamase carbapenem; penam; cephalosporin; EBR beta-lactamase; antibiotic inactivation; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGAAATTATTTTCACTTATTGCATTGATAGGAAGTTTTGCATTTGGTCAAATAAAACCAATTCAAATTGATCCGATTAATAACAATCTATTTGTTTATCAAACATTCAATTCGTTTAATGGTGTTGAGTACAATGCAAATGGAATGTATTTGGTAACGAATAAAGGAATTGTTTTATTTGATGTTCCTTGGCAAAAATCGCAGTATCAAGAGTTAAATGATATGTTACAAGAAAAGTATAATTTGCCAGTTATCGCTGTCTTTGCAACACATTCGCATGATGATAGAGCAGGGGATTTGAGTTTTTATAATGAGTTGAATATTCCTACTTATGCAACTTCTTTAACCAATTCTAAATTAAAAAAAGAAGGAAAAGCGACTTCTAAATTTGAGATTGAATTAGGTAAAACATACAAGTTTGGTAACGAAAAATTTGTTTTTGAATATTTTGGAGAAGGACATACTTCTGATAATGTTGTGGTGTGGTTTCCGAAATATAAAGTGTTGAACGGAGGTTGTTTGATAAAGGGTGCTGATGCTGTAAATTTAGGTTACACAGGCGAAGCTAATGTTGTTGAATGGCCAAAAACAGTACACAAACTAGTTGCAAAACATCCAACGATTAAACAAGTTATTCCAGGCCATGATAATTGGAAAGCTACTGGACATATCGAAAATACTTTTAAACTTTTAGAAAAGAAATAA " 1118 UPDATE OXA-2 penam; antibiotic inactivation; cephalosporin; carbapenem; ceftazidime; ampicillin; amoxicillin; OXA beta-lactamase; meropenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1351 UPDATE QnrVC1 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAAAAATCAAAGCAATTATATAATCAAGTGAACTTCTCACATCAGGACTTGCAAGAACATATCTTTAGCAATTGTACTTTTATACATTGTAATTTTAAGCGCTCAAACCTCCGAGATACACAGTTCATTAACTGTACTTTCATAGAGCAGGGGGCATTGGAAGGGTGCGATTTTTCTTATGCTGATCTTCGAGATGCTTCATTTAAAAACTGTCAGCTTTCAATGTCCCATTTTAAGGGGGCAAATTGCTTTGGTATTGAACTGAGAGATTGTGATCTTAAAGGAGCAAATTTTAGTCAAGTTAGTTTTGTAAATCAGGTTTCGAATAAAATGTACTTTTGTTCTGCATACATAACAGGTTGTAACTTATCCTATGCCAATTTTGAGCAGCAGCTTATTGAAAAATGTGACCTGTTCGAAAATAGATGGATTGGTGCAAATCTTCGAGGCGCTTCATTTAAAGAATCAGATTTAAGCCGTGGTGTTTTTTCGGAAGACTGCTGGGAACAGTTTAGAGTACAAGGCTGTGATTTAAGCCATTCAGAGCTTTATGGTTTAGATCCTCGAAAGATTGATCTTACGGGTGTAAAAATATGCTCGTGGCAACAGGAACAGTTACTGGAGCAATTAGGGGTAATCATTGTTCCTGACTAA " 1449 UPDATE OXA-59 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1448 UPDATE SHV-26 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGACCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAGCGGGGTGCGCGCGGCATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 1350 UPDATE TEM-93 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 461 UPDATE OXA-13 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAACATTTGCCGCATATGTAATTACTGCGTGTCTTTCAAGTACGGCATTAGCTAGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTTTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATAACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAGCGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAACAATGGGAAAGAGACTTGAGCTTAAGAGGGGCAATACAAGTTTCAGCGGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATACCTTAAAAAATTTTCATATGGCAACCAGAATATCAGTGGTGGCATTGACAAATTCTGGTTGGAGGGTCAGCTAAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATTTTTAAATAAATTGTCAGCATCAAAAGAAAATCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCTGCGCCTGAATATCTTGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGTTGGGTTGAGAAGGGAACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAATAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGCAAGTGAGGGCATCATTGGTGGCTAA " 1356 UPDATE dfrA22 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACCCGGAATCGGTCCGCATTTATCTGGTCGCTGCCATGGGTGCCAATCGGGTTATTGGCAATGGCCCTGATATCCCTTGGAATATCCCTGGTGAGCAAAAGATTTTTCGCAGGCTCACCGAGGGCAAAGTGGTCGTTATGGGCCGCAAGACGTTTGAGTCCATAGGCAAGCCCTTACCAAACCGTCGCACAGTGGTGCTCTCGCGCCAAGCTAGTTATAGCGCTGCTGGTTGTGCAGTTGTTTCAACGCTGTCGCAGGCTATTGCCATCGCAGCCGAACACGGCAAGGAACTCTACGTGGCCGGCGGAGCCGAGGTATATGCACTGGCACTACCTCGTGCCGATGGCGTCTTTCTATCTGAGGTACATCAAACCTTCGAGGGTGACGCCTTCTTCCCAGCGCTCGACGCAGCAGAATTCGACGTTGTCTCAGCCGAAACCGTTCAAGCCACAATCACGTACACGCACTCCGTCTATGCACGTCGTAACGGCTAA " 463 UPDATE CTX-M-30 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 489 UPDATE Mycobacterium tuberculosis gidB mutation conferring resistance to streptomycin antibiotic target alteration; streptomycin; aminoglycoside antibiotic; antibiotic resistant gidB; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 4408202 UPDATED strand with - UPDATED accession with AL123456 UPDATED fmin with 4407527 UPDATED sequence with ATGTCTCCGATCGAGCCCGCGGCGTCTGCGATCTTCGGACCGCGGCTTGGCCTTGCTCGGCGGTACGCCGAAGCGTTGGCGGGACCCGGTGTGGAGCGGGGGCTGGTGGGACCCCGCGAAGTCGGTAGGCTATGGGACCGGCATCTACTGAACTGCGCCGTGATCGGTGAGCTCCTCGAACGCGGTGACCGGGTCGTGGATATCGGTAGCGGAGCCGGGTTGCCGGGCGTGCCATTGGCGATAGCGCGGCCGGACCTCCAGGTAGTTCTCCTAGAACCGCTACTGCGCCGCACCGAGTTTCTTCGAGAGATGGTGACAGATCTGGGCGTGGCCGTTGAGATCGTGCGGGGGCGCGCCGAGGAGTCCTGGGTGCAGGACCAATTGGGCGGCAGCGACGCTGCGGTGTCACGGGCGGTGGCCGCGTTGGACAAGTTGACGAAATGGAGCATGCCGTTGATACGGCCGAACGGGCGAATGCTCGCCATCAAAGGCGAGCGGGCTCACGACGAAGTACGGGAGCACCGGCGTGTGATGATCGCATCGGGCGCGGTTGATGTCAGGGTGGTGACATGTGGCGCGAACTATTTGCGTCCGCCCGCGACCGTGGTGTTCGCACGACGTGGAAAGCAGATCGCCCGAGGGTCGGCACGGATGGCGAGTGGAGGGACGGCGTGA UPDATED NCBI_taxonomy_name with Mycobacterium tuberculosis H37Rv UPDATED NCBI_taxonomy_id with 83332 UPDATED NCBI_taxonomy_cvterm_id with 39507 UPDATED accession with CCP46748.1 UPDATED sequence with MSPIEPAASAIFGPRLGLARRYAEALAGPGVERGLVGPREVGRLWDRHLLNCAVIGELLERGDRVVDIGSGAGLPGVPLAIARPDLQVVLLEPLLRRTEFLREMVTDLGVAVEIVRGRAEESWVQDQLGGSDAAVSRAVAALDKLTKWSMPLIRPNGRMLAIKGERAHDEVREHRRVMIASGAVDVRVVTCGANYLRPPATVVFARRGKQIARGSARMASGGTA " 488 UPDATE SHV-156 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 487 UPDATE macB efflux pump complex or subunit conferring antibiotic resistance; ATP-binding cassette (ABC) antibiotic efflux pump; antibiotic efflux; macrolide antibiotic; erythromycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 486 UPDATE cmlB antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; phenicol antibiotic; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 485 UPDATE TEM-191 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTAAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACG " 484 UPDATE QnrB49 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 483 UPDATE GES-7 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGCTTCATTCACGCACTATTACTGGCAGGGATCGCTCACTCTGCATATGCATCGGAAAAATTAACCTTCAAGACCGATCTTGAGAAGCTAGAGCGCGAAAAAGCAGCTCAGATCGGTGTTGCGATCGTCGATCCCCAAGGAGAGATCGTCGCGGGCCACCGAATGGCGCAGCGTTTTGCAATGTGCTCAACGTTCAAGTTTCCGCTAGCCGCGCTGGTCTTTGAAAGAATTGACTCAGGCACCGAGCGGGGGGATCGAAAACTTTCATATGGGCCGGACATGATCGTCAAATGGTCTCCTGCCACGGAGCGGTTTCTAGCATCGGGACACATGACGGTTCTCGAGGCAGCGCAAGCTGCGGTGCAGCTTAGCGACAATGGGGCTACTAACCTCTTACTGAGAGAAATTGGCGGACCTGCTGCAATGACGCAGTATTTTCGTAAAATTGGCGACTCTGTGAGTCGGCTAGACCGGAAAGAGCCGGAGATGGGCGACAACACACCTGGCGACCTCAGAGATACAACTACGCCTATTGCTATGGCACGTACTGTGGCTAAAGTCCTCTATGGCGGCGCACTGACGTCCACCTCGACCCACACCATTGAGAGGTGGCTGATCGGAAACCAAACGGGAGACGCGACACTACGAGCGGGTTTTCCTAAAGATTGGGTTGTTGGAGAGAAAACTGGTACCTGCGCCAACGGGGGCCGGAACGACATTGGTTTTTTTAAAGCCCAGGAGAGAGATTACGCTGTAGCGGTGTATACAACGGCCCCGAAACTATCGGCCGTAGAACGTGACGAATTAGTTGCCTCTGTCGGTCAAGTTATTACACAACTCATCCTGAGCACGGACAAATAG " 482 UPDATE LEN-1 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATGTTCGCCTGTGTGTTATCTCCCTGTTAGCCACCCTGCCACTGGTGGTATACGCCGGTCCACAGCCGCTTGAGCAGATTAAACAAAGCGAAAGCCAGCTGTCGGGCCGCGTGGGGATGGTGGAAATGGATCTGGCCAACGGCCGCACGCTGGCCGCCTGGCGCGCCGATGAACGCTTTCCCATGGTGAGCACCTTTAAAGTGCTGCTGTGCGGCGCGGTGCTGGCGCGGGTGGATGCCGGGCTCGAACAACTGGATCGGCGGATCCACTACCGCCAGCAGGATCTGGTGGACTACTCCCCGGTCAGCGAAAAACACCTTGTCGACGGGATGACGATCGGCGAACTCTGCGCCGCCGCCATCACCCTGAGCGATAACAGCGCTGGCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCGGGATTAACTGCCTTTCTGCGCCAGATCGGTGACAACGTCACCCGTCTTGACCGCTGGGAAACGGCACTGAATGAGGCGCTTCCCGGCGACGCGCGCGACACCACCACCCCGGCCAGCATGGCCGCCACGCTGCGCAAACTACTGACCGCGCAGCATCTGAGCGCCCGTTCGCAACAGCAACTCCTGCAGTGGATGGTGGACGATCGGGTTGCCGGCCCGCTGATCCGCGCCGTGCTGCCGCCGGGCTGGTTTATCGCCGACAAAACCGGGGCTGGCGAACGGGGTGCGCGCGGCATTGTCGCCCTGCTCGGCCCGGACGGCAAACCGGAGCGCATTGTGGTGATCTATCTGCGGGATACCCCGGCGAGTATGGCCGAGCGTAATCAACATATCGCCGGGATCGGCCAGCGCTGA " 481 UPDATE VIM-30 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTCAAACTTTTGAGTAAGTTATTGGTCTATTTGACCGCGTCTATCATGGCTATTGCGAGTCCGCTCGCTTTTTCCGTAGATTCTAGCGGTGAGTATCCGACAGTCAACGAAATTCCGGTCGGGGAGGTCCGGCTTTACCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTTTGATGGCGCAGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAGAAGCAAATTGGACTTCCTGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCCGAGGTAGAGGGGAACGAGATTCCCACGCACTCTCTAGAAGGACTCTCATCGAGCGGGGACGCAGTGCGCTTCGGTCCAGTAGAACTCTTCTATCCTGGTGCTGCGCATTCGACCGACAACTTAGTTGTGTACGTCCCGTCTGCGAGTGTGCTCTATGGTGGTTGTGCGATTTATGAGTTGTCACGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCATTGAGCGGATTCAACAACACTACCCGGAAGCACAGTTCGTCATTCCGGGGCACGGCCTGCCGGGCGGTCTAGACTTGCTCAAGCACACAACGAATGTTGTAAAAGCGCACACAAATCGCTCAGTCGTTGAGTAG " 480 UPDATE GES-9 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGCTTCATTCACGCACTATTACTGGCAGGGATCGCTCACTCTGCATATGCGTCGGAAAAATTAACCTTCAAGACCGATCTTGAGAAGCTAGAGCGCGAAAAAGCAGCTCAGATCGGTGTTGCGATCGTCGATCCCCAAGGAGAGATCGTCGCGGGCCACCGAATGGCGCAGCGTTTTGCAATGTGCTCAACGTTCAAGTTTCCGCTAGCCGCGCTGGTCTTTGAAAGAATTGACTCAGGCACCGAGCGGGGGGATCGAAAACTTTCATATGGGCCGGACATGATCGTCGAATGGTCTCCTGCCACGGAGCGGTTTCTAGCATCGGGACACATGACGGTTCTCGAGGCAGCGCAAGCTGCGGTGCAGCTTAGCGACAATGGGGCTACTAACCTCTTACTGAGAGAAATTGGCGGACCTGCTGCAATGACGCAGTATTTTCGTAAAATTGGCGACTCTGTGAGTCGGCTAGACCGGAAAGAGCCGGAGATGGGCGACAACACACCTGGCGACCTCAGAGATACAACTACGCCTATTGCTATGGCACGTACTGTGGCCAAAGTCCTCTATGGCGGCGCACTGACGTCCACCTCGACCCACACCATTGAGAGGTGGCTGATCGGAAACCAAACGGGAGACGCGACACTACGAGCGGGTTTTCCTAAAGATTGGGTTGTTGGAGAGAAAACTGGTACCTGCGCCAACGGGAGCCGGAACGACATTGGTTTTTTTAAAGCCCAGGAGAGAGATTACGCTGTAGCGGTGTATACAACGGCCCCGAAACTATCGGCCGTAGAACGTGACGAATTAGTTGCCTCTGTCGGTCAAGTTATTACACAACTCATCCTGAGCACGGACAAATAG " 2896 UPDATE Staphylococcus intermedius chloramphenicol acetyltransferase antibiotic inactivation; phenicol antibiotic; chloramphenicol acetyltransferase (CAT); chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 199 UPDATE SRT-1 antibiotic inactivation; cephalosporin; SRT beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 198 UPDATE TEM-138 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTAAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAATCGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCAGTGAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 195 UPDATE CTX-M-58 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGTCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGAAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGTGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACTTGGTTAACTATAATCCGATTGCGGAAAAGCACGTCGATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTTCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGACGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGTAATCTGACGCTGGGTAAAGCATTGGGTGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGACTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCAACGGTTTGTAA " 194 UPDATE SHV-61 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 197 UPDATE CTX-M-56 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 196 UPDATE Mycobacterium tuberculosis embB mutations conferring resistance to ethambutol antibiotic target alteration; ethambutol resistant arabinosyltransferase; polyamine antibiotic; ethambutol; model_description; model_sequences; model_param; ARO_name "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with ATGACACAGTGCGCGAGCAGACGCAAAAGCACCCCAAATCGGGCGATTTTGGGGGCTTTTGCGTCTGCTCGCGGGACGCGCTGGGTGGCCACCATCGCCGGGCTGATTGGCTTTGTGTTGTCGGTGGCGACGCCGCTGCTGCCCGTCGTGCAGACCACCGCGATGCTCGACTGGCCACAGCGGGGGCAACTGGGCAGCGTGACCGCCCCGCTGATCTCGCTGACGCCGGTCGACTTTACCGCCACCGTGCCGTGCGACGTGGTGCGCGCCATGCCACCCGCGGGCGGGGTGGTGCTGGGCACCGCACCCAAGCAAGGCAAGGACGCCAATTTGCAGGCGTTGTTCGTCGTCGTCAGCGCCCAGCGCGTGGACGTCACCGACCGCAACGTGGTGATCTTGTCCGTGCCGCGCGAGCAGGTGACGTCCCCGCAGTGTCAACGCATCGAGGTCACCTCTACCCACGCCGGCACCTTCGCCAACTTCGTCGGGCTCAAGGACCCGTCGGGCGCGCCGCTGCGCAGCGGCTTCCCCGACCCCAACCTGCGCCCGCAGATTGTCGGGGTGTTCACCGACCTGACCGGGCCCGCGCCGCCCGGGCTGGCGGTCTCGGCGACCATCGACACCCGGTTCTCCACCCGGCCGACCACGCTGAAACTGCTGGCGATCATCGGGGCGATCGTGGCCACCGTCGTCGCACTGATCGCGTTGTGGCGCCTGGACCAGTTGGACGGGCGGGGCTCAATTGCCCAGCTCCTCCTCAGGCCGTTCCGGCCTGCATCGTCGCCGGGCGGCATGCGCCGGCTGATTCCGGCAAGCTGGCGCACCTTCACCCTGACCGACGCCGTGGTGATATTCGGCTTCCTGCTCTGGCATGTCATCGGCGCGAATTCGTCGGACGACGGCTACATCCTGGGCATGGCCCGAGTCGCCGACCACGCCGGCTACATGTCCAACTATTTCCGCTGGTTCGGCAGCCCGGAGGATCCCTTCGGCTGGTATTACAACCTGCTGGCGCTGATGACCCATGTCAGCGACGCCAGTCTGTGGATGCGCCTGCCAGACCTGGCCGCCGGGCTAGTGTGCTGGCTGCTGCTGTCGCGTGAGGTGCTGCCCCGCCTCGGGCCGGCGGTGGAGGCCAGCAAACCCGCCTACTGGGCGGCGGCCATGGTCTTGCTGACCGCGTGGATGCCGTTCAACAACGGCCTGCGGCCGGAGGGCATCATCGCGCTCGGCTCGCTGGTCACCTATGTGCTGATCGAGCGGTCCATGCGGTACAGCCGGCTCACACCGGCGGCGCTGGCCGTCGTTACCGCCGCATTCACACTGGGTGTGCAGCCCACCGGCCTGATCGCGGTGGCCGCGCTGGTGGCCGGCGGCCGCCCGATGCTGCGGATCTTGGTGCGCCGTCATCGCCTGGTCGGCACGTTGCCGTTGGTGTCGCCGATGCTGGCCGCCGGCACCGTCATCCTGACCGTGGTGTTCGCCGACCAGACCCTGTCAACGGTGTTGGAAGCCACCAGGGTTCGCGCCAAAATCGGGCCGAGCCAGGCGTGGTATACCGAGAACCTGCGTTACTACTACCTCATCCTGCCCACCGTCGACGGTTCGCTGTCGCGGCGCTTCGGCTTTTTGATCACCGCGCTATGCCTGTTCACCGCGGTGTTCATCATGTTGCGGCGCAAGCGAATTCCCAGCGTGGCCCGCGGACCGGCGTGGCGGCTGATGGGCGTCATCTTCGGCACCATGTTCTTCCTGATGTTCACGCCCACCAAGTGGGTGCACCACTTCGGGCTGTTCGCCGCCGTAGGGGCGGCGATGGCCGCGCTGACGACGGTGTTGGTATCCCCATCGGTGCTGCGCTGGTCGCGCAACCGGATGGCGTTCCTGGCGGCGTTATTCTTCCTGCTGGCGTTGTGTTGGGCCACCACCAACGGCTGGTGGTATGTCTCCAGCTACGGTGTGCCGTTCAACAGCGCGATGCCGAAGATCGACGGGATCACAGTCAGCACAATCTTTTTCGCCCTGTTTGCGATCGCCGCCGGCTATGCGGCCTGGCTGCACTTCGCGCCCCGCGGCGCCGGCGAAGGGCGGCTGATCCGCGCGCTGACGACAGCCCCGGTACCGATCGTGGCCGGTTTCATGGCGGCGGTGTTCGTCGCGTCCATGGTGGCCGGGATCGTGCGACAGTACCCGACCTACTCCAACGGCTGGTCCAACGTGCGGGCGTTTGTCGGCGGCTGCGGACTGGCCGACGACGTACTCGTCGAGCCTGATACCAATGCGGGTTTCATGAAGCCGCTGGACGGCGATTCGGGTTCTTGGGGCCCCTTGGGCCCGCTGGGTGGAGTCAACCCGGTCGGCTTCACGCCCAACGGCGTACCGGAACACACGGTGGCCGAGGCGATCGTGATGAAACCCAACCAGCCCGGCACCGACTACGACTGGGATGCGCCGACCAAGCTGACGAGTCCTGGCATCAATGGTTCTACGGTGCCGCTGCCCTATGGGCTCGATCCCGCCCGGGTACCGTTGGCAGGCACCTACACCACCGGCGCACAGCAACAGAGCACACTCGTCTCGGCGTGGTATCTCCTGCCTAAGCCGGACGACGGGCATCCGCTGGTCGTGGTGACCGCCGCGGGCAAGATCGCCGGCAACAGCGTGCTGCACGGGTACACCCCCGGGCAGACTGTGGTGCTCGAATACGCCATGCCGGGACCCGGAGCGCTGGTACCCGCCGGGCGGATGGTGCCCGACGACCTATACGGAGAGCAGCCCAAGGCGTGGCGCAACCTGCGCTTCGCCCGAGCAAAGATGCCCGCCGATGCCGTCGCGGTCCGGGTGGTGGCCGAGGATCTGTCGCTGACACCGGAGGACTGGATCGCGGTGACCCCGCCGCGGGTACCGGACCTGCGCTCACTGCAGGAATATGTGGGCTCGACGCAGCCGGTGCTGCTGGACTGGGCGGTCGGTTTGGCCTTCCCGTGCCAGCAGCCGATGCTGCACGCCAATGGCATCGCCGAAATCCCGAAGTTCCGCATCACACCGGACTACTCGGCTAAGAAGCTGGACACCGACACGTGGGAAGACGGCACTAACGGCGGCCTGCTCGGGATCACCGACCTGTTGCTGCGGGCCCACGTCATGGCCACCTACCTGTCCCGCGACTGGGCCCGCGATTGGGGTTCCCTGCGCAAGTTCGACACCCTGGTCGATGCCCCTCCCGCCCAGCTCGAGTTGGGCACCGCGACCCGCAGCGGCCTGTGGTCACCGGGCAAGATCCGAATTGGTCCATAG DELETED 3590 DELETED 3590 UPDATED ARO_name with Mycobacterium tuberculosis embB with mutation conferring resistance to ethambutol " 191 UPDATE OXA-199 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTGTATTAGCCTTATCGGCTGTGTTTTTGGTGGCATCGATTATCGGAATGCCTGCGGTAGCAAAGGAATGGCAAGAAAACAAAAGTTGGAATGCTCACTTTACTGAATATAAATCACAGGGCGTAGTTGCGCTCTGGAATGAGAATAAGCAGCAAGGATTTACCAATAATCTTAAACGGGCGAACCAAGCATTTTTACCCGCATCTACCTTTAAAATTCCCAATAGCTTGATCGCCCTCGATTTGGGCGTGGTTAAGGATGAACACCAAGTCTTTAAGTGGGATGGACAGACGCGCGATATCGCCACTTGGAATCGCGATCATAATCTAATCACCGCGATGAAATATTCAGTTGTGCCTGTTTATCAAGAATTTGCCCGCCAAATTGGCGAGGCACGTATGAGCAAGATGCTACATGCTTTCGATTATGGTAATGAGGACATTTCGGGCAATGTAGGCAGTTTCTGGCTCGACGGTGGTATTCGAATTTCGGCCACTGAGCAAATCAGCTTTTTAAGAAAGCTGTATCACAATAAGTTACACGTATCGGAGCGCAGCCAGCGTATTGTCAAACAAGCCATGCTGACCGAAGCCAATGGCGACTATATTATTCGGGCTAAAACTGGATACTCGACTAGAATCGAACCTAAGATTGGCTGGTGGGTCGGTTGGGTTGAACTTGATGATAATGTGTGGTTTTTTGCGATGAATATGGATATGCCCACATCGGATGGTTTAGGGCTGCGCCAAGCCATCACAAAAGAAGTGCTCAAACAGGAAAAAATTATTCCCTAG " 190 UPDATE OXA-195 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 193 UPDATE TEM-121 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 192 UPDATE CTX-M-38 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGAATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA " 1106 UPDATE NDM-5 penam; antibiotic inactivation; cephalosporin; carbapenem; ceftazidime; NDM beta-lactamase; cephamycin; piperacillin; tazobactam; cefoxitin; ertapenem; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAATTGCCCAATATTATGCACCCGGTCGCGAAGCTGAGCACCGCATTAGCCGCTGCATTGATGCTGAGCGGGTGCATGCCCGGTGAAATCCGCCCGACGATTGGCCAGCAAATGGAAACTGGCGACCAACGGTTTGGCGATCTGGTTTTCCGCCAGCTCGCACCGAATGTCTGGCAGCACACTTCCTATCTCGACATGCCGGGTTTCGGGGCAGTCGCTTCCAACGGTTTGATCGTCAGGGATGGCGGCCGCGTGCTGTTGGTCGATACCGCCTGGACCGATGACCAGACCGCCCAGATCCTCAACTGGATCAAGCAGGAGATCAACCTGCCGGTCGCGCTGGCGGTGGTGACTCACGCGCATCAGGACAAGATGGGCGGTATGGACGCGCTGCATGCGGCGGGGATTGCGACTTATGCCAATGCGTTGTCGAACCAGCTTGCCCCGCAAGAGGGGCTGGTTGCGGCGCAACACAGCCTGACTTTCGCCGCCAATGGCTGGGTCGAACCAGCAACCGCGCCCAACTTTGGCCCGCTCAAGGTATTTTACCCCGGCCCCGGCCACACCAGTGACAATATCACCGTTGGGATCGACGGCACCGACATCGCTTTTGGTGGCTGCCTGATCAAGGACAGCAAGGCCAAGTCGCTCGGCAATCTCGGTGATGCCGACACTGAGCACTACGCCGCGTCAGCGCGCGCGTTTGGTGCGGCGTTCCCCAAGGCCAGCATGATCGTGATGAGCCATTCCGCCCCCGATAGCCGCGCCGCAATCACTCATACGGCCCGCATGGCCGACAAGCTGCGCTGA " 1107 UPDATE PDC-2 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1274 UPDATE VIM-10 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1104 UPDATE acrB penam; antibiotic efflux; triclosan; rifampin; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; cephalosporin; cefalotin; tigecycline; glycylcycline; ampicillin; fluoroquinolone antibiotic; rifamycin antibiotic; phenicol antibiotic; tetracycline; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 484403 UPDATED strand with - UPDATED accession with NC_000913.3 UPDATED fmin with 481253 UPDATED sequence with ATGCCTAATTTCTTTATCGATCGCCCGATTTTTGCGTGGGTGATCGCCATTATCATCATGTTGGCAGGGGGGCTGGCGATCCTCAAACTGCCGGTGGCGCAATATCCTACGATTGCACCGCCGGCAGTAACGATCTCCGCCTCCTACCCCGGCGCTGATGCGAAAACAGTGCAGGACACGGTGACACAGGTTATCGAACAGAATATGAACGGTATCGATAACCTGATGTACATGTCCTCTAACAGTGACTCCACGGGTACCGTGCAGATCACCCTGACCTTTGAGTCTGGTACTGATGCGGATATCGCGCAGGTTCAGGTGCAGAACAAACTGCAGCTGGCGATGCCGTTGCTGCCGCAAGAAGTTCAGCAGCAAGGGGTGAGCGTTGAGAAATCATCCAGCAGCTTCCTGATGGTTGTCGGCGTTATCAACACCGATGGCACCATGACGCAGGAGGATATCTCCGACTACGTGGCGGCGAATATGAAAGATGCCATCAGCCGTACGTCGGGCGTGGGTGATGTTCAGTTGTTCGGTTCACAGTACGCGATGCGTATCTGGATGAACCCGAATGAGCTGAACAAATTCCAGCTAACGCCGGTTGATGTCATTACCGCCATCAAAGCGCAGAACGCCCAGGTTGCGGCGGGTCAGCTCGGTGGTACGCCGCCGGTGAAAGGCCAACAGCTTAACGCCTCTATTATTGCTCAGACGCGTCTGACCTCTACTGAAGAGTTCGGCAAAATCCTGCTGAAAGTGAATCAGGATGGTTCCCGCGTGCTGCTGCGTGACGTCGCGAAGATTGAGCTGGGTGGTGAGAACTACGACATCATCGCAGAGTTTAACGGCCAACCGGCTTCCGGTCTGGGGATCAAGCTGGCGACCGGTGCAAACGCGCTGGATACCGCTGCGGCAATCCGTGCTGAACTGGCGAAGATGGAACCGTTCTTCCCGTCGGGTCTGAAAATTGTTTACCCATACGACACCACGCCGTTCGTGAAAATCTCTATTCACGAAGTGGTTAAAACGCTGGTCGAAGCGATCATCCTCGTGTTCCTGGTTATGTATCTGTTCCTGCAGAACTTCCGCGCGACGTTGATTCCGACCATTGCCGTACCGGTGGTATTGCTCGGGACCTTTGCCGTCCTTGCCGCCTTTGGCTTCTCGATAAACACGCTAACAATGTTCGGGATGGTGCTCGCCATCGGCCTGTTGGTGGATGACGCCATCGTTGTGGTAGAAAACGTTGAGCGTGTTATGGCGGAAGAAGGTTTGCCGCCAAAAGAAGCTACCCGTAAGTCGATGGGGCAGATTCAGGGCGCTCTGGTCGGTATCGCGATGGTACTGTCGGCGGTATTCGTACCGATGGCCTTCTTTGGCGGTTCTACTGGTGCTATCTATCGTCAGTTCTCTATTACCATTGTTTCAGCAATGGCGCTGTCGGTACTGGTGGCGTTGATCCTGACTCCAGCTCTTTGTGCCACCATGCTGAAACCGATTGCCAAAGGCGATCACGGGGAAGGTAAAAAAGGCTTCTTCGGCTGGTTTAACCGCATGTTCGAGAAGAGCACGCACCACTACACCGACAGCGTAGGCGGTATTCTGCGCAGTACGGGGCGTTACCTGGTGCTGTATCTGATCATCGTGGTCGGCATGGCCTATCTGTTCGTGCGTCTGCCAAGCTCCTTCTTGCCAGATGAGGACCAGGGCGTGTTTATGACCATGGTTCAGCTGCCAGCAGGTGCAACGCAGGAACGTACACAGAAAGTGCTCAATGAGGTAACGCATTACTATCTGACCAAAGAAAAGAACAACGTTGAGTCGGTGTTCGCCGTTAACGGCTTCGGCTTTGCGGGACGTGGTCAGAATACCGGTATTGCGTTCGTTTCCTTGAAGGACTGGGCCGATCGTCCGGGCGAAGAAAACAAAGTTGAAGCGATTACCATGCGTGCAACACGCGCTTTCTCGCAAATCAAAGATGCGATGGTTTTCGCCTTTAACCTGCCCGCAATCGTGGAACTGGGTACTGCAACCGGCTTTGACTTTGAGCTGATTGACCAGGCTGGCCTTGGTCACGAAAAACTGACTCAGGCGCGTAACCAGTTGCTTGCAGAAGCAGCGAAGCACCCTGATATGTTGACCAGCGTACGTCCAAACGGTCTGGAAGATACCCCGCAGTTTAAGATTGATATCGACCAGGAAAAAGCGCAGGCGCTGGGTGTTTCTATCAACGACATTAACACCACTCTGGGCGCTGCATGGGGCGGCAGCTATGTGAACGACTTTATCGACCGCGGTCGTGTGAAGAAAGTTTATGTCATGTCAGAAGCGAAATACCGTATGCTGCCGGATGATATCGGCGACTGGTATGTTCGTGCTGCTGATGGTCAGATGGTGCCATTCTCGGCGTTCTCCTCTTCTCGTTGGGAGTACGGTTCGCCGCGTCTGGAACGTTACAACGGCCTGCCATCCATGGAAATCTTAGGCCAGGCGGCACCGGGTAAAAGTACCGGTGAAGCAATGGAGCTGATGGAACAACTGGCGAGCAAACTGCCTACCGGTGTTGGCTATGACTGGACGGGGATGTCCTATCAGGAACGTCTCTCCGGCAACCAGGCACCTTCACTGTACGCGATTTCGTTGATTGTCGTGTTCCTGTGTCTGGCGGCGCTGTACGAGAGCTGGTCGATTCCGTTCTCCGTTATGCTGGTCGTTCCGCTGGGGGTTATCGGTGCGTTGCTGGCTGCCACCTTCCGTGGCCTGACCAATGACGTTTACTTCCAGGTAGGCCTGCTCACAACCATTGGGTTGTCGGCGAAGAACGCGATCCTTATCGTCGAATTCGCCAAAGACTTGATGGATAAAGAAGGTAAAGGTCTGATTGAAGCGACGCTTGATGCGGTGCGGATGCGTTTACGTCCGATCCTGATGACCTCGCTGGCGTTTATCCTCGGCGTTATGCCGCTGGTTATCAGTACTGGTGCTGGTTCCGGCGCGCAGAACGCAGTAGGTACCGGTGTAATGGGCGGGATGGTGACCGCAACGGTACTGGCAATCTTCTTCGTTCCGGTATTCTTTGTGGTGGTTCGCCGCCGCTTTAGCCGCAAGAATGAAGATATCGAGCACAGCCATACTGTCGATCATCATTGA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. MG1655 UPDATED NCBI_taxonomy_id with 511145 UPDATED NCBI_taxonomy_cvterm_id with 36849 UPDATED accession with NP_414995.1 UPDATED sequence with MPNFFIDRPIFAWVIAIIIMLAGGLAILKLPVAQYPTIAPPAVTISASYPGADAKTVQDTVTQVIEQNMNGIDNLMYMSSNSDSTGTVQITLTFESGTDADIAQVQVQNKLQLAMPLLPQEVQQQGVSVEKSSSSFLMVVGVINTDGTMTQEDISDYVAANMKDAISRTSGVGDVQLFGSQYAMRIWMNPNELNKFQLTPVDVITAIKAQNAQVAAGQLGGTPPVKGQQLNASIIAQTRLTSTEEFGKILLKVNQDGSRVLLRDVAKIELGGENYDIIAEFNGQPASGLGIKLATGANALDTAAAIRAELAKMEPFFPSGLKIVYPYDTTPFVKISIHEVVKTLVEAIILVFLVMYLFLQNFRATLIPTIAVPVVLLGTFAVLAAFGFSINTLTMFGMVLAIGLLVDDAIVVVENVERVMAEEGLPPKEATRKSMGQIQGALVGIAMVLSAVFVPMAFFGGSTGAIYRQFSITIVSAMALSVLVALILTPALCATMLKPIAKGDHGEGKKGFFGWFNRMFEKSTHHYTDSVGGILRSTGRYLVLYLIIVVGMAYLFVRLPSSFLPDEDQGVFMTMVQLPAGATQERTQKVLNEVTHYYLTKEKNNVESVFAVNGFGFAGRGQNTGIAFVSLKDWADRPGEENKVEAITMRATRAFSQIKDAMVFAFNLPAIVELGTATGFDFELIDQAGLGHEKLTQARNQLLAEAAKHPDMLTSVRPNGLEDTPQFKIDIDQEKAQALGVSINDINTTLGAAWGGSYVNDFIDRGRVKKVYVMSEAKYRMLPDDIGDWYVRAADGQMVPFSAFSSSRWEYGSPRLERYNGLPSMEILGQAAPGKSTGEAMELMEQLASKLPTGVGYDWTGMSYQERLSGNQAPSLYAISLIVVFLCLAALYESWSIPFSVMLVVPLGVIGALLAATFRGLTNDVYFQVGLLTTIGLSAKNAILIVEFAKDLMDKEGKGLIEATLDAVRMRLRPILMTSLAFILGVMPLVISTGAGSGAQNAVGTGVMGGMVTATVLAIFFVPVFFVVVRRRFSRKNEDIEHSHTVDHH " 2381 UPDATE Staphylococcus aureus UhpT with mutation conferring resistance to fosfomycin fosfomycin; antibiotic target alteration; UhpT; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2380 UPDATE Staphylococcus aureus GlpT with mutation conferring resistance to fosfomycin fosfomycin; antibiotic target alteration; GlpT; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2383 UPDATE ANT(4')-Ib antibiotic inactivation; aminoglycoside antibiotic; ribostamycin; paromomycin; kanamycin A; gentamicin B; ANT(4'); isepamicin; G418; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 27499 UPDATED strand with - UPDATED accession with NC_013342.1 UPDATED fmin with 26737 UPDATED sequence with GTGAATGGACCAATAATAATGACTAGAGAAGAAAGAATGAAGATTGTTCATGAAATTAAGGAACGAATATTGGATAAATATGGGGATGATGTTAAGGCTATTGGTGTTTATGGCTCTCTTGGTCGTCAGACTGATGGGCCCTATTCGGATATTGAGATGATGTGTGTCATGTCAACAGAGGAAGCAGAGTTCAGCCATGAATGGACAACCGGTGAGTGGAAGGTGGAAGTGAATTTTGATAGCGAAGAGATTCTACTAGATTATGCATCTCAGGTGGAATCAGATTGGCCGCTTACACATGGTCAATTTTTCTCTATTTTGCCGATTTATGATTCAGGTGGATACTTAGAGAAAGTGTATCAAACTGCTAAATCGGTAGAAGCCCAAACGTTCCACGATGCGATTTGTGCCCTTATCGTAGAAGAGCTGTTTGAATATGCAGGCAAATGGCGTAATATTCGTGTGCAAGGACCGACAACATTTCTACCATCCTTGACTGTACAGGTAGCAATGGCAGGTGCCATGTTGATTGGTCTGCATCATCGCATCTGTTATACGACGAGCGCTTCGGTCTTAACTGAAGCAGTTAAGCAATCAGATCTTCCTTCAGGTTATGACCATCTGTGCCAGTTCGTAATGTCTGGTCAACTTTCCGACTCTGAGAAACTTCTGGAATCGCTAGAGAATTTCTGGAATGGGATTCAGGAGTGGACAGAACGACACGGATATATAGTGGATGTGTCAAAACGCATACCATTTTGA UPDATED NCBI_taxonomy_name with Staphylococcus aureus UPDATED NCBI_taxonomy_id with 1280 UPDATED NCBI_taxonomy_cvterm_id with 35508 UPDATED accession with YP_006938491.1 UPDATED sequence with MNGPIIMTREERMKIVHEIKERILDKYGDDVKAIGVYGSLGRQTDGPYSDIEMMCVMSTEEAEFSHEWTTGEWKVEVNFDSEEILLDYASQVESDWPLTHGQFFSILPIYDSGGYLEKVYQTAKSVEAQTFHDAICALIVEELFEYAGKWRNIRVQGPTTFLPSLTVQVAMAGAMLIGLHHRICYTTSASVLTEAVKQSDLPSGYDHLCQFVMSGQLSDSEKLLESLENFWNGIQEWTERHGYIVDVSKRIPF " 1457 UPDATE CTX-M-13 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAATGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCAAAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGAGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA " 2387 UPDATE Erm(47) antibiotic target alteration; streptogramin antibiotic; Erm 23S ribosomal RNA methyltransferase; macrolide antibiotic; lincosamide antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2386 UPDATE cipA dalfopristin; thiamphenicol; oxazolidinone antibiotic; pristinamycin IIA; pleuromutilin antibiotic; tiamulin; madumycin II; griseoviridin; linezolid; lincomycin; macrolide antibiotic; streptogramin antibiotic; antibiotic target alteration; lincosamide antibiotic; azidamfenicol; clindamycin; phenicol antibiotic; Cfr 23S ribosomal RNA methyltransferase; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 3932167 UPDATED strand with - UPDATED accession with NC_013406.1 UPDATED fmin with 3931126 UPDATED sequence with ATGAAGTATTTATCTAAGTATGAAAAAATACGTAAGATCTTATCGGCTCTAAATCAACCGAATTATAGATATTCGCAAATAACAGAGGCAATCTTCAAGAACAAGATCGGAAATTTCGAAGCAATGAACAACTTGCCTAAGCCTGTAAGAAATGAATTAATCAAAGAGCTTGGAAACAATGTGTTAAGCATCACACCGAAAATGGAGCAGAAATCCAACCAAGTTAGCAAAATTCTGTTTGCTATCCCAGGCGATGAATACATTGAATCCGTAAGGTTAAGTTATCAAACGGGCTGGGAATCCTATTGTATCTCTTCGCAGTGCGGTTGCGGATTTGGTTGTACATTTTGCGCTACGGGAACACTCGGTTTGAAGAGGAATCTTACAACGGATGAAATAACGGATCAACTGCTTTATTTTACTTTGAATAACCATCCCTTGGACAGTGTGTCTTTTATGGGAATGGGAGAGGCACTTGCAAATCCATATGTATTTGATGCTTTGCATTTGCTGACGGATCCTAAACTTTTCGGTTTAGGACATCGAAGGATTACGGTTTCTACCATAGGTTTATTACCTGGAGTAAAAAAGTTGACGAAGGAATTTCCACAGATTAATTTAACGTTCTCGCTTCATTCACCATTTCATGATCAGAGAAGCGAGTTAATGCCCATTAACAATCATTTTCCATTAGAAGAAGTTATGACCGTGTTGGACGAGCATATTCAGCAAACAAAGCGAAAGGTTTACATTGCTTATATCCTGCTAAGGGGTATCAACGATTCAACTAAACATGCTAAAGCCGTTGCTGATTTGTTGCGTGAAAGAGGGTCGTGGGAACATTTATATCACGTCAATCTAATTCCATACAATTCCACTGATGCCACATCACAAAGTTTTGTAGAGTCGGATCAGAACAGCATCAATATGTTCCTTAGAATCTTGAAGTCAAAGGGAATCCATGTCACCGTGAGGACCCAATTCGGATCAGACATCAACGCAGCATGCGGTCAACTATATGGATCAAACGGTAACATTTAA UPDATED NCBI_taxonomy_name with Paenibacillus sp. Y412MC10 UPDATED NCBI_taxonomy_id with 481743 UPDATED NCBI_taxonomy_cvterm_id with 40613 UPDATED accession with WP_015735625.1 UPDATED sequence with MKYLSKYEKIRKILSALNQPNYRYSQITEAIFKNKIGNFEAMNNLPKPVRNELIKELGNNVLSITPKMEQKSNQVSKILFAIPGDEYIESVRLSYQTGWESYCISSQCGCGFGCTFCATGTLGLKRNLTTDEITDQLLYFTLNNHPLDSVSFMGMGEALANPYVFDALHLLTDPKLFGLGHRRITVSTIGLLPGVKKLTKEFPQINLTFSLHSPFHDQRSELMPINNHFPLEEVMTVLDEHIQQTKRKVYIAYILLRGINDSTKHAKAVADLLRERGSWEHLYHVNLIPYNSTDATSQSFVESDQNSINMFLRILKSKGIHVTVRTQFGSDINAACGQLYGSNGNI " 1102 UPDATE QnrB29 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1451 UPDATE MIR-17 antibiotic inactivation; monobactam; cephalosporin; MIR beta-lactamase; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 35962 " 1100 UPDATE OXA-245 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1101 UPDATE CTX-M-21 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 902 UPDATE OXA-92 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 903 UPDATE APH(2'')-Ig antibiotic inactivation; kanamycin A; gentamicin B; aminoglycoside antibiotic; sisomicin; arbekacin; APH(2''); netilmicin; gentamicin C; amikacin; isepamicin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 43928 UPDATED strand with - UPDATED accession with CP004067.1 UPDATED fmin with 43007 UPDATED sequence with ATGTGTGAATTTAGTAGTCCGCAAATTCCAATAACGGATATTGAGAATGCCATGGAACGGATCGGAAGTCCGGTGAGAGAACTCCGCCGCTTGGATGCGGGGGATGACAGCGAAGTGCTGCTTTGCAATGGGCTGTTTGTCATCAAAATCCCCAAACGGCCATCTGTGCGCGTGACACAGCAAAGAGAATTTGCAGTATACTCCTTTCTCAAACAGTATGATTTACCTGCCTTGATTCCGGAAGTGATTTTTCAATGCAGCGAATTTAATGTTATGTCGTTTATCCCCGGAGAAAACTTTGGCTTTCAAGAATATGCTTTGCTTTCAGAAAAGGAAAAAGAAGCGCTTGCTTCAGATATGGCGATATTTTTGCGGAGATTGCATGGTATATCGGTGCCGCTTTCAGAGAAACCGTTCTGTGAAATCTTCGAAGATAAACGCAAAAGATATTTGGAAGACCAAGAACAGCTGCTTGAAGTGCTCGAAAACCGAAAACTCTTGAATGCACCACTCCAGAAAAATATCCAGACGATATACGAGCATATCGGTCAGAATCAGGAACTGTTTAACTATGCGGCCTGTTTAGTTCACAATGATTTTAGCTCTTCCAATATGGTGTTCAGACATAATCGTCTGTATGGCGTGATCGATTTTGGAGATGTAATTGTCGGCGATCCGGACAATGATTTTTTATGCCTTCTGGATTGCAGCATGGATGACTTTGGGAAAGATTTCGGGCGAAAGGTTTTAAGGCATTATGGCCATCGGAATCCACAATTAGCAGAAAGAAAAGCAGAAATCAATGATGCTTACTGGCCGATACAGCAAGTCCTGCTTGGTGTTCAGAGAGAAGATCGGTCGCTTTTCTGTAAGGGATACCGTGAACTTCTAGCCATAGACCCAGATGCTTTCATTTTATAA UPDATED NCBI_taxonomy_name with Campylobacter coli CVM N29710 UPDATED NCBI_taxonomy_id with 1273173 UPDATED NCBI_taxonomy_cvterm_id with 39528 UPDATED accession with AGV10818.1 UPDATED sequence with MCEFSSPQIPITDIENAMERIGSPVRELRRLDAGDDSEVLLCNGLFVIKIPKRPSVRVTQQREFAVYSFLKQYDLPALIPEVIFQCSEFNVMSFIPGENFGFQEYALLSEKEKEALASDMAIFLRRLHGISVPLSEKPFCEIFEDKRKRYLEDQEQLLEVLENRKLLNAPLQKNIQTIYEHIGQNQELFNYAACLVHNDFSSSNMVFRHNRLYGVIDFGDVIVGDPDNDFLCLLDCSMDDFGKDFGRKVLRHYGHRNPQLAERKAEINDAYWPIQQVLLGVQREDRSLFCKGYRELLAIDPDAFIL " 900 UPDATE tet(C) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 901 UPDATE LCR-1 LCR beta-lactamase; penam; cephalosporin; antibiotic inactivation; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCTAAAGAGCACCCTTCTGGCCTTTGGTCTCTTTATTGCGCTCTCAGCGCGTGCAGAGAACCAGGCAATCGCCAAGCTTTTCCTGAGGGCAGGGGTCGATGGGACCATCGTCATCGAGTCTCTAACCACCGGACAGCGCTTGGTTCACAACGATCCTCGTGCGCAACAACGATACCCGGCAGCTTCCACGTTCAAGGTACTCAATACCTTGATTGCTCTCGAAGAGGGCGCCATTTCAGGTGAGAACCAGATCTTTCACTGGAACGGTACCCAGTATTCGATTGCGAATTGGAACCAGGACCAGACTCTAGACAGTGCGTTTAAAGTGAGTTGTGTCTGGTGCTACCAGCAGATTGCCCTTCGAGTGGGGGCACTCAAGTACCCAGCCTATATTCAACAGACAAACTATGGTCATTTACTGGAACCCTTCAATGGAACGGAGTTTTGGCTGGATGGCTCTTTGACGATCAGCGCGGAAGAACAGGTTGCCTTTCTCCGACAGGTTGTTGAGCGAAAACTACCGTTCAAGGCGAGCAGCTATGATTCCCTGAAGAAAGTCATGTTCGCCGATGAGAATGCCCAGTATCGCCTTTATGCAAAAACAGGTTGGGCGACCCGCATGACTCCCTCGGTGGGTTGGTATGTTGGCTATGTTGAAGCAAAGGACGATGTTTGGCTGTTTGCCCTGAATCTTGCTACCCGCGACGCGAATGACCTGCCCCTACGAACGCAGATAGCCAAAGACGCGCTGAAGGCGATAGGTGCGTTTCCTACGAAGTAA " 906 UPDATE CARB-21 penam; antibiotic inactivation; CARB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGGTTAGAGTATTCACTCGTTATAGTTTGCTTAACATCGCCAAAGTGCGAATCAAAACCAAAAGAACGAAGAACACACGCATGAAAAAGTTATTCCTGTTGGTTGGGCTGATGGTTTGCTCAACTGTTAGTTACGCTTCCAAATTAAACGAAGACATCTCCCTCATCGAGAAACAAACATCTGGGCGAATTGGAGTGTCAGTCTGGGATACACAAATGGACGAGCGTTGGGATTATCGCGGAGACGAACGTTTCCCATTAATGAGCACATTCAAAACGTTAGCGTGTGCCACCATGCTAAGCGACATGGACAGCGGCAAACTCAACAAAAATGCCACAGCGAGAATCGATGAACGCAATATTGTGGTTTGGTCTCCGGTGATGGATAAACTGGCTGGACAAAGCACGCGTATCGAACACGCTTGTGAAGCCGCCATGTTGATGAGCGACAACACCGCCGCAAACTTAGTGCTAAATGAAATTGGTGGTCCTAAAGCGGTCACGCTGTTTTTGCGCTCTATTGGCGACAAAGCAACGCGACTTGACCGATTGGAGCCCCGTTTGAACGAAGCAAAACCGGGCGACAAGCGAGACACCACAACGCCTAACGCCATGGTAAACACCCTACACACCTTGATGGAAGATAACGCCCTATCTTACGAGTCACGCACACAGCTGAAAATCTGGATGCAAGACAACAAAGTATCGGATTCTCTCATGCGCTCTGTTCTACCAAAAGGCTGGTCGATTGCAGACCGCTCTGGCGCAGGTAACTACGGTTCACGCGGCATTAGCGCGATGATTTGGAAAGACAACTACAAGCCGGTTTACATCAGTATTTACGTCACAGATACTGACCTTTCGCTTCAAGCTCGCGATCAACTGATCGCGCAAATCAGCCAACTGATTTTAGAGCACTACAAAGAAAGTTAA " 907 UPDATE fexA antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; florfenicol; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAGGATAGTAAATCTAAAGAAATGATTCAATCTGAAAAAAGGGGTTCTACTAGGCTTTTAATGATGGTACTCTCCCTATCTGTACTTGTAGGTGCAATTACGGCTGATTTAGTCAATCCCGTACTTCCACTAATAAGCAAAGATTTAGAAGCTTCGAAATCTCAAGTGAGTTGGATAGTTAGTGGTATTGCACTTGTTCTTGCGATTGGAGTTCCGATTTATGGTCGAATCTCAGACTTTTTTGAGTTACGAAAGCTATATATCTTTGCCATTATGATTCTGGCAAGTGGTAGTCTTTTATGTGCAATTGCCCCGAACCTCCCATTGTTGGTTTTGGGAAGAATGGTTCAGGGTGCTGGGATGTCCGCAATTCCAGTTCTATCAATCATTGCAATTTCGAAGGTTTTCCCACAAGGAAAACGTGGGGGAGCTTTGGGAATTATCGCAGGAAGTATTGGTGTTGGAACTGCTGCTGGTCCAATATTTGGTGGAGTAGTTGGTCAATATTTAGGGTGGAATGCCTTGTTTTGGTTCACATTTTTGTTAGCCATTATGATTGTTATTGGTGCCTACTACGCGTTACCGACAATTAAACCGGCAGAATCCGTAGGAAGCAATAAGAACTTTGATTTCATTGGTGGTTTATTCCTCGGCCTCACAGTAGGATTACTCCTTTTTGGCATCACTCAAGGAGAAACTTCTGGTTTTTCTTCGTTCTCATCGTTAACTAGCCTAATTGGTTCTGTTGTAGCTTTGGTGGGATTTATTTGGAGAATTGTTACCGCAGAAAATCCATTTGTACCACCTGTCCTGTTCAATAACAAGGATTATGTCAATACGGTCATAATTGCATTTTTTTCGATGTTTGCTTATTTCGCTGTTCTTGTGTTCGTCCCATTACTAGTCGTTGAGGTGAATGGACTCTCTTCTGGACAGGCTGGAATGATATTGTTGCCAGGTGGTGTGGCTGTTGCAATCTTATCTCCCTTCGTTGGCCGTCTTTCTGATCGATTTGGGGATAAACGTCTGATAATTACTGGGATGACTCTGATGGGGCTGTCTACCTTATTCTTGTCCACCTATGCATCTGGTGCTTCACCTCTGTTAGTTTCCGTGGGGGTCCTCGGAGTAGGGATTGCTTTTGCATTCACGAATTCTCCCGCAAATAACGCCGCAGTAAGTGCACTCGATGCAGACAAGGTTGGTGTCGGAATGGGGATTTTCCAAGGTGCTTTGTACCTTGGAGCAGGAACTGGAGCAGGTATGATTGGAGCATTATTATCCGCTCGACGTGATGCTACTGAGCCGATAAATCCATTATATATATTGGACGCTATGTCCTACTCAGATGCGTTCCTTGCAGCTACAGGGGCAATACTCATTGCCTTAATAGCTGGATTAGGTTTAAAAAAGCGTGGGTAA " 904 UPDATE rmtB kanamycin A; aminoglycoside antibiotic; isepamicin; 16S rRNA methyltransferase (G1405); sisomicin; arbekacin; gentamicin B; netilmicin; antibiotic target alteration; gentamicin C; amikacin; dibekacin; G418; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATCAACGATGCCCTCACCTCCATCCTGGCCTCAAAAAAATACCGCGCCCTTTGCCCGGATACCGTGCGGCGCATCCTGACTGAGGAATGGGGGCGGCATAAATCCCCCAAACAGACCGTAGAGGCTGCACGCACCCGGCTGCATGGAATTTGCGGGGCATATGTCACCCCGGAATCGCTCAAGGCTGCTGCCGCCGCGCTTTCTGCGGGCGATGTAAAAAAGGCATTGTCGCTGCATGCCTCCACCAAGGAGCGACTGGCCGAGCTGGATACCCTGTACGATTTTATCTTTTCAGCCGAAACTCCCCGCCGCGTGCTGGATATCGCCTGCGGTCTTAACCCCTTGGCGCTATACGAGCGCGGCATTGCATCCGTGTGGGGCTGTGATATCCACCAGGGATTGGGGGATGTCATCACCCCCTTTGCTAGGGAAAAAGATTGGGATTTTACCTTTGCCCTGCAGGATGTGCTGTGTGCGCCGCCCGCCGAAGCCGGCGACCTGGCGCTGATTTTTAAGCTTTTGCCCCTGCTGGAGCGGGAGCAGGCCGGTTCTGCCATGGCACTTTTACAATCCCTCAATACCCCGCGCATGGCTGTCAGCTTTCCCACGCGTAGTTTAGGCGGGCGTGGAAAAGGCATGGAGGCGAACTACGCCGCATGGTTCGAGGGCGGCTTGCCCGCCGAGTTTGAGATTGAGGATAAAAAGACCATCGGAACAGAACTTATATACTTGATAAAAAAGAATGGATAA " 905 UPDATE CTX-M-93 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1843 UPDATE rmtD antibiotic target alteration; aminoglycoside antibiotic; 16S rRNA methyltransferase (G1405); model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2223 UPDATED strand with - UPDATED accession with EU269034.2 UPDATED fmin with 1479 UPDATED sequence with ATGAGCGAACTGAAGGAAAAACTGCTCGCTTCGAAAAAATATCGCGACGTTTGCCCGGACACGATCGAGCGCATATGGCGTGAATGCAGCGCGAAATTCAAAAAGGAAAAGGACGTGGACAAGGCGGCGCGCGAAGCGCTTCACGGCGTGACCGGCGCGTTCATGACCGAGCGCGAATACAAACGCGCAATGGAAATGGCGGCGGCACGCGATTGGGAAGCGCTGCTTGGAATGCACGCGTCCACGCGCGAACGGCTGCCTGTGGAATCGATGGATCGCGTGTTCGATCAGCTGTTTGAAGCCAGCGGAACGCCGGCGCGAATCCTCGATCTCGCGTGCGGGCTGAATCCTGTCTACCTCGCGCATCGATTGCCAAATGCGGCGATTACCGGCGTGGATATCAGCGGTCAGTGCGTAAACGTAATTCGTGCGTTTGGCGGCGCGGAAGCGCGTTTGGGCGATTTGCTGTGCGAAATCCCGGAAGACGAGGCGAATGCGGCGCTGCTGTTTAAGGTGCTGCCGCTTTTGGAGCGCCAGCGTGCGGGCGCGGCGATGGATGCGCTAATGCGCGTGAATGCGGAATGGATCGTCGCATCGTTTCCGACGCGTTCGCTCGGCGGGCGCAACGTCGGCATGGAAAAGCACTATTCCGAATGGATGGAGGCGCACGTGCCGGAAAATCGCGCGATTGCCGCGCGGCTGACCGGCGAAAACGAGCTGTTTTACGTGCTGAAACGAAAATGA UPDATED NCBI_taxonomy_name with Klebsiella pneumoniae UPDATED NCBI_taxonomy_id with 573 UPDATED NCBI_taxonomy_cvterm_id with 35915 UPDATED accession with ABY64751.1 UPDATED sequence with MSELKEKLLASKKYRDVCPDTIERIWRECSAKFKKEKDVDKAAREALHGVTGAFMTEREYKRAMEMAAARDWEALLGMHASTRERLPVESMDRVFDQLFEASGTPARILDLACGLNPVYLAHRLPNAAITGVDISGQCVNVIRAFGGAEARLGDLLCEIPEDEANAALLFKVLPLLERQRAGAAMDALMRVNAEWIVASFPTRSLGGRNVGMEKHYSEWMEAHVPENRAIAARLTGENELFYVLKRK " 1842 UPDATE IMI-3 carbapenem; antibiotic inactivation; IMI beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1841 UPDATE OXA-76 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1840 UPDATE CMY-59 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1847 UPDATE emrB efflux pump complex or subunit conferring antibiotic resistance; nalidixic acid; major facilitator superfamily (MFS) antibiotic efflux pump; fluoroquinolone antibiotic; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAACAGCAAAAACCGCTGGAAGGCGCGCAACTGGTCATTATGACGATTGCGCTGTCACTGGCGACATTCATGCAGGTGCTGGACTCCACCATTGCTAACGTGGCGATCCCCACTATCGCCGGGAATCTGGGCTCATCGCTCAGCCAGGGAACGTGGGTAATCACTTCTTTCGGGGTGGCGAATGCCATCTCGATCCCGCTTACCGGCTGGCTGGCAAAGCGCGTCGGGGAAGTGAAACTGTTCCTTTGGTCCACCATCGCCTTTGCTATTGCGTCGTGGGCGTGTGGTGTCTCCAGCAGCCTGAATATGCTGATCTTCTTCCGCGTGATTCAGGGGATTGTCGCCGGGCCGTTGATCCCGCTTTCGCAAAGTCTATTGCTGAATAACTACCCGCCAGCCAAACGCTCGATCGCGCTGGCGTTGTGGTCGATGACGGTGATTGTCGCGCCAATTTGCGGCCCGATCCTCGGCGGTTATATCAGCGATAATTACCACTGGGGCTGGATATTCTTCATCAACGTGCCGATTGGCGTGGCGGTGGTGTTGATGACACTGCAAACTCTGCGCGGACGTGAAACCCGCACCGAACGGCGGCGGATTGATGCCGTGGGGCTGGCACTGCTGGTTATTGGTATCGGCAGCCTGCAGATTATGCTCGACCGCGGTAAAGAGCTGGACTGGTTTTCATCACAGGAAATTATCATCCTTACCGTGGTGGCGGTGGTGGCTATCTGCTTCCTGATTGTCTGGGAGCTGACCGACGATAACCCGATAGTCGATCTGTCGTTGTTTAAGTCGCGCAACTTCACCATCGGCTGCTTGTGTATCAGCCTCGCGTATATGCTCTACTTCGGCGCTATTGTTCTGCTGCCGCAGTTGTTGCAGGAGGTCTACGGTTACACGGCGACCTGGGCAGGTTTGGCCTCTGCGCCGGTAGGGATTATTCCGGTGATCCTGTCGCCGATTATCGGCCGCTTCGCGCATAAACTGGATATGCGGCGGCTGGTAACCTTCAGCTTTATTATGTATGCCGTCTGCTTCTACTGGCGTGCCTATACCTTTGAACCAGGTATGGATTTTGGCGCGTCGGCCTGGCCGCAGTTTATCCAGGGGTTTGCGGTGGCCTGCTTCTTTATGCCGCTGACCACCATTACGCTGTCTGGTTTGCCACCGGAACGACTGGCGGCGGCATCGAGCCTCTCTAACTTTACGCGAACGCTGGCGGGGTCTATCGGCACGTCGATAACCACGACCATGTGGACCAACCGCGAGTCGATGCACCATGCGCAGTTGACTGAGTCGGTAAACCCGTTCAACCCGAATGCCCAGGCGATGTACAGTCAACTGGAAGGGCTTGGGATGACGCAACAGCAGGCATCAGGCTGGATTGCCCAGCAGATCACCAATCAGGGGCTGATTATTTCCGCCAATGAGATCTTCTGGATGTCAGCCGGGATATTCCTCGTCCTGCTGGGGCTGGTGTGGTTTGCTAAACCGCCATTTGGCGCAGGTGGCGGCGGAGGCGGTGCGCACTAA " 1846 UPDATE CTX-M-91 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAGAAAAAGCGTAAGGCGGGCGATGTTAATGACGACAGCCTGTGTTTCGCTGCTGTTGGCCAGTGTGCCGCTGTGTGCCCAGGCGAACGATGTTCAACAGAAGCTCGCGGCGCTGGAGAAAAGCAGCGGGGGACGACTGGGTGTGGCGTTGATTAACACCGCCGATAACACGCAGACGCTCTACCGCGCCGACGAGCGTTTTGCCATGTGCAGCACCAGTAAAGTGATGGCGGTAGCGGCGGTGCTTAAGCAAAGTGAAACGCAAAAGGGCTTGTTGAGTCAGCGGGTTGAAATTAAGCCCTCAGACTTGATTAACTACAACCCCATTGCGGAAAAACACGTCAATGGCACGATGACATTCGGGGAGTTGAGCGCGGCGGCGCTACAGTACAGCGATAATACTGCCATGAATAAGCTGATTGCCCATCTCGGGGGGCCGGATAAAGTGACGGCATTTGCCCGTACGATTGGCGATGACACGTTCCGGCTCGATCGTACCGAGCCGACGCTCAACACCGCGATCCCCGGCGACCCGCGCGATACCACCACGCCGTTAGCGATGGCGCAGTCTCTGCGCAATCTGACGTTGGGCAATGCCCTGGGTGACACTCAGCGTGCGCAGCTGGTGATGTGGCTGAAAGGCAACACCACCGGCGCTGCCAGCATTCAGGCAGGGCTACCCACATCGTGGGTTGTCGGGGATAAAACCGGCAGCGGCGATTATGGTACGACGAATGATATCGCGGTTATTTGGCCGGAAGGTCGCGCGCCGCTCGTTCTGGTGACTTACTTCACCCAGTCGGAGCCGAAGGCAGAGAGCCGTCGTGACGTGCTCGCTGCTGCCGCCAGAATTGTCACCGACGGTTATTAA " 1845 UPDATE OXA-312 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1844 UPDATE OXA-128 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2614 UPDATE mphD antibiotic inactivation; macrolide phosphotransferase (MPH); macrolide antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1908 UPDATE OKP-A-6 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1909 UPDATE AAC(6')-Iak antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 35500 UPDATED strand with - UPDATED accession with AB894482.1 UPDATED fmin with 35038 UPDATED sequence with GTGACCGGCAGCGCGGCCACGATCCGCCCGGCCAAGGCGGCCGATGCGGTCGCGTGGGCGCAGCTGCGTCTGGGCCTGTGGCCCGATGCCGATGATCCGCTGGAGACGCTGGTGGCGGCGCTGGCCGAGGACGCAGGTGCGGTTTTCCTGGCGTGTGCAGCGGGTGGCCAGGCGATCGGCTTCGCCGAAGTGCGCCTGCGCCATGACTACGTGAACGGCACCGATTCCTCGCCGGTGGGCTTCCTGGAGGGCTGGTACGTGCAGCCGCAGTGGCAAGGCCGCGGCGTGGGCCGCGCCCTGCTGGCGGCGGTGCGGGCATGGACGCGCGACGCGGGCTGCCGCGAACTGGCTTCGGACAGTCGCGTGGAGGACGTGCAGGCTCACGCCGCGCATCGGGCCTGCGGCTTCGAAGAGACCGAACGGGTGGTCTATTTCCGCATGCCACTGGAGCCATCGGCGTGA UPDATED NCBI_taxonomy_name with Stenotrophomonas maltophilia UPDATED NCBI_taxonomy_id with 40324 UPDATED NCBI_taxonomy_cvterm_id with 37076 UPDATED accession with BAO21229.1 UPDATED sequence with MTGSAATIRPAKAADAVAWAQLRLGLWPDADDPLETLVAALAEDAGAVFLACAAGGQAIGFAEVRLRHDYVNGTDSSPVGFLEGWYVQPQWQGRGVGRALLAAVRAWTRDAGCRELASDSRVEDVQAHAAHRACGFEETERVVYFRMPLEPSA " 1906 UPDATE CTX-M-17 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCAAGGGGCTGTAA " 1907 UPDATE vanSA glycopeptide resistance gene cluster; vanS; teicoplanin; glycopeptide antibiotic; antibiotic target alteration; vancomycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1904 UPDATE ACT-32 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1905 UPDATE ACT-21 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1902 UPDATE OXA-246 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1903 UPDATE mdtE penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; norfloxacin; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; oxacillin; cloxacillin; fluoroquinolone antibiotic; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 3981183 UPDATED strand with - UPDATED accession with AP009048.1 UPDATED fmin with 3980025 UPDATED sequence with ATGAACAGAAGAAGAAAGCTGTTAATACCGTTGTTATTCTGCGGCGCGATGCTCACCGCCTGCGATGACAAATCGGCGGAAAACGCCGCCGCCATGACGCCTGAGGTCGGTGTCGTCACACTCTCCCCCGGTTCGGTCAATGTGTTGAGCGAATTGCCCGGTAGAACCGTTCCTTATGAAGTTGCCGAGATACGTCCCCAGGTGGGCGGTATTATCATTAAACGCAACTTTATCGAAGGCGATAAAGTGAACCAGGGCGATTCGCTGTATCAGATTGATCCTGCACCTTTACAGGCCGAGCTAAACTCCGCCAAAGGCTCGCTGGCGAAAGCGCTCTCTACCGCCAGCAATGCCCGCATCACCTTTAACCGCCAGGCATCGTTGCTGAAGACCAACTACGTTAGCCGTCAGGATTACGACACCGCGCGCACCCAGTTGAATGAAGCAGAAGCCAATGTCACCGTCGCCAAAGCGGCTGTTGAACAGGCGACGATCAATCTGCAATACGCGAATGTCACCTCGCCGATTACGGGCGTCAGCGGGAAATCGTCGGTGACCGTCGGCGCACTCGTTACCGCTAATCAGGCAGATTCGCTGGTTACCGTACAACGTCTGGACCCGATTTATGTCGATCTCACGCAGTCGGTGCAAGATTTCTTACGCATGAAAGAAGAGGTCGCCAGTGGGCAAATCAAACAGGTTCAGGGCAGTACGCCAGTACAGCTCAATCTGGAAAATGGTAAACGCTACAGCCAGACCGGCACGCTGAAATTCTCCGACCCGACAGTGGATGAAACCACGGGCTCCGTGACGTTACGGGCGATTTTCCCCAACCCAAATGGTGACTTGCTGCCTGGCATGTACGTCACGGCATTAGTGGATGAAGGTAGCCGCCAGAATGTATTACTGGTGCCGCAGGAAGGCGTCACCCACAACGCCCAGGGTAAAGCAACGGCGCTCATTCTGGATAAAGACGATGTCGTGCAGCTACGCGAAATTGAAGCCAGCAAAGCCATCGGCGACCAGTGGGTCGTCACCTCTGGCTTGCAGGCTGGCGATCGGGTGATCGTTTCCGGTTTGCAACGCATTCGTCCGGGTATCAAAGCACGAGCAATTTCCTCCAGCCAGGAAAACGCCAGCACCGAATCGAAACAATAA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. W3110 UPDATED NCBI_taxonomy_id with 316407 UPDATED NCBI_taxonomy_cvterm_id with 36839 UPDATED accession with BAE77781.1 UPDATED sequence with MNRRRKLLIPLLFCGAMLTACDDKSAENAAAMTPEVGVVTLSPGSVNVLSELPGRTVPYEVAEIRPQVGGIIIKRNFIEGDKVNQGDSLYQIDPAPLQAELNSAKGSLAKALSTASNARITFNRQASLLKTNYVSRQDYDTARTQLNEAEANVTVAKAAVEQATINLQYANVTSPITGVSGKSSVTVGALVTANQADSLVTVQRLDPIYVDLTQSVQDFLRMKEEVASGQIKQVQGSTPVQLNLENGKRYSQTGTLKFSDPTVDETTGSVTLRAIFPNPNGDLLPGMYVTALVDEGSRQNVLLVPQEGVTHNAQGKATALILDKDDVVQLREIEASKAIGDQWVVTSGLQAGDRVIVSGLQRIRPGIKARAISSSQENASTESKQ " 1900 UPDATE ACT-13 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1901 UPDATE CTX-M-51 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 854 UPDATE CMY-58 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGTTATGCTGCGCTCTGCTGCTGACAGCCTCTTTCTCCACATTTGCTGCCGCAAAAACAGAACAACAGATTGCCGATATCGTTAATCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCCGTTATCTACCAGGGAAAACCCTATTATTTCACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGATCGGTTAGTAAGACGTTTAACGGCGTGTTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCAGGGTATCCGCCTGCTGCACTTAGCCACCTATACGGCAGGCGGCCTACCGCTGCAGATCCCCGATGACGTTAGGGATAAAGCCGCATTACTGCATTTTTATCAAAACTGGCAGCCGCAATGGACTCCGGGCGCTAAGCGACTTTACGCTAACTCCAGCATTGGTCTGTTTGGCGCGCTGGCGGTGAAACCCTCAGGAATGAGTTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAGAACGAACAAAAAGATTATGCCTGGGGCTATCGCGAAGGGAAGCCCGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATTGCGTGAAATCCAGCGTTATTGATATGGCCCGCTGGGTTCAGGCCAACATGGATGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGCGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCCGCCCCCGCAGTGAAAGCCTCATGGGTGCATAAAACGGGCTCCACTGGTGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGCGGCCTGGCGCATTCTTGAAAAGCTGCAATAA " 855 UPDATE TEM-142 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 856 UPDATE mepR antibiotic efflux; protein(s) and two-component regulatory system modulating antibiotic efflux; multidrug and toxic compound extrusion (MATE) transporter; efflux pump complex or subunit conferring antibiotic resistance; tigecycline; glycylcycline; tetracycline antibiotic; tetracycline; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAATTCACTTATTCGTATTTATTTAGAATGATTAGTCATGAGATGAAACAAAAGGCTGATCAAAAGTTAGAGCAATTTGATATTACAAATGAGCAAGGTCATACGTTAGGTTATCTTTATGCACATCAACAAGATGGACTGACACAAAATGATATTGCTAAAGCATTACAACGAACAGGTCCAACTGTCAGTAATTTATTAAGGAACCTTGAACGTAAAAAGCTGATCTATCGCTATGTCGATGCACAAGATACGAGAAGAAAGAATATAGGACTGACTACCTCTGGGATTAAACTTGTAGAAGCATTCACTTCGATATTTGATGAAATGGAGCAAACACTCGTATCGCAGTTATCTGAAGAAGAAAATGAACAAATGAAAGCAAACTTAACTAAAATGTTATCTAGTTTACAATAA " 850 UPDATE OXA-26 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAATTTATACTTCCTATATTCAGCATTTCTATTCTAGTTTCTCTCAGTGCATGTTCATCTATTAAAACTAAATCTGAAGATAATTTTCATATTTCTTCTCAGCAACATGAAAAAGCTATTAAAAGCTATTTTGATGAAGCTCAAACACAGGGTGTAATTATTATTAAAGAGGGTAAAAATCTTAGCACCTATGGTAATGCTCTTGCACGAGCAAATAAAGAATATGTCCCTGCATCAACATTTAAGATGCTAAATGCTTTAATCGGGCTAGAAAATCATAAAGCAACAACAAATGAGATTTTCAAATGGGATGGTAAAAAAAGAACTTATCCTATGTGGGAGAAAGATATGACTTTAGGTGAGGCAATGGCATTGTCAGCAGTTCCAGTATATCAAGAGCTTGCAAGACGGACTGGCCTAGAGCTAATGCAGAAAGAAGTAAAGCGGGTTAATTTTGGAAATACAAATATTGGAACACAGGTCGATAATTTTTGGTTAGTTGGCCCCCTTAAAATTACACCAGTACAAGAAGTTAATTTTGCCGATGACCTTGCACATAACCGATTACCTTTTAAATTAGAAACTCAAGAAGAAGTTAAAAAAATGCTTCTAATTAAAGAAGTAAATGGTAGTAAGATTTATGCAAAAAGTGGATGGGGAATGGGTGTTACTCCACAGGTAGGTTGGTTGACTGGTTGGGTGGAGCAAGCTAATGGAAAAAAAATCCCCTTTTCGCTCAACTTAGAAATGAAAGAAGGAATGACTGGTTCTATTCGTAATGAAATTACTTATAAGTCGCTAGAAAATCTTGGAATCATTTAA " 851 UPDATE Mycobacterium tuberculosis pncA mutations conferring resistance to pyrazinamide antibiotic target alteration; pyrazinamide resistant pncA; pyrazinamide; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2289241 UPDATED strand with - UPDATED accession with AL123456 UPDATED fmin with 2288680 UPDATED sequence with ATGCGGGCGTTGATCATCGTCGACGTGCAGAACGACTTCTGCGAGGGTGGCTCGCTGGCGGTAACCGGTGGCGCCGCGCTGGCCCGCGCCATCAGCGACTACCTGGCCGAAGCGGCGGACTACCATCACGTCGTGGCAACCAAGGACTTCCACATCGACCCGGGTGACCACTTCTCCGGCACACCGGACTATTCCTCGTCGTGGCCACCGCATTGCGTCAGCGGTACTCCCGGCGCGGACTTCCATCCCAGTCTGGACACGTCGGCAATCGAGGCGGTGTTCTACAAGGGTGCCTACACCGGAGCGTACAGCGGCTTCGAAGGAGTCGACGAGAACGGCACGCCACTGCTGAATTGGCTGCGGCAACGCGGCGTCGATGAGGTCGATGTGGTCGGTATTGCCACCGATCATTGTGTGCGCCAGACGGCCGAGGACGCGGTACGCAATGGCTTGGCCACCAGGGTGCTGGTGGACCTGACAGCGGGTGTGTCGGCCGATACCACCGTCGCCGCGCTGGAGGAGATGCGCACCGCCAGCGTCGAGTTGGTTTGCAGCTCCTGA UPDATED NCBI_taxonomy_name with Mycobacterium tuberculosis H37Rv UPDATED NCBI_taxonomy_id with 83332 UPDATED NCBI_taxonomy_cvterm_id with 39507 UPDATED accession with CCP44816.1 UPDATED sequence with MRALIIVDVQNDFCEGGSLAVTGGAALARAISDYLAEAADYHHVVATKDFHIDPGDHFSGTPDYSSSWPPHCVSGTPGADFHPSLDTSAIEAVFYKGAYTGAYSGFEGVDENGTPLLNWLRQRGVDEVDVVGIATDHCVRQTAEDAVRNGLATRVLVDLTAGVSADTTVAALEEMRTASVELVCSS " 852 UPDATE QnrB62 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 853 UPDATE OXA-160 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAATTTATACTTCCTATATTCAGCATTTCTATTCTAGTTTCTCTCAGTGCATGTTCATCTATTAAAACTAAATCTGAAGATAATTTTCATATTTCTTCTCAGCAACATGAAAAAGCTATTAAAAGCTATTTTGATGAAGCTCAAACACAGGGTGTAATTATTATTAAAGAGGGTAAAAATCTTAGCACCTATGGTAATGCTCTTGCACGAGCAAATAAAGAATATGTCCCTGCATCAACATTTAAGATGCTAAATGCTTTAATCGGGCTAGAAAATCATAAAGCAACAACAAATGAGATTTTCAAATGGGATGGTAAAAAAAGAACTTATCCTATGTGGGAGAAAGATATGACTTTAGGTGAGGCAATGGCATTGTCAGCAGTTCCAGTATATCAAGAGCTTGCAAGACGGACTGGCCTAGAGCTAATGCAGAAAGAAGTAAAGCGGGTTAATTTTGGAAATACAAATATTGGAACACAGGTCGATAATTTTTGGTTAGTTGGCCCCCTTAAAATTACACCAGTACAAGAAGTTAATTTTGCCGATGACCTTGCACATAACCGATTACCTTTTAAATTAGAAACTCAAGAAGAAGTTAAAAAAATGCTTCTAATTAAAGAAGTAAATGGTAGTAAGATTTATGCAAAAAGTGGATGGGGAATGGGTGTTACTTCACAGGTAGGTTGGTTGACTGGTTGGGTGGAGCAAGCTAATGGAAAAAAAATCCCCTTTTCGCTCAACTTAGAAATGAAAGAAGGAATGTCTGGTTCTATTCGTAATGAAATTACTTATAAGTCGCTAGAAAATCTTGGAATCATTTAA " 858 UPDATE IND-14 carbapenem; antibiotic inactivation; IND beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAAAGAATTCAGTTCTTTATGGTTTCAATGATGCTAAGTCCATTATTCAGTGCCCAGGTAAAAGATTTTGTCATCGAACCACCGATTAAAAAGAATTTACATATTTACAAAACTTTTGGTGTATTCGGAGGTAAAGAATATTCTGCCAATTCAGTATATCTTGTTACCCAAAAAGGAGTTGTCTTATTTGATGTTCCGTGGGAAAAGGTACAGTACCAAAGCCTGATGGATACCATCCAAAAACGCCACAATTTACCCGTAATAGCGGTGTTTGCCACTCACTCCCATGATGACCGTGCCGGAGATCTGAGCTTTTTTAACAACAAAGGAATTAAAACCTACGCTACTGCCAAAACCAATGAGTTCCTGAAAAAAGACGGAAAAGCAACATCCACAGAGATCATTAAGACCGGAAAACCTTATCGCATAGGAGGTGAGGAATTTGTGGTTGATTTTCTTGGAGAAGGGCATACTGCTGATAATGTAGTGGTATGGTTTCCCAAATATAACGTCCTGGATGGCGGATGCCTTGTAAAAAGTAAAGCTGCAACCGATCTTGGATATATTAAGGAAGCCAATGTAGAGCAATGGCCCAAGACCATCAATAAACTGAAATCCAAATATTCAAAAGCAAGCCTGGTTATTCCCGGACATGATGAATGGAAAGGTGGAGGCCATATAGAGCATACTCTTGAACTTCTTAACAAAAAATAA " 425 UPDATE TEM-182 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 740 UPDATE QnrB21 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 741 UPDATE CfxA antibiotic inactivation; flomoxef; cefmetazole; cephamycin; cefotetan; CfxA beta-lactamase; cefoxitin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAAAAAAACAGAAAAAAACAAATCGTAGTTTTGAGTATAGCTTTAGTTTGCATTTTCATCTTGGTATTTTCATTGTTCCATAAATCAGCGACAAAAGATAGCGCAAATCCTCCTTTAACAAATGTTTTGACTGATAGCATTTCTCAAATTGTCTCAGCTTGTCCTGGCGAAATTGGTGTGGCGGTTATTGTTAATAACAGAGATACGGTTAAGGTCAATAATAAGAGTGTTTATCCTATGATGAGTGTGTTTAAGGTTCATCAGGCATTAGCTCTTTGTAATGACTTTGACAATAAAGGAATTTCACTTGATACCTTAGTAAATATAAATAGGGATAAACTTGACCCAAAGACTTGGAGTCCTATGCTGAAAGATTATTCAGGGCCAGTCATATCATTGACAGTGAGAGATTTGCTGCGTTATACTCTTACTCAGAGTGACAACAATGCAAGCAACCTTATGTTTAAGGATATGGTTAATGTCGCTCAAACAGATAGTTTTATAGCCACACTCATTCCTCGTTCAAGTTTTCAGATAGCTTATACGGAAGAGGAAATGTCGGCTGACCATAACAAGGCTTACTCTAACTATACATCTCCTCTTGGTGCTGCAATGTTGATGAATCGTTTGTTTACTGAAGGTCTTATCGATGATGAGAAACAAAGTTTCATTAAGAATACGTTAAAAGAATGCAAAACAGGTGTAGATAGGATAGCAGCTCCACTTCTTGATAAAGAAGGGGTTGTTATAGCGCATAAGACAGGTTCAGGTTATGTTAATGAAAATGGTGTTCTTGCAGCTCACAATGATGTTGCCTATATATGTCTGCCTAATAATATCAGTTATACCTTAGCGGTATTTGTTAAGGATTTCAAGGGAAATAAATCACAAGCGTCACAATATGTTGCGCATATATCAGCTGTAGTATATTCTTTATTAATGCAAACTTCAGTAAAATCTTAA " 742 UPDATE AAC(3)-Id antibiotic inactivation; AAC(3); sisomicin; gentamicin B; astromicin; gentamicin C; aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGTCAGTCGAAATCATCCATCTCACTGGAAACGATGTTGCGTTGTTGCAGTCAATAAATGCCATGTTCGGCGAGGCATTCAACGACCAAGATAGTTATGCCCGCAACAAGCCGTCATCAAGCTATCTTCAAAAACTGCTTAGCACTTCTAGTTTTATTGCGTTGGCTGCGGTTGACGAGCAAAAAGTCATTGGCGCTATCGCCGCGTATGAGTTGCAAAAATTCGAGCAGCAAAGAAGCGAGATTTATATCTACGATCTCGCTGTAGCGGCAACCCGCCGCAGAGAAGGCATAGCTACAGCTCTAATTAAAAAACTCAAGGCTATAGGCGCAGCGCGTGGAGCTTATGTGATTTACGTCCAAGCTGATAAAGGCGTAGAAGACCAACCAGCCATAGAGCTCTATAAAAAACTAGGAACCATCGAAGACGTATTTCATTTCGACATTGCGGTTGAGCAGAGTAAAAATCATGCCTAA " 743 UPDATE arr-3 antibiotic inactivation; rifampin; rifapentine; rifabutin; rifampin ADP-ribosyltransferase (Arr); rifaximin; rifamycin antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTAAAAGATTGGATTCCCATCTCTCATGATAATTACAAGCAGGTGCAAGGACCGTTCTATCATGGAACCAAAGCCAATTTGGCGATTGGTGACTTGCTAACCACAGGGTTCATCTCTCATTTCGAGGACGGTCGTATTCTTAAGCACATCTACTTTTCAGCCTTGATGGAGCCAGCAGTTTGGGGAGCTGAACTTGCTATGTCACTGTCTGGCCTCGAGGGTCGCGGCTACATATACATAGTTGAGCCAACAGGACCGTTCGAAGACGATCCGAATCTTACGAACAAAAGATTTCCCGGTAATCCAACACAGTCCTATAGAACCTGCGAACCCTTGAGAATTGTTGGCGTTGTTGAAGACTGGGAGGGGCATCCTGTTGAATTAATAAGGGGAATGTTGGATTCGTTGGAGGACTTAAAGCGCCGTGGTTTACACGTCATTGAAGACTAG " 744 UPDATE vanSL glycopeptide antibiotic; vanS; antibiotic target alteration; vancomycin; glycopeptide resistance gene cluster; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TTGAAAAGTAAGGCGGAAACTACAACTATAAAACAGATACTAATAAAATATTTAGTAACTATAGGTTTATCGATGCTTGCCTATTTAGTATTTCTTCTAACAATACTTATTATAATGAGAAATTTTGTATGGGACGGCACGGAGCCTATCTATCGTGTCTTGCACTTTTTTTATCGTCTTTTTAATTTTGAAGGGATATTGATTATCGGTGTGATACTTATCCTATTCGTTGTTACATTGTTTTTTGTTATGAAGATAATTGGCTATTTAAAACAAATCATCGAGGCGACGAAACAATTGCTTGAAAAACCAGAACAGCGTGTTAAGCTATCAAGTGGCCTGTTCGAATTACAAGAAGAAATGAACCAACTACGTGAAAAAAATAATGCTGACAATCGCGCAGCTAAAGAAGCGGAAAAGAGAAAAAACGATTTGATTGTTTATTTAGCTCATGATTTACGTACGCCATTAACTAGCGTAATTGGGTATTTAACGCTGTTAAAAGAAGAACCGGAAATATCGGTTCAAACTAGAGCTAAGTATACGAACATCGCTTTGAGTAAAGCTTTTCGCCTTGAAGAATTATTGAGTGAATTTTTTGATGTGACGAGATTTAATTTGACTAACTTAACAATAAATGAAGAACTAGTAGATTTAAGTGTGATGTTAGAGCAAATCAGCTACGAATTTTTACCTATTTTGGAAGAAAAAAAACTTTCTTGGAATCTACACGTCGAGAGTAATATAAAATCTCTTTTAGATCCAGGAAAAATGGAACGTGTTTTTGATAACTTGATGCGAAATGCTATTAATTATAGCTTTGAAGATACAATAATTGATTTAAGTTTAGAAAAAAAAGAATCTCAAGCTATTTTTAAAATTACAAATAGGACCTATACAATCCCAAAAGAAAAATTAGAAAAAATATTCGAACCGTTTTACCGAATGGACACATCTAGAAGTAGCAGTACAGGTGGAACTGGGCTTGGTCTACCGATTGTAAGGGAAATTATTGAAGCTTCCAAAGGAACTATAAACGTTAGTAGTAGCAATAATGAAATGACTTTTATAATCTATTTACCATACATAGATTAA " 745 UPDATE CMY-40 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 746 UPDATE AAC(2')-Ib antibiotic inactivation; AAC(2'); arbekacin; gentamicin B; gentamicin C; amikacin; aminoglycoside antibiotic; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGCCTTTCCAGGATGTCAGCGCGCCCGTTCGAGGCGGGATCCTGCACACCGCTCGACTCGTCCACACCTCCGATCTCGATCAGGAGACTCGAGAGGGCGCCCGCCGCATGGTCATCGAGGCGTTCGAGGGTGATTTCAGCGACGCCGACTGGGAGCACGCGCTCGGTGGCATGCACGCCTTCATCTGTCACCACGGCGCTCTGATCGCGCATGCCGCGGTGGTCCAGCGCCGGCTGCTCTACCGCGACACCGCGCTGCGCTGCGGGTACGTGGAAGCCGTGGCGGTGCGCGAAGATTGGCGCGGCCAAGGCCTGGCCACCGCCGTCATGGACGCGGTCGAACAGGTGCTGCGCGGCGCCTACCAGCTCGGCGCCCTCAGTGCGTCCGACACAGCCAGAGGCATGTACCTCTCTCGCGGGTGGCTGCCGTGGCAGGGGCCGACCTCGGTGCTGCAGCCGGCCGGCGTGACGCGTACACCCGAGGACGACGAGGGACTGTTCGTGCTGCCCGTCGGTCTCCCGGCGGGAATGGAACTCGACACCACAGCCGAGATCACCTGCGACTGGCGCGACGGGGACGTCTGGTAA " 747 UPDATE QnrA4 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 748 UPDATE cmeB antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; macrolide antibiotic; cefotaxime; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; fluoroquinolone antibiotic; fusidic acid; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTTTCTAAATTTTTTATCGAAAGACCTGTTTTTGCCTCAGTTGTTGCAATTATCATTTCTTTAGCTGGAGTCATAGGTCTTACAAATTTACCTATAGAACAATACCCTTCTTTAACCCCTCCTACAGTTAAGGTAAGTGCAACTTACACAGGAGCTGATGCACAAACCATTGCTTCAACAGTTGCAAGTCCTATCGAAGATGCAATCAATGGTGCAGATAATATGATTTATATGGATTCGACTTCAAGTTCTTCAGGAACTATGAGTTTGACCGTTTATTTTGATATTGGCACAGATCCTGATCAAGCCACCATAGATGTTAATAATAGAATTTCAGCTGCAACTGCAAAAATGCCAGATGCAGTTAAAAAACTTGGAGTAACTGTTAGAAAAACTTCTTCGGCAACCCTAGCTGCAATTTCTATGTATTCAAGTGATGGCTCAATGAGTGCAGTGGATGTATACAATTACATCGCCTTAAATGTTTTAGATGAGTTAAAAAGGGTTCCAGGAGTTGGAGATGCAAACGCTATAGGAAATCGTAATTATTCTTTAAGAATTTGGCTAAAACCTGATTTGTTAAATAAATTTAAAATCACAGCTACTGATGTAATTTCTGCGGTTAACGATCAAAATGCCCAATACGCAACTGGTAAAATTGGCGAAGAACCTGTAACTCAAAAATCTCCTTATGTTTATTCAATCACCATGCAAGGAAGATTGCAAAATCCTAGCGAATTTGAAAACATTATTTTAAGAACAAATGATGATGGATCATTTTTAAGACTTAAAGATATAGCTGATGTGGAAATAGGATCACAACAATACAGCTCACAAGGACGATTAAATGGTAATGATGCGGTTCCGATTATAATCAATCTTCAATCAGGAGCAAATGCATTACATACAGCAGAACTTGTCCAGGCTAAAATGCAAGAACTTTCAAAAAATTTCCCAAAAGGTTTAACATATAAAATTCCTTACGACACAACAAAATTTGTGATAGAATCAATCAAAGAAGTAATTAAAACTTTTATTGAAGCTCTAATTTTAGTTATCATTGTTATGTATATGTTCTTAAAAAATTTCCGCGCAACACTTATTCCTATGATAGCTGTACCTGTTTCATTGTTAGGAACTTTTGCTGGACTTTATGTTTTAGGCTTTAGTATTAACCTACTTACGCTTTTTGCCTTAATTTTAGCCATAGGGATTGTTGTAGATGATGCGATTATAGTTGTGGAAAATATCGACAGGATTTTACACGAGAATGAACAAATAAGCGTAAAAGATGCTGCTATCCAAGCGATGCAAGAAGTTAGCTCTCCAGTCATTTCAATTGTTCTTGTGCTTTGTGCTGTTTTTATACCGGTTTCTTTTATATCAGGCTTTGTTGGAGAAATTCAAAGACAATTTGCTCTTACCTTAGCTATATCTGTAACCATATCAGGTTTTGTTGCTCTTACCTTAACACCTTCTTTATGCGCACTCTTTTTGCGACGTAATGAAGGAGAGCCATTTAAATTTGTAAGGAAATTCAATGATTTTTTTGATTGGAGCACTTCTGTATTTAGCGCAGGAGTAGCATATATTTTAAAAAGAACCATTCGTTTTGTTTTAATTTTTTGTATCATGCTTGGGACAATTTTTTATCTTAATAAAGCTGTGCCAAATTCTTTAGTTCCTGAAGAAGATCAAGGTTTGATGATTGGCATTATTAACCTTCCTTCAGCTTCAGCACTCCATAGAACAATCTCAGAAGTTGATCACATAAGTCAAGAAGTTTTAAAAACTAATGGAATTAAAGATGCAATGGCTATGATAGGATTTGATCTTTTTACAAGTTCACTCAAAGAAAACGCTGCTGCAATGTTTATAGGCTTGCAAGATTGGAAAGATAGAAATGTGAGTGCTGATAAAATCGCCATGGAGCTTAATAAAAAATTTGCCTTTGATCGCAATGCTTCAAGTATATTTATAGGCTTACCTCCTATACCTGGATTAAGTATCACAGGTGGTTTTGAAATGTATGTTCAAAACAAAAGTGGAAAAAGCTATGATCAAATTCAAAAAGATGTAAATAAACTTGTTGCTGCAGCCAACCAAAGAAAAGAACTATCAAGAGTAAGAACAACCCTTGATACAACTTTCCCTCAATACAAGCTTATAATTGATAGAGATAAATTAAAACACTACAATCTTAACATGCAAGATGTTTTTAACACGATGAATGCAACTATAGGCACTTATTATGTTAATGATTTTTCTATGCTAGGTAAAAACTTCCAAGTAAATATCCGCGCAAAAGGTGATTTTAGAAATACACAAGATGCATTAAAAAATATTTTTGTAAGATCAAATGATGGAAAAATGATACCACTTGATTCTTTCTTAACTTTACAAAGAAGTTCAGGGCCTGATGATGTAAAACGATTCAACCTTTTCCCAGCAGCACAAGTTCAAGGTCAACCCGCACCAGGTTATACTTCAGGTCAAGCTATAGAAGCGATTGCTCAAGTAGCAAAAGAAACTTTAGGGGATGATTATTCCATAGCTTGGAGTGGATCAGCTTATCAAGAAGTTTCTAGTAAAGGAACAGCAAGTTATGCTTTTGCTTTAGGTATGATATTTGTATTTTTAATTCTAGCTGCTCAATATGAAAGGTGGCTTATACCTTTAGCAGTTGTAACAGCTGTGCCTTTTGCAGTATTTGGATCATTTTTATTGGTATATTTAAGAGGGTTTAGTAATGATATATATTTTCAAACAGGACTTTTGCTCTTGATTGGACTTTCAGCTAAAAATGCTATCTTGATCGTAGAATTTGCAATGGAAGAGCGCTTTAAAAAAGGCAAAGGAGTTTTTGAAGCAGCTGTTGCAGCAGCAAAACTTCGTTTTCGTCCTATCATAATGACTTCTTTGGCGTTTACTTTTGGGGTCTTACCAATGATTTTTGCAACAGGAGCAGGAAGTGCTTCAAGACACTCTTTAGGAACAGGGCTTATTGGTGGAATGATCGCAGCATCAACTTTAGCGATATTCTTTGTGCCTTTATTTTTCTATCTTTTAGAAAATTTTAATGAATGGCTAGATAAAAAAAGAGGTAAGATTCATGAATAA " 749 UPDATE SHV-97 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1050 UPDATE AAC(6')-Ii antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; plazomicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with plazomicin UPDATED category_aro_cvterm_id with 40307 UPDATED category_aro_accession with 3003675 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Plazomicin is a neoglycoside, or next-generation, aminoglycoside, that has been identified as a potentially useful agent to combat drug-resistant bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa. " 1051 UPDATE LEN-12 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1052 UPDATE OXA-206 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1053 UPDATE SHV-2 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTACTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTAGCGAGCGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATACCCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 1055 UPDATE Escherichia coli parE conferring resistance to fluoroquinolones fluoroquinolone resistant parE; grepafloxacin; trovafloxacin; ofloxacin; norfloxacin; nalidixic acid; lomefloxacin; gatifloxacin; levofloxacin; sparfloxacin; antibiotic target alteration; enoxacin; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 3174052 UPDATED strand with - UPDATED accession with NC_007779.1 UPDATED fmin with 3172159 UPDATED sequence with ATGACGCAAACTTATAACGCTGATGCCATTGAGGTACTCACCGGGCTTGAGCCGGTTCGCCGCCGTCCGGGGATGTATACCGATACCACTCGCCCTAACCATTTGGGGCAAGAAGTCATTGATAACAGTGTGGATGAAGCACTGGCGGGTCACGCAAAACGCGTGGACGTTATTTTACATGCTGACCAGTCGTTAGAAGTTATTGACGATGGGCGCGGGATGCCGGTGGATATTCACCCGGAAGAGGGTGTACCGGCGGTTGAACTGATTCTTTGCCGTCTGCATGCAGGCGGTAAATTCTCTAACAAAAATTACCAGTTCTCTGGCGGCCTGCATGGCGTGGGGATTTCGGTGGTTAACGCCCTGTCGAAGCGCGTAGAAGTTAACGTGCGCCGCGATGGTCAGGTTTATAACATCGCCTTTGAAAATGGCGAAAAGGTGCAGGATTTACAGGTTGTCGGCACTTGCGGTAAACGCAATACTGGTACCAGTGTGCACTTCTGGCCGGATGAAACCTTCTTTGACAGCCCGCGATTTTCTGTTTCACGCCTGACGCATGTGCTGAAAGCCAAAGCGGTATTGTGCCCTGGCGTTGAGATCACTTTTAAAGATGAGATCAACAATACCGAACAACGCTGGTGCTATCAGGACGGTCTGAATGATTACCTGGCGGAAGCGGTAAATGGTCTGCCGACGCTGCCGGAAAAACCGTTTATCGGTAATTTCGCTGGTGATACTGAAGCTGTGGACTGGGCGCTACTGTGGCTGCCGGAAGGCGGTGAACTGCTGACCGAAAGCTACGTCAACCTTATCCCAACGATGCAGGGCGGTACCCATGTTAATGGTCTGCGTCAGGGCCTGTTGGACGCGATGCGTGAGTTCTGTGAATACCGCAATATTCTGCCGCGCGGTGTAAAGCTGTCGGCGGAAGATATCTGGGATCGCTGCGCCTATGTGCTGTCAGTAAAAATGCAGGATCCGCAGTTTGCCGGGCAGACGAAAGAGCGTCTCTCTTCGCGTCAATGCGCGGCATTCGTTTCTGGCGTGGTGAAAGATGCCTTTATCCTGTGGCTGAACCAGAACGTTCAGGCGGCTGAACTGCTGGCGGAGATGGCGATTTCCAGCGCCCAGCGCCGTATGCGTGCGGCCAAAAAAGTGGTGCGTAAAAAGCTGACCAGCGGCCCGGCGTTGCCTGGCAAACTGGCTGATTGTACCGCGCAGGACCTTAACCGTACCGAGCTGTTCCTTGTGGAAGGTGACTCCGCAGGCGGATCTGCCAAGCAGGCGCGCGATCGCGAATATCAGGCGATCATGCCACTGAAAGGTAAGATCCTTAACACCTGGGAAGTCTCTTCCGACGAAGTGCTGGCTTCGCAGGAAGTGCACGATATTTCGGTAGCGATCGGTATCGATCCTGACAGCGACGATCTGAGCCAGCTTCGTTATGGCAAAATCTGTATCCTCGCGGATGCGGACTCTGATGGTCTGCACATTGCCACGCTGCTCTGCGCTTTGTTCGTAAAACATTTCCGCGCGTTGGTGAAACACGGTCACGTTTACGTCGCACTGCCACCGCTCTACCGTATTGATCTCGGGAAAGAGGTTTATTACGCGCTGACGGAAGAAGAGAAAGAGGGCGTACTTGAGCAATTAAAACGCAAGAAAGGCAAGCCGAACGTCCAGCGTTTTAAAGGTCTGGGGGAAATGAACCCGATGCAATTGCGCGAAACCACGCTTGATCCGAACACTCGCCGTCTGGTGCAGTTGACTATCGATGATGAAGACGATCAGCGTACTGACGCGATGATGGATATGCTGCTGGCGAAGAAACGCTCGGAAGATCGCCGCAACTGGTTGCAAGAGAAAGGCGACATGGCGGAGATTGAGGTTTAA UPDATED NCBI_taxonomy_name with Proteobacteria UPDATED NCBI_taxonomy_id with 1224 UPDATED NCBI_taxonomy_cvterm_id with 40546 UPDATED accession with WP_000195296.1 UPDATED sequence with MTQTYNADAIEVLTGLEPVRRRPGMYTDTTRPNHLGQEVIDNSVDEALAGHAKRVDVILHADQSLEVIDDGRGMPVDIHPEEGVPAVELILCRLHAGGKFSNKNYQFSGGLHGVGISVVNALSKRVEVNVRRDGQVYNIAFENGEKVQDLQVVGTCGKRNTGTSVHFWPDETFFDSPRFSVSRLTHVLKAKAVLCPGVEITFKDEINNTEQRWCYQDGLNDYLAEAVNGLPTLPEKPFIGNFAGDTEAVDWALLWLPEGGELLTESYVNLIPTMQGGTHVNGLRQGLLDAMREFCEYRNILPRGVKLSAEDIWDRCAYVLSVKMQDPQFAGQTKERLSSRQCAAFVSGVVKDAFILWLNQNVQAAELLAEMAISSAQRRMRAAKKVVRKKLTSGPALPGKLADCTAQDLNRTELFLVEGDSAGGSAKQARDREYQAIMPLKGKILNTWEVSSDEVLASQEVHDISVAIGIDPDSDDLSQLRYGKICILADADSDGLHIATLLCALFVKHFRALVKHGHVYVALPPLYRIDLGKEVYYALTEEEKEGVLEQLKRKKGKPNVQRFKGLGEMNPMQLRETTLDPNTRRLVQLTIDDEDDQRTDAMMDMLLAKKRSEDRRNWLQEKGDMAEIEV " 1056 UPDATE VIM-19 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1057 UPDATE CTX-M-114 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1058 UPDATE VIM-27 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1059 UPDATE APH(9)-Ib antibiotic inactivation; aminoglycoside antibiotic; APH(9); spectinomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 8518 UPDATED strand with - UPDATED accession with U70376.2 UPDATED fmin with 7525 UPDATED sequence with ATGGAAGATCTTCCTGAGAACCTGGACCAGGAAAGCCTATTTCAGGGACTACGAGAATTCGGTATCTCCACGACCAGTGCGTCGTACGCGCCGCTCGGCTTCGGCGACTATCACTGGCACATCACCGGTGACGACGGGCAGCGGTGGTTCGCCACCGTCTCCGACCTCGAACACAAGGAGCACTGCGGGCACGGTGCCCCGGCGGCACTGCGAGGTCTGCGGAGAGCCATGGACACCGCGGTGCACTTGCGTGAGCAGGGCGGCCTGCCGTTCGTGGTGGCACCCCGGACCACGAGTGACGGCGCTTCACTGGTCCCGCTGGACTCGCGGTACGCGTTGACCGTATTTCCCCATGTCTCGGCCCGACCCGGGGAGTTCGGCCAGAAGCTGACGGAGCGGGAGCGGGACCAGGTGCTGGTGCTGCTCGCAGAATTGCACGGCCAGGCACCGCCGAAGTGCACCCCGACCACCGACATGGTGCCGACCGGACTGGATGGCGTGCACACCGCGCTGGCCGAGCCGTCCGGAACCTGGACGGGCGGGCCGTTCTCCGAGCCGGCCCGCGAGTTGCTGGCCGAGCACGAGGCGACGCTCCGCGGGCGGATGGCGGAGTTCGGCGAACTGGTGGCGCGGGTACGGGGCCGCGGCGCCCCGCTGGTCGTCACACACGGCGAGCCGCACCCGGGGAACCTGATCCTTGGTGAGGACGGCTATGTGCTGGTGGACTGGGACACGGTGGGCCTCGCGATACCCGAACGGGACCTCTCCCTGATCTCGGACGACCCGGCAGCTCTCGCCCGCTACACCGAACTGACCGGGCACACGCCCGACCCGGCCGCGCTGGCGCTCTACCGGCTGCGGTGGAGCCTGCTGGACGTCGCCGAGTTCGTCGAGTGGTTCCGCGGGGAACACCAGCGCACCTCCGACACCGAAGCCGCTTGGCAGAGCTTCGCCGAGACTCTCGACCATCTGAACTCCGAAGTACCGAGCTGA UPDATED NCBI_taxonomy_name with Streptomyces netropsis UPDATED NCBI_taxonomy_id with 55404 UPDATED NCBI_taxonomy_cvterm_id with 39531 UPDATED accession with AAB66655.1 UPDATED sequence with MEDLPENLDQESLFQGLREFGISTTSASYAPLGFGDYHWHITGDDGQRWFATVSDLEHKEHCGHGAPAALRGLRRAMDTAVHLREQGGLPFVVAPRTTSDGASLVPLDSRYALTVFPHVSARPGEFGQKLTERERDQVLVLLAELHGQAPPKCTPTTDMVPTGLDGVHTALAEPSGTWTGGPFSEPARELLAEHEATLRGRMAEFGELVARVRGRGAPLVVTHGEPHPGNLILGEDGYVLVDWDTVGLAIPERDLSLISDDPAALARYTELTGHTPDPAALALYRLRWSLLDVAEFVEWFRGEHQRTSDTEAAWQSFAETLDHLNSEVPS " 1696 UPDATE Salmonella serovars gyrB conferring resistance to fluoroquinolone aminocoumarin antibiotic; antibiotic target alteration; moxifloxacin; fluoroquinolone resistant gyrB; grepafloxacin; trovafloxacin; ofloxacin; norfloxacin; nalidixic acid; lomefloxacin; gatifloxacin; coumermycin A1; ciprofloxacin; fleroxacin; levofloxacin; sparfloxacin; clorobiocin; novobiocin; Clofazimine; clinafloxacin; enoxacin; pefloxacin; fluoroquinolone antibiotic; cinoxacin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 4041282 UPDATED strand with - UPDATED accession with NC_003197.2 UPDATED fmin with 4038867 UPDATED sequence with ATGTCGAATTCTTATGACTCCTCCAGTATCAAAGTCCTGAAAGGGCTGGATGCGGTGCGTAAGCGCCCGGGTATGTATATCGGCGACACGGATGACGGCACCGGTCTGCACCACATGGTATTCGAGGTGGTAGATAACGCTATCGACGAAGCGCTCGCAGGTCACTGTAAAGATATCGTCGTGACTATTCACGCCGATAACTCCGTGTCCGTAACGGATGATGGCCGTGGCATTCCGACCGGGATTCACCCGGAAGAAGGCGTCTCGGCGGCGGAAGTGATCATGACCGTTCTGCACGCGGGCGGTAAATTTGACGATAACTCCTATAAAGTCTCCGGCGGTCTGCACGGCGTGGGCGTCTCGGTAGTCAACGCTCTGTCGCAAAAACTGGAACTGGTTATCCAGCGAGATGGCAAAATTCACCGTCAGATCTACGAGCACGGCGTGCCGCAGGCACCCCTGGCCGTCACTGGCGATACCGATAAAACCGGCACGATGGTACGTTTCTGGCCGAGCCACGAAACCTTCACCAACGTCACTGAATTTGAATATGAGATCCTGGCGAAACGCCTGCGTGAACTGTCATTCCTGAACTCAGGCGTCTCCATCCGCCTGCGCGACAAGCGCGATGGCAAAGAAGATCATTTCCACTACGAAGGCGGCATCAAGGCGTTTGTTGAATATCTGAACAAGAATAAAACGCCGATCCACCCGAATATCTTCTATTTCTCCACCGAAAAAGACGGTATCGGCGTGGAAGTAGCGCTGCAGTGGAACGATGGTTTCCAGGAAAACATCTACTGCTTTACCAACAACATTCCGCAGCGCGACGGCGGTACTCACCTTGCAGGCTTCCGTGCGGCGATGACCCGTACGCTGAACGCCTACATGGACAAAGAAGGCTACAGCAAAAAAGCCAAAGTCAGCGCCACCGGCGACGATGCCCGTGAAGGTCTGATTGCGGTGGTTTCCGTAAAAGTACCGGATCCGAAATTCTCCTCACAGACCAAAGATAAGCTGGTCTCTTCCGAGGTGAAATCGGCGGTAGAACAGCAGATGAACGAACTGCTGAGCGAATACCTGCTGGAAAACCCATCTGACGCGAAAATCGTCGTCGGCAAAATTATCGACGCCGCGCGTGCGCGTGAAGCGGCGCGTCGCGCCCGTGAAATGACCCGTCGTAAAGGCGCGCTCGATTTAGCCGGTCTGCCGGGCAAACTGGCGGACTGTCAGGAACGCGACCCGGCGCTGTCCGAACTGTACCTGGTGGAAGGGGACTCCGCGGGCGGCTCTGCGAAGCAGGGGCGTAACCGCAAGAACCAGGCGATTCTGCCGCTGAAAGGTAAAATCCTTAACGTCGAGAAAGCGCGCTTCGACAAGATGCTTTCCTCCCAGGAAGTGGCGACGCTGATCACCGCGCTGGGCTGCGGTATCGGTCGCGACGAGTACAACCCGGACAAGCTGCGCTATCACAGCATCATCATCATGACCGATGCGGACGTCGACGGCTCGCACATCCGTACGCTGCTGTTGACCTTCTTCTATCGTCAGATGCCGGAAATTGTCGAGCGTGGCCACGTCTACATTGCGCAGCCGCCGCTGTACAAAGTGAAGAAAGGTAAGCAGGAACAGTACATTAAAGACGACGAAGCGATGGATCAGTACCAGATTTCCATCGCGCTTGACGGTGCGACTCTGCACGCGAACGCTCATGCGCCGGCGCTATCCGGCGAAGCGTTAGAAAAACTGGTCTCTGAATATAACGCCACGCAGAAAATGATTGGTCGTATGGAGCGTCGCTTCCCGAAAGCGCTGCTCAAAGAGCTGGTGTATCAGCCAACTCTGACCGAAGCCGATCTTTCTGATGAGCAGACTGTAACGCGCTGGGTGAATGCGCTGATTACCGAGCTGAACGAGAAAGAGCAGCACGGCAGTCAGTGGAAGTTCGATGTTCATACTAATACGGAACAGAATCTGTTCGAGCCGATCGTTCGCGTGCGTACGCATGGCGTGGATACCGATTATCCGTTGGATCACGAGTTTGTGACCGGCGCGGAATATCGTCGTATCTGCACGCTGGGCGAGAAGCTGCGTGGTCTGATTGAAGAGGACGCGTTTATCGAACGCGGCGAGCGTCGCCAGCCGGTAACCAGCTTCGAGCAGGCGCTGGAGTGGCTGGTGAAAGAATCACGTCGCGGTCTGGCTATCCAGCGTTATAAAGGTCTGGGTGAAATGAACCCGGATCAGCTGTGGGAAACCACCATGGACCCGGAAAGCCGCCGTATGCTGCGCGTGACCGTCAAAGATGCAATTGCTGCCGACCAGCTGTTCACTACGCTGATGGGTGATGCCGTTGAGCCGCGTCGTGCCTTTATCGAGGAGAACGCCCTGAAAGCAGCGAATATCGATATTTAA UPDATED NCBI_taxonomy_name with Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 UPDATED NCBI_taxonomy_id with 99287 UPDATED NCBI_taxonomy_cvterm_id with 35734 UPDATED accession with NP_462735.1 UPDATED sequence with MSNSYDSSSIKVLKGLDAVRKRPGMYIGDTDDGTGLHHMVFEVVDNAIDEALAGHCKDIVVTIHADNSVSVTDDGRGIPTGIHPEEGVSAAEVIMTVLHAGGKFDDNSYKVSGGLHGVGVSVVNALSQKLELVIQRDGKIHRQIYEHGVPQAPLAVTGDTDKTGTMVRFWPSHETFTNVTEFEYEILAKRLRELSFLNSGVSIRLRDKRDGKEDHFHYEGGIKAFVEYLNKNKTPIHPNIFYFSTEKDGIGVEVALQWNDGFQENIYCFTNNIPQRDGGTHLAGFRAAMTRTLNAYMDKEGYSKKAKVSATGDDAREGLIAVVSVKVPDPKFSSQTKDKLVSSEVKSAVEQQMNELLSEYLLENPSDAKIVVGKIIDAARAREAARRAREMTRRKGALDLAGLPGKLADCQERDPALSELYLVEGDSAGGSAKQGRNRKNQAILPLKGKILNVEKARFDKMLSSQEVATLITALGCGIGRDEYNPDKLRYHSIIIMTDADVDGSHIRTLLLTFFYRQMPEIVERGHVYIAQPPLYKVKKGKQEQYIKDDEAMDQYQISIALDGATLHANAHAPALSGEALEKLVSEYNATQKMIGRMERRFPKALLKELVYQPTLTEADLSDEQTVTRWVNALITELNEKEQHGSQWKFDVHTNTEQNLFEPIVRVRTHGVDTDYPLDHEFVTGAEYRRICTLGEKLRGLIEEDAFIERGERRQPVTSFEQALEWLVKESRRGLAIQRYKGLGEMNPDQLWETTMDPESRRMLRVTVKDAIAADQLFTTLMGDAVEPRRAFIEENALKAANIDI " 1697 UPDATE TEM-135 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 8700 UPDATED strand with - UPDATED accession with AJ634602.1 UPDATED fmin with 7839 UPDATED sequence with ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGACGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA UPDATED NCBI_taxonomy_name with Salmonella enterica subsp. enterica serovar Typhimurium UPDATED NCBI_taxonomy_id with 90371 UPDATED NCBI_taxonomy_cvterm_id with 35732 UPDATED accession with CAG25427.1 UPDATED sequence with MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEDQLGARVGYIELDLNSGKILESFRPEERFPMMSTFKVLLCGAVLSRVDAGQEQLGRRIHYSQNDLVEYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTTPAAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGAGERGSRGIIAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGASLIKHW " 1694 UPDATE OXA-353 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1695 UPDATE DHA-5 antibiotic inactivation; cephalosporin; cephamycin; DHA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAATCGTTATCTGCAACACTGATTTCCGCTCTGCTGGCGTTTTCCGCCCCGGGGTTTTCTGCCGCTGATAATGTCGCGGCGGTGGTGGACAGCACCATTAAACCGCTGATGGCACAGCAGGACATTCCCGGGATGGCGGTTGCCGTCTCTGTAAAGGGCAGGCCCTATTATTTCAATTACGGTTTTGCCGATGTTCAGGCAAAACAGCCGGTCACTGAAAATACACTATTTGAGCTCGGATCTGTAAGTAAAACTTTCACAGGTGTGCTGGGTGCGGTTTCTGTGGCGAAAAAAGAGATGGCGCTGAATGATCCGGCGGCAAAATACCAGCCGGAGCTGGCTCTGCCGCAGTGGAAGGGGATCACATTGCTGGATCTGGCTACCTATACCGCAGGCGGACTGCCGTTACAGGTGCCGGATGCGGTAAAAAGCCGTGCGGATCTGCTGCACTTCTATCAGCAGTGGCAGCCGTCCCGGAAACCGGGCGATATGCGTCTGTATGCAAACAGCAGCATCGGCCTGTTTGGTGCTCTGACCGCAAACGCGGCGGGGATGCCGTATGAGCAGTTGCTGACTGCACGGATCCTGGCACCGCTGGGGTTATCTCACACCTTTATTACTGTGCCGGAAAGTGCGCAAAGCCAGTATGCGTACGGTTATAAAAACAAAAAACCGGTCCGCGTGTCGCCGGGACAGCTTGATGCGGAATCTTACGGCGTGAAATCCGCCTCAAAAGATATGCTGCGCTGGGCGGAAATGAATATGGAGCCGTCACGGGCCGGTAATGCGGATCTGGAAATGGCAATGTATCTCGCCCAGACCCGTTACTATAAAACCGCCGCGATTAATCAGGGGCTGGGCTGGGAAATGTATGACTGGCCGCAGCAGAAAGATATGATCATTAACGGCGTGACCAACGAGGTCGCATTGCAGCCGCACCCGGTAACAGACAACCAGGTTCAGCCGTATAACCGTGCTTCCTGGGTGCATAAAACGGGGGCAACAACTGGTTTCGGCGCCTATGTGGCCTTTATTCCGGAAAAACAGGTGGCGATTGTGATTCTGGCGAATAAAAACTACCCGAATACCGAAAGAGTCAAAGCTGCACAGGCTATTTTGAGTGCACTGGAATAA " 1692 UPDATE tetM chlortetracycline; demeclocycline; oxytetracycline; tetracycline antibiotic; tetracycline; antibiotic target protection; minocycline; tetracycline-resistant ribosomal protection protein; doxycycline; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAATTATTAATATAGGTGTTTTAGCTCATGTTGACGCAGGAAAAACTACTTTGACAGAAAGCTTACTATATACTAGTGGAGCGATTGCGGAGTCAGGAAGCGTGGATACAGGCACAACAAGAACGGATACTACATTTTTAGAACGTCAGCGAGGAATTACAATTCAGACAGCAGTAACCTCTTTTCAGTGGAAAGATATTAAGGTAAATATCATAGATACTCCAGGACATATGGATTTTTTAGCAGAAGTATATCGCTCGTTATCAGTTTTAGATGGGGCAATCCTACTAATTTCTGCGAGAGATGGAGTACAAGCACAAACTCGGATATTATTTCATGCACTAAATAAAATGGGTATTCCCACAATCTTTTTTATCAATAAGATTGACCAAAATGGGATTGATTTATCAACGGTTTATCAAGATATTAAAGAGAAACTTTCTATGGAAATTATAATCAAACAGAAAGTAGAGCTGCACCCTAATATGTGTGTGATGAGCTGTACGGAACCTGAGCAATGGGATGTGGTAATAGAAGGAAATGATTATCTTTTGGAGAAATATACACTTGGGAAATCATTGGAGATATTAGAACTCGAACAAGAGGAAATCAGAAGATTTCAGAATTGCTCCTTGTACCCTGTTTATCATGGAAGCGCAAAAAGCAACATAGGGATTGAGCAGCTTATAGAAGTGATAACGAATAAATTTTATTCATCAACATACAGAAAGAAGTCTGAACTTTGCGGAAATGTCTTCAAAATTGAATATTCGGAAGAAAGACAACGTCTTGCATATGTACGCCTTTATGGCGGAATCCTGCATTTGCGGGATTCGGTTAGAATATCGGAAAAGGAAAAAATAAAAATTACAGAAATGTATACTTCAATAAATGGTGAATTATGTAAAATTGATAAGGCTTATTCCGGGGAAATTGTTATTTTGCAAAATGAGTTTTTGAAGCTAAATAGTGTTCTTGGAGATACAAAGCTATTGCCACAGAGAGAGAGAATTGAAAATCCGCTCCCTCTGCTGCAAACAACTGTTGAACCGAGCAAACCTCAACAAAGGGAAATGTTACTTGATGCACTTTTAGAAATCTCCGACAGTGACCCGCTTCTACAATATTATGTGGATTCTACGACACATGAAATCATACTTTCTTTCTTAGGGAAAGTACAAATGGAAGTGACTTGTGCTCTATTGCAAGAAAAGTATCATGTGGAGGTAAAAATAAAAAAGCCTACAGTCATTTATATGGAAAGACCGTTAAAAAAAGCAGAGTATACCATTCACATCGAAGTGCCACCGAATCCCTTCTGGGCTTCCATTGGTCTTTCTGTAGCACCGCTTCCATTAGGGAGCGGAGTACAGTATGAGAGCTCGGTTTCTCTTGGATACTTAAATCAATCGTTTCAAAATGCAGTTATGGAAGGGATACGATATGGCTGTGAACAAGGATTGTATGGTTGGAATGTGACGGACTGTAAAATCTGTTTTAAGTATGGCTTATACTATAGCCCTGTTAGTACCCCAGCAGATTTTCGGATGCTTGCTCCTATTGTATTGGAACAAGTTTTAAAAAAAGCTGGAACAGAATTGTTAGAGCCATATCTTAGTTTTAAAATTTATGCACCACAAGAATATCTTTCACGAGCATATAACGATGCTCCTAAATATTGTGCGAACATCGTAGACACTCAACTGAAAAATAATGAGGTCATTCTTAGTGGAGAAATTCCTGCTCGGTGTATTCAAGAATATCGTAATGATTTAACTTTCTTTACAAATGGACGTAGCGTTTGTTTAACAGAGTTAAAAGGGTACTATGTTACTACTGGTGAATCTGTTTGTCAGCCCCGTCGTCCAAATAGTCGGATAGATAAAGTACGATATATGTTCAATAAAATAACTTAG " 1693 UPDATE TEM-143 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1690 UPDATE OXA-317 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1691 UPDATE CMY-31 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 715 UPDATE PDC-3 antibiotic inactivation; cephalosporin; carbapenem; ceftazidime; PDC beta-lactamase; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1698 UPDATE OCH-6 penam; antibiotic inactivation; penem; cephalosporin; cephamycin; monobactam; OCH beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1699 UPDATE vanXO glycopeptide antibiotic; glycopeptide resistance gene cluster; vanX; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACGACGACTTCGTCTACGTCGACGACTGGGTGCCCGGAGTCCGCTGGGATGCCAAGTACGCCACGTGGGACAACTTCACCGGCAAACCGGTAGACGGCTACCTCGCGAATCGAATCGTCGGCACCCGGGCTTTGTGCGCGGCCCTCGAGCAAGCACGCGAGAAGGCAGCTTCCCTCGGCTTCGGATTGCTTCTCTGGGACGGCTACCGTCCTCGACGCGCCGTCGACAGCTTCCTACGCTGGTCAGAACAGCCGGAGGATGGCCAGACGAAGCAGCGACACTATCCCAATATCGACAGACCCGAGATGCTCGAAAAGGGATACGTGGCAACCCAGTCGGGCCACAGTAGGGGCGGCGCCGTTGACCTGACGCTCTATCACCTTGCGACCGGTGAACTTGCTCCTATGGGTGGCGACCACGACCTCATGGACCCGATCTCACATCATCGAGCGCGAGGAATCAAGCCAATCGAGTCCAAGAATCGTGAGCTTCTTCGTTCCATCATGGAGGACTGCGGATTTGATCGGTACGACTGCGAGTGGTGGCACTACACGCTGAAACGCGAACCATATCCAGATGTCTACTTCGACTTTCCGATCACGTGA " 1278 UPDATE TEM-45 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGTTGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACAAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 1279 UPDATE TEM-104 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGTCGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 618 UPDATE emeA acridine dye; antibiotic efflux; multidrug and toxic compound extrusion (MATE) transporter; acriflavin; efflux pump complex or subunit conferring antibiotic resistance; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 619 UPDATE SHV-30 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATTTTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCAGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGTGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTAGCGAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGGATTGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 1270 UPDATE QnrS3 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TGGAAACCTACAATCATACATATCGGCACCGCAACTTTTCACATAAAGACTTAAGTGATCTCACCTTCACCGCTTGCACATTCATTCGCAGCGACTTTCGACGTGCTAACTTGCGTGATACGACATTCGTCAACTGCAAGTTCATTGAACAGGGTGATATCGAAGGCTGCCACTTTGATGTCGCAGATCTTCGTGATGCAAGTTTCCAACAATGCCAACTTGCGATGGCAAACTTCAGTAATGCCAATTGCTACGGTATAGAGTTCCGTGCGTGTGATTTAAAAGGTGCCAACTTTTCCCGAACAAACTTTGCCCATCAAGTGAGTAATCGTATGTACTTTTGCTCAGCATTTATTTCTGGATGTAATCTTTCCTATGCCAATATGGAGAGGGTTTGTTTAGAAAAATGTGAGTTGTTTGAAAATCGCTGGATAGGAACGAACCTAGCGGGTGCATCACTGAAAGAGTCAGACTTAAGTCGAGGTGTTTTTTCCGAAGATGTCTGGGGGCAATTTAGCCTACAGGGTGCCAATTTATGCCACGCCGAACTCGACGGTTTAGATCCCCGCAAAGTCGATACATCAGGTATCAAAATTGCAGCCTGGCAGCAAGAACTGATTCTCGAAGCACTGGGTATTGTTGTTTATCCTGACT " 1271 UPDATE AAC(6')-Iw antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1272 UPDATE CTX-M-67 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 611 UPDATE OXA-328 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 616 UPDATE NDM-8 antibiotic inactivation; penam; carbapenem; cephalosporin; cephamycin; NDM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1275 UPDATE ErmT antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 1276 UPDATE OXA-210 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 615 UPDATE OXA-211 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 711 UPDATE SHV-62 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 710 UPDATE dfrB6 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGACCAAGGTAGCAATGAAGTCATTAATCCAGTCGCTGGCCAGTTTGCGTCCCCATCGAACGCCACGTTTGGTATGGGAGATCGCGTGCGCAAGAAATCTGGCGCCGCCTGGCAAGGTCAGATTGTCGGGTGGTACAGCACAAAGTTGACCCCTGAAGGCTACGCTGTCGAGTCTGAGGCTCACCCTGGCTCGGTGCAGATTTATCCTGTTGCCGCGCTTGAACGCGTCAACTGA " 1491 UPDATE lnuF antibiotic inactivation; lincosamide nucleotidyltransferase (LNU); lincosamide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCTTCAGCAGAAAATGATCGAACGCTTCAAGGAAGCTTGCCATGAGGATGCACGAATAATCGCGGCGCTGATGTTCGGCTCATTTGCTATCGGAGAGGGTGACGAGTTCTCTGATATCGAATTTGCAGTGTTCATCCAGAATAATCATTTTGAAAATTTCGATCAGCGCTCGTGGCTTAATGCTGTAAGTCCGGTTGCAGCTTACTTTCCGGATGACTTCGGCCACCACACCGCGCTTTTTGAAAACGGCATTCGCGGTGAATTCCATTTCATGCGAAAATCGGACATACCGGTCATTTCCACTTGGCAAGGCTACGGGTGGTTTCCCTCGCTTGAGGAGGCTGTTTTGTTGGACCGATCAGGAGAGTTGTCAAGGTACGCGAGTGCTCTCGTGGGCAGTCCCCCGAAACGTGAAGGCGCGCCGCTGGTGGAAGGACTTGTATTGAACCTCATCAGCCTGATGCTCTTTGGGGCAAATCTTTTAAATCGGGGAGAGTATGCTCGCGCCTGGGCTTTGCTCAGCAAAGCACATGAAAACTTACTCAAGTTGGTTCGCCTCCATGAAGGGGCAACAGACCACTGGCCGACACCTTCACGCGCGCTCGAAAAGGATGTCTCGGAGGACTCGTATAATCGCTACCTGGCATGCACAGGCAGCGCGGAACCAAAAGCACTATGTGTAGCCTATCATGAAACGTGGAAGTGGAGTCTCGAATTGTTCAGGAGTGTGGCTGGACCTCTGAATATCGAGCTTCCGAGAATTGTAATTGCGCAGACAAAAAGGTTGCTAAATGAATCTGCGACGCCGCACAACAAGTAA " 1472 UPDATE DHA-18 antibiotic inactivation; cephalosporin; cephamycin; DHA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1473 UPDATE CTX-M-44 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGACTCAGAGCATTCGCCGCTCAATGTTAACGGTGATGGCGACGCTACCCCTGCTATTTAGCAGCGCAACGCTGCATGCGCAGGCGAACAGCGTGCAACAGCAGCTGGAAGCCCTGGAGAAAAGTTCGGGAGGTCGGCTTGGCGTTGCGCTGATTAACACCGCCGATAATTCGCAGATTCTCTACCGTGCCGATGAACGTTTTGCGATGTGCAGTACCAGTAAGGTGATGGCGGCCGCGGCGGTGCTTAAACAGAGCGAGAGCGATAAGCACCTGCTAAATCAGCGCGTTGAAATCAAGAAGAGCGACCTGGTTAACTACAATCCCATTGCGGAGAAACACGTTAACGGCACGATGACGCTGGCTGAGCTTGGCGCAGCGGCGCTGCAGTATAGCGACAATACTGCCATGAATAAGCTGATTGCCCATCTGGGTGGTCCCGATAAAGTGACGGCGTTTGCTCGCTCGTTGGGTGATGAGACCTTCCGTCTGGACAGAACCGAGCCCACGCTCAATACCGCCATTCCAGGCGACCCGCGTGATACCACCACGCCGCTCGCGATGGCGCAGACCCTGAAAAATCTGACGCTGGGTAAAGCGCTGGCGGAAACTCAGCGGGCACAGTTGGTGACGTGGCTTAAGGGCAATACTACCGGTAGCGCGAGCATTCGGGCGGGTCTGCCGAAATCATGGGTAGTGGGCGATAAAACCGGCAGCGGAGATTATGGCACCACCAACGATATCGCGGTTATCTGGCCGGAAAACCACGCACCGCTGGTTCTGGTGACCTACTTTACCCAACCGGAGCAGAAGGCGGAAAGGCGTCGGGATATTCTGGCTGCGGCGGCGAAAATCGTAACCCACGGTTTCTGA " 1470 UPDATE QnrB26 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1471 UPDATE adeI antibiotic efflux; imipenem; rifampin; resistance-nodulation-cell division (RND) antibiotic efflux pump; trimethoprim; rifamycin antibiotic; penem; macrolide antibiotic; carbapenem; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; diaminopyrimidine antibiotic; ticarcillin; tetracycline antibiotic; fluoroquinolone antibiotic; lincosamide antibiotic; phenicol antibiotic; tetracycline; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGTCGGCTAAGCTTTGGGCACCAGCCCTTACTGCTTGCGCATTAGCAACAAGTATCGCGCTTGTTGGTTGTAGCAAAGGCTCCGATGAGAAACAGCAAGCTGCTGCTGCTCAGAAAATGCCGCCTGCAGAAGTAGGTGTTATTGTTGCTCAACCACAAAGTGTTGAACAAAGCGTTGAGCTTTCAGGCCGTACTTCAGCATATCAAATTTCTGAAGTTCGTCCTCAAACAAGTGGCGTGATTTTAAAACGTTTATTTGCTGAAGGAAGCTATGTTCGTGAAGGTCAGGCGCTTTATGAGCTCGACTCTAGAACGAACCGTGCAACGTTAGAAAATGCAAAAGCATCACTCCTACAACAACAGGCAAATCTAGCTTCACTACGTACCAAGTTAAATCGTTATAAACAACTTGTTTCTAGTAATGCTGTGTCTAAACAGGAATATGATGACTTACTTGGTCAAGTCAATGTTGCAGAAGCACAAGTTGCAGCAGCTAAGGCTCAAGTAACAAATGCAAATGTAGATCTTGGTTATTCTACAATTCGCTCTCCTATTTCTGGCCAATCTGGTCGTTCTTCAGTAACGGCTGGTGCTTTGGTTACTGCAAACCAGACTGACCCGTTGGTAACGATTCAACAATTAGATCCTATCTATGTTGATATTAATCAGTCTAGTGCTGAGTTATTGCGTTTACGTCAACAACTAAGCAAAGGCAGTTTAAATAACAGTAACAACACGAAAGTAAAATTAAAGCTTGAAGATGGTTCTACCTATCCAATCGAAGGGCAACTTGCTTTCTCTGACGCTTCTGTAAACCAAGATACAGGAACAATTACATTACGTGCCGTATTCTCTAACCCGAATCATTTATTGCTTCCGGGTATGTATACCACTGCGCAAATTGTTCAGGGCGTTGTTCCAAATGCTTACCTGATTCCTCAAGCTGCCATTACTCGTTTACCTACAGGACAAGCTGTAGCGATGCTTGTTAATGCTAAAGGGGTTGTTGAGAGCCGTCCTGTTGAAACCTCTGGTGTTCAAGGACAAAACTGGATTGTGACTAACGGCTTAAAAGCCGGCGATAAAGTCATTGTTGATGGTGTTGCCAAAGTTAAAGAAGGGCAAGAAGTATCAGCAAAACCTTATCAAGCTCAACCAGCAAACTCTCAAGGTGCAGCACCAAATGCTGCGAAACCGGCTCAATCAGGTAAACCTCAAGCAGAACAGAAAGCAGCTTCAAATGCATAA " 1476 UPDATE TEM-199 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATAAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTAAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATTGGGGATCATGTAACCCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCAGTGAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA " 1477 UPDATE SHV-39 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1474 UPDATE MexR sulfonamide antibiotic; penem; panipenem; antibiotic target alteration; tetracycline antibiotic; clavulanate; meropenem; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; aztreonam; trimethoprim; aminocoumarin antibiotic; cephalosporin; macrolide antibiotic; carbapenem; ceftazidime; ciprofloxacin; cephamycin; ceftriaxone; protein(s) and two-component regulatory system modulating antibiotic efflux; peptide antibiotic; diaminopyrimidine antibiotic; ampicillin; amoxicillin; penam; sulfamethoxazole; novobiocin; efflux pump complex or subunit conferring antibiotic resistance; trimethoprim-sulfamethoxazole; tetracycline; monobactam; fluoroquinolone antibiotic; erythromycin; phenicol antibiotic; azithromycin; chloramphenicol; model_sequences "UPDATED fmax with 471749 UPDATED strand with - UPDATED accession with NC_002516.2 UPDATED fmin with 471305 UPDATED sequence with ATGAACTACCCCGTGAATCCCGACCTGATGCCCGCGCTGATGGCGGTCTTCCAGCATGTGCGGACGCGCATCCAGAGCGAGCTCGATTGCCAGCGACTCGACCTGACCCCGCCCGACGTCCATGTATTGAAGCTTATCGACGAACAACGCGGGCTGAACCTGCAGGACCTGGGACGCCAGATGTGCCGCGACAAGGCACTGATCACCCGGAAGATCCGCGAGCTGGAGGGAAGAAACCTGGTCCGCCGCGAGCGCAACCCCAGCGACCAGCGCAGCTTCCAGCTCTTCCTCACCGACGAGGGGCTGGCCATCCACCAGCATGCGGAGGCCATCATGTCACGCGTGCATGACGAGTTGTTTGCCCCGCTCACCCCGGTGGAACAGGCCACCCTGGTGCATCTCCTCGACCAGTGCCTGGCCGCGCAACCGCTTGAGGATATTTAA UPDATED NCBI_taxonomy_name with Pseudomonas aeruginosa PAO1 UPDATED NCBI_taxonomy_id with 208964 UPDATED NCBI_taxonomy_cvterm_id with 36804 UPDATED accession with NP_249115.1 UPDATED sequence with MNYPVNPDLMPALMAVFQHVRTRIQSELDCQRLDLTPPDVHVLKLIDEQRGLNLQDLGRQMCRDKALITRKIRELEGRNLVRRERNPSDQRSFQLFLTDEGLAIHQHAEAIMSRVHDELFAPLTPVEQATLVHLLDQCLAAQPLEDI " 1475 UPDATE SHV-99 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1478 UPDATE CARB-10 penam; antibiotic inactivation; CARB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGACGTACGTCAACACAAGGCTAGTTTTTTTAGCGTAGTAATTACTTTTTTATGTCTCACGCTATCATTAAATGCTAATGCAACAGACTCAGTACTTGAAGCGGTTACCAATGCTGAAACTGAATTAGGCGCTAGAATTGGTCTAGCTGCGCATGATTTGGAAACGGGAAAACGTTGGGAACATAAATCTAATGAACGTTTTCCTCTAACTAGTACCTTTAAAACACTTGCCTGTGCAAACGTTCTTCAAAGAGTTGATCTAGGTAAAGAAAGAATTGATAGAGTTGTGAGATTCTCTGAAAGCAATCTCGTTACATACTCACCTGTAACAGAAAAACATGTGGGTAAAAAAGGGATGTCGCTCGCAGAGCTGTGTCAGGCCACATTATCAACCAGTGATAATTCAGCTGCCAATTTTATTCTACAAGCGATTGGGGGACCTAAGGCTCTAACGAAATTTTTGCGTTCCATTGGCGACGATACTACGCGCCTTGATCGCTGGGAAACAGAACTTAACGAAGCGGTGCCTGGAGATAAGCGAGACACGACAACACCAATTGCAATGGTAACGACACTTGAAAAGTTACTAATTGACGAAACACTATCTATCAAATCTCGTCAACAACTAGAATCTTGGCTTAAAGGTAATGAGGTTGGCGATGCATTGTTTCGTAAAGGCGTTCCAAGTGACTGGATAGTAGCAGATAGAACAGGCGCTGGTGGTTATGGGTCGCGTGCTATTACTGCGGTGATGTGGCCTCCAAATCGCAAGCCTATCGTAGCCGCTCTATACATTACAGAGACAGACGCCTCGTTTGAAGAAAGAAATGCTGTCATTGCAAAAATTGGTGAGCAAATAGCGAAGACAGTATTAATGGAGAATAGCCGTAACTGA " 1479 UPDATE IMP-40 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1304 UPDATE CTX-M-85 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1305 UPDATE OprM sulfonamide antibiotic; tetracycline; erythromycin; penem; panipenem; tetracycline antibiotic; clavulanate; meropenem; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; aztreonam; ofloxacin; norfloxacin; nalidixic acid; aminocoumarin antibiotic; cephalosporin; macrolide antibiotic; carbapenem; ceftazidime; ciprofloxacin; cephamycin; gentamicin C; amikacin; ceftriaxone; thiamphenicol; peptide antibiotic; acridine dye; diaminopyrimidine antibiotic; ticarcillin; ampicillin; amoxicillin; penam; aminoglycoside antibiotic; sulfamethoxazole; novobiocin; phenicol antibiotic; efflux pump complex or subunit conferring antibiotic resistance; trimethoprim-sulfamethoxazole; acriflavin; monobactam; fluoroquinolone antibiotic; chloramphenicol; trimethoprim; azithromycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAACGGTCCTTCCTTTCCCTGGCGGTAGCCGCTGTCGTTCTGTCCGGCTGCTCGCTGATCCCCGACTACCAGCGCCCCGAGGCGCCGGTAGCCGCGGCCTACCCGCAAGGGCAGGCCTACGGGCAGAACACCGGCGCGGCGGCCGTTCCGGCCGCCGACATCGGCTGGCGCGAGTTCTTCCGCGACCCGCAGTTGCAGCAACTGATCGGCGTGGCGCTGGAAAACAACCGCGACCTGCGGGTCGCCGCGCTGAACGTCGAGGCCTTCCGGGCGCAGTACCGCATCCAGCGGGCCGACCTGTTCCCGCGGATCGGCGTGGACGGTAGCGGCACCCGCCAGCGTTTGCCGGGCGACCTGTCGACCACCGGCAGTCCGGCGATTTCCAGCCAGTACGGGGTGACCCTGGGCACTACCGCCTGGGAACTCGATCTCTTCGGCCGCCTGCGCAGCCTGCGCGACCAGGCCCTGGAGCAGTACCTGGCGACCGAACAGGCGCAGCGCAGCGCGCAGACCACCCTGGTGGCCAGCGTGGCGACCGCCTACCTGACGCTGAAGGCCGACCAGGCGCAGTTGCAGCTGACCAAGGACACCCTGGGCACCTACCAGAAGAGTTTCGACCTGACCCAGCGCAGCTACGACGTCGGCGTCGCCTCCGCGCTCGACCTGCGCCAGGCGCAGACCGCCGTGGAAGGCGCCCGCGCGACCCTGGCGCAGTACACCCGCCTGGTAGCCCAGGACCAGAATGCGCTGGTCCTGCTGCTGGGCTCCGGGATCCCGGCGAACCTGCCGCAAGGCCTGGGCCTGGACCAGACCCTGCTGACCGAAGTGCCGGCGGGTCTGCCGTCGGACCTGCTGCAACGGCGCCCGGACATCCTCGAGGCCGAGCACCAGCTCATGGCTGCCAACGCCAGCATCGGCGCCGCGCGCGCGGCGTTCTTCCCGAGCATCAGCCTGACCGCCAACGCCGGCACCATGAGCCGCCAACTGTCCGGCCTGTTCGACGCCGGTTCGGGTTCCTGGTTGTTCCAGCCGTCGATCAACCTGCCGATCTTCACCGCCGGCAGCCTGCGTGCCAGCCTGGACTACGCGAAGATCCAGAAGGACATCAACGTCGCGCAGTACGAGAAGGCGATCCAGACGGCGTTCCAGGAAGTCGCCGACGGCCTGGCCGCGCGCGGTACCTTCACCGAGCAGTTGCAGGCGCAGCGCGATCTGGTCAAGGCCAGCGACGAGTACTACCAGCTCGCCGACAAGCGCTATCGCACGGGGGTGGACAACTACCTGACCCTGCTCGACGCGCAACGCTCGCTGTTCACCGCGCAGCAGCAACTGATCACCGACCGCCTCAATCAGCTGACCAGCGAGGTCAACCTGTACAAGGCCCTCGGCGGCGGCTGGAACCAGCAGACCGTGACCCAGCAGCAGACCGCGAAGAAGGAAGATCCCCAGGCTTGA " 1306 UPDATE IND-5 carbapenem; antibiotic inactivation; IND beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1307 UPDATE OXY-1-6 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTGAAAAGTTCGTGGCGTAAAACCGCCCTGATGGCCGCCGCCGCCGTTCCGCTGCTGCTGGCGAGCGGTTCATTATGGGCCAGTGCCGATGCTATCCAGCAAAAGCTGGCTGATTTAGAAAAACGTTCCGGCGGTCGGCTGGGCGTAGCGCTGATTAACACGGCAGATGATTCGCAAACCCTCTATCGCGGCGATGAACGTTTTGCCATGTGCAGCACCGGTAAAGTGATGGCCGCCGCCGCGGTGTTAAAACAGAGCGAAAGCAATCCAGAGGTGGTGAATAAAAGGCTGGAGATTAAAAAATCGGATTTAGTGGTCTGGAGCCCGATCACCGAAAAACATCTGCAAAGCGGAATGACCCTGGCGGAACTCAGCGCGGCGGCGCTGCAGTACAGCGACAATACCGCGATGAATAAGATGATTAGCTACCTTGGCGGACCGGAAAAGGTGACCGCATTCGCCCAGAGTATCGGGGATGTCACTTTTCGTCTCGATCGTACGGAGCCGGCGCTGAACAGCGCGATTCCCGGCGATAAGCGCGATACCACCACCCCGTTGGCGATGGCCGAAAGCCTGCGCAAGCTGACGCTGGGCAATGCGCTGGGCGAACAGCAGCGCGCCCAGTTAGTGACGTGGCTAAAAGGCAATACCACCGGCGGGCAAAGCATTCGCGCAGGCCTGCCCGCAAGCTGGGCGGTCGGGGATAAAACCGGCGCCGGAGATTACGGCACCACCAACGATATTGCGGTGATCTGGCCGGAAAATCATGCCCCGCTGGTGCCGGTGACCTATTTTACCCAGCCGCAGCAAGATGCGAAAAGCCGCAAAAAGGTGTTAGCCGCGGCGGCAAAAATCGTCACCGAAGGGCTTTAA " 1300 UPDATE MexF antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; norfloxacin; trimethoprim; efflux pump complex or subunit conferring antibiotic resistance; diaminopyrimidine antibiotic; ciprofloxacin; fluoroquinolone antibiotic; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATTTCTCCCAATTCTTCATCCAGCGGCCGATCTTCGCCGCGGTGCTGTCGCTGCTGATCCTGATTGGCGGCGCCATCTCCCTGTTCCAGCTACCCATCAGCGAATACCCGGAAGTGGTGCCGCCGACCGTCGTGGTCCGCGCCAACTTCCCCGGCGCCAACCCGAAAGTCATCGGCGAGACCGTCGCCTCTCCCCTTGAACAGGCGATCACCGGGGTGGAGAACATGCTCTACATGTCCTCCCAGTCGACCTCCGACGGCAAGCTGACCCTGACCATCACCTTCGCCCTCGGCACCGACCTGGACAACGCCCAGGTGCAGGTGCAGAACCGCGTCACCCGGACCGAGCCGAAGCTCCCGGAAGAAGTGACCCGGCTCGGCATCACCGTCGACAAGGCCTCGCCCGACCTGACCATGGTCGTGCACCTGACCTCGCCGGATAACCGCTACGACATGCTCTACCTGTCGAACTACGCGGTGCTCAACGTGAAGGACGAACTGGCCCGCCTCGACGGCGTCGGCGACGTCCAGTTGTTCGGCCTCGGCGACTATTCGCTGCGCGTCTGGCTGGACCCGAACAAGGTCGCCTCGCGCAACCTCACCGCCACCGACGTGGTCAACGCCATCCGCGAGCAGAACCGCCAGGTCGCCGCCGGCACCCTGGGCGCGCCGCCGGCGCCGAGCGATACCAGCTTCCAGTTGTCGATCAACACCCAGGGTCGCCTGGTCACCGAGGAAGAGTTCGAGAACATCATCATCCGCGCCGGCGCCAACGGCGAGATCACCCGTCTGCGCGACATCGCCCGGGTCGAGCTGGGCTCCAACCAGTACGCCCTGCGTTCGCTGCTGAACAACAAGCCGGCGGTGGCGATCCCGATCTTCCAGCGTCCCGGCTCGAACGCCATCGAGATCTCCAACCTGGTGCGGGAGAAGATGGCCGAGCTGAAGCACAGCTTCCCGCAAGGCATGGACTACTCCATCGTCTACGACCCGACCATCTTCGTCCGCGGCTCCATCGAGGCGGTGGTGCACACCCTGTTCGAAGCCCTGGTGCTGGTGGTGCTGGTGGTGATCCTGTTCCTGCAGACCTGGCGCGCCTCGATCATCCCGCTGGCCGCGGTGCCGGTGTCGCTGATCGGCACCTTCGCGGTGATGCACATGCTCGGCTTCTCGCTCAACGCGCTGTCGCTGTTCGGCCTGGTGCTGGCCATCGGCATCGTGGTGGACGACGCCATCGTGGTGGTGGAGAACGTCGAGCGCAACATCGGCCTCGGCCTCAAGCCGGTGGAAGCCACCAAGCGTGCCATGCGCGAGGTGACCGGGCCGATCATCGCCACGGCGCTGGTGCTCTGCGCGGTGTTCATCCCGACCGCGTTCATCTCCGGCCTCACCGGGCAGTTCTACCGCCAGTTCGCCCTGACCATCGCGATCTCCACGGTGATCTCGGCGTTCAACTCGCTGACCCTGTCGCCAGCGCTGGCGGCGGTCCTGCTCAAGGGCCACCACGAGCCGAAGGACCGCTTCTCGGTGTTCCTCGACAAGCTCCTCGGCAGTTGGCTGTTCCGTCCGTTCAACCGTTTCTTCGACCGCGCCAGCCATGGCTACGTCGGCACGGTGAACCGGGTCCTGCGCGGCAGCTCGATCGCCCTGCTGGTCTACGGCGGACTGATGGTGCTGACCTACTTCGGCTTCTCCAGCACGCCGACCGGTTTCGTCCCGCAGCAGGACAAGCAGTACCTGGTGGCCTTCGCCCAGTTGCCCGACGCGGCCAGCCTGGACCGTACCGAGGCGGTGATCAAGCAGATGTCCGAGATCGCCCTGGCGCAGCCCGGCGTGGCGGACTCGGTGGCCTTCCCCGGCCTGTCGATCAACGGCTTCACCAACAGCCCGAACAGCGGCATCGTGTTCACCCCGCTGAAGCCGTTCGACGAGCGCAAGGACCCGAGCCAGTCGGCCGGGGCCATCGCCGCCGCGCTGAACGCCAAGTACGCCGACATTCAGGACGCCTACATCGCGATCTTCCCGCCGCCGCCGGTACAGGGGCTGGGGACCATCGGCGGCTTCCGCCTGCAGATCGAGGACCGTGGCAACCAGGGCTACGAGGAGCTGTTCAAGCAGACCCAGAACATCATCACCAAGGCCCGTGCGCTGCCTGAGCTGGAACCCAGCTCGGTGTTCTCCAGCTACCAGGTCAACGTGCCGCAGATCGACGCCGACATCGACCGCGAGAAGGCCAAGACCCACGGCGTGGCGATCAGCGACATCTTCGACACCCTGCAGGTCTACCTCGGCTCGCTGTACGCGAACGACTTCAACCGCTTCGGCCGTACCTATCAGGTCAACGTCCAGGCCGAGCAGCAGTTCCGCCTCGAACCCGAGCAGATCGGCCAGCTGAAGGTGCGCAACAACCTCGGCGAGATGGTCCCGCTGGCGTCCTTCATCAAGGTCAGCGACACCTCCGGTCCGGACCGTGTGATGCACTACAACGGCTTCATCACCGCCGAACTCAACGGCGCCCCGGCCGCGGGCTACAGCTCCGGCCAGGCGCAGGCGGCGATCGAGAAGCTGCTGAAGGAGGAACTGCCCAACGGCATGACCTACGAGTGGACCGAGCTGACCTACCAGCAGATCCTCGCCGGCAATACCGCGCTGTTCGTCTTCCCGCTCTGCGTGCTGCTGGCCTTCCTCGTGCTGGCCGCCCAGTACGAGAGCTGGAGCCTACCGCTGGCGGTGATCCTGATCGTGCCGATGACCCTGCTGTCGGCGATCACCGGGGTGATCCTGGCCGGCAGCGACAACAACATCTTTACCCAGATCGGCCTGATCGTTCTGGTGGGGCTGGCGTGCAAGAACGCGATCCTGATCGTCGAGTTCGCCAAGGACAAGCAGGAGGAAGGCATGGACCGCGTCGCCGCGGTGCTGGAAGCCTGCCGCCTGCGCCTGCGGCCGATCCTGATGACGTCCATCGCCTTCATCATGGGTGTGGTGCCGCTGGTGATCTCCACCGGCGCCGGCGCCGAGATGCGCCATGCGATGGGCGTGGCGGTGTTCTCCGGGATGATCGGGGTGACCTTCTTCGGCCTGCTGCTGACGCCGGTGTTCTACGTCCTCATCCGCCGCTTCGTGGAGAACCGCGAAGCGCGCCGCGCCGCCAACGACAAAGGCCTGCCAGAGGTGCATGCATGA " 1301 UPDATE Staphylococcus aureus cls conferring resistance to daptomycin peptide antibiotic; antibiotic target alteration; daptomycin resistant cls; daptomycin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with ATGATAGAGTTATTATCCATTGCACTCAAGCATTCTAATATTATTTTAAATTCAATATTTATTGGTGCATTTATTTTAAACTTATTATTCGCCTTTACCATTATTTTCATGGAAAGACGTTCTGCCAATTCTATCTGGGCTTGGTTACTAGTCTTAGTTTTCTTGCCTTTATTCGGCTTCATTTTATACTTACTATTAGGACGACAAATTCAACGTGACCAAATTTTCAAAATTGATAAGGAAGATAAAAAAGGATTAGAGTTAATCGTTGATGAGCAATTAGCTGCTTTAAAAAATGAAAACTTTTCAAATTCCAATTATCAAATTGTAAAATTTAAAGAAATGATTCAAATGTTGTTATATAATAACGCAGCATTTTTAACAACAGACAACGATTTAAAAATATACACAGACGGCCAAGAAAAATTTGATGACCTAATACAAGACATCCGTAATGCTACTGATTATATTCATTTTCAGTACTATATTATTCAAAATGATGAATTAGGTCGTACCATTTTAAATGAACTTGGTAAAAAAGCGGAACAAGGTGTAGAAGTTAAAATTCTTTATGATGACATGGGTTCTCGTGGACTGCGTAAAAAAGGCTTACGCCCGTTTCGCAATAAAGGTGGACATGCTGAAGCATTTTTCCCATCAAAATTACCTTTAATTAACTTGCGTATGAACAATCGAAACCATCGAAAAATTGTTGTAATAGATGGGCAAATTGGATATGTTGGTGGTTTTAATGTTGGTGATGAGTACTTAGGTAAATCAAAAAAATTCGGCTATTGGCGAGATACGCATTTACGAATTGTCGGGGATGCAGTGAATGCATTGCAATTACGATTTATTCTAGATTGGAATTCACAAGCCACACGTGACCACATCTCCTATGATGATCGTTATTTCCCAGATGTAAATTCTGGTGGAACAATTGGCGTTCAAATAGCTTCTAGTGGTCCTGACGAAGAATGGGAACAGATTAAATACGGCTATTTGAAAATGATTTCATCTGCTAAAAAATCGATTTATATTCAATCTCCCTATTTCATACCTGATCAAGCCTTTTTAGATTCTATTAAAATTGCGGCATTAGGTGGTGTTGATGTCAATATCATGATTCCTAATAAACCTGACCATCCGTTTGTTTTTTGGGCTACTTTAAAAAATGCAGCATCCTTATTAGATGCCGGTGTTAAAGTATTTCACTACGACAATGGCTTTTTACACTCAAAAACACTTGTTATAGATGATGAAATTGCAAGTGTGGGAACAGCTAATATGGACCATCGCAGTTTCACATTGAATTTCGAAGTCAACGCTTTTATTTATGACCAACAAATTGCCAAAAAATTAAAACAAGCTTTTATAGATGATTTAGCAGTATCTTCTGAATTAACAAAAGCACGTTATGCTAAGCGAAGTCTTTGGATTAAATTTAAAGAAGGTATTTCACAATTATTGTCACCTATCTTATAA " 1303 UPDATE BEL-2 penam; monobactam; cephalosporin; antibiotic inactivation; BEL beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1308 UPDATE vanTE glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanT; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGCATAGAGCTAACGGCATTGATCTATTTCGAATATTCGCTGCTACTATGGTTGTTGCTATCCATACATTCCCTTTTCAATCAATAGCACCTTTTTTAGACGAAGTCATAACGTTAACTGTGTTTCGGGTAGCTGTCCCTTTTTTCTTTATGATTACAGGATATTTTTTGTTAGGAAGATTGTCATTAAATTTTTCGTATAATAATAATCAGAGAGTGAAAAAATATCTATACAAAATTGGAATGATTTATTTATATTCTATTTTATTGTATTTCCCATTATCTTTACTAAATGGCACTATTTCATTAAAAATGAACATACTTTTACTTTTAAAGGTTTTCATTTTTGACGGTACCTTTTATCACCTATGGTACTTTCCAGCTAGTATAATTGGAACGATTTTAGTAACCCTACTGTTACGTAGTATAGGATTTAAATTAACAGTCGCATTTTCTACATGTCTATATCTAGTTGGACTTGGTGGAGACAGCTGGTACGGGATAACCAATCAAGTTCCATTGCTAAATAAACTGTATACATTTATTTTTAGTTGGTCGGACTATACGCGTTCAGGTGTTTTCTTTACGCCTGTGTTTCTTTGCCTAGGAATATTTGCCTATAGAGTATCTAAAAAGTTAACTGCATCAAAGATATTAAACTTGCTTTTTTATGTGTTTATCATAGGTATGACTTTTGAGAGTATATTTCTACACCGATTTACGAACGTCAAACACGATAGTATGTATCTCTTATTGCCTTCATGTGCATTAATTTTGTTTTTAATGTTATTAAACTGGCAACCAAAACTAAAGGTAAAAGAATCAGCCGATTTAACGTTACTGGTTTATATTCTCCATCCATTAGTTATTGTAATTGTCCATTCTATAAGTAAGTATATTCCGATATTAAAAAACAGTTTGCTAAATTTCTTGTTAGTAGTCGTGTGCAGCTTTATACTAGCTCAGCTTCTGTTAAACTTAAAAAGAAAGCTAAGAGTTAGTAAGCAAAAAATACCATTTGAACGTGCTAGTAAAGAAATATCAGCTAGTGCAATACACCATAATATTAATGAAATACGAAAGATAATTCCCAAAAATACAAATATTATGGGTGTTGTGAAGGCAAATGCGTATGGCTGTGGCATGGTAGAGGTAGCTTATGAATTAGAAAAAATCGGTATTTCATTTTTCTGCGTAGCTACTATAGAAGAAGCAATTGCTTTAAGGAAATCAGGAAACCAAGGGGATATTTTAATTTTAGGGTATACACATCCCAATCGCATTAATGATATAAAAAAATATAATTTGATTCAATCGATTGTAAGTGAAGAACATGGGAAAGTGTTGAATCTAAAAAAAATACCTATTCGTTGTCATTTACAGGTTGATACTGGGATGCATCGTTTAGGTGTTACACCGAACGTAACAATTATTCAGCAGATGTATCTTTTTTCCAATCTTAAGATTGAGGGGATATACTCACACTTAGGTTCTTCAGACTCATTAGAGCAAGAATCAATCGCTCGAACAAATACTCAAATTTTTTTATTCAATAATATACTAAGTGATTTGGAACAAATGGGTATTTCCTACGGTTATACTCATATCCAAAGCAGCTATGGTATTTTAAATTACCCAGAATTAAGCTTTGATTTTGTGAGAATAGGAATTCTCTGTTATGGATTTTTAAGTGACTATAATAGTCCGACTAAAATCCCTATAGATTTACAACCTATAGTAAAAGTAAAAGCCTCTTTGATTACAGAAAGAATTGTGGAGGCAGGTGAATATGTTGGCTATGGATTAGGCGCTAAAGTTGAAAAAAGAACAAGAATAGGTGTCGTTAGTATTGGGTATGCGGACGGTATACCAAGGGCATTATCCAATGCTAAACTTACGTTAGAGTTTAAAGGTCAATCAATAAAACAGATTGGGAATATTTGTATGGATATGATGCTTGTTGATCTGTCCGAAGTGGAAGATATTTCCTTGAATGATGAACTAATCGTGTTACCTAATATTAGTAAAATCGCTGATGAAGAACAAACAATTACCAATGAGCTATTGAGTCGATTAGGTTCGAGGTTAGGTACAGAGTTAAATTGA " 1309 UPDATE ACT-20 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 498 UPDATE QnrB17 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 499 UPDATE vanSB glycopeptide antibiotic; vanS; antibiotic target alteration; vancomycin; glycopeptide resistance gene cluster; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 494 UPDATE KPC-14 antibiotic inactivation; penam; carbapenem; cephalosporin; monobactam; KPC beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCACTGTATCGCCGTCTAGTTCTGCTGTCTTGTCTCTCATGGCCGCTGGCTGGCTTTTCTGCCACCGCGCTGACCAACCTCGTCGCGGAACCATTCGCTAAACTCGAACAGGACTTTGGCGGCTCCATCGGTGTGTACGCGATGGATACCGGCTCAGGCGCAACTGTAAGTTACCGCGCTGAGGAGCGCTTCCCACTGTGCAGCTCATTCAAGGGCTTTCTTGCTGCCGCTGTGCTGGCTCGCAGCCAGCAGCAGGCCGGCTTGCTGGACACACCCATCCGTTACGGCAAAAATGCGCTGGTTCCGTGGTCACCCATCTCGGAAAAATATCTGACAACAGGCATGACGGTGGCGGAGCTGTCCGCGGCCGCCGTGCAATACAGTGATAACGCCGCCGCCAATTTGTTGCTGAAGGAGTTGGGCGGCCCGGCCGGGCTGACGGCCTTCATGCGCTCTATCGGCGATACCACGTTCCGTCTGGACCGCTGGGAGCTGGAGCTGAACTCCGCCATCCCAGGCGATGCGCGCGATACCTCATCGCCGCGCGCCGTGACGGAAAGCTTACAAAAACTGACACTGGGCTCTGCACTGGCTGCGCCGCAGCGGCAGCAGTTTGTTGATTGGCTAAAGGGAAACACGACCGGCAACCACCGCATCCGCGCGGCGGTGCCGGCAGACTGGGCAGTCGGAGACAAAACCGGAACCTGCGGAGTGTATGCAAATGACTATGCCGTCGTCTGGCCCACTGGGCGCGCACCTATTGTGTTGGCCGTCTACACCCGGGCGCCTAACAAGGATGACAAGCACAGCGAGGCCGTCATCGCCGCTGCGGCTAGACTCGCGCTCGAGGGATTGGGCGTCAACGGGCAGTAA " 495 UPDATE CMY-28 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 496 UPDATE KPC-16 antibiotic inactivation; penam; carbapenem; cephalosporin; monobactam; KPC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 497 UPDATE OXA-79 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 490 UPDATE TEM-188 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 491 UPDATE PER-2 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; PER beta-lactamase; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 492 UPDATE Clostridium butyricum catB antibiotic inactivation; thiamphenicol; chloramphenicol acetyltransferase (CAT); azidamfenicol; phenicol antibiotic; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 493 UPDATE TEM-84 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAGATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 24 UPDATE fusB antibiotic inactivation; fusidic acid; fusidic acid inactivation enzyme; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 25 UPDATE CTX-M-121 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTACCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGGCTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA " 26 UPDATE VEB-3 antibiotic inactivation; monobactam; cephalosporin; VEB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAATCGTAAAAAGGATATTATTAGTATTGTTAAGTTTATTTTTTACAGTTGTGTATTCAAATGCTCAAACTGACAACTTAACTTTGAAAATTGAGAATGTTTTAAAGGCAAAAAATGCCAGAATAGGAGTAGCAATATTCAACAGCAATGAGAAGGATACTTTTAAGATTAATAACGACTTCCATTTCCCGATGCAAAGCGTTATGAAATTTCCGATTGCTTTAGCCGTTTTGTCTGAGATAGATAAAGGGAATCTTTCTTTTGAACAAAAAATAGAGATTACCCCTCAAGACCTTTTGCCTAAAACGTGGAGTCCGATTAAAGAGGAATTCCCTAATGGAACAACTTTGACGATTGAACAAATACTAAATTATACAGTATCAGAGAGCGACAATATTGGTTGTGATATTTTGCTAAAATTAATCGGAGGAACTGATTCTGTTCAAAAATTCTTGAATGCTAATCATTTCACTGATATTTCAATCAAAGCAAACGAAGAACAAATGCACAAGGATTGGAATACCCAATATCAAAATTGGGCAACCCCAACAGCGATGAACAAACTGTTAATAGATACTTATAATAATAAGAACCAATTACTTTCTAAAAAAAGTTATGATTTTATTTGGAAAATTATGAGAGAAACAACAACAGGAAGTAACCGATTAAAAGGACAATTACCAAAGAATACAATTGTTGCTCATAAAACAGGGACTTCCGGAATAAATAATGGAATTGCAGCAGCCACTAATGATGTTGGGGTAATTACTTTACCGAATGGACAATTAATTTTTATAAGCGTATTTGTTGCAGAGTCCAAAGAAACTTCGGAAATTAATGAAAAGATTATTTCAGACATTGCAAAAATAACGTGGAATTACTATTTGAATAAATAA " 27 UPDATE lnuA antibiotic inactivation; lincosamide nucleotidyltransferase (LNU); lincosamide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2150 UPDATED strand with - UPDATED accession with AM399080.1 UPDATED fmin with 1664 UPDATED sequence with ATGAAAAATAATAATGTAACAGAAAAAGATTTATTTTATATTTTAGATTTATTTGAACACATGAAAGTAACTTATTGGTTAGATGGTGGCTGGGGGGTAGATGTATTAACTGGAAAACAACAAAGAGAACACAGAGATATAGATATAGATTTTGACGCTCAACACACTCAAAAAGTTATACAAAAATTAGAAGATATCGGATACAAAATAGAAGTTGATTGGATGCCTTCACGTATGGAACTTAAGCATGAAGAATATGGGTATTTAGATATTCATCCTATAAATCTAAATGATGATGGATCAATTACCCAAGCAAACCCAGAAGGTGGTAATTATGTTTTCCAAAATGACTGGTTTTCAGAAACTAATTACAAAGGTCGAAAAATACCATGTATTTCAAAAGAAGCTCAACTTCTTTTTCATTCTGGTTATGATTTAACAGAAAAAGACCATTTTGATATAAAAAATTTAAAATCAATAACATAA UPDATED NCBI_taxonomy_name with Staphylococcus chromogenes UPDATED NCBI_taxonomy_id with 46126 UPDATED NCBI_taxonomy_cvterm_id with 39565 UPDATED accession with CAL44992.1 UPDATED sequence with MKNNNVTEKDLFYILDLFEHMKVTYWLDGGWGVDVLTGKQQREHRDIDIDFDAQHTQKVIQKLEDIGYKIEVDWMPSRMELKHEEYGYLDIHPINLNDDGSITQANPEGGNYVFQNDWFSETNYKGRKIPCISKEAQLLFHSGYDLTEKDHFDIKNLKSIT " 20 UPDATE CMY-1 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAACAACGACAATCCATCCTGTGGGGGGCCGTGGCCACCCTGATGTGGGCCGGTCTGGCCCATGCAGGTGAGGCTTCACCGGTCGATCCCCTGCGCCCCGTGGTGGATGCCAGCATCCAGCCGCTGCTCAAGGAGCACAGGATCCCGGGCATGGCGGTGGCCGTGCTCAAGGATGGCAAGGCCCACTACTTCAATTACGGGGTGGCCAACCGGGAGAGCGGGGCCGGCGTCAGCGAGCAGACCCTGTTCGAGATAGGATCCGTGAGCAAGACCCTGACTGCGACCCTGGGGGCCTATGCGGTGGTCAAGGGAGCGATGCAGCTGGATGACAAGGCGAGCCGGCACGCGCCCTGGCTCAAGGGATCCGCCTTTGACAGCATCACCATGGGGGAGCTTGCCACCTACAGCGCCGGAGGCCTGCCACTGCAATTCCCCGAGGAGGTGGATTCATCCGAGAAGATGCGCGCCTACTACCGCCAGTGGGCCCCTGTCTATTCGCCGGGCTCCCATCGCCAGTACTCCAACCCCAGCATAGGGCTGTTCGGCCACCTGGCGGCGAGCAGCCTGAAGCAGCCGTTTGCCCCCTTGATGGAGCAGACCCTGCTGCCCGGGCTCGGCATGCACCACACCTATGTCAATGTGCCGAAGCAGGCCATGGCGAGTTATGCCTATGGCTATTCGAAAGAGGACAAGCCCATCCGTGTCAACCCTGGCATGCTGGCGGACGAGGCCTATGGCATCAAGACCAGCTCGGCGGATCTGCTGCGTTTTGTGAAGGCCAACATCGGCGGGGTTGATGACAAGGCGTTGCAGCAGGCCATCTCCCTGACCCACCAAGGGCATTACTCGGTAGGCGGGATGACCCAGGGGCTGGGTTGGGAGAGTTACGCCTATCCCGTCACCGAGCAGACATTGCTGGCGGGCAATTCGGCCAAGGTGATCCTCGAAGCCAATCCGACGGCGGCGCCCCGGGAGTCGGGGAGCCAGGTGCTCTTCAACAAGACCGGCTCGACCAATGGCTTTGGCGCCTATGTGGCCTTCGTGCCGGCCAGGGGGATCGGCATCGTCATGCTGGCCAATCGCAACTACCCCAACGAGGCGCGCATCAAGGCGGCCCACGCCATCCTGGCGCAGTTGGCCGGTTGA " 21 UPDATE OXA-329 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 22 UPDATE ACT-10 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 23 UPDATE OXA-371 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATTAAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGTGCTTCAAAATCTGATGACAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCATCAAGGTCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACCACAGAAGTATTTAAATGGGATGGGGAAAAAAGGCTATTCCCAGAATGGGAAAAGAACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAGCTCATGTCTAAGGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTCTAAAAATTACTCCTCAGCAAGAGGCACAGTTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAAACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTAAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGTTTAGAACAATTAGGTATTTTATAG " 927 UPDATE OXA-381 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATTAAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGCGCTTCAAAATCTGATAAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATAGGCTTTGAGCACCATAAGGCAACCACCACAGAAGTATTTAAGTGGGACGGGCAAAAAAGGCTATTCCCAGAATGGGAAAAGGACATGACCCTAGGCGATGCTATGAAAGTTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAAGGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAATTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAGACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGTTTAGAACAATTAGGTATTTTATAG " 28 UPDATE OXA-45 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGCGGTAAACACACTGTCATTCTGGGCGCGGCACTGTCGGCGCTTTTTGCCGGCGCGGCTGGCGCGCAGATGCTCGAATGCACGCTGGTCGCCGATGCCGCGAGCGGTCAGGAGCTTTACCGCAAGGGTGCCTGTGACAAGGCCTTCGCGCCAATGTCGACGTTCAAGGTGCCGTTGGCCGTCATGGGCTACGATGCTGGCATTCTTGTGGACGCGCATAATCCGCGCTGGGACTACAAGCCGGAATTCAATGGCTACAAATTCCAGCAGAAAACCACCGACCCTACGATCTGGGAAAAGGACTCGATCGTCTGGTATTCGCAGCAATTGACCCGCAAGATGGGGCAAAAACGCTTTGCCGCATACGTGGCCGGGTTCGGCTATGGCAATGGCGATATCTCCGGTGAGCCCGGTAAGAGCAACGGCCTGACGCATTCATGGCTGGGCTCCTCGCTGAAGATTTCTCCGGAAGGACAGGTGCGGTTCGTACGCGATCTGCTGTCGGCGAAACTGCCGGCTTCGAAAGACGCCCAGCAAATGACGGTTTCCATCCTGCCGCATTTCGCGGCCGGTGATTGGGCTGTGCAGGGCAAGACCGGCACCGGCTCGTTCATCGACGCCAGGGGTGCGAAGGCGCCGCTCGGATGGTTCATCGGCTGGGCGACGCACGAGGAACGCCGCGTCGTCTTCGCCCGCATGACTGCGGGCGGGAAGAAGGGCGAGCAACCCGCCGGACCGGCTGCCCGCGACGCCTTCCTCAAGGCATTGCCGGATCTCGCGAAAAGGTTCTGA " 29 UPDATE Escherichia coli folP with mutation conferring resistance to sulfonamides sulfadiazine; sulfadoxine; sulfacetamide; sulfadimidine; mafenide; sulfonamide resistant dihydropteroate synthase folP; sulfisoxazole; antibiotic target alteration; sulfone antibiotic; sulfamethizole; sulfasalazine; sulfonamide antibiotic; sulfamethoxazole; dapsone; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 3324911 UPDATED strand with - UPDATED accession with NC_000913.3 UPDATED fmin with 3324062 UPDATED sequence with ATGAAACTCTTTGCCCAGGGTACTTCACTGGACCTTAGCCATCCTCACGTAATGGGGATCCTCAACGTCACGCCTGATTCCTTTTCGGATGGTGGCACGCATAACTCGCTGATAGATGCGGTGAAACATGCGAATCTGATGATCAACGCTGGCGCGACGATCATTGACGTTGGTGGCGAGTCCACGCGCCCAGGGGCGGCGGAAGTTAGCGTTGAAGAAGAGTTGCAACGTGTTATTCCTGTGGTTGAGGCAATTGCTCAACGCTTCGAAGTCTGGATCTCAGTCGATACATCCAAACCAGAAGTCATCCGTGAGTCAGCGAAAGTTGGCGCTCACATTATTAATGATATCCGCTCCCTTTCCGAACCTGGCGCTCTGGAGGCGGCTGCAGAAACCGGTTTACCGGTTTGTCTGATGCATATGCAGGGAAATCCAAAAACCATGCAGGAAGCTCCGAAGTATGACGATGTCTTTGCAGAAGTGAATCGCTACTTTATTGAGCAAATAGCACGTTGCGAGCAGGCGGGTATCGCAAAAGAGAAATTGTTGCTCGACCCCGGATTCGGTTTCGGTAAAAATCTCTCCCATAACTATTCATTACTGGCGCGCCTGGCTGAATTTCACCATTTCAACCTGCCGCTGTTGGTGGGTATGTCACGAAAATCGATGATTGGGCAGCTGCTGAACGTGGGGCCGTCCGAGCGCCTGAGCGGTAGTCTGGCCTGTGCGGTCATTGCCGCAATGCAAGGCGCGCACATCATTCGTGTTCATGACGTCAAAGAAACCGTAGAAGCGATGCGGGTGGTGGAAGCCACTCTGTCTGCAAAGGAAAACAAACGCTATGAGTAA UPDATED NCBI_taxonomy_name with Proteobacteria UPDATED NCBI_taxonomy_id with 1224 UPDATED NCBI_taxonomy_cvterm_id with 40546 UPDATED accession with WP_000764731.1 UPDATED sequence with MKLFAQGTSLDLSHPHVMGILNVTPDSFSDGGTHNSLIDAVKHANLMINAGATIIDVGGESTRPGAAEVSVEEELQRVIPVVEAIAQRFEVWISVDTSKPEVIRESAKVGAHIINDIRSLSEPGALEAAAETGLPVCLMHMQGNPKTMQEAPKYDDVFAEVNRYFIEQIARCEQAGIAKEKLLLDPGFGFGKNLSHNYSLLARLAEFHHFNLPLLVGMSRKSMIGQLLNVGPSERLSGSLACAVIAAMQGAHIIRVHDVKETVEAMRVVEATLSAKENKRYE " 1516 UPDATE CMY-45 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 7 UPDATE CTX-M-130 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGCGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAGACGCCACGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA " 2288 UPDATE Mycobacterium bovis ndh with mutation conferring resistance to isoniazid isoniazid; antibiotic target alteration; antibiotic resistant ndh; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2104001 UPDATED strand with - UPDATED accession with AM408590.1 UPDATED fmin with 2102609 UPDATED sequence with ATGAGTCCCCAGCAAGAACCCACAGCGCAACCACCTCGTAGGCATCGAGTTGTGATCATCGGATCTGGGTTCGGCGGGCTAAACGCGGCAAAGAAGCTCAAGCGGGCCGACGTTGACATCAAGCTGATCGCGCGCACCACCCATCACCTGTTCCAGCCGCTGCTGTACCAAGTGGCCACCGGGATTATCTCCGAGGGAGAAATCGCTCCGCCGACCCGGGTCGTGCTGCGTAAGCAGCGCAATGTCCAGGTACTGTTGGGCAACGTCACCCACATCGACCTGGCCGGGCAGTGCGTCGTCTCGGAATTGCTCGGTCACACCTACCAAACCCCCTACGACAGCCTGATCGTCGCCGCGGGTGCTGGCCAGTCTTATTTCGGCAACGACCATTTCGCCGAATTCGCACCCGGCATGAAGTCCATCGACGACGCGTTGGAGTTGCGTGGCCGCATATTGAGCGCTTTCGAGCAAGCCGAACGGTCCAGCGATCCGGAACGGCGGGCCAAGCTACTGACATTCACCGTTGTCGGGGCTGGCCCCACCGGTGTTGAAATGGCCGGACAGATCGCCGAGCTGGCCGAGCACACGTTGAAGGGCGCATTCCGGCACATCGACTCGACCAAGGCGCGGGTGATTCTGCTTGACGCCGCCCCGGCGGTGCTGCCACCGATGGGCGCAAAGCTCGGTCAGCGGGCGGCTGCCCGGTTGCAGAAGCTGGGCGTGGAAATCCAGCTGGGTGCGATGGTCACCGACGTCGACCGCAACGGCATCACCGTCAAGGACTCCGACGGCACCGTCCGGCGCATCGAGTCGGCCTGCAAGGTCTGGTCGGCCGGGGTTTCGGCCAGTCGGTTGGGCAGGGACCTTGCCGAGCAATCACGGGTTGAGCTCGACCGGGCCGGCCGGGTCCAAGTGCTGCCCGACCTGTCCATTCCCCGGTACCCGAACGTGTTCGTGGTGGGCGATATGGCCGCTGTGGAGGGTGTGCCGGGTGTGGCGCAGGGCGCCATCCAGGGGGCGAAATACGTCGCCAGCACGATCAAGGCCGAACTGGCCGGCGCCAACCCGGCGGAGCGTGAGCCATTCCAGTACTTCGACAAGGGATCGATGGCCACGGTTTCGAGGTTTTCGGCGGTGGCCAAGATCGGTCCCGTTGAGTTCAGCGGCTTTATCGCCTGGCTGATTTGGCTGGTGCTGCACCTGGCGTACCTGATCGGGTTCAAGACCAAGATCACCACTCTGCTGTCGTGGACGGTGACTTTCCTCAGTACTCGCCGCGGCCAGCTGACCATCACCGACCAGCAGGCATTTGCGCGAACGCGGCTCGAACAGCTGGCCGAGCTGGCCGCCGAGGCGCAGGGCTCAGCGGCAAGCGCTAAGGTGGCCAGCTAG UPDATED NCBI_taxonomy_name with Mycobacterium bovis BCG str. Pasteur 1173P2 UPDATED NCBI_taxonomy_id with 410289 UPDATED NCBI_taxonomy_cvterm_id with 40462 UPDATED accession with CAL71877.1 UPDATED sequence with MSPQQEPTAQPPRRHRVVIIGSGFGGLNAAKKLKRADVDIKLIARTTHHLFQPLLYQVATGIISEGEIAPPTRVVLRKQRNVQVLLGNVTHIDLAGQCVVSELLGHTYQTPYDSLIVAAGAGQSYFGNDHFAEFAPGMKSIDDALELRGRILSAFEQAERSSDPERRAKLLTFTVVGAGPTGVEMAGQIAELAEHTLKGAFRHIDSTKARVILLDAAPAVLPPMGAKLGQRAAARLQKLGVEIQLGAMVTDVDRNGITVKDSDGTVRRIESACKVWSAGVSASRLGRDLAEQSRVELDRAGRVQVLPDLSIPRYPNVFVVGDMAAVEGVPGVAQGAIQGAKYVASTIKAELAGANPAEREPFQYFDKGSMATVSRFSAVAKIGPVEFSGFIAWLIWLVLHLAYLIGFKTKITTLLSWTVTFLSTRRGQLTITDQQAFARTRLEQLAELAAEAQGSAASAKVAS " 2281 UPDATE Brucella suis mprF peptide antibiotic; antibiotic target alteration; defensin resistant mprF; defensin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2282 UPDATE Clostridium perfringens mprF peptide antibiotic; antibiotic target alteration; defensin resistant mprF; defensin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1757774 UPDATED strand with - UPDATED accession with CP000312.1 UPDATED fmin with 1756064 UPDATED sequence with ATGTGGGATTCACTAAAAAAAAGTTATAGACATTTAAAAAATATTTTAGGATTTGTTACTGATAAAAGAAATTATGAAAATATAAAGAAGCTATTAAAAAATTACAAAATCTTAAGTGATATATCAAATATAATAGTATCAGTTTTGGTATTTCTAAGTGGTATTCTTTTAATAATTTCAGGGATTTATCCTAGTATATTTTATAAGATAAAATTTTTAGATAATATATACAGTTTATCTTTTTTAAGGTTTTCACATAGAGCTTCAATATTAATTGGATTAATGTTAATAATGACCTCTAAGGAAGTTTTCTTTAAGGTAAAAAGAGCTTATTATGTTACATTAACATTGCTTATAGTAGGAGGAGCCTTTGCCTTTATAAAAGATTTAGATTACAAAGAAGGAATTTTTATTTTAGGAGTAATAATACTTCTAATATTATCAAAAAAGAGTTTTTACAGAAAAAGTATTCCTATTAAGGTTACTAAATTAAGTGGGATATTAATAGTTCTTTCAATTGTAATGATTATCTTTGCGAGTTTTATACATAAATTTAACATACATTTTAGCAAGAACTATAAATACTATATAGACTTTTTCCATAGCACAAAGGGGTATTTAAGAATAGCATTATTCACATATATATCCTTTATAATATTTGTGATAATATGGTATTTAACAATGCCTAAAATAGAAGATGACGAAAGGTATATGGATGCTGATTTAGAAAAGGTATCAAAATTCTTTAAAGAAATAGATTATGGAACAATATTCTCCCATTTAGTTTATTTAAAGGATAAAAAGGTCTTTTGGGCTAATGAAGGAGAGTCCTTAATAATGTATAGCAAGTACAAAGATAAGATAATAGTTTTAGGAGATCCTATAGCTACTAAGGAAAACCTATATAGTTGTATAGAAGAGTTTCAAGCTTTTACAAATTTATATGGATATGATGTTGTCTTTTATGAAATAGAAGAAAAAAACTTTTCTACCTATCATGATGCAGGGTATTATTTCTTTAAGTTAGGAGAAGAGGCAAGGATAGATTTAGAAGAATTTAATTTGATTGGTTCTAAAAAGAGTGCCTTTAGAAACACCTTAAGAAGAGTTGAAAGGGAAGGATATAATTTTAGCATTATAGAGCCTCCTTTTAATAATGAGGTAGTAAGTCAATTGAAGGAAATATCTGATAAATGGTTAGGGGACAGAAAAGAAAAGGGATTTTCTTTAGGATGGTTTAGTGAGGATTATATACAAAGATCACCTATAGCTATTTTAAAGAATGAAGAAGAAAATAAGATTATGGGCTTTGTAACAATAATGGATGCTAATGATGGAGGGGAGACAGTAGCAATAGATTTAATGAGAATAGATAAAGATGCTCCAAATGCCTCTATGGATTACCTAATGCTTAATTTATTCTTAACCTTTAAAGAAAAAGGATATAAGTATTTTAGCTTAGGAGAAGCACCATTATCTAATGTAGGATTTAACACTCATTCACATTTACAAGAAAAGCTTGCAAGGTTAGTTTATAATAGTGGTAATATATTCTATAGTTTTGATGGACTAAGAAGATATAAGTCAAAGTTTTCTCCAATTTGGCAACCTAGATATTTAGCATATCCTAAGTTTATGTCCTTACCAGAGGTGTTTATTAACTTATGTTTATTAATAGCTAATTCAAAGGAAAGAGTAGAGAAAAAATAA UPDATED NCBI_taxonomy_name with Clostridium perfringens SM101 UPDATED NCBI_taxonomy_id with 289380 UPDATED NCBI_taxonomy_cvterm_id with 40448 UPDATED accession with ABG86067.1 UPDATED sequence with MWDSLKKSYRHLKNILGFVTDKRNYENIKKLLKNYKILSDISNIIVSVLVFLSGILLIISGIYPSIFYKIKFLDNIYSLSFLRFSHRASILIGLMLIMTSKEVFFKVKRAYYVTLTLLIVGGAFAFIKDLDYKEGIFILGVIILLILSKKSFYRKSIPIKVTKLSGILIVLSIVMIIFASFIHKFNIHFSKNYKYYIDFFHSTKGYLRIALFTYISFIIFVIIWYLTMPKIEDDERYMDADLEKVSKFFKEIDYGTIFSHLVYLKDKKVFWANEGESLIMYSKYKDKIIVLGDPIATKENLYSCIEEFQAFTNLYGYDVVFYEIEEKNFSTYHDAGYYFFKLGEEARIDLEEFNLIGSKKSAFRNTLRRVEREGYNFSIIEPPFNNEVVSQLKEISDKWLGDRKEKGFSLGWFSEDYIQRSPIAILKNEEENKIMGFVTIMDANDGGETVAIDLMRIDKDAPNASMDYLMLNLFLTFKEKGYKYFSLGEAPLSNVGFNTHSHLQEKLARLVYNSGNIFYSFDGLRRYKSKFSPIWQPRYLAYPKFMSLPEVFINLCLLIANSKERVEKK " 2283 UPDATE Streptococcus agalactiae mprF peptide antibiotic; antibiotic target alteration; defensin resistant mprF; defensin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2113820 UPDATED strand with - UPDATED accession with AE009948.1 UPDATED fmin with 2111276 UPDATED sequence with TTGTTGAAAAAGCTAATTGAAAAAGTCAAATCACTGACTTCTGTGATTAAAATTGTATTTTTTATATCTGTTTTAGTGCTTATTATTGTTGAAATGATTCATTTGAAACGAACTATTTCTGTTGAGCAACTAAAGAGTGTTTTTGGGCAATTATCTCCAATGAATCTTTTCTTAATTATCCTTGTGGGGGTTATCGCTGTCTTACCGACAACCGGATATGACTTTGTACTGAATGGACTTTTACGTACAGATAAAAGCAAAAGGTATATTTTACAGACTAGTTGGTGTATCAACACTTTTAATAACTTGTCAGGATTCGGTGGCTTAATCGATATTGGGTTGCGCATGGCTTTTTATGGTAAAAAAGGTCAAGAGAAGAGTGACCTAAGAGAAGTGACTCGTTTTTTACCCTATCTTATTTCTGGTCTGTCATTTATTAGTGTGATTGCCTTAATCATGAGCCATATTTTTCATGCCAAAGCTAGTGTTGATTACTATTATTTGGTATTAATTGGTGCTAGTATGTATTTTCCTGTTATTTATTGGATTTCTGGTCATAAAGGAAGCCATTATTTCGGAGATATGCCATCTAGTACTCGTATAAAATTAGGTGTTGTTTCTTTTTTTGAATGGGGATGTGCGGCCGCAGCATTTATAATTATCGGTTATTTAATGGGCATTCATCTACCAGTTTATAAAATTTTACCACTATTTTGTATTGGTTGTGCCGTCGGGATTGTATCCCTTATTCCCGGTGGATTAGGAAGTTTTGAATTAGTTCTATTTACAGGGTTTGCTGCCGAGGGACTACCTAAAGAAACTGTGGTTGCATGGTTATTACTTTATCGTTTAGCCTACTATATTATTCCATTCTTTGCAGGTATCTATTTCTTTATCCATTATTTAGGTAGTCAAATAAATCAACGTTATGAAAATGTCCCGAAAGAGTTAGTATCAACTGTTCTACAAACCATGGTGAGCCATTTGATGCGTATTTTAGGTGCATTCTTAATATTTTCAACAGCATTTTTTGAAAATATTACTTATATTATGTGGTTGCAGAAGCTAGGCTTGGACCCATTACAAGAACAAATGTTATGGCAGTTTCCAGGTTTATTGCTGGGGGTTTGTTTTATTCTCTTAGCTAGAACTATTGATCAAAAAGTGAAAAATGCTTTTCCAATTGCTATTATCTGGATTACTTTGACATTGTTTTATCTTAATTTAGGTCATATTAGTTGGCGACTATCTTTCTGGTTTATTTTACTATTGTTAGGCTTATTAGTCATTAAGCCAACTCTCTATAAAAAACAATTTATTTATAGCTGGGAAGAGCGTATTAAGGATGGAATCATTATCGTTAGTTTAATGGGAGTTCTATTTTATATTGCAGGACTACTATTCCCTATCAGGGCTCATATTACAGGTGGTAGTATTGAACGCCTGCATTATATCATAGCATGGGAGCCGATAGCATTGGCTACGTTGATTCTTACTCTCGTTTATTTATGTTTGGTTAAGATTTTACAAGGAAAATCTTGTCAGATTGGTGATGTGTTCAATGTGGATCGTTATAAAAAACTACTTCAAGCTTACGGTGGTTCTTCGGATAGCGGTTTAGCCTTTTTAAATGATAAAAGGCTCTACTGGTACCAAAAAAATGGAGAAGATTGCGTTGCGTTCCAATTTGTAATTGTCAATAATAAATGTCTTATTATGGGGGAACCAGCCGGTGATGACACTTATATTCGTGAAGCTATTGAATCGTTTATTGATGATGCTGATAAGCTAGACTATGACCTTGTTTTTTACAGTATTGGACAGAAGTTGACACTACTTTTACATGAGTATGGTTTTGACTTTATGAAAGTTGGTGAGGATGCTTTAGTTAATTTAGAAACGTTTACTCTTAAAGGGAATAAGTACAAACCTTTCAGAAATGCCCTAAATAGAGTTGAAAAGGATGGTTTCTATTTCGAAGTTGTACAATCGCCACATAGTCAAGAGCTACTAAATAGTTTGGAAGAGATTTCTAATACTTGGTTAGAAGGACGTCCTGAAAAAGGTTTCTCACTAGGATATTTTAATAAAGATTATTTCCAACAAGCCCCAATAGCTTTGGTAAAAAATGCTGAACACGAAGTTGTTGCTTTTGCTAATATTATGCCAAACTATGAAAAGAGTATTATCTCTATTGATTTAATGCGTCACGATAAACAGAAAATTCCGAATGGCGTTATGGATTTCCTCTTTTTATCATTATTCTCTTATTATCAAGAGAAGGGATACCACTATTTTGATTTGGGGATGGCACCTTTATCAGGAGTTGGTCGCGTTGAAACAAGTTTTGCTAAAGAGAGAATGGCGTATCTTGTCTATCATTTCGGTAGTCATTTCTACTCATTTAATGGTTTACACAAGTATAAGAAGAAGTTTACACCATTGTGGTCGGAACGTTATATTTCTTGTTCTCGTTCGTCCTGGTTAATTTGTGCTATTTGTGCCCTATTAATGGAAGATAGTAAAATTAAGATTGTTAAATAA UPDATED NCBI_taxonomy_name with Streptococcus agalactiae 2603V/R UPDATED NCBI_taxonomy_id with 208435 UPDATED NCBI_taxonomy_cvterm_id with 41042 UPDATED accession with AAN00989.1 UPDATED sequence with MLKKLIEKVKSLTSVIKIVFFISVLVLIIVEMIHLKRTISVEQLKSVFGQLSPMNLFLIILVGVIAVLPTTGYDFVLNGLLRTDKSKRYILQTSWCINTFNNLSGFGGLIDIGLRMAFYGKKGQEKSDLREVTRFLPYLISGLSFISVIALIMSHIFHAKASVDYYYLVLIGASMYFPVIYWISGHKGSHYFGDMPSSTRIKLGVVSFFEWGCAAAAFIIIGYLMGIHLPVYKILPLFCIGCAVGIVSLIPGGLGSFELVLFTGFAAEGLPKETVVAWLLLYRLAYYIIPFFAGIYFFIHYLGSQINQRYENVPKELVSTVLQTMVSHLMRILGAFLIFSTAFFENITYIMWLQKLGLDPLQEQMLWQFPGLLLGVCFILLARTIDQKVKNAFPIAIIWITLTLFYLNLGHISWRLSFWFILLLLGLLVIKPTLYKKQFIYSWEERIKDGIIIVSLMGVLFYIAGLLFPIRAHITGGSIERLHYIIAWEPIALATLILTLVYLCLVKILQGKSCQIGDVFNVDRYKKLLQAYGGSSDSGLAFLNDKRLYWYQKNGEDCVAFQFVIVNNKCLIMGEPAGDDTYIREAIESFIDDADKLDYDLVFYSIGQKLTLLLHEYGFDFMKVGEDALVNLETFTLKGNKYKPFRNALNRVEKDGFYFEVVQSPHSQELLNSLEEISNTWLEGRPEKGFSLGYFNKDYFQQAPIALVKNAEHEVVAFANIMPNYEKSIISIDLMRHDKQKIPNGVMDFLFLSLFSYYQEKGYHYFDLGMAPLSGVGRVETSFAKERMAYLVYHFGSHFYSFNGLHKYKKKFTPLWSERYISCSRSSWLICAICALLMEDSKIKIVK " 2284 UPDATE Escherichia coli murA with mutation conferring resistance to fosfomycin fosfomycin; antibiotic target alteration; murA transferase; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2285 UPDATE Staphylococcus aureus murA with mutation conferring resistance to fosfomycin fosfomycin; antibiotic target alteration; murA transferase; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2258311 UPDATED strand with - UPDATED accession with BX571856.1 UPDATED fmin with 2257045 UPDATED sequence with ATGGATAAAATAGTAATCAAAGGTGGAAATAAATTAACGGGTGAAGTTAAAGTAGAAGGTGCTAAAAATGCAGTATTACCTATATTAACAGCATCTTTATTAGCTTCTGATAAACCGAGCAAATTAGTTAATGTTCCAGCTTTAAGTGATGTAGAAACAATAAATAATGTATTAACAACCTTAAATGCTGACGTTACATACAAAAAGGACGAAAATGCTGTTGTCGTTGATGCAACAAAGACTCTAAATGAAGAGGCACCATATGAATATGTTAGTAAAATGCGTGCAAGTATTTTAGTTATGGGACCTCTTTTAGCAAGACTAGGACATGCTATTGTTGCATTGCCTGGTGGTTGTGCAATTGGAAGTAGACCGATTGAGCAACACATTAAAGGTTTTGAAGCTTTAGGCGCAGAAATTCATCTTGAAAATGGTAATATTTATGCTAATGCTAAAGATGGATTAAAAGGTACATCAATTCATTTAGATTTTCCAAGTGTAGGAGCAACACAAAATATTATTATGGCAGCATCATTAGCTAAGGGTAAGACTTTAATTGAAAATGCAGCTAAAGAACCTGAAATTGTTGATTTAGCAAACTACATTAATGAAATGGGCGGTAGAATTACTGGTGCTGGTACAGACACAATTACAATCAATGGTGTAGAATCATTACATGGTGTAGAACATGCTATCATTCCAGATAGAATTGAAGCAGGCACATTACTGATCGCTGGTGCCATTACTCGTGGCGATATTTTTGTACGTGGTGCAATCAAAGAACATATGGCTAGTTTAGTGTATAAATTAGAAGAAATGGGCGTTGAATTGGAATATCAAGAAGATGGTATTCGTGTACGTGCTGAAGGAGATTTACAGCCTGTTGACATCAAAACATTACCGCATCCTGGTTTTCCAACCGATATGCAGTCACAAATGATGGCATTATTATTAACAGCAAACGGACATAAAGTAGTAACTGAAACTGTATTTGAAAATCGTTTTATGCATGTCGCAGAGTTCAAACGTATGAATGCTAATATCAATGTAGAAGGTCGTAGTGCTAAACTTGAAGGTAAAAGTCAATTGCAAGGTGCACAAGTTAAAGCGACTGATTTAAGAGCAGCAGCAGCCTTAATTTTAGCTGGATTAGTTGCTGATGGTAAAACAAGCGTTACTGAATTAACGCACCTAGATAGAGGCTATGTTGACTTACACGGTAAATTGAAGCAATTAGGTGCAGACATTGAACGTATTAACGATTAA UPDATED NCBI_taxonomy_name with Staphylococcus aureus subsp. aureus MRSA252 UPDATED NCBI_taxonomy_id with 282458 UPDATED NCBI_taxonomy_cvterm_id with 35517 UPDATED accession with CAG41169.1 UPDATED sequence with MDKIVIKGGNKLTGEVKVEGAKNAVLPILTASLLASDKPSKLVNVPALSDVETINNVLTTLNADVTYKKDENAVVVDATKTLNEEAPYEYVSKMRASILVMGPLLARLGHAIVALPGGCAIGSRPIEQHIKGFEALGAEIHLENGNIYANAKDGLKGTSIHLDFPSVGATQNIIMAASLAKGKTLIENAAKEPEIVDLANYINEMGGRITGAGTDTITINGVESLHGVEHAIIPDRIEAGTLLIAGAITRGDIFVRGAIKEHMASLVYKLEEMGVELEYQEDGIRVRAEGDLQPVDIKTLPHPGFPTDMQSQMMALLLTANGHKVVTETVFENRFMHVAEFKRMNANINVEGRSAKLEGKSQLQGAQVKATDLRAAAALILAGLVADGKTSVTELTHLDRGYVDLHGKLKQLGADIERIND " 2286 UPDATE Borrelia burgdorferi murA with mutation conferring resistance to fosfomycin fosfomycin; antibiotic target alteration; murA transferase; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2287 UPDATE Mycobacterium smegmatis ndh with mutation conferring resistance to isoniazid isoniazid; antibiotic target alteration; antibiotic resistant ndh; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 446 UPDATE catB8 antibiotic inactivation; thiamphenicol; chloramphenicol acetyltransferase (CAT); azidamfenicol; phenicol antibiotic; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2379 UPDATE Escherichia coli CyaA with mutation conferring resistance to fosfomycin cya adenylate cyclase; fosfomycin; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2788945 UPDATED strand with - UPDATED accession with HG738867 UPDATED fmin with 2786398 UPDATED sequence with TTGTACCTCTATATTGAGACTCTGAAACAGAGACTGGATGCCATAAATCAATTGCGTGTGGATCGCGCGCTTGCTGCTATGGGGCCTGCATTCCAACAGGTCTACAGTCTACTGCCGACATTGTTGCACTATCACCATCCGCTAATGCCGGGTTACCTTGATGGTAACGTTCCCAAAGGCATTTGCCTTTACACGCCTGATGAAACTCAACGCCACTACCTGAACGAGCTTGAACTGTATCGTGGAATGTCAGTACAGGATCCGCCGAAAGGTGAGCTTCCAATTACTGGTGTATACACCATGGGCAGCACCTCGTCCGTAGGGCAAAGTTGTTCCTCTGACCTGGATATCTGGGTCTGTCATCAATCCTGGCTCGATAGCGAAGAGCGCCAATTGCTACAACGTAAATGTAGCCTGCTGGAAAACTGGGCCGCCTCGCTGGGTGTGGAAGTCAGCTTCTTCCTGATTGATGAAAACCGCTTCCGTCATAATGAAAGCGGCAGCCTGGGGGGCGAAGATTGTGGCTCCACCCAGCATATACTGCTGCTTGACGAATTTTATCGTACCGCCGTGCGTCTCGCCGGTAAGCGTATTCTGTGGAATATGGTGCCGTGCGACGAAGAAGAGCATTACGACGACTATGTGATGACGCTTTACGCGCAGGGCGTGCTGACGCCAAATGAATGGCTGGATCTCGGTGGCTTAAGCTCGCTTTCTGCTGAAGAGTACTTTGGTGCCAGCCTTTGGCAGCTCTACAAGAGTATCGATTCCCCATACAAAGCGGTACTGAAAACACTGCTGCTGGAAGCCTATTCCTGGGAATACCCGAACCCACGTCTGCTGGCGAAAGATATCAAACAGCGTTTGCACGACGGCGAGATTGTATCGTTTGGTCTCGATCCATACTGCATGATGCTGGAGCGTGTTACTGAATACCTGACGGCGATTGAAGATTTTACCCGTCTGGATTTAGTACGTCGCTGCTTCTATTTAAAAGTGTGCGAAAAGCTCAGCCGTGAACGCGCCTGCGTAGGCTGGCGTCGCGCAGTGTTGAGCCAGTTAGTGAGCGAGTGGGGTTGGGACGAAGCTCGTCTGGCAATGCTCGATAACCGCGCTAACTGGAAGATTGATCAGGTGCGTGAGGCGCACAACGAGTTGCTCGACGCGATGATGCAGAGCTACCGTAATCTGATCCGCTTTGCGCGTCGCAATAACCTTAGCGTCTCCGCCAGTCCGCAGGATATCGGCGTGCTGACGCGTAAGCTGTATGCCGCGTTTGAAGCATTACCAGGTAAAGTGACGCTGGTAAACCCGCAGATTTCACCCGATCTCTCGGAACCGAATCTGACCTTTATTTATGTGCCGCCGGGCCGGGCTAACCGTTCAGGTTGGTATCTGTATAACCGCGCGCCAAATATTGAGTCGATCATCAGCCATCAGCCGCTGGAATATAACCGTTACCTGAATAAACTGGTGGCGTGGGCATGGTTTAACGGCCTGCTGACCTCGCGCACCCGTTTGTATATTAAAGGTAACGGCATTGTCGATTTGCCTAAGTTGCAGGAGATGGTCGCCGACGTGTCGCACCATTTCCCGCTGCGCTTACCTGCACCGACACCGAAGGCGCTCTACAGCCCGTGTGAGATCCGCCATCTGGCGATTATCGTTAACCTGGAATATGACCCGACAGCGGCGTTCCGCAATCAGGTGGTGCATTTCGATTTCCGTAAGCTGGATGTCTTCAGCTTTGGCGAGAATCAAAATTGCCTGGTAGGTAGCGTTGACCTGCTGTACCGCAACTCGTGGAACGAAGTGCGTACGCTGCACTTCAACGGCGAGCAATCGATGATCGAAGCCCTGAAAACTATTCTCGGCAAAATGCATCAGGACGCCGCACCGCCAGATAGCGTGGAAGTCTTCTGTTATAGCCAGCATCTGCGCGGCTTAATTCGTACTCGCGTGCAGCAACTGGTTTCTGAGTGTATTGAATTGCGTCTTTCCAGCACCCGCCAGGAAACCGGGCGTTTCAAGGCGCTGCGCGTTTCTGGTCAAACCTGGGGGTTGTTCTTCGAACGCCTGAATGTATCGGTACAGAAACTGGAAAACGCCATCGAGTTTTATGGCGCGATTTCGCATAACAAACTGCACGGCCTGTCAGTGCAGGTTGAAACCAATCACGTCAAATTACCGGCGGTGGTGGACGGCTTTGCCAGCGAAGGGATCATCCAGTTCTTTTTCGAAGAAACGCAAGACGAGAATGGCTTTAATATCTACATTCTCGACGAAAGCAACCGGGTTGAGGTATATCACCACTGCGAAGGCAGCAAAGAGGAGCTGGTACGTGACGTCAGTCGCTTCTACTCGTCATCGCATGACCGCTTTACCTACGGCTCAAGCTTCATCAACTTCAACCTGCCGCAGTTCTATCAGATTGTGAAGGTTGATGGTCGTGAACAGGTGATTCCGTTCCGCACAAAATCTATCGGTAACATGCCGCCTGCCAATCAGGATCACGATACGCCGCTATTACAGCAATATTTTTCGTGA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. MC4100 UPDATED NCBI_taxonomy_id with 1403831 UPDATED NCBI_taxonomy_cvterm_id with 40589 UPDATED accession with CDJ73082 UPDATED sequence with MYLYIETLKQRLDAINQLRVDRALAAMGPAFQQVYSLLPTLLHYHHPLMPGYLDGNVPKGICLYTPDETQRHYLNELELYRGMSVQDPPKGELPITGVYTMGSTSSVGQSCSSDLDIWVCHQSWLDSEERQLLQRKCSLLENWAASLGVEVSFFLIDENRFRHNESGSLGGEDCGSTQHILLLDEFYRTAVRLAGKRILWNMVPCDEEEHYDDYVMTLYAQGVLTPNEWLDLGGLSSLSAEEYFGASLWQLYKSIDSPYKAVLKTLLLEAYSWEYPNPRLLAKDIKQRLHDGEIVSFGLDPYCMMLERVTEYLTAIEDFTRLDLVRRCFYLKVCEKLSRERACVGWRRAVLSQLVSEWGWDEARLAMLDNRANWKIDQVREAHNELLDAMMQSYRNLIRFARRNNLSVSASPQDIGVLTRKLYAAFEALPGKVTLVNPQISPDLSEPNLTFIYVPPGRANRSGWYLYNRAPNIESIISHQPLEYNRYLNKLVAWAWFNGLLTSRTRLYIKGNGIVDLPKLQEMVADVSHHFPLRLPAPTPKALYSPCEIRHLAIIVNLEYDPTAAFRNQVVHFDFRKLDVFSFGENQNCLVGSVDLLYRNSWNEVRTLHFNGEQSMIEALKTILGKMHQDAAPPDSVEVFCYSQHLRGLIRTRVQQLVSECIELRLSSTRQETGRFKALRVSGQTWGLFFERLNVSVQKLENAIEFYGAISHNKLHGLSVQVETNHVKLPAVVDGFASEGIIQFFFEETQDENGFNIYILDESNRVEVYHHCEGSKEELVRDVSRFYSSSHDRFTYGSSFINFNLPQFYQIVKVDGREQVIPFRTKSIGNMPPANQDHDTPLLQQYFS " 2374 UPDATE Escherichia coli UhpA with mutation conferring resistance to fosfomycin fosfomycin; antibiotic target alteration; UhpA; UhpT; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2375 UPDATE Rm3 Rm3 family beta-lactamase; carbapenem; cephalosporin; antibiotic inactivation; penam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2377 UPDATE Escherichia coli PtsI with mutation conferring resistance to fosfomycin fosfomycin; PtsI phosphotransferase; antibiotic target alteration; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2370 UPDATE ADC-81 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2371 UPDATE ADC-82 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2372 UPDATE Escherichia coli GlpT with mutation conferring resistance to fosfomycin fosfomycin; antibiotic target alteration; GlpT; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2234647 UPDATED strand with - UPDATED accession with HG738867 UPDATED fmin with 2233288 UPDATED sequence with ATGTTGAGTATTTTTAAACCAGCGCCACACAAAGCGCGCTTACCTGCCGCGGAGATCGATCCGACTTATCGTCGATTGCGCTGGCAAATTTTCCTGGGGATATTCTTTGGCTATGCGGCTTACTATTTGGTTCGTAAGAACTTTGCGCTTGCTATGCCTTATCTGGTTGAGCAGGGATTCTCACGCGGTGATTTAGGTTTTGCCCTTTCGGGGATCTCGATTGCTTATGGATTTTCGAAATTCATCATGGGTTCGGTATCGGATCGCTCGAATCCGCGCGTTTTCCTGCCCGCAGGTTTGATTCTGGCGGCGGCAGTGATGTTGTTTATGGGCTTTGTGCCATGGGCGACGTCGAGCATTGCGGTGATGTTTGTACTGTTGTTCCTCTGCGGTTGGTTCCAGGGGATGGGGTGGCCGCCGTGTGGTCGTACTATGGTGCACTGGTGGTCGCAGAAAGAACGTGGCGGCATTGTGTCAGTGTGGAACTGTGCGCACAACGTCGGTGGTGGTATTCCGCCGCTGCTGTTCCTGCTGGGGATGGCCTGGTTCAATGACTGGCATGCGGCGCTCTATATGCCTGCTTTCTGCGCCATTCTGGTGGCATTATTCGCCTTTGCGATGATGCGCGATACCCCGCAATCCTGTGGCTTGCCGCCGATCGAAGAGTACAAAAATGATTATCCGGACGACTATAACGAAAAAGCGGAACAGGAGCTGACGGCGAAGCAAATCTTCATGCAGTACGTACTGCCGAACAAACTGCTGTGGTATATCGCCATCGCCAACGTGTTCGTTTATCTGCTGCGTTACGGCATCCTCGACTGGTCACCGACTTATCTGAAAGAGGTTAAGCATTTCGCGCTAGATAAATCCTCCTGGGCCTACTTCCTTTATGAATATGCAGGTATTCCGGGCACTCTGCTGTGCGGCTGGATGTCGGATAAAGTCTTCCGTGGCAACCGTGGGGCAACCGGCGTTTTCTTTATGACACTGGTGACCATCGCGACTATCGTTTACTGGATGAACCCGGCAGGTAACCCAACCGTCGATATGATTTGTATGATTGTTATCGGCTTCCTGATCTACGGTCCTGTGATGCTGATCGGTCTGCATGCGCTGGAACTGGCACCGAAAAAAGCGGCAGGTACGGCAGCGGGCTTTACCGGGCTGTTTGGTTACCTGGGCGGTTCGGTGGCGGCGAGCGCGATTGTTGGCTACACCGTGGACTTCTTCGGCTGGGATGGCGGCTTTATGGTAATGATTGGCGGCAGCATTCTGGCGGTTATCTTGTTGATTGTTGTGATGATTGGCGAAAAACGTCGCCATGAACAATTACTGCAAGAACGCAACGGAGGCTAA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. MC4100 UPDATED NCBI_taxonomy_id with 1403831 UPDATED NCBI_taxonomy_cvterm_id with 40589 UPDATED accession with CDJ72593 UPDATED sequence with MLSIFKPAPHKARLPAAEIDPTYRRLRWQIFLGIFFGYAAYYLVRKNFALAMPYLVEQGFSRGDLGFALSGISIAYGFSKFIMGSVSDRSNPRVFLPAGLILAAAVMLFMGFVPWATSSIAVMFVLLFLCGWFQGMGWPPCGRTMVHWWSQKERGGIVSVWNCAHNVGGGIPPLLFLLGMAWFNDWHAALYMPAFCAILVALFAFAMMRDTPQSCGLPPIEEYKNDYPDDYNEKAEQELTAKQIFMQYVLPNKLLWYIAIANVFVYLLRYGILDWSPTYLKEVKHFALDKSSWAYFLYEYAGIPGTLLCGWMSDKVFRGNRGATGVFFMTLVTIATIVYWMNPAGNPTVDMICMIVIGFLIYGPVMLIGLHALELAPKKAAGTAAGFTGLFGYLGGSVAASAIVGYTVDFFGWDGGFMVMIGGSILAVILLIVVMIGEKRRHEQLLQERNGG " 2373 UPDATE Escherichia coli UhpT with mutation conferring resistance to fosfomycin fosfomycin; antibiotic target alteration; UhpT; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 591 UPDATE CTX-M-122 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCTCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGCGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA " 590 UPDATE IND-6 carbapenem; antibiotic inactivation; IND beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAGAAGAATTCAGTTCTTTATGGTTTCAATGATGCTTACCCCATTATTCAGTGCCCAGGTAAAAGATTTTGTAATTGAACCGCCAATAAAAAAGAACTTATATATTTATAAAACTTTCGGAGTGTTCGGGGGAAAAGAATATTCTGCCAATTCAGTGTATCTTGTCACCAAAACCGGGGTTGTTTTATTTGATGTTCCCTGGGAAAAAGCGCAATACCAAAGCCTGATGGATACCATCAAAAAACGTCATAATTTACCTGTTGTTGCGGTATTTGCGACACATTCCCATGATGACCGGGCAGGAGATTTAAGCTTTTTCAATAATAAAGGAATTAAAACCTATGCTACTCCTAAAACCAATCAATTTCTGAAAAGAGACGGAAAGGCTACTTCTACAGAGCTCATTAAGCCCGGAAAACCTTACCGCTTTGGCGGAGAGGAATTTGTAGTGGATTTTCTTGGTGAAGGGCATACTGCCGATAATGTAGTGGTATGGTTTCCAAAATATAAAGTGCTGGATGGCGGCTGCCTTGTAAAAAGCAATTCAGCTACCGATTTAGGGTATATCAAAGAAGCTAATCTAGAGCAATGGCCTAAAACCATGCATAAACTGAAAACAAAATATTCAGAAGCAGTATTAATTATTCCCGGACATGATGAATGGAAAGGCGGCGGGCACGTTGAACATACTTTGGAGCTGCTGGATAAGAAATAA " 593 UPDATE abeS antibiotic efflux; small multidrug resistance (SMR) antibiotic efflux pump; aminocoumarin antibiotic; novobiocin; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1249348 UPDATED strand with - UPDATED accession with CP001172.1 UPDATED fmin with 1249018 UPDATED sequence with ATGTCTTATCTTTATTTAGCAATTGCGATTGCTTGTGAAGTTATTGCAACTTCAGCATTAAAAGCATCTCAAGGTTTTACTGTTCCAATTCCGTCTATTATTACAGTTGTGGGTTATGCAGTTGCTTTTTATTTATTATCTCTTACGCTCAAAACAATTCCAATCGGGATTGCCTATGCCATTTGGTCAGGCGCAGGTATTATTTTAATTTCTGCAATTGGCTGGATATTTTACAAACAACATTTAGACTTAGCTGCCTGCATTGGTTTAGCTTTAATGATCGCAGGCATTGTGATTATTAATGTGTTTTCTAAAAACACCCATCTATAA UPDATED NCBI_taxonomy_name with Acinetobacter baumannii AB307-0294 UPDATED NCBI_taxonomy_id with 557600 UPDATED NCBI_taxonomy_cvterm_id with 35595 UPDATED accession with ACJ59254.1 UPDATED sequence with MSYLYLAIAIACEVIATSALKASQGFTVPIPSIITVVGYAVAFYLLSLTLKTIPIGIAYAIWSGAGIILISAIGWIFYKQHLDLAACIGLALMIAGIVIINVFSKNTHL " 1876 UPDATE LEN-7 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1877 UPDATE CMY-12 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1874 UPDATE OXA-196 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1875 UPDATE MIR-11 antibiotic inactivation; monobactam; cephalosporin; MIR beta-lactamase; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 35962 " 1872 UPDATE vanXYL glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanXY; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGATAACGATTACAAGTATTATTTACAATTAGTCAATAAGCAATATCCTTGGCAGATAAACAATGGTTCTAAAAAAATGGTAAGGGTGCCTTATACAGATAAAGAAATTTATTTAGATGCAGTTGTTGTTGAACATTTGATTCAGTTGATCGAAACTATTCAATTACAAGAGAAAATAGAAATAGTTGATGGTTACCGTACGATAGACGAACAAAAAGAATTATGGGAATTTTCTTTAAAAGATAGAGGGAAACGATATACTCATGATTATGTTGCCTATCCTGGGTGTAGTGAGCATCATACTGGACTTGCATTAGATATTGGTCTTAAAAAAACAGCACATGATATCATAGCACCAAAATTTAATGGAGAAGAGGCAAAAAAATTTTTAGAGCATATGAAAGATTACGGATTTATTTTAAGGTACCCTCCAAACAAAAAAAAGGTAACAGGGATTGCGTATGAACCGTGGCATTTTAGGTATGTTGGAGTTCCTCACAGCCAAATCATTACTCAGCAAGCTTGGACGCTGGAAGAATATATCGCTTTTTTACACACAGTAGGAGAAAAAGTTTCATGA " 1873 UPDATE linG antibiotic inactivation; lincosamide nucleotidyltransferase (LNU); lincosamide antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1870 UPDATE OXA-66 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1871 UPDATE OXA-389 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATTAAAACACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGCGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGTACACACTACGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACCACAGAAGTATTCAAGTGGGACGGGCAAAAAAGGCTATTCCCAAAATGGGAAAAGGACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAAGGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAATTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATAAAGTGCAATCCATGTTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAGACCCACAAGTGGGTTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGAAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGCTTAGAACAATTAGGTATTTTATAG " 595 UPDATE SHV-75 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1878 UPDATE SRT-2 antibiotic inactivation; cephalosporin; SRT beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1879 UPDATE AAC(3)-IIIa antibiotic inactivation; aminoglycoside antibiotic; gentamicin C; AAC(3); gentamicin B; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACCGATTTGAATATCCCGCATACACACGCGCACCTTGTAGACGCATTTCAGGCGCTCGGCATCCGCGCGGGGCAGGCGCTCATGCTGCACGCATCCGTTAAAGCAGTGGGCGCGGTGATGGGCGGCCCCAATGTGATCTTGCAGGCGCTCATGGATGCGCTCACGCCCGACGGCACGCTGATGATGTATGCGGGATGGCAAGACATCCCCGACTTTATCGACTCGCTGCCGGACGCGCTCAAGGCCGTGTATCTTGAGCAGCACCCACCCTTTGACCCCGCCACCGCCCGCGCCGTGCGCGAAAACAGCGTGCTAGCGGAATTTTTGCGCACATGGCCGTGCGTGCATCGCAGCGCAAACCCCGAAGCCTCTATGGTGGCGGTAGGCAGGCAGGCCGCTTTGCTGACCGCTAATCACGCGCTGGATTATGGCTACGGAGTCGAGTCGCCGCTGGCTAAACTGGTGGCAATAGAAGGATACGTGCTGATGCTTGGCGCGCCGCTGGATACCATCACACTGCTGCACCACGCGGAATATCTGGCCAAGATGCGCCACAAGAACGTGGTCCGCTACCCGTGCCCGATTCTGCGGGACGGGCGCAAAGTGTGGGTGACCGTTGAGGACTATGACACCGGTGATCCGCACGACGATTATAGTTTTGAGCAAATCGCGCGCGATTATGTGGCGCAGGGCGGCGGCACACGCGGCAAAGTCGGTGATGCGGATGCTTACCTGTTCGCCGCGCAGGACCTCACACGGTTTGCGGTGCAGTGGCTTGAATCACGGTTCGGTGACTCAGCGTCATACGGATAG " 977 UPDATE OXA-112 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 976 UPDATE CTX-M-61 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGTCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGAAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGTGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACTTGGTTAACTATAATCCGATTGCGGAAAAGCACGTCGATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTTCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGTAATCTGACGCTGGGTAAAGCATTGGGTGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGACTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA " 975 UPDATE QnrB1 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 681 UPDATED strand with + UPDATED accession with DQ351241.1 UPDATED fmin with 36 UPDATED sequence with ATGGCTCTGGCACTCGTTGGCGAAAAAATTGACAGAAACCGTTTCACCGGTGAGAAAATTGAAAATAGTACATTTTTTAACTGTGATTTTTCAGGTGCCGACCTGAGCGGCACTGAATTTATCGGCTGTCAGTTCTATGATCGTGAAAGCCAGAAAGGGTGCAATTTTAGTCGTGCGATGCTGAAAGATGCCATTTTTAAAAGCTGTGATTTATCCATGGCGGATTTTCGCAATTCCAGTGCGCTGGGCATTGAAATTCGCCACTGCCGCGCACAAGGCGCAGATTTCCGCGGCGCAAGCTTTATGAATATGATCACCACGCGCACCTGGTTTTGTAGCGCATATATCACGAATACCAATCTAAGCTACGCCAATTTTTCGAAAGTCGTGTTGGAAAAGTGTGAGCTGTGGGAAAACCGTTGGATAGGTGCCCAGGTACTGGGCGCGACGTTCAGTGGTTCAGATCTCTCCGGCGGCGAGTTTTCGACTTTCGACTGGCGAGCAGCAAACTTCACACATTGCGATCTGACCAATTCGGAGTTGGGTGACTTAGATATTCGGGGCGTTGATTTACAAGGCGTTAAGTTGGACAACTACCAGGCATCGTTGCTCATGGAGCGACTTGGCATCGCGGTGATTGGTTAG UPDATED NCBI_taxonomy_name with Klebsiella pneumoniae UPDATED NCBI_taxonomy_id with 573 UPDATED NCBI_taxonomy_cvterm_id with 35915 UPDATED accession with ABC86904.2 UPDATED sequence with MALALVGEKIDRNRFTGEKIENSTFFNCDFSGADLSGTEFIGCQFYDRESQKGCNFSRAMLKDAIFKSCDLSMADFRNSSALGIEIRHCRAQGADFRGASFMNMITTRTWFCSAYITNTNLSYANFSKVVLEKCELWENRWIGAQVLGATFSGSDLSGGEFSTFDWRAANFTHCDLTNSELGDLDIRGVDLQGVKLDNYQASLLMERLGIAVIG " 974 UPDATE lmrC ABC-F ATP-binding cassette ribosomal protection protein; antibiotic target protection; lincosamide antibiotic; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GAAGCATAAATGGGTTGCCTTATTCTCAATCGTTTCAACCTTTATTTATGCAGGAGTACAGCTTTACCAACCCCAAATCATGAAACGAATTATGACCGTAATGTCATCAACAACTTATAGCCGTCATCAAATGGCTGACAAGGTTTCAGGATATGGAGTTGAGCTTTTGGTTGTTGCTGGGATAGGGATAATTTTTGCTATCTTTAGTACACTTTCAGCGGCACGTATTGCCCAAGAAATTGGAGCAGACGTTCGTGAAGCGACTTACAAAAAAATCAATACATTTTCTTATGAAAATGTTGAAAAGTTCAATGCCGGAAACCTTGTTGTTCGGATGACAAATGACGTCACACAAGTTCAAAACTTGATGATGATGGTTTTCCAAATTTTGATGCGGATTCCAGTCCTTTTGATTGGTGCGGTTGTTCTTTCTATCACAACTCTTCCAAGATTATGGTGGATTACAGTCCTTTTAATTGTTTTAATCGTATTAGTCACAGCCGTTTTAATGGGACGCATGGGCCCTCACTTTATGGCTTTCCAAAAATTGATGGACCGTATTAACGCCATTGCTAAACAAAACTTGCGTGGTTCACGTGTCGTTAAATCATTCGTTCAAGAAAAAAATCAAATCAAAGATTTTGATGAAACTTCTGATGAACTTTACGATCATAACTGGGCAGTAGGAAAACTCTTCTCAGCAATGATTCCACTCTTTACTGTGATTGCTCAAGGAGCAATTTGGCTTGCTATTTACTTTGTTTCAACTTTTGTAACAGAGTCAACAACAGTTGCCCAAGATAGTATTGGTGGGATTGCTACATTCATGACTTATATGGGAATGATTATGTTTGCCATTATCATGGGTGGTATGATTTCAATGTTTGCTTCACGTGGTATGGTATCAATTGGTCGTATTAATGAAGTGTTAAATACTGATCCAGCCATGAAATTTGATGAAAATGCTAAAGATGAAGTTCTTTCAGGTTCTGTCAAATTTGACCATGTGTCATTCTCTTATCCAAATGATGAAGAACCAACACTTAAAGATATTAGCTTTGAAGTAGAACCTGGTCAAATGGTTGGGATTGTCGGAGCGACTGGTGCTGGTAAATCTACATTGGCACAATTGATTCCAAGACTCTTTGACCCAACAGAAGGTACCGTTTCAGTTGGTGGAAAAGATCTTAAAACAGTTAGCCGTGGAACATTGAAGAAAAATATTTCTATTGTTCTTCAAAAAGCCATTCTCTTCTCAGGAACAATTGCTGGAAATATTAAACAGGGGAAAGCCGATGCAACTGATGAAGAAATGACTCGTGCTGCACGCATTGCCCAAGCCGCAGAATTTATTACAACTAAAGATGGTCAATATGATTCTGAAGTTGAAGAACGCGGAAATAACTTCTCAGGTGGTCAAAAGCAAAGACTTTCAATCACACGTGGAGTTGTTAAAAATCCAAATGTCTTAATTTTAGATGACTCAACATCAGCCCTTGATGCTAAATCTGAAAAACTTGTTCAAGAAGCTTTGAATAAAGACCTTAAAGACACAACCACAATTATTATTGCTCAAAAGATTTCATCAGTGGTTCATGCAGATAATATTTTGGTTCTTGACCAAGGAAAACTTGTTGGTCAAGGAACTCACCAAGAATTAGTTGCTGAGAATAAAATTTACCAAGAAATCTACGACACACAGAAAGCACAGGAGGA DELETED 36298 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. " 973 UPDATE OXA-378 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 841 UPDATED strand with - UPDATED accession with KF986259.1 UPDATED fmin with 16 UPDATED sequence with ATGAACATTCAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGTGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATTCAACAAGGCCAAATTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACTACAGAAGTATTTAAGTGGGACGGGCAAAAAAGGCTATTCCCAGAATGGGAAAAGAACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAATGAAGTGAAGCGTATTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAGTTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGTTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAGACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGAAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGCTTAGAACAATTAGGTATTTTATAG UPDATED NCBI_taxonomy_name with Acinetobacter baumannii UPDATED NCBI_taxonomy_id with 470 UPDATED NCBI_taxonomy_cvterm_id with 35507 UPDATED accession with AHL30278.1 UPDATED sequence with MNIQALLLITSAIFISACSPYIVTANPNHSASKSDEKAEKIKNLFNEAHTTGVLVIQQGQIQQSYGNDLARASTEYVPASTFKMLNALIGLEHHKATTTEVFKWDGQKRLFPEWEKNMTLGDAMKASAIPVYQDLARRIGLELMSNEVKRIGYGNADIGTQVDNFWLVGPLKITPQQEAQFAYKLANKTLPFSQKVQDEVQSMLFIEEKNGNKIYAKSGWGWDVDPQVGWLTGWVVQPQGNIVAFSLNLEMKKGIPSSVRKEITYKSLEQLGIL " 972 UPDATE CMY-23 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGTTATGCTGCGCTCTGCTGCTGACAGCCTCTTTCTCCACATTTGCTGCCGCAAAAACAGAACAACAGATTGCCGATATCGTTAATCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCCGTTATCTACCAGGGAAAACCCTATTATTTCACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGATCGGTTAGTAAGACGTTTAACGGCGTGTTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCAGGGTATCCGCCTGCTGCACTTAGCCACCTATACGGCAGGCGGCCTACCGCTGCAGATCCCCGATGACGTTAGGGATAAAGCCGCATTACTGCATTTTTATCAAAACTGGCAGCCGCAATGGACTCCGGGCGCTAAGCGACTTTACGCTAACTCCAGCATTGGTCTGTTTGGCGCGCTGGCGGTGAAACCCTCAGGAATGAGTTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAGAACGAACAAAAAGATTATGCCTGGGGCTATCGCGAAGGGAAGCCCGTACACGTTTCTCCGGGACAACTTGACGCCGGAGCCTATGGCGTGAAATCCAGCGTTATTGATATGGCCCGCTGGGTTCAGGCCAACATGGATGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGCGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCCGCCCCCGCAGTGAAAGCCTCATGGGTGCATAAAACGGGCTCCACTGGTGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGCGGCCTGGCGCATTCTTGAAAAGCTGCAATAA " 971 UPDATE cmlA4 antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGCGCTCAAAAAACTTTAGTTGGCGGTACTCCCTTGCCGCCACGGTGTTGTTGTTATCACCGTTCGATTTGCTGGCATCACTCGGCATGGACATGTACTTGCCGGCAGTGCCTTTTATGCCAAACGCGCTTGGCACGACAGCGAGCACAGTTCAGCTTACGCTGGCAACGTACTTGGTCATGATCGGTGCCGGTCAGCTCTTGTTTGGACCGCTATCGGACCGACTGGGGCGCCGCCCCGTTCTACTGGGAGGTGGCCTCGCCTACGTTGTGGCGTCAATGGGCCTCGCTTTTACGTCATTGGCTGAAGTCTTTCTGGGGCTTCGGATTCTTCAGGCTTGTGGTGCCTCGGCGTGCCTTGTTTCCACGTTTGCAACAGTACGTGACATTTACGCAGGTCGCGAGGAAAGTAACGTCATTTACGGCATACTCGGATCCATGCTGGCCATGGTCCCGGCGGTAGGCCCATTGCTCGGAGCGCTCGTCGACATGTGGCTTGGGTGGCGGGCTATCTTTGCGTTTCTAGGTTTGGGCATGATCGCTGCATCTGCAGCAGCGTGGCGATTCTGGCCAGAAACCCGGGTGCAACGAGTTACGGGCTTGCAATGGTCGCAGCTGCTACTCCCCGTTAAGTGCCTGAACTTCTGGTTGTACACGTTGTGTTACGCCGCTGGAATGGGTAGCTTCTTCGTCTTTTTCTTCATTGCGCCCGGACTAATAATGGGCAGGCAAGGTGTGTCTCAGCTTGGCTTCAGCCTGCTGTTTGCCACAGTGGCAATTGCCATGGTGTTTACGGCTCGTTTTATGGGGCGTGTGATACCCAAGTGGGGCAGCCCAAGTGTCTTGCGAATGGGAATGGGATGCCTGATAGCTGGAGCAGTATTGCTTGCCATCACCGAAATATGGGCTTCGCAGTCCGTGTTAGGCTTTATTGCTCCGATGTGGCTAGTGGGTATTGGTGTCGCCACAGCGGTATCTGTGGCACCCAATGGCGCTCTTCAAGGATTCGACCATGTTGCTGGAACGGTCACGGCAGTTTACTTCTGCTTGGGCGGTGTACTGCTAGGAAGCATCGGAACGTTGATCATTTCGCTGTTGCCGCGCAACACGGCTTGGCCGGTTGTCGTGTACTGTTTGACCCTTGCAACAGTCGTGCTCGGTCTGTCTTGTGTTTCCCGAGCGAAGGGCTCTCGCGGCCAGGGGGAGCATGATGTGGTCGCGCTACAAAGTGCGGAAAGTACGTCAAATCCCAATCGTTGA " 970 UPDATE OKP-B-18 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 596 UPDATE ROB-1 penam; antibiotic inactivation; cephalosporin; ROB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTAAATAAGTTAAAAATCGGCACATTATTATTGCTGACATTAACGGCTTGTTCGCCCAATTCTGTTCATTCGGTAACGTCTAATCCGCAGCCTGCTAGTGCGCCTGTGCAACAATCAGCCACACAAGCCACCTTTCAACAGACTTTGGCGAATTTGGAACAGCAGTATCAAGCCCGAATTGGCGTTTATGTATGGGATACAGAAACGGGACATTCTTTGTCTTATCGTGCAGATGAACGCTTTGCTTATGCGTCCACTTTCAAGGCGTTGTTGGCTGGGGCGGTGTTGCAATCGCTGCCTGAAAAAGATTTAAATCGTACCATTTCATATAGCCAAAAAGATTTGGTTAGTTATTCTCCCGAAACCCAAAAATACGTTGGCAAAGGCATGACGATTGCCCAATTATGTGAAGCAGCCGTGCGGTTTAGCGACAACAGCGCGACCAATTTGCTGCTCAAAGAATTGGGTGGCGTGGAACAATATCAACGTATTTTGCGACAATTAGGCGATAACGTAACCCATACCAATCGGCTAGAACCCGATTTAAATCAAGCCAAACCCAACGATATTCGTGATACGAGTACACCCAAACAAATGGCGATGAATTTAAATGCGTATTTATTGGGCAACACATTAACCGAATCGCAAAAAACGATTTTGTGGAATTGGTTGGACAATAACGCAACAGGCAATCCATTGATTCGCGCTGCTACGCCAACATCGTGGAAAGTGTACGATAAAAGCGGGGCGGGTAAATATGGTGTACGCAATGATATTGCGGTGGTTCGCATACCAAATCGCAAACCGATTGTGATGGCAATCATGAGTACGCAATTTACCGAAGAAGCCAAATTCAACAATAAATTAGTAGAAGATGCAGCAAAGCAAGTATTTCATACTTTACAGCTCAACTAA " 979 UPDATE TEM-96 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 978 UPDATE OXA-134 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 182 UPDATE arlS antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; norfloxacin; acridine dye; acriflavin; ciprofloxacin; fluoroquinolone antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1361636 UPDATED strand with - UPDATED accession with NC_007795.1 UPDATED fmin with 1360280 UPDATED sequence with ATGACAAAACGTAAATTGCGCAATAACTGGATTATTGTTACCACGATGATTACGTTTGTCACGATATTTTTGTTTTGTTTAATTATTATTTTTTTCTTGAAAGATACACTGCATAATAGTGAGCTTGATGATGCAGAACGAAGCTCAAGCGATATTAATAATTTATTTCATTCTAAGCCTGTTAAAGATATATCTGCATTAGACTTGAATGCATCTTTAGGTAATTTTCAAGAGATAATTATTTATGATGAGCATAATAATAAATTATTTGAGACATCGAATGATAACACAGTGAGAGTTGAACCAGGTTATGAACACCGTTATTTTGACCGCGTAATAAAAAAACGCTATAAAGGCATTGAATATTTAATTATTAAAGAACCAATTACAACGCAAGATTTCAAAGGGTATAGCTTGTTAATTCATTCACTAGAAAATTATGATAACATCGTAAAATCATTGTATATCATTGCGCTGGCATTTGGAGTGATTGCAACAATTATAACTGCCACAATCAGTTATGTATTTTCAACACAAATTACTAAACCGCTTGTCAGTTTATCAAATAAAATGATTGAGATTCGACGAGATGGTTTTCAAAATAAATTGCAATTAAATACAAATTATGAAGAAATAGATAATTTAGCAAATACGTTTAATGAGATGATGAGCCAAATTGAAGAATCATTTAATCAACAAAGACAATTTGTTGAAGATGCGTCACATGAATTACGAACACCATTACAAATTATTCAAGGTCATTTAAATTTGATTCAGCGATGGGGAAAAAAAGACCCAGCAGTATTAGAAGAATCGTTAAATATTTCTATTGAAGAAATGAATCGTATCATAAAATTAGTCGAAGAATTACTTGAATTGACTAAAGGAGATGTAAATGACATTTCTTCTGAAGCACAGACCGTGCATATTAATGATGAAATTCGCTCGCGAATACACTCATTAAAACAATTGCATCCTGATTATCAATTTGATACGGATCTGACATCTAAAAATCTAGAAATTAAAATGAAACCTCATCAATTCGAACAATTATTTTTAATCTTTATTGATAATGCAATCAAATATGATGTGAAGAATAAGAAAATTAAAGTTAAGACAAGGTTAAAAAATAAGCAAAAAATAATTGAAATTACAGATCATGGAATTGGTATTCCAGAGGAAGATCAAGATTTCATTTTTGATCGCTTTTATCGAGTGGATAAATCTCGTTCAAGAAGTCAAGGCGGTAATGGACTCGGATTATCTATTGCTCAAAAAATCATTCAATTAAACGGAGGATCGATTAAAATTAAAAGTGAAATTAACAAAGGAACAACGTTTAAAATCATATTTTAA UPDATED NCBI_taxonomy_name with Staphylococcus aureus subsp. aureus NCTC 8325 UPDATED NCBI_taxonomy_id with 93061 UPDATED NCBI_taxonomy_cvterm_id with 35511 UPDATED accession with YP_499945.1 UPDATED sequence with MTKRKLRNNWIIVTTMITFVTIFLFCLIIIFFLKDTLHNSELDDAERSSSDINNLFHSKPVKDISALDLNASLGNFQEIIIYDEHNNKLFETSNDNTVRVEPGYEHRYFDRVIKKRYKGIEYLIIKEPITTQDFKGYSLLIHSLENYDNIVKSLYIIALAFGVIATIITATISYVFSTQITKPLVSLSNKMIEIRRDGFQNKLQLNTNYEEIDNLANTFNEMMSQIEESFNQQRQFVEDASHELRTPLQIIQGHLNLIQRWGKKDPAVLEESLNISIEEMNRIIKLVEELLELTKGDVNDISSEAQTVHINDEIRSRIHSLKQLHPDYQFDTDLTSKNLEIKMKPHQFEQLFLIFIDNAIKYDVKNKKIKVKTRLKNKQKIIEITDHGIGIPEEDQDFIFDRFYRVDKSRSRSQGGNGLGLSIAQKIIQLNGGSIKIKSEINKGTTFKIIF " 183 UPDATE adeS antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; tigecycline; glycylcycline; tetracycline antibiotic; tetracycline; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 180 UPDATE DHA-19 antibiotic inactivation; cephalosporin; cephamycin; DHA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 181 UPDATE GES-14 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 186 UPDATE OXA-12 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCTCGCCTGCTTCTTTCCGGCCTGCTGGCTACCGGTCTGCTCTGTGCAGTACCGGCCTCCGCCGCCAGCGGCTGTTTTCTCTATGCCGATGGCAACGGTCAGACCCTCTCCAGCGAAGGGGACTGCTCCAGCCAGCTGCCGCCCGCATCCACCTTCAAGATCCCGCTGGCGCTGATGGGTTATGACAGTGGCTTTCTGGTGAATGAAGAGCATCCGGCGCTGCCCTACAAGCCGAGCTATGACGGCTGGCTGCCCGCCTGGCGCGAAACCACTACCCCGCGCCGCTGGGAAACCTATTCGGTGGTCTGGTTCTCCCAGCAGATCACCGAGTGGCTGGGGATGGAGCGCTTCCAGCAATACGTCGACCGCTTCGACTACGGCAACCGGGATCTCTCCGGCAATCCGGGCAAGCATGACGGTCTGACCCAAGCCTGGCTCAGCTCGAGCCTCGCCATCAGTCCGGAGGAGCAGGCTCGCTTCCTCGGCAAGATGGTGAGCGGCAAGCTGCCGGTCTCGGCGCAGACCCTGCAGTACACCGCCAATATCCTCAAGGTGAGCGAGGTCGAGGGCTGGCAGATCCACGGCAAGACCGGCATGGGCTACCCGAAGAAACTGGATGGCAGCCTCAACCGCGATCAGCAGATCGGCTGGTTCGTCGGCTGGGCCAGCAAACCGGGCAAGCAGCTCATTTTCGTTCATACCGTGGTGCAGAAACCGGGCAAGCAATTCGCCTCTATCAAGGCGAAAGAAGAGGTGCTGGCCGCCCTGCCCGCGCAACTCAAGAAACTCTGA " 187 UPDATE OXA-348 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 184 UPDATE OCH-1 penam; antibiotic inactivation; penem; cephalosporin; cephamycin; monobactam; OCH beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGAAAATCTACGACACTTTTGATCGGTTTCCTCACCACTGCCGCTATTATCCCGAATAGCGGCGCGCTGGCTGCGAGCAAGGTGAATGATGGCGACTTGCGCCGTATTGTCGATGAAACGGTGCGCCCGCTCATGGCCGAGCAGAAAATCCCCGGCATGGCGGTTGCCATAACCATCGACGGCAAGAGCCACTTCTTCGGTTATGGTGTGGCATCGAAAGAAAGCGGGCAAAAAGTCACTGAAGACACGATTTTCGAGATCGGTTCGGTCAGCAAGACCTTCACTGCAATGCTTGGCGGTTACGGGCTGGCGACAGGCGCGTTCTCCCTGTCCGATCCCGCGACCAAATGGGCTCCTGAACTGGCAGGCAGCAGCTTCGACAAGATCACCATGCGTGATCTTGGGACCTACACGCCGGGCGGATTGCCCCTCCAGTTTCCCGATGCTGTCACCGATGACAGTTCGATGCTGGCATATTTCAAGAAATGGAAGCCGGACTATCCGGCAGGGACGCAGCGTCGCTATTCGAATCCCAGCATCGGCCTGTTCGGCTATCTGGCGGCACGAAGCATGGACAAGCCGTTCGACGTTTTGATGGAGCAAAAGCTTCTGCCTGCATTCGGCCTGAAGAACACCTTCATCAATGTGCCGGCAAGCCAGATGAAGAACTACGCCTACGGCTATTCCAAAGCCAACAAGCCGATCCGGGTATCGGGCGGGGCGCTGGATGCACAAGCCTATGGCATCAAGACCACCGCGCTTGATCTTGCCCGCTTCGTCGAACTGAACATCGACAGCTCATCTCTGGAGCCTGATTTCCAGAAAGCCGTCGCCGCAACGCATACCGGTTACTACCATGTCGGAGCGAACAATCAGGGACTTGGCTGGGAGTTCTACAACTATCCGACTGCGCTCAAGACGCTTCTTGAGGGCAACTCGTCGGACATGGCGCTGAAGTCGCACAAAATCGAGAAATTCGATACACCTCGCCAACCGTCAGCTGATGTGCTGATCAATAAGACAGGCTCAACCAACGGCTTTGGCGCTTATGCGGCCTTTATTCCTGCGAAGAAGACCGGAATTGTTCTGCTTGCCAACCGGAATTATCCGATCGATGAGCGCGTAAAGGCTGCCTATCGGATATTGCAGGCGCTCGACAACAAGCAATAG " 185 UPDATE OXA-232 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTGTATTAGCCTTATCGGCTGTGTTTTTGGTGGCATCGATTATCGGAATGCCAGCGGTAGCAAAGGAATGGCAAGAAAACAAAAGTTGGAATGCTCACTTTACTGAACATAAATCACAGGGCGTAGTTGTGCTCTGGAATGAGAATAAGCAGCAAGGATTTACCAATAATCTTAAACGGGCGAACCAAGCATTTTTACCCGCATCTACCTTTAAAATTCCCAATAGCTTGATCGCCCTCGATTTGGGCGTGGTTAAGGATGAACACCAAGTCTTTAAGTGGGATGGACAGACGCGTGATATCGCCGCTTGGAATCGTGACCATGACTTAATTACCGCGATGAAGTACTCAGTTGTGCCTGTTTATCAAGAATTTGCCCGCCAAATTGGTGAGGCACGTATGAGTAAAATGCTGCACGCCTTCGATTATGGCAATGAGGATATCTCGGGCAATGTAGACAGTTTTTGGCTCGATGGTGGTATTCGCATTTCGGCTACCCAGCAAATCGCTTTTTTACGCAAGCTGTATCACAACAAGCTGCACGTTTCTGAGCGTAGTCAGCGCATCGTGAAACAAGCCATGCTGACCGAAGCCAATGGCGACTATATTATTCGGGCTAAAACGGGATACTCGACTAGTATCGAACCTAAGATTGGCTGGTGGGTTGGTTGGGTTGAACTTGATGATAATGTGTGGTTTTTTGCGATGAATATGGATATGCCCACATCGGATGGTTTAGGGCTGCGCCAAGCCATCACAAAAGAAGTGCTCAAACAGGAGAAAATTATTCCCTAG " 2110 UPDATE CARB-20 penam; antibiotic inactivation; CARB beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 188 UPDATE SHV-89 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 189 UPDATE CTX-M-19 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2114 UPDATE APH(3')-IIa antibiotic inactivation; aminoglycoside antibiotic; paromomycin; APH(3'); gentamicin B; ribostamycin; G418; neomycin; butirosin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2115 UPDATE TEM-4 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1559 UPDATE mtrA penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; penicillin; azithromycin; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 3627349 UPDATED strand with - UPDATED accession with AL123456.3 UPDATED fmin with 3626662 UPDATED sequence with ATGGACACCATGAGGCAAAGGATTTTGGTCGTTGACGACGACGCTTCGTTGGCTGAGATGCTCACCATCGTGCTGCGGGGGGAAGGCTTCGACACCGCGGTCATCGGCGACGGTACTCAGGCTCTGACCGCGGTGCGCGAGCTGCGCCCCGATCTGGTGTTATTGGATTTGATGCTGCCCGGTATGAACGGCATCGACGTGTGCCGGGTGTTGCGCGCCGATTCCGGTGTTCCGATCGTGATGCTCACCGCAAAGACCGACACCGTGGATGTGGTGCTGGGTCTGGAGTCGGGCGCCGACGACTACATCATGAAGCCGTTCAAGCCCAAGGAGCTGGTTGCGCGGGTGCGGGCGCGGCTGCGCCGCAACGACGACGAACCCGCCGAGATGCTGTCCATCGCCGACGTAGAAATCGACGTACCGGCGCACAAGGTCACTCGCAACGGTGAGCAGATCTCGTTGACACCGCTGGAATTCGACCTGTTGGTCGCATTGGCGCGCAAGCCGCGCCAGGTGTTTACTCGTGATGTGCTGCTCGAACAGGTATGGGGTTACCGGCACCCAGCCGATACCAGGCTGGTGAACGTGCATGTCCAGCGTCTGCGGGCCAAGGTCGAAAAGGATCCCGAGAACCCGACTGTGGTGCTGACCGTTCGAGGAGTGGGGTACAAGGCCGGACCTCCGTGA UPDATED NCBI_taxonomy_name with Mycobacterium tuberculosis H37Rv UPDATED NCBI_taxonomy_id with 83332 UPDATED NCBI_taxonomy_cvterm_id with 39507 UPDATED accession with CCP46065.1 UPDATED sequence with MDTMRQRILVVDDDASLAEMLTIVLRGEGFDTAVIGDGTQALTAVRELRPDLVLLDLMLPGMNGIDVCRVLRADSGVPIVMLTAKTDTVDVVLGLESGADDYIMKPFKPKELVARVRARLRRNDDEPAEMLSIADVEIDVPAHKVTRNGEQISLTPLEFDLLVALARKPRQVFTRDVLLEQVWGYRHPADTRLVNVHVQRLRAKVEKDPENPTVVLTVRGVGYKAGPP " 1919 UPDATE SHV-27 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1918 UPDATE spd antibiotic inactivation; aminoglycoside antibiotic; spectinomycin; ANT(9); model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAGGAACCAAATAAGCAAATTGATAATGTTTTAATAGAATTGAAACGATTGTTTTCAAAAGATTTATTAGGAGTCTATTTATATGGTTCTTATGTTAAAGGGGGTTTAAAAAAAGATAGTGATGTTGATTTTCTAGTGATAATAAATAGAGATATGACTAAAGAAGAAAAAAGAATATTAATTTCGAAAATTATGCCTATCTCTAAAGAAATTGGTGAAGATACAAGTTTAAAATATATAGAATTAACTGTGCTTAATTATCATGAAAATGAAAATTGGTCTTATCCACCTATTGAAGAGTTTATCTATGGGGAATGGCTTAGAGAAGATTATTTAAATTATTTTATTCCAGAAAAGAATAACAACATTGATTTAACAATATTATTATATCAAGCCAAGCTTTCTTCAATATCAATTTATGGCGAAAATAATATTAATAACTTAATTCCTGATGTTCCATTTATTGATTTACAAAAAGCTATAAAGGAAAGTTCTAAAGAATTGATAAAAGATTTTTATGGTGATGAAACAAATGTTATTTTAACCCTTTGTCGTATGATCGTAACTTATGAAACAGGTAAGTTTTATTCAAAAGATTTAGCTGGCAGTATGATAATAGAAAATTTATCAGAAAATTTATCAATTGAAGAAAATAATTTAATAAGTTTAGCTATTTCTAGTTATAAAAATGGTAATAGCGTTGATTGGGAACTTTTTCCTGTTAAGAGTGTCATTAAAAAACTTTATGCTTATTTGAATTATAAATTATGA " 1464 UPDATE aadA7 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTGAAAAAGTGCCCGCCGAGATTTCGGTGCAACTATCACAAGCACTCAACGGCATCGGGCGCCACTTGGAGTCGACGTTGCTGGCCGTGCATTTGTACGGCTCCGCACTGGATGGCGGATTGAAACCGTACAGTGATATTGATTTGCTGGTGACTGTAGCTGCACCGCTCAATGATGCCGTGCGGCAAGCCCTGCTCGTCGATCTCTTGGAGGTTTCAGCTTCCCCTGGCCAAAACAAGGCACTCCGCGCCTTGGAAGTGACCATCGTCGTGCACAGTGACATCGTACCTTGGCGTTATCCGGCCAGGCGGGAACTGCAGTTCGGAGAGTGGCAGCGCAAAGACATCCTTGCGGGCATCTTCGAGCCCGCCACAACCGATTCTGACTTGGCGATTCTGCTAACAAAGGCAAAGCAACATAGCGTCGTCTTGGCAGGTTCAGCAGCGAAGGATCTCTTCAGCTCAGTCCCAGAAAGCGATCTATTCAAGGCACTGGCCGATACTCTGAAGCTATGGAACTCGCCGCCAGATTGGGCGGGCGATGAGCGGAATGTAGTGCTTACTTTGTCTCGTATCTGGTACACCGCAGCAACCGGCAAGATCGCGCCAAAGGATGTTGCTGCCACTTGGGCAATGGCACGCTTGCCAGCTCAACATCAGCCCATCCTGTTGAATGCCAAGCGGGCTTATCTTGGGCAAGAAGAAGATTATTTGCCCGCTCGTGCGGATCAGGTGGCGGCGCTCATTAAATTCGTGAAGTATGAAGCAGTTAAACTGCTTGGTGCCAGCCAATGA " 1911 UPDATE AAC(6')-Iad antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1910 UPDATE CTX-M-136 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGTACCAGTAAAGTGATGGCCGTGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGACTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGTTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA " 1913 UPDATE dfrK iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1912 UPDATE LRA-13 penam; antibiotic inactivation; cephalosporin; class D LRA beta-lactamase; class C LRA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 37224 UPDATED strand with - UPDATED accession with EU408352.1 UPDATED fmin with 35394 UPDATED sequence with ATGAATTTTCGCCACATAGTCATGGCGGCGCTGTGCGGTCTCGCCTGGACGCCAGCCATCCACGCCACCGAAGTGTGTATCGCCATCGCCGAGGCCGGCACCGGCGCTGTGCTGGTCCAGCGCGGCGATTGCCAGCGCCAGGTGACGCCGGCGTCGACCTTCAAGATCGCCATCAGCCTGATGGGCTACGACTCGGGTTTTCTGAAGGACGCGCACGCGCCGAAACTGCCGTTCCGTCCAGGCTATGTCGATTGGCGGCCCAGCTGGCGCGAACCGACGGATCCGGCCAAGTGGATGAGCGATTCGGTCGTATGGTATTCGCAGCAGGTGACAAAATCCCTGGGCATGCAGCGTTTCGCCGACTACACGCGGAACTTCAAGTATGGCAATGCCGACGTTTCGGGGGACGCGGAAAATGACGGCCTGAGCATGTCGTGGATAAGTTCCTCGCTGCGGATCTCGCCGCTGGAACAACTCGCGTTCCTGGACAAGATCGTCAACCGTCGGCTGGGCGTGAGCGCCCATGCCTACGACATGACCGCGCAATTGACGAAATTCGATCAGCCTCCGGCGGGATGGCGCATCAACGGCAAGACCGGCGCCGCCTCCGGTTATGGCTGGTACGTGGGATGGGCGTCGAAAGGTTCGCGAACCTTCGTCTTTGCGCACCTGATGCAGAGGGACGCGACGCAGCCGCAAGACGTGTCGGCGGGCGTGCTGGCGCGTGACGAATTCCTCAAGGAACTCCCCGGCTTGATGATCAAGGATATGGTGGACCGCGCCGTCCAGCCGTTGATGAAGAAATACGATATCCCGGGGATGGCGGTGGCCGTCACCGACAACGGCAAGAACTACTTCTTCAACTACGGGCTGGCGTCGAGGGAAACCGGGCAAGCCGTTACCAGCCACACCCTGTTCGAGATCGGTTCGCTGAGCAAGACCATGGCGGCAACGCTGACTTCCTACGCGCAGGTCAACGGCCAGCTTGCGTTGACCGACACGGTCAGCCGGCATATGCCCAAGCTGCGCGGCGGCGGCTTCGACAAGATCAGCCTGCTCAATCTGGGCACCCACACGGCCGGCGATTTTCCGATGCAGGTTCCCGACCATATCGAGACCTACGAGCAGCTGATGGAGTACTACAAAAACTGGAAGCCCGGGGTTGCTGCGGGCGGCGCCAGGACCTACTCCAACCTGACCGTCGGCCTGCTGGGCATCATCACGGCGCAAAGCATGGGCATGCCGTTTGCGGAGGCGATGGAAAACAGGTTGTTCCCCCAGCTTGGCATGCATCACAGCTATATCAATGTGCCGGCGGCGGAGATGAAGAACTACGCGCAAGGCTACAACCAGGCCAACGCACCGGTCAGGATCAATCCGGCGGTGCTGGCAACCGAGGCATACGGGGTAAAGACCGATGCCGCCGACTTGATCCGGTTTGTCGACGCCAACATGGGGTTGGTCAAGCTGGACGAAAAACTGCAGCGCGCGGTCACCGGCACGCACACCGCCTACTTCAAGACGGGTGAGCTGACGCAGGATCTGATCTGGGAACAATATCCCGCCGCATCGAAACTCGATCGCATGCTGGCGGGCGTTTCCGAAAAAATGGTCTTTGAAAGCAATCCCGCGACCAGGCTGGCGCCGCCGATGCCGCCGCAAGCGGATGTGCTGATCAACAAGACCGGATCAACCGGCGGCTTTGGCGCCTATGCGCTGTTCAACCCGGGCAAGAAGACCGGCATCGTGATGCTGGCGAACAAGAGCTATCCTGGCGCAGAAAGGGTGACGGCGGCCTGGCACATACTGGATCAACTGGACCAGCGTTAG UPDATED NCBI_taxonomy_name with uncultured bacterium BLR13 UPDATED NCBI_taxonomy_id with 506515 UPDATED NCBI_taxonomy_cvterm_id with 39085 UPDATED accession with ACH58991.1 UPDATED sequence with MNFRHIVMAALCGLAWTPAIHATEVCIAIAEAGTGAVLVQRGDCQRQVTPASTFKIAISLMGYDSGFLKDAHAPKLPFRPGYVDWRPSWREPTDPAKWMSDSVVWYSQQVTKSLGMQRFADYTRNFKYGNADVSGDAENDGLSMSWISSSLRISPLEQLAFLDKIVNRRLGVSAHAYDMTAQLTKFDQPPAGWRINGKTGAASGYGWYVGWASKGSRTFVFAHLMQRDATQPQDVSAGVLARDEFLKELPGLMIKDMVDRAVQPLMKKYDIPGMAVAVTDNGKNYFFNYGLASRETGQAVTSHTLFEIGSLSKTMAATLTSYAQVNGQLALTDTVSRHMPKLRGGGFDKISLLNLGTHTAGDFPMQVPDHIETYEQLMEYYKNWKPGVAAGGARTYSNLTVGLLGIITAQSMGMPFAEAMENRLFPQLGMHHSYINVPAAEMKNYAQGYNQANAPVRINPAVLATEAYGVKTDAADLIRFVDANMGLVKLDEKLQRAVTGTHTAYFKTGELTQDLIWEQYPAASKLDRMLAGVSEKMVFESNPATRLAPPMPPQADVLINKTGSTGGFGAYALFNPGKKTGIVMLANKSYPGAERVTAAWHILDQLDQR " 1915 UPDATE CMY-47 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTGGCGATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAATTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGAGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATGAAGTTACGGATAAAGCCGAATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGTTGGTGGTAAAACCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAATTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACAGGTGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATAGTGATGCTGGCAAACAAAAGCTATCCTAACCCGGCTCGCGTAGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA " 1914 UPDATE BEL-3 penam; monobactam; cephalosporin; antibiotic inactivation; BEL beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1917 UPDATE tet(30) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1916 UPDATE TEM-208 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTTGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 869 UPDATE CRP penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; norfloxacin; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; oxacillin; cloxacillin; fluoroquinolone antibiotic; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 4154296 UPDATED strand with - UPDATED accession with AP009048.1 UPDATED fmin with 4153663 UPDATED sequence with ATGGTGCTTGGCAAACCGCAAACAGACCCGACTCTCGAATGGTTCTTGTCTCATTGCCACATTCATAAGTACCCATCCAAGAGCAAGCTTATTCACCAGGGTGAAAAAGCGGAAACGCTGTACTACATCGTTAAAGGCTCTGTGGCAGTGCTGATCAAAGACGAAGAGGGTAAAGAAATGATCCTCTCCTATCTGAATCAGGGTGATTTTATTGGCGAACTGGGCCTGTTTGAAGAGGGCCAGGAACGTAGCGCATGGGTACGTGCGAAAACCGCCTGTGAAGTGGCTGAAATTTCGTACAAAAAATTTCGCCAATTGATTCAGGTAAACCCGGACATTCTGATGCGTTTGTCTGCACAGATGGCGCGTCGTCTGCAAGTCACTTCAGAGAAAGTGGGCAACCTGGCGTTCCTCGACGTGACGGGCCGCATTGCACAGACTCTGCTGAATCTGGCAAAACAACCAGACGCTATGACTCACCCGGACGGTATGCAAATCAAAATTACCCGTCAGGAAATTGGTCAGATTGTCGGCTGTTCTCGTGAAACCGTGGGACGCATTCTGAAGATGCTGGAAGATCAGAACCTGATCTCCGCACACGGTAAAACCATCGTCGTTTACGGCACTCGTTAA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. W3110 UPDATED NCBI_taxonomy_id with 316407 UPDATED NCBI_taxonomy_cvterm_id with 36839 UPDATED accession with BAE77933.1 UPDATED sequence with MVLGKPQTDPTLEWFLSHCHIHKYPSKSKLIHQGEKAETLYYIVKGSVAVLIKDEEGKEMILSYLNQGDFIGELGLFEEGQERSAWVRAKTACEVAEISYKKFRQLIQVNPDILMRLSAQMARRLQVTSEKVGNLAFLDVTGRIAQTLLNLAKQPDAMTHPDGMQIKITRQEIGQIVGCSRETVGRILKMLEDQNLISAHGKTIVVYGTR " 1728 UPDATE OXA-42 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 861 UPDATE OXA-215 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 860 UPDATE TEM-42 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with CAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATAAGTTGGGTGTACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCAGTAAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACATGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAG " 863 UPDATE PER-7 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; PER beta-lactamase; monobactam; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATGTCATTATAAAAGCTGTAGTTACTGCCTCGACGCTACTGATGGTATCTTTTAGTTCATTCGAAACCTCAGCGCAATCCCCACTGTTAAAAGAGCAAATTGAATCCATAGTCATTGGAAAAAAAGCCACTGTAGGCGTTGCAGTGTGGGGGCCTGACGATCTGGAACCTTTACTGATTAATCCTTTTGAAAAATTCCCAATGCAAAGTGTATTTAAATTGCATTTAGCTATGTTGGTACTGCATCAGGTTGATCAGGGAAAGTTGGATTTAAATCAGACCGTTATCGTAAACAGGGCTAAGGTTTTACAGAATACCTGGGCTCCGATAATGAAAGCGTATCAGGGAGACCAGTTTAGTGTTCCAGTGCAGCAACTGCTGCAATACTCGGTCTCGCACAGCGATAACGTGGCCTGTGATTTGTTATTTGAACTGGTTGGTGGACCAGCTGCTTTGCATGACTATATCCAGTCTATGGGTATAAAGGAGACCGCTGTGGTCGCAAATGAAGCGCAGATGCACGCCGATGATCAGGTGCAGTATCAAAACTGGACCTCGATGAAGGGGGCCGCAGAGATCCTGAAAAAGTTTGAGCAAAAAACACAGCTGTCTGAAACCTCGCAGGCTTTGTTATGGAAGTGGATGGTCGAAACCACCACAGGACCAGAGCGGTTAAAAGGTTTGTTACCAGCTGGTACTGTGGTCGCACATAAAACTGGTACTTCGGGTGTCAGAGCCGGGAAAACTGCGGCCACTAATGATTTAGGTATCATTCTGTTGCCTGATGGACGGCCCTTGCTGGTTGCTGTTTTTGTGAAAGACTCAGCCGAGTCAAGCCGAACCAATGAAGCTATCATTGCGCAGGTTGCTCAGGCTGCGTATCAATTTGAATTGAAAAAGCTTTCTGCCCTAAGCCCAAATTAA " 862 UPDATE IMP-16 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAATTATTTGTTTTATGTATCTTTTTGTTTTGTAGCATTACTGCCGCAGGAGAGTCTTTGCCTGATTTAAAAATTGAGAAGCTTGAAGACGGTGTTTATGTTCATACATCGTTTGAAGAAGTTAACGGTTGGGGTGTTGTTACTAAACACGGTTTGGTGTTTCTTGTAAACACAGACGCCTATCTGATTGACACTCCATTTGCTGCTAAAGACACTGAAAAGTTAGTAAATTGGTTTGTGGAGCGCGGTTATAAAATAAAAGGCAGTATTTCCTCACATTTTCATAGCGACAGCTCGGGTGGAATAGAATGGCTTAACTCTCAATCTATTCCCACGTATGCATCTGAATTAACAAACGAACTTCTTAAAAAGAACGGTAAGGTGCAAGCTAAAAACTCATTTAGCGGAGTTAGTTATTGGCTACTTAAAAATAAAATTGAAATTTTTTATCCGGGCCCTGGGCACACTCAAGATAACGTAGTGGTTTGGTTGCCTGAAAAGAAAATTTTATTTGGTGGGTGTTTTGTTAAACCGTACGGTCTTGGAAATCTCGATGATGCAAATGTTGAAGCGTGGCCACATTCTGCTGAAATATTAATGTCTAGGTATGGTAATGCAAAACTGGTTGTTCCAAGCCATAGTGACGTCGGAGATGCGTCGCTCTTGAAGCTTACATGGGAGCAGGCTGTTAAAGGGCTAAAAGAAAGTAAAAAACCATCACAGCCAAGTAACTAA " 865 UPDATE OXA-244 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 864 UPDATE CMY-61 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 867 UPDATE OXA-175 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 866 UPDATE adeB antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; tigecycline; glycylcycline; tetracycline antibiotic; tetracycline; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2024 UPDATE ACC-2 penam; monobactam; cephalosporin; ACC beta-lactamase; antibiotic inactivation; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTAAAAAAATGCAGAACACCTTGAAGCTGTTATCCGTGATTACCTGTCTGGCAGCAACTGCCCAAGGTGCTATGGCTGCCAATATCGATGAGAGCAAAATTAAAGACACCGTCGATGGCCTAATCCAGCCGCTGATGCAGAAGAATAATATTCCCGGTATGTCGGTCGCAGTGACCATCAGAGGTAGGAACTATATTTATAACTACGGGTTAGCGGCAAAACAGCCTCAGCAGCCGGTGACGGAAAATACGTTATTTGAAGTGGGTTCGCTGAGTAAAACGTTTGCTGCCATCTTGGCGTCCTATGCGCAGGCGAGCGGTAAGCTGTCTTTGGAGCAAAGCGTTAGCCACTATGTTCCAGAACTACGTGGCAGCAGCTTTGACCACGTTAGCGTACTCAATGTGGGTACGCATACCTCAGGTCTACAGCTGTTTATGCCGGAAGATATCAAGAACACCACACAGCTGATGACTTATCTAAAAGCATGGAAACCTGCTGATGCGGCTGGAACCCATCGCGTTTATTCCAATATCGGTACCGGTTTGCTAGGGATGATTGCGGCGAAAAGTCTGGGTGTGAGCTATGAAGATGCGATTGAGCAAACCATCCTTCCTCTATTAGGCATGAATCAAACCTACCTGAAGGTTCCGGCTGACCAGATGGAAAACTATGCGTGGGGCTACAACAAGAAAGATGAGCCAGTGCACGTCAATATGGAGATTTTGGGTAACGAAGCTTATGGTATCAAAACCACCTCCAGCGACTTGTTACGCTACGTGCAAGCCAATATGGGGCAGTTAAAGCTTGATGGTAATGCCAAGATCCAACATGCACTGACAGCCACCCACACCGGCTATTTCAAATCGGGTGAGATTACTCAGGATCTGATGTGGGAGCAGCTGCCATATCCAGTTTCTCTGCCGAATTTGCTCACCGGTAACGATATGGCGATGACGAAAAGCGTGGCTACGCCGATTGTTCCCCCGTTACCGCCACAGGAAAATGTGTGGATTAATAAGACCGGATCAACTAACGGCTTCGGTGCCTATATTGCGTTTGTTCCTGCTAAGAAGATGGGGATCGTGATGCTGGCTAACAAAAACTACTCAATCGATCAACGAGTGACGGTGGCGTATAAAATCCTGAGCTCGTTGGAAGTGAATAAGTAG " 2025 UPDATE TEM-57 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2026 UPDATE OXA-84 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2027 UPDATE CMY-84 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCACTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTGGCGATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGCACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATGACATTACGGATAAAGCCGCATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGCGGTGAAACCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAACTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTGCACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACAGGATCCACAGGCGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTAATGTTGGCAAACAAAAGCTATCCCAACCCGGCTCGCGTCGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA " 2020 UPDATE tetO chlortetracycline; demeclocycline; oxytetracycline; tetracycline antibiotic; tetracycline; antibiotic target protection; minocycline; tetracycline-resistant ribosomal protection protein; doxycycline; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2021 UPDATE SHV-165 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2022 UPDATE CTX-M-104 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAACCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA " 2023 UPDATE OXA-132 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2117 UPDATE AAC(6')-Ib7 antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2028 UPDATE QnrB43 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2029 UPDATE TEM-123 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2758 UPDATE LpeA antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; spiramycin; azithromycin; erythromycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2759 UPDATE LpeB antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; spiramycin; azithromycin; erythromycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 883 UPDATE LRA-17 penam; antibiotic inactivation; subclass B3 LRA beta-lactamase; cephalosporin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 4455 UPDATED strand with - UPDATED accession with EU408354.1 UPDATED fmin with 3570 UPDATED sequence with ATGTCGATATTCAGAACCATACTTTTTGTATCCATACTATTACTGACCTCACTCGCAAATAGCCCGCATGCCACAGCACAGGTAACCAACACAGACAGGCCCGAATGGTCTAAACCCTACAAGCCATTCCGCATCGCAGGCAATATATACTACGTAGGCACTTATGACCTGGCCTGCTACCTCATCACCACGCCGCAGGGGCATATACTCATTAATGCTGCGCTGGCCGGCACGGTAGACCAGGTCAAGGCTAATGTGGAAGCGCTGGGATTTAAGTTCAGCGATATCAAGATACTGCTCATCTCGCAGGCGCACTTTGATCATGTGGGCGGCCTTGCAGCCATACAGAAGATGACAGGCGCCAAAGTGATGATAGACGATCAGGATGCGCCGGTGGTGGAAGATGGCGGCAATTCAGACTATATCTATGGCGGCAAGGGTGTAGGCAGCCTGTTCGCGCCCGTGCATGTAGACCGCAAGCTGCACGACCATGATAACATAACCCTCGGCGGTACGCAGTTGGAAATGCTGCATCATCCCGGCCATACCAAAGGTTCATGCAGCTACCTGCTCACCGTAAAGGATGAGCACCGCAGCTATCGTGTGCTGATAGCGAATATACCTTACATGCTGTCTGAGGTTACGTTGCCGGGCATGCCCACATATCCCAATGTCGGTAAAGACTTTATGTATACCTATGGCGCTATGAGGAAGCTGCAGTTTGATATATGGGTAGCTGCGCACTCCAGCCAGTTTGGCCTGCAAGACGTGCGCAAAGAGACCGACGGCTACAACCCCGGTGCATTTGGCGACAAAAAGAAATACTTAACCACCATCGACAAGACGGAGGATATATATAAGGAGCACTTTAAGGGAGGGAAATAG UPDATED NCBI_taxonomy_name with uncultured bacterium BLR17 UPDATED NCBI_taxonomy_id with 506517 UPDATED NCBI_taxonomy_cvterm_id with 39086 UPDATED accession with ACH58994.1 UPDATED sequence with MSIFRTILFVSILLLTSLANSPHATAQVTNTDRPEWSKPYKPFRIAGNIYYVGTYDLACYLITTPQGHILINAALAGTVDQVKANVEALGFKFSDIKILLISQAHFDHVGGLAAIQKMTGAKVMIDDQDAPVVEDGGNSDYIYGGKGVGSLFAPVHVDRKLHDHDNITLGGTQLEMLHHPGHTKGSCSYLLTVKDEHRSYRVLIANIPYMLSEVTLPGMPTYPNVGKDFMYTYGAMRKLQFDIWVAAHSSQFGLQDVRKETDGYNPGAFGDKKKYLTTIDKTEDIYKEHFKGGK " 882 UPDATE RCP-1 penam; antibiotic inactivation; RCP beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 881 UPDATE ErmC antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACGAGAAAAATATAAAACACAGTCAAAACTTTATTACTTCAAAACATAATATAGATAAAATAATGACAAATATAAGATTAAATGAACATGATAATATCTTTGAAATCGGCTCAGGAAAAGGGCATTTTACCCTTGAATTAGTACAGAGGTGTAATTTCGTAACTGCCATTGAAATAGACCATAAATTATGCAAAACTACAGAAAATAAACTTGTTGATCACGATAATTTCCAAGTTTTAAACAAGGATATATTGCAGTTTAAATTTCCTAAAAACCAATCCTATAAAATATTTGGTAATATACCTTATAACATAAGTACGGATATAATACGCAAAATTGTTTTTGATAGTATAGCTGATGAGATTTATTTAATCGTGGAATACGGGTTTGCTAAAAGATTATTAAATACAAAACGCTCATTCGCATTATTTTTAATGGCAGAAGTTGATATTTCTATATTAAGTATGGTTCCAAGAGAATATTTTCATCCTAAACCTAAAGTGAATAGCTCACTTATCAGATTAAATAGAAAAAAATCAAGAATATCACACAAAGATAAACAGAAGTATAATTATTTCGTTATGAAATGGGTTAACAAAGAATACAAGAAAATATTTACAAAAAATCAATTTAACAATTCCTTAAAACATGCAGGAATTGACGATTTAAACAATATTAGCTTTGAACAATTCTTATCTCTTTTCAATAGCTATAAATTATTTAATAAGTAA UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 880 UPDATE APH(6)-Ib antibiotic inactivation; APH(6); streptomycin; aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGCACGTCAAAACTGGTGGAGATCCCGGAACCCCTGGCGGCGTCGTACGCCCGCGCCTTCGGCGAGGAGGGACAGGCATGGATCGCCGCCCTGCCCGCGCTGGTCGAGGAATTACTGGACCGCTGGGAGCTGACGGCGGACGGCGCCTCCGCGTCGGGCGAGGCCTCCCTCGTGCTGCCGGTGCTGCGCACCGACGGCACCCGCGCCGTCCTCAAGCTCCAGCTGCCCAGGGAGGAGACCTCCGCCGCCATCACCGGACTGCGCACCTGGAACGGGCACGGCGTCGTGCGGCTGCTCGACCACGACCCGCGCAGCAGCACCATGCTCCTGGAGCGGCTGGACGCGTCCCGCACGCTGGCCTCGGTCGAGGACGACGACGCCGCCATGGGCGTACTCGCCGGGCTGCTGGCCCGGCTGGTGTCCGTCCCCGCGCCGCGGGGGCTGCGCGGCCTCGGCGACATCGCCGGCGCCATGCTGGAGGAGGTGCCGCGGGCGGTCGCGGCGCTGGCCGACCCGGCCGACCGGCGGCTGCTGAACGACTGGGCGTCGGCGGTGGCCGAACTGGTCGGCGAACCCGGCGACCGGATGCTGCACTGGGACCTGCACTACGGCAACGTCCTCGCCGCCGAGCGCGAACCCTGGCTCGCCATCGACCCCGAACCGCTCGCCGGTGACCCCGGCTTCGACCTGTGGCCCGCCCTGGACAGCCGGTGGGACGACATCGTCGCACAGCGGGACGTCGTACGCGTCGTGCGACGCCGCTTCGACCTGCTGACCGAGGTCCTCGGCCTGGACCGGGCACGGGCGGCCGGCTGGACGTACGGCAGGCTGCTGCAGAACGCCCTGTGGGACATCGAGGACGGCAGTGCCGCCCTCGACCCCGCCGCCGTCACGCTCGCACAGGCGCTGCGGGGCCACTGA " 887 UPDATE SHV-33 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 886 UPDATE IND-10 carbapenem; antibiotic inactivation; IND beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAAAGCATTCAATTTTTTATTGTTTCCATGTTGTTGAGCCCTTTTGCCAATGCACAGGTAAAAGATTTTGTAATTGAGCCACCTATTAAATCCAATCTATATATTTACAAGACTTTTGGAGTATTCGGAGGTAAAGAATATTCTGCCAATGCAGCCTATCTTAAGACTAAAAAAGGTGTAATTCTGTTTGATGTACCCTGGGAAAAAGTACAGTATCAAAGCCTGATGGATACCATCAAAAAACGTCATAACTTACCGGTAATTGCCGTATTTGCTACGCATTCCCATGATGACCGTGCAGGAGACTTAAGCTTTTTCAATAATAAAGGCATTAAGAAGTATGCTACCCTGAAAACCAATGAGTTTCTGAAGAAAGATGGAAAAGCAACATCCACAGAGATCATCCAAACCGGAAAACCTTATCACATTGGCGGAGAAGAATTTGTGGTCGATTTTCTTGGTGAAGGACATACTGCTGATAATGTAGTGGTATGGTTTCCAAAATATAATGTTTTGGATGGCGGATGTCTTGTAAAAAGTAATTCTGCTACTGACTTAGGATACATTAAAGAAGCCAATGTAGAACAATGGCCCAAGACGATGAATAAATTAAAAACCAAATATTCAAAAGCCACATTAATTATTCCCGGGCATGATGAATGGAAAGGGGGTGGACATGTTGAACACACTTTAGAGCTTTTGAACAAAAAATAA " 885 UPDATE TEM-63 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 884 UPDATE CTX-M-99 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 889 UPDATE CMY-74 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCTTCTTTCTCCACGTTTGCCGCCGCCAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCGCTGATGCAGGAGCAGGCAATTCCGGGCATGGCCGTTGCGATTATCTATCAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCGTCCAGTCACTCAACAAACGCTGTTTGAACTCGGATCGGTCAGTAAAACGTTCAACGGCGTGCTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGCATTACTGGCCTGAACTGACTGGTAAGCAGTGGCAGGGTATCAGCCTGCTGCACTTAGCCACCTACACGGCAGGCGGCCTGCCGCTTCAGGTTCCGGACGACGTTACGGATAAAGCCGCGTTACTACGCTTTTATCAAAACTGGCAGCCGCAATGGGCCCCAGGCGCTAAACGTCTTTATGCTAACTCCAGCATTGGTCTGTTTGGCGCCCTGGCGGTGAAACCCTCAGGCATGAGCTACGAAGAGGCGATGACCAAACGCGTCCTGCACCCCTTAAAACTGGCGCATACCTGGATTACGGTTCCGCAGAGCGAACAAAAAGATTATGCCTGGGGTTATCGCGAAGGAAAGCCAGTGCATGTATCCCCTGGCCAACTTGATGCCGAAGCCTACGGGGTGAAATCGAGCGTTATCGATATGACCCGTTGGGTTCAGGCCAACATGGACGCCAGCCAGGTTCAGGAGAAAACGCTCCAGCAGGGCATCGAGCTTGCGCAGTCACGTTACTGGCGTGTTGGCGATATGTACCAGGGCCTGGGCTGGGAGATGCTGAACTGGCCGGTGAAAGCCGACTCGATAATTAGCGGTAGCGACAGCAAAGTGGCACTGGCAGCGCTTCCTGCCGTTGAGGTAAACCCGCCCGCGCCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGCTCCACTGGCGGATTCGGCAGCTACGTTGCTTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAATAAGAGCTACCCAAACCCTGTTCGCGTCGAGGCCGCCTGGCGCATTCTTGAAAAACTGCAGTAA " 888 UPDATE Erm(36) antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 657 UPDATE SHV-142 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCGCCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACAAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAGCGGGGTGCGCGCGGCATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATATATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 775 UPDATE CMY-113 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 774 UPDATE tet37 tetracycline antibiotic; antibiotic inactivation; tetracycline inactivation enzyme; tetracycline; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTCGCTATTACTCTAACATTGTAGGTAAATACGGTATTCCAGTTCAGAATGCACTGAAGAAACTTGCAGGTATTCACATTGATTATATCTGTTCAACACATGGTCCTGTATGGCATGAGAACGTTGAAAAGGTGGTGAACCTGTATGATCGTATGTCGAAATATGAGACTGATCCAGGCTTGGTTATCTGCTACGGAACGATGTATGGGAACACAGAGGATCGCACACCGTCGATGTATGAATATATATGGATAAAAGAGAATCGAGAAGCTAAGGTTGTTTCATCATTTGCAGCTAATATTTATTTAGGATGGGGGCGGTGA " 776 UPDATE tetX antibiotic inactivation; tetracycline; chlortetracycline; demeclocycline; oxytetracycline; tetracycline antibiotic; tigecycline; glycylcycline; minocycline; tetracycline inactivation enzyme; doxycycline; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACAATGCGAATAGATACAGACAAACAAATGAATTTACTTAGTGATAAGAACGTTGCAATAATTGGTGGTGGACCCGTTGGACTGACTATGGCAAAATTATTACAGCAAAACGGCATAGACGTTTCAGTTTACGAAAGAGACAACGACCGAGAGGCAAGAATTTTTGGTGGAACCCTTGACCTACACAAAGGTTCAGGTCAGGAAGCAATGAAAAAAGCGGGATTGTTACAAACTTATTATGACTTAGCCTTACCAATGGGTGTAAATATTGCTGATAAAAAAGGCAATATTTTATCCACAAAAAATGTAAAGCCCGAAAATCGATTTGACAATCCTGAAATAAACAGAAATGACTTAAGGGCTATCTTGTTGAATAGTTTAGAAAACGACACGGTTATTTGGGATAGAAAACTTGTTATGCTTGAACCTGGTAAGAAGAAGTGGACACTAACTTTTGAGAATAAACCGAGTGAAACAGCAGATTTGGTTATTCTTGCCAATGGCGGGATGTCCAAGGTAAGAAAATTTGTTACCGACACGGAAGTTGAAGAAACAGGTACTTTCAATATACAAGCCGATATTCATCAACCAGAGATAAACTGTCCTGGATTTTTTCAGCTATGCAATGGAAACCGGCTAATGGCATCTCACCAAGGTAATTTATTATTTGCTAACCCCAATAATAATGGTGCATTGCATTTTGGAATAAGTTTTAAAACACCTGATGAATGGAAAAACCAAACGCAGGTAGATTTTCAAAACAGAAATAGTGTCGTTGATTTTCTTCTGAAAGAATTTTCCGATTGGGACGAACGCTACAAAGAATTGATTCATACGACGTTGTCATTTGTAGGATTGGCTACACGGATATTTCCTTTAGAAAAGCCTTGGAAAAGCAAGCGCCCATTACCCATAACAATGATTGGGGATGCCGCACATTTGATGCCGCCTTTTGCAGGGCAGGGAGTAAATAGTGGGTTGGTGGATGCCTTGATATTGTCTGATAATCTAGCCGATGGAAAATTTAATAGCATTGAAGAGGCTGTTAAAAATTATGAACAGCAAATGTTTATGTATGGCAAAGAAGCACAAGAAGAATCAACTCAAAACGAAATTGAAATGTTTAAACCCGACTTTACGTTTCAGCAATTGTTAAATGTATAA " 771 UPDATE CMY-24 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 770 UPDATE SHV-57 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 773 UPDATE OCH-4 penam; antibiotic inactivation; penem; cephalosporin; cephamycin; monobactam; OCH beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 772 UPDATE LEN-6 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATTATCTCCCTGTTAGCCACCCTGCCACTGGCGGTAGACGCCGGTCCACAGCCGCTTGAGCAGATTAAACAAAGCGAAAGCCAGCTGTCGGGCCGCGTGGGGATGGTGGAAATGGATCTGGCCAGCGGCCGCACGCTGGCCGCCTGGCGCGCCGATGAACGCTTTCCCATGGTGAGCACCTTTAAAGTGCTGCTGTGCGGCGCGGTGCTGGCGCGGGTGGATGCCGGGCTCGAACAACTGGATCGGCGGATCCACTACCGCCAGCAGGATCTGGTGGACTACTCCCCGGTCAGCGAAAAACACCTTGTCGACGGGATGACGATCGGCGAACTCTGCGCCGCCGCCATCACCCTGAGCGATAACAGCGCTGGCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCGGGATTAACTGCCTTTCTGCGCCAGATCGGTGACAACGTCACCCGTCTTGACCGCTGGGAAACGGAA " 779 UPDATE OXA-350 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 778 UPDATE IMP-25 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 77 UPDATE TEM-47 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 76 UPDATE SHV-79 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 75 UPDATE fusH antibiotic inactivation; fusidic acid; fusidic acid inactivation enzyme; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TTGCTCAACAAAGGAATCCGCACGCGGCGGGCTCGCGGGGCACTGGCCGGCGGCACGGTCCTGACGGCCGCCGCCGCCCTGCTCACCGCGGTGCCGGCCGCGCAGGCGATTTCCGGCGAGCCCCCGGCCGCGACCGACCACGCCTTCACCGCCCGGCTGCACATCGGCGAGGGCGACACCCTCCGCGGCTGTTCCGCCGCTCTGGTGCACCAGCAGTGGCTGCTGACCGCCACGAGCTGTTTCGCCGCCACCCCGGGTGGCGAGGTCAAGTCGGGCAAGCCCGCGCTGAAGTCGACGGCGACCCTGGGCGGCAAGACCCTCGGCATAGTCGAGGTCGTTCCGCGCGACGACCGGGACGTGGCCATGGTCCGGCTCGCCGAACCCGTCACCACGGTCGAGCCCGTGCGGCTGGCCGCGGACGCCCCCGTGGCGGCCGAGACCCTGCTCGGTGCAGGGTTCGGGCGGACCCGGACGGAGTGGGCCCCGGACCAGTTGCACACCGGCGAGTTCCGAGTGGACTCCGTCACCGGCACCACCGTGGAGCTGACCGGTCAGGACGGGGTGTCCGTGTGCAAGGGCGACACCGGCGGCCCGGCCCTGCGCGGCACGGGTGGTGAGGTCGAGCTGGCCGCCGTGCACAGCCGGTCCTGGCAGGGCGGGTGCTTCGGCGAGACGGAGACCCGGACCGGCGCGGTGGACGCCAGGGCCGACGGCCTGGCGGACTGGGTGACGGACGTCCGCAACCGCGACCGGACGCAGTCGGCCGACGTCGACGGCGACGGCAGGGCCGACCTCGTCGTCCTGCGCTCGAACGGCGACGTCGTCGTCCACCGCAACCTGGGCGACAGCTTCGCCGCCGGCCGGGTCATGTCCGGCGGCTGGGGCCTCTTCGTGACCTGGAAGGACCTGGGCCGGCTCTATTTCGCCGACGTCGACGGCGACCGCAAGGCCGACATGATCGTCCACACCAGCGACGGCAACATCGAGGTCCGCTTCAACCACGGCACCTACTGGGACCAGGGCACGCACTGGTCCGGCGGCTGGGGCCGCTTCATCGACGGCAGCGACCTGGGCCGGCTCTACTTCGCCGATGTGGACGGCGACGGCAGGGCGGACATGATCGTCCACACCGGCGACGGCAACGTCGAGGTGCGCTTCAACCACGGCACGTACTGGGACCAGGGGACGCACTGGTCGGGCGGCTGGGGCCGCTTCGTGACCTGGAAGGACCTGGGCCGGCTCTACTTCGCCGATGTCGACGGCGACGGCAGGGCGGACATGATCGTCCACACCGGCGACGGCAACGTAGAGGTCCGCTTCAACCACGGCACGTACTGGGACCAGGGCACGCACTGGTCCGGCGGCTGGGGCCGCTTCGTCGACGGCAGCGACCTGGGGTCCCTCGAGTTCGGCGACGCCACCGGTGACGGCAAGGCCGACCTGCTCGTCCGCACCAAGGACGGGAAGGTCGCCCTCCGTACCAACCACGGCACCTACTGGGACCAGGGCAAGTTCATGATCACGCTCTGA " 74 UPDATE SHV-18 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATTTTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCAGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGTGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGCCAAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGGATTGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 73 UPDATE OXA-35 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAACATTTGCCGCATATGTAATTACTGCGTGTCTTTCAAGTACGGCATTAGCTAGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTTTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATAACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAACGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAACAATGGGAAAGAGACTTGAGCTTAAGAGGGGCAATACAAGTTTCAGCGGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATACCTTAAAAAATTTTCATATGGCAACCAGAATATCAGTGGTGGCATTGACAAATTCTGGTTGGAGGGTCAGCTAAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATTTTTAAATAAATTGTCAGCATCAAAAGAAAATCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCTGCGCCTGAATATCTTGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGTTGGGTTGAGAAGGGAACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAATAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGCAAGTGAGGGCATCATTGGTGGCTAA " 72 UPDATE SHV-42 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 71 UPDATE QnrB66 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 70 UPDATE NDM-10 antibiotic inactivation; penam; carbapenem; cephalosporin; cephamycin; NDM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 79 UPDATE VIM-37 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 78 UPDATE TEM-16 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATAAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTAAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATCATTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 1043 UPDATE SHV-76 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1042 UPDATE Pseudomonas aeruginosa catB7 antibiotic inactivation; thiamphenicol; chloramphenicol acetyltransferase (CAT); azidamfenicol; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 780101 UPDATED strand with - UPDATED accession with NC_002516.2 UPDATED fmin with 779462 UPDATED sequence with ATGGGCAACTATTTCGAGAGCCCCTTCAGGGGCAAGCTGCTCTCGGAACAGGTCAGCAACCCGAACATACGGGTGGGGCGCTACAGCTACTACTCCGGCTACTATCACGGGCATTCCTTCGACGACTGCGCCCGCTACCTGATGCCGGACCGCGACGACGTGGACAAGCTGGTCATCGGCAGTTTCTGCTCGATCGGCAGTGGCGCCGCCTTCATCATGGCCGGCAACCAGGGACACCGCGCCGAATGGGCGTCGACCTTCCCCTTCCACTTCATGCACGAAGAGCCTGTCTTCGCCGGCGCCGTGAACGGCTATCAGCCAGCCGGCGACACGCTGATCGGCCATGACGTCTGGATCGGTACCGAGGCGATGTTCATGCCCGGCGTACGGGTCGGCCACGGAGCCATCATCGGCAGCCGCGCGCTGGTGACCGGCGATGTCGAGCCCTATGCCATCGTCGGCGGTAACCCGGCCCGGACCATTCGTAAGCGCTTTTCCGATGGCGATATCCAGAACCTGCTGGAAATGGCCTGGTGGGACTGGCCACTGGCCGATATCGAGGCAGCCATGCCACTGCTGTGTACTGGGGATATCCCCGCCTTGTACCGGCACTGGAAACAGCGCCAGGCCACGGCCTGA UPDATED NCBI_taxonomy_name with Pseudomonas aeruginosa PAO1 UPDATED NCBI_taxonomy_id with 208964 UPDATED NCBI_taxonomy_cvterm_id with 36804 UPDATED accession with NP_249397.1 UPDATED sequence with MGNYFESPFRGKLLSEQVSNPNIRVGRYSYYSGYYHGHSFDDCARYLMPDRDDVDKLVIGSFCSIGSGAAFIMAGNQGHRAEWASTFPFHFMHEEPVFAGAVNGYQPAGDTLIGHDVWIGTEAMFMPGVRVGHGAIIGSRALVTGDVEPYAIVGGNPARTIRKRFSDGDIQNLLEMAWWDWPLADIEAAMPLLCTGDIPALYRHWKQRQATA " 1040 UPDATE OXA-95 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATTAAAGCACTCTTCCTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGCGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACCACAGAAGTATTTAAGTGGGATGGTAAAAAAAGGCTATTCCCAGAATGGGAAAAGGACATGACCCTAGGCGATGCCATGAAAGCTTCCGCTATTCCAGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAGCTCATGTCTAAGGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAGTTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAGACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGTTTAGAACAATTAGGTATTTTATAG " 1047 UPDATE catS antibiotic inactivation; thiamphenicol; chloramphenicol acetyltransferase (CAT); azidamfenicol; phenicol antibiotic; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1046 UPDATE vgaD dalfopristin; pleuromutilin; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; ABC-F ATP-binding cassette ribosomal protection protein; antibiotic target protection; streptogramin antibiotic; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCTCATTCTTGAAGCGAATCATATTGAAAAATCTATAAATGACCGGAAACTTTTAGATGTTACTCATCTACAAATTCATTATGAGGATCGGATTGGTGTAGTTGGTCGTAATGGAAGCGGGAAAACGACATTATTATCTATATTGGCTGGTGAAATAGAAGCAGATAAAGGTGAAGTGAAAACAAGTGCAAGTCGCTACTTTTTACCTCAATTGAAGGAGACGGATACTTTCAGAAGTGGTGGTGAGATAACAAAAAGCTATATTGACAAAGCATTAGCGATGAAGGCGGAAATATTGTTTGCCGACGAACCAACTACAAACCTTGATACCCACAATATAAAAGAACTTGAAAAGCATTTCAGTCGATATCGGGGGGCAATCATTCTTGTATCACATAACCGGTATTTTTTAGATCAAATTTGTACAAAAATATGGGAAATTGAAGATGGAGAAGTGAAAGAAATTCACGGTAACTATACAAGTTATGTAAAACAAAAAGAACTACTTCGTCGACAGCAACAAGAGGAATATGAAAAATATATAACGAAGAAAAAGCAACTGGAGCGAGCTGTTACCATGAAAGAACAAAAGGCGCAAAAAATGATTAAGCCTCCTTCTAAACAAATGGGTACTTCTGAATCTCGAATATGGAAGATGCAGCATGCGACTAAACAAAAGAAAATGCATCAAAATATTAAGGCTCTTGAAACACGTGTTGAAAAACTAGAGCGTGTGAAAAAACCAAAAGATTATCCGGCTGTCAAAATGAAGTTGTCTAACCAAGATCAAATACAGGGGCGCAATGTACTTCGGGTAAAAGACTTATCTGTTTCCTTTGGGAATCATGTGCTTTGGACAGATGCTTCTTTTACCATTAAAGGCGGGGAGAAGGCTGCCATTATTGGCAATAATGGGGTCGGTAAAACAACATTGTTGAAACAAATTTTAGAAAGGGTACCAGCGGTAACAATATCACCCGCAGCAAAAATCGGCTATTTTAGCCAGAATTTGGATACGCTTGATACGCATGTGTCGATCTTAGAAAATGTCATGTCCACCGCTATTCAAGATGAAACTACTGTACGGACTGTTCTCGCAAGATTACATTTCTACCGGGAGGATGTTTATAAGGAAGTTCAAGTCCTAAGTGGTGGGGAACGTGTGAAGGTTGCTTTTGCAAAACTATTTGTTAGCGACTATAATACGTTGATTCTGGATGAACCAACAAATTATTTAGACATTGATGCCATAGAAGCGTTAGAGGAGCTCCTAATTAACTATGAGGGGGCAGTACTATTTGTATCTCATGATTGTCGTTTCGTTCAAAATATTGCATCCAAAATTATTGAACTATCCGACCAGAAGGTTATAGAGTTTCTTGGAAGCTATAAAGCGTTTAGAGAAAGATCTCAAGAGACAGAGCGTGACTATATGAAGGAAGAACTTCTTAAAATTGAGATCAAACTCACTCAAATGATTAGTGAAATGAATGACGAGGCATCAAATGAATTAGAAAAAGAATTCCAAATGTTGATTCATGAACGTAATCAGTTAAGAAATCAAGTAAACAATTAG DELETED 36001 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. " 1045 UPDATE ErmO antibiotic target alteration; streptogramin antibiotic; Erm 23S ribosomal RNA methyltransferase; macrolide antibiotic; lincosamide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCCCGCCCCACCCAGCGTGCGCGCACGCTCTCGCAGAACTTCCTCGCCGACCGCGCCGCCGCCGCACACGTCGCCCGGCTGACCGCCCCCGACCGTCGGCACCCGCCGCTCGTCCTGGAAGTGGGCGCCGGCAAGGGCGCCCTCACCGAGCCGCTCGCCCGCCGCAGCCGGGAGCTGCACGCCTACGAGATCGACTCCAGGCTCGTCCCCGGGCTGCGCACCCGTTTCGCCGCCGCACCCCATGTCCGCGTGGTCGCCGGTGACTTCCTCGCCGCGCGGCCTCCGCGCACGCCGTTCTCCGTCGCCGGGAACGTGCCCTTCTCCCGCACGGCGGACATCGTCGACTGGTGCCTCGGCGCGCCGGCCCTCACCGACGCCACCCTGATCACCCAGCTCGAGTACGCACGCAAACGCACCGGCGACTACGGCCGTTGGACCCTGCTGACGGTACGGACCTGGCCCCACCACGAGTGGCGCCTGGTGGGACGCGTGAGCCGCTACGGCTTCCGGCCGGCGCCCCGCGTCGACGCGGGCGTCCTCCGTATCGAGCGCCGCGCCACCCCGCTGCTCACCGGTGCCGCCCAGCACGGCTGGCGGGACCTGGTCGAGCTGGGCTTCTCCGGAGTCGGCGGCTCGCTGCACGCGTCCCTGCGCCGGGCACACCCCAGGCGCCGGGTGGACGCGGCGTTCCGGGCGGCCCGGCTGGACCCCGGGGTGCTCGTCGGCGAGGTGGCGCCGGCGCGGTGGCTGCGGCTGCACGAGGAGCTGGCGTCGTGA " 1044 UPDATE CTX-M-22 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGACTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCAACGGTTTGTAA " 1049 UPDATE MOX-1 penam; antibiotic inactivation; MOX beta-lactamase; cephamycin; cephalosporin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAACAACGACAATCCATCCTGTGGGGGGCCGTGGCCACCCTGATGTGGGCCGGTCTGGCCCATGCAGGTGAGGCTTCACCGGTCGATCCCCTGCGCCCCGTGGTGGATGCCAGCATCCAGCCGCTGCTCAAGGAGCACAGGATCCCGGGCATGGCGGTGGCCGTGCTCAAGGATGGCAAGGCCCACTATTTCAATTACGGGGTGGCCAACCGGGAGAGCGGGGCCAGCGTCAGCGAGCAGACCCTGTTCGAGATAGGATCCGTGAGCAAGACCCTGACTGCGACCCTGGGGGCCTATGCGGTGGTCAAGGGAGCGATGCAGCTGGATGACAAGGCGAGCCGGCACGCGCCCTGGCTCAAGGGATCCGTCTTTGACAGCATCACCATGGGGGAGCTTGCCACCTACAGCGCCGGAGGCCTGCCACTGCAATTCCCCGAGGAGGTGGATTCATCCGAGAAGATGCGCGCCTACTACCGCCAGTGGGCCCCTGTCTATTCGCCGGGCTCCCATCGCCAGTACTCCAACCCCAGCATAGGGCTGTTCGGCCACCTGGCGGCGAGCAGCCTGAAGCAGCCATTTGCCCAGTTGATGGAGCAGACCCTGCTGCCCGGGCTCGGCATGCACCACACCTATGTCAATGTGCCGAAGCAGGCCATGGCGAGTTATGCCTATGGCTATTCGAAAGAGGACAAGCCCATCCGGGTCAACCCTGGCATGCTGGCGGACGAGGCCTACGGCATCAAGACCAGCTCGGCGGATCTGCTCGCCTTCGTGAAGGCCAACATCGGCGGGGTTGATGACAAGGCGTTGCAGCAGGCCATCTCCCTGACCCACAAAGGGCATTACTCGGTAGGCGGGATGACCCAGGGGCTGGGTTGGGAGAGTTACGCCTATCCCGTCACCGAGCAGACATTGCTGGCGGGCAATTCGGCCAAGGTGATCCTCGAAGCCAATCCGACGGCGGCTCCCCGGGAGTCGGGGAGCCAGGTGCTCTTCAACAAGACCGGCTCGAGCAATGGCTTTGGCGCCTATGTGGCCTTCGTGCCGGCCAGGGGGATCGGCATCGTCATGCTGGCCAATCGCAACTATCCCATCCCGGCCAGGGTGAAGGCGGCCCACGCCATCCTGGCGCAGTTGGCCGGTTGA " 1048 UPDATE QnrB33 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1681 UPDATE APH(4)-Ib antibiotic inactivation; hygromycin B; aminoglycoside antibiotic; APH(4); model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCTGCAAACTTCTAAAAAAAAATCTGGGCACGATGAAAGTTGGGCTAACGCTGACGCTCACAAATGGCGTGGCGAAAGGAAGCGAGACAATCGGAAAATTGTTCTCTCGGGCACCACAAAGCTGTTGTTTGTCGCTGAAGAACAATTCCAACTGATTCCGCCGCCTTCCTATTGCGTCAGCCTTGTACCTAAGCTGCCGAGTAACGTCACTCAACCTCTCTTTGAATACTGCTTTGCTCCGCGAATACTTTTCTTCTATGCGCTCAAGAAAATGACACAGCACACCAAGCTCTGCAAACTTTCTTCGCTCATCTGGCGCGAAATGTGGGCCATTTCTTCTCGCCTGCAATGGCAATGCGTCTGTGCGGCGAGGAGAATCACGATGCGGAATGGGGGCTGGAAGTTCATAGAGATGCTGAGTTGTTGGAGCGACATGGTACATAAGCATGAGTCTGTCCTGATTTCCACCCTCCCGTCTTTCATCAACTTTCTCGTCGGACCCTTCCGATCGGCGGGCGCAGAACCAGGCGGTATGCACCGTAGGGTGGACCCACCGCGGCCACTGTCGCCAGCCTTGATCGAGGCCTTCGACGGGGTCATGCAGCTCTCGGGCGCCCCCTCTCGTGGGGTCACACCAACCCCACGAGGGCCAGATGCTTTGGGCCGGATAACAGATAGCCGCGGGGGGTCCGAGGCTGGCTATAGGTTTAATATGTGTAATCGGGCAGTACCATCGGCCGCGCTCCCGATTGGGGAAGTGCTTGACATTGGGGAATTCAGCGGGAAGCGGACCTACCTGGCCGCCGTGCACAGGGCCCGCGAGCAAGACCTGCCTGAAACCGAACTGCCCGCTGTTCTGCAGCCCTGCACGGGCATGGCACATGCGATCGCTGCGGCCGATCTTAGCCACACGAGCGGGTTCGCCCCATTCGGACCGCAAGGAATGGGTCAAGAGACTCCATGGCGTGATAAGCGCGATTGCTATTTCGATCCCCAGGTGTATTATTGGCTCTCTCAAATGGGCGACACCCTACGGGCGTCCGTCGCGCAGGGTTTCGAAAAGCGGATGCTTTGGGCCGAGGACTGCCCCGAAGCCCGGCACCTCCGGATTCACGTAAAGGGGTCCAACGCTGCCCTGCCGGAACCCGGCCCCAAAACGTGGGCGGGGGACGGGAGCCAAGCGGTGTGGGCAGGCCGGCTGCGTCCCACCCAGGATTCCCGGTACGTGGTCGCCAGCATCTTCCCCTGGAGGCCGTGGTGA " 1680 UPDATE macA efflux pump complex or subunit conferring antibiotic resistance; ATP-binding cassette (ABC) antibiotic efflux pump; antibiotic efflux; macrolide antibiotic; erythromycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1683 UPDATE QnrB67 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1682 UPDATE aadA24 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1685 UPDATE SHV-40 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1684 UPDATE LEN-18 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1687 UPDATE cphA3 carbapenem; CphA beta-lactamase; antibiotic inactivation; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAGGTTGGATAAAGTGCACATTGGCCGGGGCCGTGGTGCTGATGGCGAGTTTCTGGGGTGGCAGCGTGCGGGCGGCGGGGATCGAGCTCAAGCAGGTGAGTGGCCCTGTCTATGTTGTTGAAGACAACTACTACGTCAAAGAGAACTCCATGGTCTATTTCGGGGCCAAGGGAGTGACGGTGGTGGGGGCGACCTGGACGCCGGATACTGCTCGCGAGCTGCACAAGCTGATTAAACGGGTCAGCAGCAAGCCGGTGCTGGAGGTGATCAACACCAACTACCACACCGACCGGGCGGGCGGTAACGCCTACTGGAAGTCCATCGGGGCCAAGGTGGTGGCGACGCGCCAGACCCGGGATCTGATGAAGAGCGACTGGGCCGAGATTGTCGCCTTTACCCGCAAGGGGCTGCCGGAGTACCCGGATCTGCCGCTGGTGCTGCCAAACGTGGTGCACGATGGCGACTTCACTCTGCAAGAGGGCAAGGTGCGCGCTTTCTACGCGGGCCCGGCCCACACGCCGGACGGCATCTTTGTCTACTTCCCCGACGAGCAGGTGCTCTATGGCAACTGCATCCTCAAGGAGAAGCTGGGCAACTTGAGTTTTGCCAATGTGAAGGCGTATCCGCAGACCATCGAGCGGCTCAAAGCGATGAAGCTGCCGATCAAGACGGTGATTGGCGGCCACGATTCGCCGCTGCACGGCCCCGAGTTGATTGATCACTATGAAGAGCTGATCAAGGCCGTGCCGCAGTCATAA " 1686 UPDATE OXA-34 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1689 UPDATE vanRO glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanR; vancomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 6704 UPDATED strand with - UPDATED accession with KF478993.1 UPDATED fmin with 6002 UPDATED sequence with ATGGCGAGCATGCGTGTGTTGGTCGTCGAGGACGAGCGGTTCATGGCGGAAGCCATCCGCGATGGGCTGCGCCTGGAAGCGATCGCGGCCGACATCGCCGGTGATGGGGACACTGCCCTGGATCTGTTGGGCGTCAACGCCTACGACATCGCCGTCCTCGACCGTGATATCCCCGGCCCCTCCGGTGACGAGATCGCCCAGCGCATCGTCGCTTCCGGTGGCGGCATACCAATCCTGATGCTCACTGCCGCGGACCGGATGGACGACAAGGCCTCCGGGTTCGAGCTCGGTGCCGACGACTACCTCACCAAGCCTTTCGAGCTGCAGGAGCTCGTGCTCCGTCTCCGGGCCCTCGACCGCAGGCGCGCGCACAGCAGGCCGCCCGTGCGGGAGATCGCTGGTCTGCAGCTGGACCCGTTCCGTCGCGAGGTCTACCGGGACGGCCGGTACGTCGCGCTGACCCGGAAGCAGTTCGCGGTGCTCGAAGTTCTCGTCGCTGCCGAGGGCGGTGTGATCAGCGCCGAGGAGTTGCTGGAGCGGGCGTGGGACGAGAACGCCGATCCGTTCACGAATGCCGTGCGCATCACGGTCTCGACGTTGCGCAAGCGGCTCGGCGAACCGTGGCTGATCGCCACGGTGCCGGGGGTCGGGTACCGCATCGATACCGAACCGGACGCCAGAGGCGGGGGCGACGGTGGATAG UPDATED NCBI_taxonomy_name with Rhodococcus equi UPDATED NCBI_taxonomy_id with 43767 UPDATED NCBI_taxonomy_cvterm_id with 36897 UPDATED accession with AHA41505.1 UPDATED sequence with MASMRVLVVEDERFMAEAIRDGLRLEAIAADIAGDGDTALDLLGVNAYDIAVLDRDIPGPSGDEIAQRIVASGGGIPILMLTAADRMDDKASGFELGADDYLTKPFELQELVLRLRALDRRRAHSRPPVREIAGLQLDPFRREVYRDGRYVALTRKQFAVLEVLVAAEGGVISAEELLERAWDENADPFTNAVRITVSTLRKRLGEPWLIATVPGVGYRIDTEPDARGGGDGG " 1688 UPDATE CTX-M-90 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1269 UPDATE OXA-192 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1268 UPDATE CMY-115 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 669 UPDATE MIR-12 antibiotic inactivation; monobactam; cephalosporin; MIR beta-lactamase; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 35962 " 668 UPDATE CTX-M-65 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGTCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGCGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA " 667 UPDATE ACT-1 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGATGACTAAATCCCTTTGCTGCGCCCTGCTGCTCAGCACCTCCTGCTCGGTATTGGCTACCCCGATGTCAGAAAAACAGCTGGCTGAGGTGGTGGAACGGACCGTTACGCCGCTGATGAAAGCGCAGGCCATTCCGGGTATGGCGGTGGCGGTGATTTATGAGGGTCAGCCGCACTACTTCACCTTCGGTAAAGCCGATGTTGCGGCGAACAAACCTGTCACTCCACAAACCTTGTTCGAACTGGGTTCTATAAGTAAAACCTTCACCGGCGTACTCGGTGGCGATGCCATTGCTCGCGGTGAAATATCGCTGGGCGATCCGGTGACAAAATACTGGCCTGAGCTGACAGGCAAGCAGTGGCAGGGGATCCGCATGCTGGATCTGGCAACCTATACCGCAGGAGGTTTGCCGTTACAGGTACCGGATGAGGTCAAGGATAACGCCTCTCTGTTGCGCTTTTATCAAAACTGGCAGCCGCAGTGGAAGCCGGGCACCACGCGTCTTTACGCCAATGCCAGCATCGGTCTTTTTGGCGCGCTGGCGGTCAAACCTTCCGGCATGAGCTATGAGCAGGCCATAACGACGCGGGTCTTTAAGCCGCTCAAGCTGGACCATACGTGGATTAACGTTCCGAAAGCGGAAGAGGCGCATTACGCCTGGGGATACCGCGACGGTAAAGCAGTACACGTTTCGCCAGGAATGCTGGACGCTGAAGCCTATGGCGTAAAAACCAACGTGCAGGATATGGCAAGCTGGGTGATGGTCAACATGAAGCCGGACTCCCTTCAGGATAATTCACTCAGGAAAGGCCTTACCCTGGCGCAGTCTCGCTACTGGCGCGTGGGGGCCATGTATCAGGGGTTAGGCTGGGAAATGCTTAACTGGCCGGTCGATGCCAAAACCGTGGTTGAAGGTAGCGACAATAAGGTTGCACTGGCACCGCTGCCTGCGAGAGAAGTGAATCCACCAGCGCCCCCGGTCAACGCATCCTGGGTCCATAAAACAGGCTCTACCGGCGGGTTTGGCAGCTACGTGGCATTTATTCCTGAAAAGCAGCTCGGTATTGTGATGCTGGCAAATAAAAGCTATCCGAACCCGGCACGCGTTGAGGCGGCATACCGTATTTTGAGCGCGCTGTAG " 1262 UPDATE SHV-149 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 665 UPDATE TEM-10 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATAGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTAAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 664 UPDATE CMY-43 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 663 UPDATE ACT-36 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 662 UPDATE TEM-162 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCTTTTTGCCTTCCTGTTTTTGCTCACCCAAAAACGCTGGTGAAAGTAAAAGATGCTGAAAATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAAAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAGTGACGTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 1265 UPDATE MIR-4 antibiotic inactivation; monobactam; cephalosporin; MIR beta-lactamase; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGACAAAATCCCTAAGCTGTGCCCTGCTGCTCAGCGTCGCCAGCGCTGCATTCGCCGCACCGATGTTCGAAAAACAGCTGGCTGAGGTGGTGGAACGTACCGTTACGCCGCTGATGAACGCGCAGGCCATTCCGGGTATGGCGGTGGCGGTAATTTATCAGGGTCAGCCACACTACTTTACCTTCGGTAAAGCCGATGTTGCGGCGAACAAACCCGTCACCCCGCAAACCCTGTTTGAGCTGGGCTCTATAAGTAAAACCTTCACCGGCGTACTGGGCGGCGATGCCATTGCCCGGGGTGAAATAGCGCTGGGCGATCCGGTAGCAAAATACTGGCCTGAGCTCACGGGCAAGCAGTGGCAGGGCATTCGCATGCTGGATCTGGCAACCTATACCGCAGGCGGTCTGCCGTTACAGGTGCCGGATGAGGTCACGGATACCGCCTCTCTGCTGCGCTTTTATCAAAACTGGCAGCCGCAGTGGAAGCCGGGCACCACGCGTCTTTACGCTAACGCCAGCATCGGTCTTTTTGGTGCGCTGGCGGTCAAACCTTCCGGCATGAGCTATGAGCAGGCCATGACGACGCGGGTCTTTAAACCCCTCAAGCTGGACCATACCTGGATTAACGTCCCGAAAGCGGAAGAGGCGCATTACGCCTGGGGATACCGTGAGGGTAAAGCGGTCCACGTTTCGCCAGGGATGCTGGACGCGGAAGCCTATGGCGTAAAAACTAACGTGAAGGATATGGCGAGCTGGCTGATAGCCAACATGAAGCCGGATTCTCTTCACGCTCCCTCACTCAAGCAAGGCATTGCTCTGGCGCAGTCTCGCTACTGGCGCGTGGGTGCTATGTATCAGGGGTTAGGCTGGGAGATGCTCAACTGGCCGGTCGATGCCAAAACCGTCGTCGGAGGCAGTGATAACAAGGTGGCGCTGGCACCATTGCCCGTGGCAGAAGTGAATCCACCCGCGCCGCCGGTCAAAGCCTCCTGGGTCCATAAAACAGGCTCGACGGGCGGGTTTGGCAGCTACGTGGCATTTATTCCTGAAAAGCAGCTAGGCATTGTGATGCTGGCGAATAAAAGCTATCCGAACCCGGCACGCGTTGAGGCGGCATACCGTATCCTCGACGCGCTGCAGTAA DELETED 35962 " 1264 UPDATE smeC penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; cephamycin; aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGCCGATGCTGCTGCGCGCCCTGGCGGCCGCAACGATGACCACCGTGCTGGGCGGCTGCGTGAGCATGGCCCCGCACTACCAGCGTCCCGAGGCACCGGTGCCGGCGCAGTTCGGCAATGCTGCCATCGGCGCGGCCGAACCGGCACTGGCGATGCCGGCCTGGCGCGACGTGTTCCTGGAACCGCGCCTGCAGCAGGTCATCGCGCTGGCGCTGCAGAACAACCGCGATCTGCGCGTGGCGGTGCTGCAGGTGGAGAAGGAGCGCGCGCAGTACCGCATCCAGCGCGCGGCACTGCTGCCGTCGGTGGATGCCAGCGGCAGTGTCACCCGTTCGCGGGTGAGCGATGCCAACAGCGAGACCGGCGTCACCCAGGTGACCGAATCCGATGCCGTGCAGGTGGGCATCAGCAGCTGGGAGCTGGACCTGTTCGGGCGTATCCGCAGCTTGAAGAACGAGGCGCTGCAGAACTGGCTGGCCAGCGCCGAGAACCAGCGCGCCGTGCGCACCAGCCTGGTGGCTGAAGTGGCGACGGCGTGGCTGGCGCTGGCGGCCGACGAGCAGTCGCTGGCATTCACGCAACAGACGCTGGACAGCCAGCACCAGACCCTGCAGCGCACCGAGGCCCGCCATGCACAGGGGCTGGCCTCGGGCCTGGACCTGTCGCAGGTGCAGACCAGCGTGGAAGCCGCGCGCGGGGCGCTGGCGAAGCTGCAGGCCCAGCAGGCGCAGGATCGCGATGCATTGCAGCTGTTGGTGGGGGCACCGCTGGATCCGGCCCTGCTGCCAACCGCGCAGGCGCTGGATGGCAGCGTCGCATTGGCGCCGCTGCCCGCCAACCTGCCGTCCAGCGTGTTGCTGCAGCGCCCGGACGTGCTGTCCGCCGAGCATGCATTGCAGGCAGCCAACGCCGATATCGGTGCCGCGCGCGCCGCATTCTTTCCGACGCTGGCGTTGACCGCCAACTACGGCCACAGTTCCACCGCGTTGTCGACGCTGTTCTCGGCCGGCACCCGTGGCTGGTCGTTCGCGCCCAGCATCACCGCGCCGATCTTCCATGCCGGTGCACTGAAGGCCTCGCTGGATGCCTCGAAGATCGGCAAGGACATCGGCATCGCGCAGTACGAGAAGGCGATCCAGCAGGCCTTCAGTGAGGTGGCCGATGCGCTGGCCACGCGCGATCACCTGACCGCGCAGCTGGACGCGCAACGCGCGTTGGTGGCTGACAGCCAGCGCAGCTACACCTTGGCCGATGCGCGCTACCGCACCGGACTGGATGGCTACCTGCAGTCGTTGGATGCGCAGCGCAGCCTGTATGCCGCGCAGCAGGACCTGATCGCCCTGCAGCAGCAGGAGGCGGGCAACCGGGTGACGTTGTTCAAGGTGCTGGGTGGTGGCGCGGACGCGCGGTAA " 1469 UPDATE facT antibiotic efflux; factumycin; elfamycin antibiotic; major facilitator superfamily (MFS) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACAAGGCAGGGCAGGCAGAAAAGCCGGCGGCAGCCGGCCCACCTGCCACTCCCGAGACGCCCGAGCCCGACCCGAAGCGGTGGCTCGCGCTGACAGTCCTGCTGGTCGCCACCTTCATGGACCTGCTCGACGCGAACATCATCACCGTGGCCATCCCGAGCATCCAACGCGACCTCGGCGCCTCGACCTTCGCCATCCAGGCGATGACGGCCGGCTACACCCTGAGCTTCGCGGTCCTGCTGATCACCGGCGGCCGGCTCGGCGACATCTTCGGCCGCAAGCGCATGTTCCTCGTCGGCGTCGGCGGCTTCGTCCTCGCGTCCGCGATGTGCGCCGCCGCGCCGAGCACCGACTTACTCGTCGTCGCCCGCGCGCTCCAGGGCCTCACCGCCGCCGTCATGGTGCCCCAGGTGCTCGCGCTCATCCACGTCTCCTTCGCGCCCCAGGAGATCGGCCGCGTCGTCAGCCTGTACGCGAGCATGGTCGGTCTGGCCATCGTCTCCGGGCCCCTCATCGGCGGTGCGCTGATCAGCTGGAACCCGCTGGACCTCGGCTGGCGCAGCATCTTCGTGGTGAACCTGCCGGTCGGCGTGCTCGCCCTGGTCGGCGCCGCGAAGTGGATGCGGGAGTCGAGCTCCCCCCATGCGAAGCGCCTGGACATCGCCGGCATGCTGCTGATCGTGCTCGGCCTGCTGCTGCTCATGGTGCCGCTGACCCTCGGCCGCGAGCTCGACTGGCCGGTGTGGAGCATCGTCTCGCTCGTCGCCGCCGCCCCCGTCCTCGTGCTGTTCGTCGTCTACGAGCGCCACAAGACCGCCAAGGACGGCTCGCCCCTGGTGACGCTGTCCCTGTTCAAGGTCCGCGCGTTCGGCGCCGGCATCGGCGTCCAGCTCCTCTTCAGCGCCATCCCCGCGGGCTTCTTCCTCAGCTGGACCCTCTACCTCCAGGCCGGCCTCGGCTGGTCGGCCCTGCACACGGGCCTGACCGCCATCCCGTTCTCCCTGTGCGTCCCGATCGTCGGCGGTCTCGCCGTCCGCAGGCTCTCGCCGCTCTACGGCCGCTACTGCCTGCTCGCCGGTGCCGTCCTGATGCTCGCGGGCATCCTCTCCTACGCCTGGGCGGCCGACCGCTTCGGCACGGACATCACCTCCTGGCACGCGATCCCGTCCATGCTCCTGATCGGCTCCGGCATGGGCATGCTGATGCCCCCGCTGACGGCGCTGGTGCTCAGGGAGGTCCAGCCGCAGGAGGCCGGCGCCGCCTCCGGCATCATCAACGCCACCGGCCAGCTCGGTGCCGCGCTCGGCGTGGCGGTCATCGGCAGCCTCTTCTTCGCGGCCCTCGCCGGCAACGCCGGGCCGCAGGCCGAACGCGTCGCCCCCACCGTGCAGTCGGTCTCACCCCGGCAGGCCTCCGACCTCCGGGACTGCGCGACCGAGGCGCTGGGCCAGGACGACCTGGCCAAGGTCCCGGACATCTGCTCCACCCTGGTGCAGGGCGCCGACGACGGCACCCGGGATACGATCAATGGCGCGCTCGGCGAGATCCGCGCGAAGACGTTCGTGTCCACCTACAGCGAGACGCTGTACTGGGCGGCCGGTGGCCTCGTCCCGGTCACCGCCCTCGTCCTGCTCCTGCCGCACCACCGCGTCCGGCGGGAGGAACCGGCCCAGTGA " 1468 UPDATE SHV-135 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 520 UPDATE AcrS penam; antibiotic efflux; triclosan; rifampin; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; cephalosporin; cefalotin; cephamycin; tigecycline; glycylcycline; ciprofloxacin; ampicillin; fluoroquinolone antibiotic; rifamycin antibiotic; phenicol antibiotic; tetracycline; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 3413465 UPDATED strand with - UPDATED accession with U00096 UPDATED fmin with 3412802 UPDATED sequence with ATGGCAAAAAGAACCAAAGCCGAAGCTCTGAAGACCCGGCAAGAACTGATTGAAACTGCCATCGCCCAGTTTGCGCAGCATGGCGTAAGCAAGACGACGCTCAACGACATTGCCGACGCCGCTAACGTTACGCGTGGCGCTATCTACTGGCACTTCGAAAACAAGACTCAACTGTTTAATGAGATGTGGTTGCAACAGCCTTCATTGCGGGAGTTAATCCAGGAACACTTGACGGCTGGATTAGAGCATGACCCGTTTCAACAATTGCGTGAAAAATTGATTGTCGGCTTGCAATATATTGCCAAAATTCCCCGCCAGCAGGCGTTGCTGAAAATCTTATATCACAAATGTGAATTTAATGATGAGATGCTGGCCGAGGGAGTGATACGCGAAAAGATGGGCTTTAATCCGCAGACTCTCCGCGAAGTATTGCAGGCGTGTCAGCAACAAGGTTGTGTAGCAAATAACCTCGATTTAGATGTTGTGATGATTATTATTGATGGTGCCTTCAGCGGAATTGTTCAAAACTGGTTAATGAATATGGCGGGTTATGATCTTTATAAACAAGCCCCCGCTCTGGTCGATAACGTATTAAGAATGTTCATGCCAGATGAAAACATAACGAAATTAATTCATCAAACGAATGAATTAAGTGTCATGTAA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. MG1655 UPDATED NCBI_taxonomy_id with 511145 UPDATED NCBI_taxonomy_cvterm_id with 36849 UPDATED accession with AAC76296.1 UPDATED sequence with MAKRTKAEALKTRQELIETAIAQFAQHGVSKTTLNDIADAANVTRGAIYWHFENKTQLFNEMWLQQPSLRELIQEHLTAGLEHDPFQQLREKLIVGLQYIAKIPRQQALLKILYHKCEFNDEMLAEGVIREKMGFNPQTLREVLQACQQQGCVANNLDLDVVMIIIDGAFSGIVQNWLMNMAGYDLYKQAPALVDNVLRMFMPDENITKLIHQTNELSVM " 1467 UPDATE LEN-22 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1466 UPDATE SHV-13 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1461 UPDATE SHV-63 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGTGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGAAAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAACCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAGCGGGGTGCGCGCGGCATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 1460 UPDATE FosB3 fosfomycin; fosfomycin thiol transferase; antibiotic inactivation; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATTAAAGGAATAAATCATATTACTTATTCGGTTTCTAATATAGCTAAATCAATTGAATTTTACAGAGATATTTTAGGGGCTGACATTTTAGTTGAAAGTGAGACCTTGGCCTATTTTAATTTAGGTGGTATATGGTTAGCTTTGAACGAAGAAAAAAATATTCCTAGAAGCGAAATTAAATATTCGTATACTCATATAGCATTTACAATTTCAGATAACGATTTTGAAGATTGGTATAACTGGTTGAAAGAAAATGAAGTAAATATTCTTGAAGGTAGAGATAGAGATATTAGAGATAAAAAATCAATATATTTCACTGATTTAGATGGTCATAAATTAGAATTGCATACAGGAAGTTTAGAAGATAGATTGAGTTATTATAAAGAGGCTAAACCTCATATGAATTTTTATATTTAA " 1463 UPDATE GES-19 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGCTTCATTCACGCACTATTACTGGCAGCGATCGCTCACTCTGCATATGCGTCGGAAAAATTAACCTTCAAGACCGATCTTGAGAAGCTAGAGCGCGAAAAAGCAGCTCAGATCGGTGTTGCGATCGTCGATCCCCAAGGAGAGATCGTCGCGGGCCACCGAATGGCGCAGCGTTTTGCAATGTGCTCAACGTTCAAGTTTCCGCTAGCCGCGCTGGTCTTTGAAAGAATTGACTCAGGCACCGAGCGGGGGGATCGAAAACTTTCATATGGGCCGGACATGATCGTCGAATGGTCTCCTGCCACGGAGCGGTTTCTAGCATCGGGACACATGACGGTTCTCGAGGCAGCGCAAGCTGCGGTGCAGCTTAGCGACAATGGGGCTACTAACCTCTTACTGAGAGAAATTGGCGGACCTGCTGCAATGACGCAGTATTTTCGTAAAATTGGCGACTCTGTGAGTCGGCTAGACCGGAAAGAGCCGGAGATGGGCGACAACACACCTGGCGACCTCAGAGATACAACTACGCCTATTGCTATGGCACGTACTGTGGCTAAAGTCCTCTATGGCGGCGCACTGACGTCCACCTCGACCCACACCATTGAGAGGTGGCTGATCGGAAACCAAACGGGAGACGCGACACTACGAGCGGGTTTTCCTAAAGATTGGGTTGTTGGAGAGAAAACTGGTACCTGCGCCAACGGGGCCCGGAACGACATTGGTTTTTTTAAAGCCCAGGAGAGAGATTACGCTGTAGCGGTGTATACAACGGCCCCGAAACTATCGGCCGTAGAACGTGACGAATTAGTTGCCTCTGTCGGTCAAGTTATTACACAACTCATCCTGAGCACGGACAAATAG " 1019 UPDATE IMP-21 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1317 UPDATE CTX-M-3 antibiotic inactivation; cephalosporin; ceftazidime; cefalotin; ceftriaxone; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGACTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA " 1316 UPDATE Pseudomonas aeruginosa catB6 antibiotic inactivation; thiamphenicol; chloramphenicol acetyltransferase (CAT); azidamfenicol; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAAAATTACTTTGACAGTCCCTTCAAAGGGAAACTACTTTCAGAGCAAGTGACTAACCGCAACATCAAAGTTGGTCGGTACAGCTACTACTCTGGTTACTATCACGGGCATTCATTTGATGACTGCGCACGATACTTGCTCCCAGACCGTGATGACGTTGACAAACTAATCATCGGCAGCTTTTGCTCCATCGGAAGCGGGGCTTCTTTCATCATGGCGGGCAATCAGGGTCACCGGCATGACTGGGTAACATCTTTCCCTTTCTTCTACATGCAAGAAGAGCCAGCTTTTTCAAGTTCAACGGACGCCTTTCAAAAGGCCGGTGACACCATCGTCGGCAATGATGTCTGGATAGGATCAGAGGCAATGATTATGCCCGGCATCAAGATTGGAGATGGCGCGGTAATAGGCAGCCGATCGTTGGTGACGAGAGATGTAGAACCCTATACCATCATTGGCGGAAACCCTGCAAAGCAAATTAAAAAGCGATTCTCTGACGAGGAGATTTCATTACTCATGGAAATGGAGTGGTGGAACTGGCCGTTAGATAAAATCAAAACAGCTATGCCCCTTCTCTGCTCTTCAGACATTTTTGGTCTGCACAGGCATTGGCGTGGGATTGCCGTCTAA " 1315 UPDATE mdtC efflux pump complex or subunit conferring antibiotic resistance; antibiotic efflux; aminocoumarin antibiotic; resistance-nodulation-cell division (RND) antibiotic efflux pump; novobiocin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGAAGTTTTTTGCCCTCTTCATTTACCGCCCGGTGGCGACGATTTTACTGTCGGTTGCCATTACCCTGTGCGGCATACTGGGCTTCCGTATGCTGCCGGTCGCCCCGCTGCCGCAGGTCGATTTTCCGGTGATTATCGTCAGCGCCTCGCTGCCCGGTGCGTCACCAGAAACAATGGCGTCTTCCGTTGCCACGCCGCTGGAGCGCTCACTTGGGCGCATTGCCGGAGTCAGTGAAATGACCTCCAGCAGTTCGCTCGGCAGCACGCGTATTATTTTGCAGTTTGATTTTGACCGGGATATCAACGGCGCAGCGCGTGATGTGCAGGCGGCGATCAACGCTGCACAAAGTTTGCTGCCCAGTGGGATGCCCAGCCGCCCGACCTATCGCAAAGCGAACCCGTCGGATGCGCCAATTATGATCCTCACGCTGACGTCCGATACTTATTCGCAGGGTGAACTGTACGATTTCGCCTCGACGCAGCTGGCTCCGACGATTTCGCAAATCGACGGTGTTGGTGATGTCGATGTCGGAGGCAGCTCACTGCCCGCCGTACGCGTCGGGCTGAATCCGCAGGCGCTGTTTAATCAGGGCGTGTCGCTGGACGACGTACGCACCGCCGTCAGCAATGCCAACGTGCGTAAACCGCAGGGCGCGCTGGAAGATGGCACTCACCGCTGGCAGATCCAGACCAATGATGAGCTAAAAACCGCCGCTGAATATCAGCCGTTGATTATTCACTACAACAACGGCGGCGCGGTTCGTCTGGGCGATGTGGCGACGGTGACCGACTCAGTGCAGGATGTGCGCAACGCCGGGATGACCAACGCCAAACCGGCTATTTTACTGATGATCCGCAAACTGCCGGAAGCCAATATTATCCAGACGGTTGACAGCATCCGGGCAAAATTACCGGAGTTGCAGGAAACCATTCCGGCGGCGATTGATCTGCAAATTGCCCAGGATCGCTCCCCCACCATTCGCGCCTCGCTGGAAGAAGTCGAGCAAACGCTGATTATCTCGGTGGCGCTGGTGATTCTGGTGGTGTTTTTATTCCTGCGCTCGGGTCGCGCCACTATTATTCCCGCCGTTTCGGTGCCGGTTTCGCTGATTGGTACGTTTGCGGCGATGTACCTGTGCGGATTCAGTCTCAATAACCTTTCGTTAATGGCGCTCACCATCGCTACTGGTTTCGTGGTGGATGACGCCATCGTGGTGCTGGAAAACATTGCACGTCATCTGGAAGCGGGAATGAAACCGTTGCAAGCCGCACTGCAAGGTACTCGCGAAGTCGGTTTTACGGTGCTGTCGATGAGTCTGTCACTGGTGGCGGTGTTCCTGCCGCTGCTGTTGATGGGCGGATTGCCGGGCCGACTGTTACGCGAATTTGCCGTGACGCTTTCTGTCGCCATTGGTATATCGTTGCTGGTTTCTCTGACATTAACGCCAATGATGTGTGGCTGGATGCTGAAAGCCAGCAAGCCGCGCGAGCAAAAGCGACTGCGTGGTTTTGGTCGCATGTTGGTAGCCCTGCAACAAGGCTACGGCAAGTCACTAAAATGGGTGCTCAATCATACCCGTCTGGTGGGCGTGGTGCTGCTTGGCACCATTGCGCTGAATATCTGGCTGTATATCTCGATCCCGAAAACCTTCTTCCCGGAGCAGGACACTGGCGTGTTGATGGGCGGGATTCAGGCGGATCAGAGTATTTCGTTTCAGGCGATGCGCGGTAAGTTGCAGGATTTCATGAAAATTATCCGTGACGATCCGGCAGTGGATAATGTCACCGGCTTTACAGGCGGTTCGCGAGTGAACAGCGGGATGATGTTTATCACCCTCAAGCCACGCGACGAACGCAGCGAAACGGCGCAGCAAATTATCGACCGTCTGCGCGTAAAACTGGCGAAAGAACCGGGGGCGAATCTGTTCCTGATGGCGGTACAGGATATTCGCGTTGGTGGGCGTCAGTCGAACGCCAGCTACCAGTACACGTTGTTATCCGACGACCTGGCGGCACTGCGAGAATGGGAGCCGAAAATCCGCAAAAAACTGGCGACGTTGCCGGAACTGGCGGACGTGAACTCCGATCAGCAGGATAACGGCGCGGAGATGAATCTGGTTTACGACCGCGACACCATGGCACGGCTGGGAATCGACGTACAAGCCGCCAACAGTCTGTTAAATAACGCCTTCGGTCAGCGGCAAATCTCGACCATTTACCAGCCGATGAACCAGTATAAAGTGGTGATGGAAGTGGATCCGCGCTATACCCAGGACATCAGTGCGCTGGAAAAAATGTTCGTTATCAATAACGAAGGCAAAGCGATCCCGCTGTCGTATTTCGCTAAATGGCAACCGGCGAATGCCCCACTATCGGTGAATCATCAGGGATTATCGGCGGCCTCGACCATTTCGTTTAACCTGCCGACCGGAAAATCGCTCTCGGACGCCAGTGCGGCGATCGATCGCGCAATGACCCAGCTTGGTGTGCCTTCGACGGTGCGCGGCAGTTTTGCCGGCACGGCGCAGGTGTTCCAGGAGACGATGAACTCGCAGGTGATCCTGATTATCGCCGCCATCGCCACGGTGTATATCGTGCTGGGTATCCTTTACGAGAGTTACGTACATCCGCTGACGATTCTCTCCACCCTGCCCTCGGCGGGCGTTGGAGCGCTGTTGGCGCTGGAGCTGTTCAATGCCCCGTTCAGCCTAATCGCCCTGATAGGGATCATGCTATTAATCGGCATCGTGAAGAAAAACGCCATTATGATGGTCGATTTTGCGCTTGAAGCCCAACGGCACGGTAACCTGACGCCGCAGGAAGCTATTTTCCAGGCCTGTCTGCTGCGTTTTCGCCCGATTATGATGACTACCCTGGCGGCGCTGTTTGGTGCGCTGCCGCTGGTATTGTCGGGCGGCGACGGCTCGGAGCTGCGGCAACCCCTGGGGATCACCATTGTCGGCGGACTGGTAATGAGCCAGCTCCTTACGCTGTATACCACGCCGGTGGTGTATCTCTTTTTCGACCGTCTGCGGCTGCGTTTTTCGCGTAAACCTAAACAAACGGTAACCGAGTAA " 1314 UPDATE OXA-214 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1313 UPDATE adeA antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; tigecycline; glycylcycline; tetracycline antibiotic; tetracycline; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1312 UPDATE OXA-111 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1311 UPDATE OXY-5-2 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 868 UPDATE DHA-1 antibiotic inactivation; cephalosporin; cephamycin; DHA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1319 UPDATE SHV-147 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1318 UPDATE evgS penam; antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; norfloxacin; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; oxacillin; tetracycline antibiotic; cloxacillin; fluoroquinolone antibiotic; tetracycline; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGTTTTTACCCTATATTTTTCTTCTCTGTTGTGGTCTTTGGTCGACCATAAGTTTCGCAGACGAAGATTACATCGAATATCGTGGCATCAGTAGTAACAACCGTGTCACACTTGATCCACTACGTCTGAGCAACAAGGAATTACGTTGGTTAGCGAGCAAAAAAAATCTTGTGATTGCAGTACATAAGTCCCAAACGGCTACGTTGTTGCATACCGATTCGCAGCAACGGGTTCGTGGTATTAATGCTGATTATTTAAATCTTTTAAAAAGAGCGTTAAATATCAAATTAACACTCCGGGAATACGCAGATCATCAAAAAGCAATGGACGCGCTTGCAGAAGGTGAAGTCGATATAGTGTTATCACATTTAGTTACTTCGCCGCCTCTTAATAATGACATTGCTGCAACCAAACCATTGATAATTACCTTTCCGGCGCTGGTAACCACCCTTCACGACTCAATGCGACCGCTTACCTCACCAAAACCAGTAAATATTGCTCGGGTAGCAAATTACCCCCCAGACGAGGTAATTCATCAATCATTTCCAAAAGCAACAATTATCTCTTTTACAAATTTATATCAGGCATTAGCATCCGTCTCAGCTGGGCACAATGATTACTTTATTGGTAGTAACATCATTACCAGCAGTATGATTTCCCGCTATTTCACTCACTCCTTAAATGTAGTGAAATATTATAACTCGCCGCGTCAATATAATTTTTTCTTGACCAGAAAAGAATCTGTCATTCTTAATGAAGTACTCAATAGATTTGTTGATGCTTTAACAAATGAAGTTCGCTATGAAGTATCACAAAATTGGCTTGATACAGGAAACCTGGCCTTTCTGAACAAACCATTAGAACTCACTGAACATGAAAAACAGTGGATTAAGCAGCATCCCAATTTAAAGGTGCTGGAAAATCCTTACTCGCCCCCCTATTCTATGACGGATGAAAATGGCTCGGTTCGGGGCGTTATGGGGGACATTCTTAATATTATTACCTTGCAAACAGGTTTAAATTTTTCTCCGATCACCGTTTCACACAATATCCATGCTGGAACACAGCTTAGCCCCGGAGGATGGGATATAATACCTGGCGCTATTTATAGTGAAGATCGAGAAAATAATGTTTTATTTGCTGAAGCCTTCATAACAACGCCTTACGTTTTTGTCATGCAAAAAGCGCCTGACAGTGAACAAACATTAAAAAAAGGAATGAAAGTTGCCATTCCATATTATTATGAGCTGCATTCGCAATTAAAAGAGATGTATCCGGAGGTTGAATGGATACAGGTCGATAATGCCAGCGCTGCATTTCACAAGGTTAAGGAAGGTGAACTTGATGCTCTGGTCGCGACACAGCTAAATTCGCGTTACATGATCGATCATTACTATCCTAATGAACTTTATCATTTTCTTATTCCTGGCGTTCCGAATGCATCGCTTTCGTTCGCTTTTCCTCGCGGAGAACCGGAACTTAAGGATATTATTAATAAAGCACTGAATGCAATTCCCCCAAGCGAAGTTCTGCGCCTGACGGAAAAATGGATTAAAATGCCCAATGTGACCATTGACACATGGGACCTATATAGCGAGCAATTTTATATTGTTACGACATTATCCGTTTTATTAGTTGGCAGTAGCCTTTTATGGGGATTCTACCTGTTACGCTCAGTTCGTCGTCGTAAAGTCATTCAGGGTGATTTAGAAAACCAAATATCATTCCGAAAAGCACTCTCGGATTCCTTACCGAATCCAACTTATGTTGTAAACTGGCAAGGTAATGTCATTAGTCATAATAGTGCTTTTGAACATTATTTCACTGCGGATTACTACAAAAATGCAATGTTACCATTAGAAAACAGTGACTCACCCTTTAAAGATGTTTTTTCTAATGCGCATGAAGTCACAGCAGAAACGAAAGAAAATCGAACAATATACACACAGGTATTTGAAATTGATAATGGCATCGAGAAAAGATGCATTAATCACTGGCATACATTATGCAATCTTCCTGCAAGTGACAATGCAGTATATATTTGTGGTTGGCAAGATATTACTGAAACGCGTGATCTAATTAATGCACTCGAGGTAGAAAAAAATAAAGCGATAAAGGCTACCGTAGCAAAAAGTCAGTTTCTGGCAACGATGAGTCACGAAATAAGAACACCAATAAGCTCTATTATGGGCTTCCTGGAACTTCTGTCGGGTTCTGGTCTTAGCAAGGAGCAACGGGTGGAGGCGATTTCACTTGCCTACGCCACCGGACAATCACTCCTCGGCTTAATTGGTGAAATCCTTGATGTCGACAAAATTGAATCGGGTAACTATCAACTTCAACCACAATGGGTCGATATCCCTACTTTAGTCCAGAACACTTGTCACTCTTTCGGTGCGATTGCTGCAAGCAAATCGATCGCATTAAGTTGCAGCAGTACGTTTCCTGAACATTACCTGGTTAAGATCGACCCTCAGGCGTTTAAGCAGGTCTTATCAAATTTACTGAGTAATGCTCTCAAATTTACCACCGAGGGGGCAGTAAAAATTACGACCTCCCTGGGTCACATTGATGACAACCACGCTGTTATCAAAATGACGATTATGGATTCTGGAAGTGGATTATCGCAGGAAGAACAACAACAACTGTTTAAACGCTACAGCCAAACAAGTGCAGGTCGTCAGCAAACAGGTTCTGGTTTAGGCTTAATGATCTGCAAAGAATTAATTAAAAATATGCAGGGCGATTTGTCATTAGAAAGTCATCCAGGCATAGGAACAACATTTACGATCACAATCCCGGTAGAAATTAGCCAGCAAGTGGCGACTGTCGAGGCAAAAGCAGAACAACCCATCACACTACCTGAAAAGTTGAGCATATTAATCGCGGATGATCATCCGACCAACAGGCTATTACTCAAACGCCAGCTAAATCTATTAGGATATGATGTTGATGAAGCCACTGATGGTGTGCAAGCGCTACACAAAGTCAGTATGCAACATTATGATCTGCTTATTACTGACGTTAATATGCCGAATATGGATGGTTTTGAGTTGACTCGCAAACTCCGTGAGCAAAATTCTTCCTTACCCATCTGGGGGCTTACAGCCAACGCACAGGCTAACGAACGTGAAAAAGGGTTAAGTTGCGGCATGAACTTATGTTTGTTCAAACCGTTGACCCTGGATGTACTGAAAACACATTTAAGTCAGTTACACCAAGTTGCGCATATTGCACCTCAGTATCGCCACCTTGATATCGAAGCCCTGAAAAATAATACGGCGAACGATCTACAACTGATGCAGGAGATTCTCATGACTTTCCAGCATGAAACGCATAAAGATCTACCCGCTGCGTTTCAAGCACTAGAAGCTGGCGATAACAGAACTTTCCATCAGTGTATTCATCGCATCCACGGTGCGGCTAACATCCTGAATTTGCAAAAGTTGATTAATATTAGCCATCAGTTAGAAATAACACCTGTTTCAGATGACAGTAAGCCTGAAATTCTTCAGTTGCTGAACTCTGTAAAAGAACACATTGCAGAGCTGGACCAGGAGATTGCTGTTTTCTGTCAGAAAAATGACTAA " 1010 UPDATE TEM-209 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGATGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 1011 UPDATE TEM-29 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 319 UPDATE OXA-366 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 318 UPDATE OXA-358 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 313 UPDATE OXA-143 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAATTTATACTTCCTATTCTCAGCATTTCTACTCTACTTTCTGTCAGTGCATGCTCATCTATTCAAACTAAATTTGAAGACACTTTTCATACTTCTAATCAGCAACATGAAAAAGCCATTAAAAGCTATTTTGATGAAGCTCAAACACAGGGTGTAATCATTATTAAAAAGGGAAAAAATATTAGTACCTATGGTAATAACCTGACACGAGCACATACAGAATATGTCCCTGCATCAACATTTAAGATGCTAAATGCCTTAATTGGACTAGAAAATCATAAAGCTACAACAACTGAGATTTTCAAATGGGACGGTAAAAAGAGATCTTATCCCATGTGGGAAAAAGATATGACTTTAGGTGATGCCATGGCACTTTCAGCAGTTCCTGTATATCAAGAACTTGCAAGACGGACTGGCTTAGACCTAATGCAAAAAGAAGTTAAACGGGTTGGTTTTGGTAATATGAACATTGGAACACAAGTTGATAACTTCTGGTTGGTTGGCCCCCTCAAGATTACACCAATACAAGAGGTTAATTTTGCCGATGATTTTGCAAATAATCGATTACCCTTTAAATTAGAGACTCAAGAAGAAGTTAAAAAAATGCTTCTGATTAAAGAATTCAATGGTAGTAAAATTTATGCAAAAAGCGGCTGGGGAATGGATGTAACCCCTCAAGTAGGTTGGTTAACAGGTTGGGTAGAAAAATCTAATGGAGAAAAAGTTGCCTTTTCTCTAAACATAGAAATGAAGCAAGGAATGCCTGGTTCTATTCGTAATGAAATTACTTATAAATCATTAGAGAATTTAGGGATTATATAA " 312 UPDATE OXA-167 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 311 UPDATE IND-2 carbapenem; antibiotic inactivation; IND beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 310 UPDATE SHV-78 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 317 UPDATE TEM-148 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAAAAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 316 UPDATE CTX-M-36 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 315 UPDATE DHA-2 antibiotic inactivation; cephalosporin; cephamycin; DHA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAATCGTTATCTGCAACACTGATTTCCGCTCTGCTGGCGTTTTCCGCCCCGGGGTTTTCTGCCGCTGATAATGTCGCGGCGGTGGTGGACAGCACCATTAAACCGCTGATGGCACAGCAGGATATTCCCGGGATGGCGGTTGCCGTCTCTGTAAAGGGCAAGCCCTATTATTTCAATTATGGTTTTGCCGATGTTCAGGCAAAACAGCCGGTCACTGAAAATACACTATTTGAGCTGGGATCTGTAAGTAAAACTTTCACAGGTGTGCTGGGTGCGGTTTCTGTGGCGAAAAAAGAGATGATGTTGAATGACCCGGCAGAAAAATACCAGCCGGAGCTGGCTCTGCCGCAGTGGAAGGGGATCACACTGCTGGATCTGGCCACCTACACCACAGGCGGGCTGCCGTTACAGGTGCCGGATGCGGTGAAAAACCGTGCGGAACTGCTGCACTTCTATCAGCAGTGGCAGCCGTCCCGGAAACCGGGCGATATGCGTCTGTATGCAAACAGCAGTATCGGCCTGTTTGGTGCTCTGACCGCCAACGCAGCGGGGATGCCGTATGAGCAGTTGCTGACCGCGCGGATCCTGGCACCGCTGGGATTATCTCACACCTTTATTACCGTGCCGGAAAGCGCGCAAAGCCAGTATGCGTACGGCTATAAAAACAAAAAACCGGTCCGCGTGTCGCCGGGACAGCTTGATGCGGAGTCTTACGGCGTGAAATCCGCCTCAAAAGATATGCTGCGCTGGGCGGAAATGAATATGGAGCCGTCACGGGCCGGTAATGCGGATCTGGAAATGGCAATGTATCTTGCACAGACCCGCTACTATAAAACCGCCGCGATTAACCAGGGGCTGGGCTGGGAGATGTATGACTGGCCGCAGCAGAAAGATATGATCATTAACGGCGTGACCAACGAGGTCGCACTGCAGCCGCACCCGGTAACAGACAACCAGGTTCAGCCGTATAACCGTGCTTCCTGGGTGCATAAAACGGGGGCAACAACTGGTTTCGGCGCCTATGTGGCCTTTATTCCGGAAAAACAGGTGGCGATTGTGATTCTGGCGAATAAAAACTACCCGAATACCGAAAGAGTCAAAGCCGCACAGGCTATTTTGAGTGCGCTGGAATAA " 314 UPDATE TEM-176 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGTCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 2756 UPDATE NDM-17 antibiotic inactivation; penam; carbapenem; cephalosporin; cephamycin; NDM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2754 UPDATE ANT(3'')-IIb antibiotic inactivation; ANT(3''); aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 56760 UPDATED strand with - UPDATED accession with APPC01000022.1 UPDATED fmin with 55968 UPDATED sequence with ATGTCAGAACAATTTCAGCTTCAGCAGTTACAAGAATATTTACATGCTTTATTTGCAGAATCATTATTTGCGATTTACTTGTATGGTTCTGCTGTGGATGGCGGTTTAGGCCCGGAAAGTGATCTGGATCTTCTGGTCGTTGTGACTCAACCTCTAACACACGTTCAGCGACAGCAGCTTGCACAAGCCTTATTAACGCTTTCACATCCAATTGGTGGATTGCAACGAGCACTTGAAGTAACTATCTTGCTCAAAGAAGAAGTGATTTCAGGCAGATATCCTTTAAATTATGAATTACAGTTTGGGGAATGGTTGCGTGAGGAACTCGTCGATGGAGGGGAGCTGTCAGCACAAAATGATCCAGACATCAGTATCTTGTTAAAGAAAGCGCACATGCATCACCGAACATTGTTTGGGCCAGATTTAACAAGTTGGTTAGATGAGATTCCAGATCAGCAACTTTGGCAAGCGATGGCAGACCTTTATCCATCAATAGTGGCACATTGGGATGAAGATGGTGATGAACGTAATCAGATTTTAGCGTTATGCCGAATCTATTTTAGTTTGAGTCTAGGTGAGATTGTTTCTAAGTCGCATGCTGCCCAATGGGTGATCGCTCAACTTGAGGAAAAAGATCAGCCTGTTTTACAACGAATGGTGCAAGAGTATAAAGGCGAGATGACAAAACAGGACTGGCCAAGTCAGCATCAGGTTTTACAGCCTATCGTTAATTTTCTGAGTCAGCACATAGAGACTTTTTTTGATAAAAAGGGCCTGAAAATAAAACAATAA UPDATED NCBI_taxonomy_name with Acinetobacter sp. NIPH 758 UPDATED NCBI_taxonomy_id with 1217712 UPDATED NCBI_taxonomy_cvterm_id with 41199 UPDATED accession with ENU91137 UPDATED sequence with MSEQFQLQQLQEYLHALFAESLFAIYLYGSAVDGGLGPESDLDLLVVVTQPLTHVQRQQLAQALLTLSHPIGGLQRALEVTILLKEEVISGRYPLNYELQFGEWLREELVDGGELSAQNDPDISILLKKAHMHHRTLFGPDLTSWLDEIPDQQLWQAMADLYPSIVAHWDEDGDERNQILALCRIYFSLSLGEIVSKSHAAQWVIAQLEEKDQPVLQRMVQEYKGEMTKQDWPSQHQVLQPIVNFLSQHIETFFDKKGLKIKQ " 443 UPDATE OKP-B-10 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2755 UPDATE ANT(3'')-IIc antibiotic inactivation; ANT(3''); aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 41033 UPDATED strand with - UPDATED accession with APOM01000001.1 UPDATED fmin with 40253 UPDATED sequence with ATGTCCGAAACCTTGCAACTGGAACAGTTAACAGGATATTTACAGCAGCTTTTGGGTGAATCTCTCTTTGCCATTTATCTATATGGATCAGCTGTTGATGGCGGGCTAGGTCCAGAAAGTGATCTGGATATTTTGGTTGTGGTGAGTCAAGCACTGACACTTCCGCAACGACAGCAACTGGCAGAAACCTTATTACAAATTTCGCATCCGATTGGTGCTGCGCAACGTGCACTTGAAGTCACCATCGTACGCAAAGACCATATTCTTTCGGGAAGTTATCCACTCAGCTATGAACTACAGTTTGGGGAATGGTTGCGGGATGAGTTAAGCCAAGGCGATATGCTTAGCGAACATGCAGACCCAGATCTGAGTATTTTACTGAAGAAAGCACAACTACATCATCGTAGCTTGTTTGGACCAAGTTTGACGCAGTGGTCAGTTGAAATTCCGGATCAGCAACTCTGGCAGGCGATGGCAGATACCTATCCATCGATAGTGGCACATTGGGATGAAGATGCGGATGAGCGTAACCAGATTCTGGCCTTATGCCGTATTTATTTTAGTTTGGTGACGAATGAGATTGCGCCTAAAGATCAGGCTGCGCAATGGGTGATTGCTCAGTTACAACCGCAACATCAGCCTGTTTTGCAGCGAATGGTGCAAGAATATAAAGGTGAGATTGAAAAGCAAAACTGGCAACAACAGCATCATGCTTTACAGCCTGTTGTTGATTTCCTGTCTTCAAAAATTGATGAACGGTTTAAACAGAAAAAAGTTTGA UPDATED NCBI_taxonomy_name with Acinetobacter parvus DSM 16617 = CIP 108168 UPDATED NCBI_taxonomy_id with 981333 UPDATED NCBI_taxonomy_cvterm_id with 41200 UPDATED accession with ENU37733 UPDATED sequence with MSETLQLEQLTGYLQQLLGESLFAIYLYGSAVDGGLGPESDLDILVVVSQALTLPQRQQLAETLLQISHPIGAAQRALEVTIVRKDHILSGSYPLSYELQFGEWLRDELSQGDMLSEHADPDLSILLKKAQLHHRSLFGPSLTQWSVEIPDQQLWQAMADTYPSIVAHWDEDADERNQILALCRIYFSLVTNEIAPKDQAAQWVIAQLQPQHQPVLQRMVQEYKGEIEKQNWQQQHHALQPVVDFLSSKIDERFKQKKV " 442 UPDATE OpmD antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; norfloxacin; acridine dye; acriflavin; tetracycline antibiotic; fluoroquinolone antibiotic; tetracycline; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGCGCTCCTACCCGAACCTTTCGCGCCTGGCGCTGGCCCTGGCGGTCGGCACCGGCCTGGCCGCCTGCAGCGTCGGCCCCGACTACCAGCGTCCGCAGTCGCCGCCGCCACGCGTCGCCAGCGAGCACCTCGGCGAGTTCTCCGGCGAGCGGCGGGAAGCGCCCTGGTGGAGTTTCTTCGACGATCCGCAACTGGTGCGCCTGGTCGACCAGGCGCTGGCGCGCAACCACGACATCCGCGAGGCCCGCGCCAACCTGCGCAGCGCCCGCGCGCTGTTCGACGACCGCTGGCTCGACCAGTTGCCGCAGGTCACCAGCCAGGCCGGCTACAGCCGCAGCATCGAACAACAGCTGGACTACGACGGCGAGCCGCGCCGGCGCCTGGCGGAGAGCTACCGCGCCGGCTTCGACGCGCAGTGGGAAATCGACCTGTTCGGCCGCCTCGGCCGACTTTCCGACGCCGCCTTGGCCCGCGCCGAAGCGGCCGACGCCGACCTCCGGCTGGTACGCCTGAGCATCGCCGCCGACACCGCCCGCGCCTACTTCGAGATCCAGGGCTACCAGCGCCGGCTGGACGTGGCGCGCGCCCAGGTGCGCAGTTGGCGCGACACCCTGGAGCTGACCCGCAGCAGCCTGCAACTGGGCAGCGGCCTGCCGGAGGACGTGGAGAACGCCCAGGCCAACCTGCTGCGCAGCGAAGCGGCGATTCCGCCACTGACGACCGCGCTGGAGAGCGCCCGCTATCGCCTCGACGTGCTGCGCGGCGAGGCACCCGGCAGCGGCGCGCCGATCCTCGACGGCGGCGCCGCCGCGCCATTGGCGAAGAACCTGCCGCTGGGCGACGTCGACCGCCTGATCCTCCAGCGCCCCGACGTAGTCAGCGCCGAGCGGCAACTGGCAGCGAGCACCGAAGACGTCGGCGCGGCCACCGCCGAACTCTATCCGCGCCTCGACCTGGGCGGCTTCATCGGTTTCTTCGCCCTGCGCAGCGGCGACCTCGGCAGCGCCTCGCGCGCCTTCGAACTGGCGCCCAGCGTCAGTTGGCCGGCGTTCCGCCTGGGCAACGTGCGGGCCCGCCTGCGCGCCGTCGAGGCGCAGTCCGACGCCGCGCTGGCGCGCTACCAGCGCTCCCTGCTGCTGGCCCAGGAGGACGTCGGCAACGCGCTCAACCAACTGGCCGAACACCAGCGTCGGCTGGTCGCCCTGTTCCAGTCCGCGACCCATGGCGCGAACGCCCTGGAGATCGCCAACGAACGCTACCGCGCCGGCGCCGGCAGCTACCTGGCGGTGCTGGAGAACCAGCGCGCGCTGTACCAGATCCGCGAGGAACTGGCGCAGGCGGAGACCGCCTCGTTCGTCAACGTCATCGCGCTCTACAAGGCGCTCGGCTGGGGCAGCGGCGACCTGGCGCCGGGCGCCGGCCAACTGGCCGCCGGCGAAACCGCCGGGGCCAACCGTTGA " 2752 UPDATE ANT(3'')-IIa antibiotic inactivation; ANT(3''); aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 35369 UPDATED strand with - UPDATED accession with GG704579.1 UPDATED fmin with 34580 UPDATED sequence with ATGCCTGATTTCATTCAGTTAGAATATCTACAAGAAAAATTACAGCAACTTTTAGCGGAATCATTATTTGCAATCTATCTTTATGGTTCAGCTGTTGATGGTGGCTTAGGGCCAGAAAGTGACCTTGATGTTCTGGTCGTGGTTACTCAACCATTAACATCTGCTTTACGCGAGCAGCTTGCACAAGAATTACTAAAAATTTCACAGCCTGTTGGGGAATTACAAAGACCATTAGAAGTTACTATTTTATTAAAAGATGAGATTCAGGCTGGAAATTATCCTTTAAGTTATGAAATGCAGTTTGGTGAATGGCTACGTGAAGAACTTAAAGAAGGTGGAACATTAAGTTCGCAGAAAGACCCAGATATTAGTATATTGCTTAGAAAAGCGAGATTTCATCATACAGTTTTATTTGGTCCAGCTTTGGACCAATGGGCACCTGAAATTTCTGATCAAGAACTATGGCAAGCAATGTCTGATACTTATCCCGAAATTGTAGCTCATTGGGATGAGGATGCAGATGAAAGAAACCAGATTTTAGCTTTATGCCGGATCTATTTTAGTTTAGTCATGAAGGATATTGCTTCAAAAGACAATGCAGCTCGATGGGTTATGCCTCAGCTTCCTCCTGAGCAGAAATTCGTATTGCAGCGGCTTATACAGGAATATAGAGGGGAAATAGGCAAACAAAATTGGCAAGAGGAACATTATGCTTTGCAGCCTATTGTTAATTTTCTGAGTTCAAAAATTGAAGAGCAGTTTGAGCAGAAAAGAAATTTGATCACATAA UPDATED NCBI_taxonomy_name with Acinetobacter baumannii ATCC 19606 UPDATED NCBI_taxonomy_id with 575584 UPDATED NCBI_taxonomy_cvterm_id with 35598 UPDATED accession with EEX02086.1 UPDATED sequence with MPDFIQLEYLQEKLQQLLAESLFAIYLYGSAVDGGLGPESDLDVLVVVTQPLTSALREQLAQELLKISQPVGELQRPLEVTILLKDEIQAGNYPLSYEMQFGEWLREELKEGGTLSSQKDPDISILLRKARFHHTVLFGPALDQWAPEISDQELWQAMSDTYPEIVAHWDEDADERNQILALCRIYFSLVMKDIASKDNAARWVMPQLPPEQKFVLQRLIQEYRGEIGKQNWQEEHYALQPIVNFLSSKIEEQFEQKRNLIT " 441 UPDATE OXA-54 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2753 UPDATE HMB-1 carbapenem; antibiotic inactivation; HMB beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 440 UPDATE MexA sulfonamide antibiotic; penem; panipenem; tetracycline antibiotic; clavulanate; meropenem; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; aztreonam; nalidixic acid; aminocoumarin antibiotic; cephalosporin; macrolide antibiotic; carbapenem; ceftazidime; ciprofloxacin; cephamycin; ceftriaxone; peptide antibiotic; diaminopyrimidine antibiotic; ticarcillin; ampicillin; amoxicillin; penam; sulfamethoxazole; novobiocin; phenicol antibiotic; efflux pump complex or subunit conferring antibiotic resistance; trimethoprim-sulfamethoxazole; tetracycline; monobactam; fluoroquinolone antibiotic; erythromycin; trimethoprim; azithromycin; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAACGAACGCCAGCCATGCGTGTACTGGTTCCGGCCCTGCTGGTCGCGATTTCGGCCCTTTCCGGGTGCGGAAAAAGCGAGGCGCCGCCGCCGGCGCAAACGCCGGAGGTCGGGATCGTGACCCTGGAAGCGCAGACGGTGACCCTGAATACCGAGCTGCCGGGCCGGACCAATGCGTTCCGCATCGCCGAGGTGCGTCCCCAGGTGAACGGCATCATCCTCAAGCGCCTGTTCAAGGAAGGCAGCGACGTCAAGGCCGGGCAGCAGCTCTACCAGATCGACCCCGCCACCTACGAGGCCGACTACCAGAGCGCCCAGGCCAACCTGGCTTCGACCCAGGAACAGGCCCAGCGCTACAAGCTGCTGGTCGCCGACCAGGCCGTGAGCAAGCAGCAGTACGCCGACGCCAATGCCGCCTACCTGCAGTCCAAGGCGGCGGTGGAGCAGGCGCGGATCAACCTGCGCTACACCAAGGTGCTGTCGCCGATCTCCGGCCGCATCGGCCGTTCCGCGGTGACCGAAGGCGCCCTGGTGACCAACGGCCAGGCCAACGCGATGGCCACCGTGCAACAGCTCGACCCGATCTACGTCGACGTCACCCAGCCGTCCACCGCCCTGCTGCGCCTGCGCCGCGAACTGGCCAGCGGCCAGTTGGAGCGCGCCGGCGACAACGCGGCGAAGGTCTCCCTGAAGCTGGAGGACGGTAGCCAATACCCGCTGGAAGGTCGCCTCGAATTCTCCGAGGTTTCCGTCGACGAAGGCACCGGCTCGGTCACCATCCGCGCCGTGTTCCCCAACCCGAACAACGAGCTGCTGCCCGGCATGTTCGTTCACGCGCAGTTGCAGGAAGGCGTCAAGCAGAAGGCCATCCTCGCTCCGCAGCAAGGCGTGACCCGCGACCTCAAGGGCCAGGCTACCGCGCTGGTGGTGAACGCGCAGAACAAGGTCGAGCTGCGGGTGATCAAGGCCGACCGGGTGATCGGCGACAAGTGGCTGGTTACCGAAGGCCTGAACGCCGGCGACAAGATCATTACCGAAGGCCTGCAGTTCGTGCAGCCGGGTGTCGAGGTGAAGACCGTGCCGGCGAAGAATGTCGCGTCCGCGCAGAAGGCCGACGCCGCTCCGGCGAAAACCGACAGCAAGGGCTGA " 2750 UPDATE APH(3')-VIII antibiotic inactivation; APH(3'); aminoglycoside antibiotic; G418; neomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 8257 UPDATED strand with - UPDATED accession with ATGI01000028.1 UPDATED fmin with 7477 UPDATED sequence with ATGAAACTACCTCAGAAAATTAGAAATTTTATTGGAAATAATCGATTAATCGTTAACAAAGTTGGTCAATCACCTTCTGATGTATATTGCTTTGAACGAAATCGGGAAACGTTCTTCTTAAAAGTGTCTAGTGTGCAATATGCAACAACAACTTATAGTGTTGCGCGTGAAGCACAGATGATGCTTTGGTTAGCTGATAAGATTAACGTACCTGAGTTAGTATTCAGTGAAATAGATCAAAATTTTGAGTATATGTTAAGCAAGTCTATTGATGCTCAACCTATATCAGATTTGTCCTTAGCTCAATCCGAATTAATCATGCTTTATCAAGATGTATTAAGCCAGTTACGATCAGTACCTGTACAAAATTGTCCATTTAATTCAGATATCAATAGCCGTTTACAAGAATCCCAATACTTTATGGAGATTGGGTTGTTAAATCAGGTTGATGATGAAAATATTGATATAGAGCTATGGGGTGAGCATCAGAGTTATCTAGAACTGTGGACAGAGTTAAACAATCATCGTGTGAAAGAAAATTTAGTGTTTACACATGGAGATATTACTGACAGTAATATTTTCGTTGATCAGTCAAATAAGATTTATTTTTTGGACTTAGGACGCGCTGGCTTGGCAGATGAGTTTGTAGATATTGCCTTTGTTGAACGTTGTCTTCGTGAAGATGGTTCTGAAGAGAGTGCTCAGAAGTTTCTCAAACAATTAAGTTTTGATGACCTATCCAAACGTCAATATTTTCTAAAACTTGATGAGTTAAATTGA UPDATED NCBI_taxonomy_name with Acinetobacter rudis CIP 110305 UPDATED NCBI_taxonomy_id with 421052 UPDATED NCBI_taxonomy_cvterm_id with 41191 UPDATED accession with EPF73263 UPDATED sequence with MKLPQKIRNFIGNNRLIVNKVGQSPSDVYCFERNRETFFLKVSSVQYATTTYSVAREAQMMLWLADKINVPELVFSEIDQNFEYMLSKSIDAQPISDLSLAQSELIMLYQDVLSQLRSVPVQNCPFNSDINSRLQESQYFMEIGLLNQVDDENIDIELWGEHQSYLELWTELNNHRVKENLVFTHGDITDSNIFVDQSNKIYFLDLGRAGLADEFVDIAFVERCLREDGSEESAQKFLKQLSFDDLSKRQYFLKLDELN " 447 UPDATE SHV-67 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2751 UPDATE APH(3')-IX antibiotic inactivation; APH(3'); aminoglycoside antibiotic; G418; neomycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1330 UPDATE emrR antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; nalidixic acid; efflux pump complex or subunit conferring antibiotic resistance; fluoroquinolone antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 445 UPDATE TEM-22 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 444 UPDATE AAC(6')-Ib-Suzhou antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 630 UPDATE adeJ antibiotic efflux; imipenem; rifampin; resistance-nodulation-cell division (RND) antibiotic efflux pump; trimethoprim; rifamycin antibiotic; penem; macrolide antibiotic; carbapenem; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; diaminopyrimidine antibiotic; ticarcillin; tetracycline antibiotic; fluoroquinolone antibiotic; lincosamide antibiotic; phenicol antibiotic; tetracycline; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCACAATTTTTTATTCATCGCCCCATATTTGCGTGGGTGATTGCATTAGTCATTATGTTGGCGGGTATTCTTACGCTAACAAAAATGCCTATTGCACAATATCCAACGATTGCACCACCAACCGTAACGATTGCTGCGACTTATCCTGGTGCATCGGCTGAAACAGTTGAAAATACTGTAACCCAGATCATTGAACAACAAATGAATGGTCTTGATGGCTTACGTTATATTTCATCTAACAGTGCTGGTAATGGTCAGGCATCTATTCAATTAAACTTTGAACAAGGTGTTGACCCTGATATTGCACAGGTTCAAGTTCAAAACAAATTGCAATCTGCAACTGCGCTTTTACCTGAAGATGTACAACGTCAAGGTGTAACAGTTACTAAATCTGGTGCGAGCTTCTTGCAAGTTATTGCATTCTATTCACCAGATAACAACCTGTCAGACTCTGACATTAAAGACTACGTAAACTCGTCAATTAAAGAACCGCTTAGCCGTGTTGCCGGTGTTGGTGAGGTACAGGTCTTCGGTGGCTCATACGCAATGCGTATCTGGCTTGATCCAGCTAAATTAACAAGCTATCAACTTACTCCTAGTGATATTGCAACTGCCTTACAAGCGCAGAACTCGCAAGTTGCCGTAGGTCAGTTAGGTGGTGCTCCGGCTGTACAAGGTCAAGTTCTTAACGCAACAGTAAATGCACAAAGCTTATTGCAGACTCCTGAACAGTTTAAAAATATCTTCTTAAAGAACACAGCATCAGGTGCTGAGGTTCGATTAAAAGATGTTGCTCGCGTAGAATTAGGTTCGGATAACTATCAATTCGACTCGAAGTTTAACGGTAAACCGGCAGCTGGTCTTGCAATTAAAATTGCAACAGGTGCTAACGCACTCGACACAGCCGAAGCAGTTGAACAACGTTTATCTGAACTACGTAAGAACTATCCAACAGGTCTTGCAGATAAACTGGCTTATGACACGACTCCATTTATCCGTCTTTCAATTGAAAGTGTAGTACACACATTAATTGAAGCCGTGATTTTGGTATTCATTGTCATGTTCCTATTCTTACAAAACTGGCGTGCAACGATTATTCCAACGCTTGCAGTTCCAGTAGTTGTATTAGGTACATTTGCGGTCATTAATATCTTTGGCTTCTCAATTAACACCTTAACCATGTTCGCTATGGTATTGGCAATCGGTCTTCTGGTCGACGACGCCATTGTTGTAGTCGAAAACGTTGAACGTGTGATGAGTGAAGACCATACCGATCCGGTTACGGCCACTTCTCGCTCAATGCAGCAGATTTCTGGTGCGTTAGTAGGTATTACCAGCGTATTGACAGCGGTATTCGTACCAATGGCTTTCTTTGGTGGTACAACAGGTGTAATTTACCGCCAGTTCTCGATTACCCTTGTAACTGCAATGGTTCTGTCGTTAATTGTAGCGTTGACGTTCACACCGGCACTTTGTGCAACTATCTTGAAACAGCATGATCCTAATAAAGAACCAAGCAATAATATCTTTGCGCGTTTCTTTAGAAGCTTTAACAATGGTTTTGACCGCATGTCGCATAGCTACCAAAATGGTGTTAGCCGCATGCTTAAAGGCAAAATCTTCTCTGGCGTGCTCTATGCTGTTGTAGTTGCCCTTTTAGTCTTCTTGTTCCAAAAACTCCCGTCTTCATTCTTACCAGAAGAAGATCAGGGTGTGGTCATGACACTTGTACAATTACCACCAAATGCAACGCTTGACCGTACCGGTAAAGTGATTGATACCATGACTAACTTCTTTATGAATGAAAAAGATACCGTGGAATCTATTTTCACTGTTTCTGGTTTCTCATTCACAGGTGTTGGTCAAAACGCGGGTATTGGCTTCGTTAAGTTGAAAGACTGGAGCAAACGTACGACACCAGAAACTCAAATTGGTTCATTGATTCAGCGTGGTATGGCATTAAATATGATCATTAAAGATGCATCATACGTTATGCCGTTACAGCTTCCAGCAATGCCTGAACTTGGTGTAACTGCCGGATTTAACTTGCAGCTTAAAGATTCAAGTGGTCAAGGCCATGAGAAACTGATTGCAGCTCGTAACACGATTTTAGGTTTGGCATCACAAGATAAACGTCTTGTAGGTGTGCGTCCAAATGGTCAGGAAGATACTCCTCAGTATCAAATTAATGTAGATCAGGCTCAAGCTGGTGCTATGGGCGTTAGTATTGCCGAAATCAACAATACAATGCGTATTGCATGGGGTGGCTCATACATTAACGATTTCGTTGACCGTGGTCGTGTGAAAAAAGTTTATGTTCAAGGTGATGCGGGCAGCCGTATGATGCCTGAAGACTTAAACAAATGGTATGTACGTAATAACAAAGGTGAGATGGTTCCATTCTCGGCATTTGCTACAGGCGAATGGACGTATGGTTCTCCACGTCTCGAACGTTATAACGGCGTGTCATCGGTTAACATTCAAGGTACACCTGCACCTGGCGTGAGCTCTGGTGATGCCATGAAAGCAATGGAAGAAATTATTGGTAAGTTACCATCTATGGGCTTACAAGGTTTCGACTATGAGTGGACAGGCTTATCACTTGAAGAACGTGAGTCTGGTGCTCAAGCGCCGTTCTTATACGCACTTTCATTGTTAATCGTATTCCTTTGCTTGGCTGCACTATATGAAAGCTGGTCAATTCCGTTCTCGGTTTTACTTGTGGTACCACTTGGTGTCATTGGTGCAATCGTATTGACCTACTTGGGCATGATTATTAAAGGAGATCCAAATCTCTCAAATAACATTTACTTCCAGGTAGCGATTATTGCGGTTATCGGTCTTTCTGCAAAAAATGCGATCTTGATTGTTGAATTCGCAAAAGAATTGCAGGAAAAAGGTGAAGATCTACTTGATGCAACCTTACATGCTGCAAAAATGCGTTTACGTCCAATTATCATGACCACCCTTGCCTTCGGTTTCGGTGTACTTCCACTTGCACTTTCAACAGGTGCCGGTGCAGGAAGTCAGCACTCTGTAGGCTTTGGTGTACTTGGTGGCGTACTCAGCGCGACGTTCTTAGGAATCTTCTTTATCCCTGTATTCTATGTGTGGATTCGTAGTATGTTTAAGTACAAACCAAAAACCATAAACACTCAGGAGCATAAATCGTGA " 2299 UPDATE Staphylococcus aureus walK with mutation conferring resistance to daptomycin peptide antibiotic; antibiotic target alteration; daptomycin resistant walK; daptomycin; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2298 UPDATE SPM-1 carbapenem; SPM beta-lactamase; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2293 UPDATE Bacillus subtilis pgsA with mutation conferring resistance to daptomycin peptide antibiotic; antibiotic target alteration; daptomycin resistant pgsA; daptomycin; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2292 UPDATE Streptomyces rishiriensis parY mutant conferring resistance to aminocoumarin aminocoumarin self resistant parY; clorobiocin; aminocoumarin antibiotic; novobiocin; coumermycin A1; antibiotic target alteration; aminocoumarin resistant parY; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2291 UPDATE Chlamydia trachomatis intrinsic murA conferring resistance to fosfomycin fosfomycin; antibiotic target alteration; murA transferase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2290 UPDATE Mycobacterium tuberculosis intrinsic murA conferring resistance to fosfomycin fosfomycin; antibiotic target alteration; murA transferase; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2297 UPDATE Enterococcus faecalis liaR mutant conferring daptomycin resistance peptide antibiotic; antibiotic target alteration; daptomycin resistant liaR; daptomycin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2789746 UPDATED strand with - UPDATED accession with NC_004668.1 UPDATED fmin with 2789113 UPDATED sequence with GTGATCAAAGTAATGTTAGTGGATGACCATGAAATGGTCCGTTTAGGCGTTTCATCATATTTATCTATTCAAGAGGATATAGAAGTCGTAGGCGAAGCAGAAAACGGTAAGATTGGCTATGAAAAAGCATTGGAACTACGTCCAGATGTTATTTTGATGGATTTGGTAATGGAAGAAATGGACGGCATTGATTCAACAAAAGCGATCTTGAAAGATTGGCCAGAAGCCAAGATTATTATTGTGACGAGTTTTATTGATGATGAAAAAGTGTATCCGGCGATTGAAGCTGGTGCAGCGGGCTACCTATTAAAGACATCAACAGCACATGAGATTGCTGATGCAATTCGGGCGACTTATCGCGGAGAGCGTGTGTTGGAACCTGAAGTGACGCATAAGATGATGGAACGGTTAACAAAAAAACAAGAGCCGGTGTTGCACGAAGATTTGACAAACCGGGAACACGAAATTTTAATGTTGATTGCACAAGGTAAAAGTAATCAGGAAATAGCTGATGAACTCTTTATCACTTTGAAAACAGTTAAAACACATGTTTCAAACATTTTAGCAAAACTAGATGTGGATGATCGGACCCAAGCGGCGATTTATGCTTTTCAACATGGTTTAGCCAAATAA UPDATED NCBI_taxonomy_name with Enterococcus faecalis V583 UPDATED NCBI_taxonomy_id with 226185 UPDATED NCBI_taxonomy_cvterm_id with 37592 UPDATED accession with NP_816529.1 UPDATED sequence with MIKVMLVDDHEMVRLGVSSYLSIQEDIEVVGEAENGKIGYEKALELRPDVILMDLVMEEMDGIDSTKAILKDWPEAKIIIVTSFIDDEKVYPAIEAGAAGYLLKTSTAHEIADAIRATYRGERVLEPEVTHKMMERLTKKQEPVLHEDLTNREHEILMLIAQGKSNQEIADELFITLKTVKTHVSNILAKLDVDDRTQAAIYAFQHGLAK " 2296 UPDATE Enterococcus faecalis liaS mutant conferring daptomycin resistance peptide antibiotic; antibiotic target alteration; daptomycin resistant liaS; daptomycin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2790824 UPDATED strand with - UPDATED accession with AE016830.1 UPDATED fmin with 2789720 UPDATED sequence with ATGACCGATCGGATTTCAAGACGCATGATTTCATTATATGCGTCCCTTAGCACCTTTATTGTTATCTTAATTACATTGTTTTCATATTTTCATTCGATTAAACAAAACCGGTGGTTATTAGAGCTTCTTCAGAGAAAAGTCTTTTATTTACCACTAATTGTGCACATTGTTCTCATATCCTTACTAATAGGCTTATTGACCTTTTTACTGATTTCATTGGTTCAAAAAGGGCAATATGGACGGATTGAAGAAAAACTTCGGTTATTGGCCAACGGTAATTATGAAAGTCCAGTCTTAAACAAACCAACGACCAGTGAAAATCAAGACCATTATCTAACCGAAGTCGAACAAGATATTTGGTCGATTAAAAATAAATTATTAGAGATGTCTAAAGAATTGCAATTATTAAACAGTCGACCGCAATTAATGGATGGGCAAACAAAAGAAGAAATTTTAGAGAACGAGCGGCATCGTTTGGCGCGGGAGTTGCATGATTCAGTCAGTCAACAACTTTTTGCAGCCATGATGATGTTGTCTGCATTAAATGAACAAGCACAACGAACAGAAACCCCGGAACCATATCGTAAACAACTAGCCATGGTGGCAGAAATCATTAATGCCTCCCAATCGGAAATGCGCGCGCTACTATTGCACTTGCGTCCTATCAGTCTAGAAGGAAAAAGTTTGCGTAAAGGTATTGAACAATTACTGAAAGAACTACAAACAAAAATTAAAATTGAATTGATTTGGGATGTTGAAGATGTTCATTTAAATAGCAGCATTGAGGATCATCTTTTCCGAATTGTGCAGGAGTTACTTTCAAATACCTTAAGACATGCCAAAGCAAAGGAATTAGAGGTATACTTACACCAAGTCGATAAAAACGTGTTATTGCGTATTGTTGATGATGGTGTCGGCTTTGATATGAAGGAACAAAGTAATAAAGCCGGTAGTTATGGCTTAAATAATATTCGAGAACGTGTTGTCGGCATGGGCGGTACAGTTAAAATTATTAGTTTTAAAGGGCAGGGAACCAGCGTTGAAATTAAAGTTCCTGTCATAAAGGAGGAAACTGCAAGTGATCAAAGTAATGTTAGTGGATGA UPDATED NCBI_taxonomy_name with Enterococcus faecalis V583 UPDATED NCBI_taxonomy_id with 226185 UPDATED NCBI_taxonomy_cvterm_id with 37592 UPDATED accession with AAO82600.1 UPDATED sequence with MTDRISRRMISLYASLSTFIVILITLFSYFHSIKQNRWLLELLQRKVFYLPLIVHIVLISLLIGLLTFLLISLVQKGQYGRIEEKLRLLANGNYESPVLNKPTTSENQDHYLTEVEQDIWSIKNKLLEMSKELQLLNSRPQLMDGQTKEEILENERHRLARELHDSVSQQLFAAMMMLSALNEQAQRTETPEPYRKQLAMVAEIINASQSEMRALLLHLRPISLEGKSLRKGIEQLLKELQTKIKIELIWDVEDVHLNSSIEDHLFRIVQELLSNTLRHAKAKELEVYLHQVDKNVLLRIVDDGVGFDMKEQSNKAGSYGLNNIRERVVGMGGTVKIISFKGQGTSVEIKVPVIKEETASDQSNVSG " 2295 UPDATE Enterococcus faecium liaF mutant conferring daptomycin resistance peptide antibiotic; antibiotic target alteration; daptomycin resistant liaF; daptomycin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 1854982 UPDATED strand with - UPDATED accession with LN999844.1 UPDATED fmin with 1854250 UPDATED sequence with ATGAATAGTTCTTGGCGTTTTTTTGTGGTAGTCGAAGCACTGCTGCTGTTATTTGCTGTTTGGCAAATCGTAAACAATACTGGACTTTTGCTTTTAGTAATATTCGGTATTTTCAATATATATCTAGCTATGCGCAAATATCCTCGTACTAAATTTCAAAATTTTCAATTGATCTTAGGGAGCTTGGTCATTTTTTTTAGCTTAGTCAACAGTCCTGCTTTATGGATGATGGTTGTATTGGCCGTTTTATTTATCGGCCTGAAAGGTGTAGAGATTTCAGGAATAGATTTGACAAAAAATGCTTTTTGGCGAAAAAAACAGATCATGATGGTCCAAACAGAGCAATTAAAAACACATAATAATGAGCGTAAAAGACAGCAATTATTTGGTAACCAACGTATTGGAAACGACGTCTATGAATGGGATGATATCAACATTGCCATCATTTCTGGTGATACTATCATCGATTTGGGCAATACACTTTTGCCAAAAGATGATAATATTGTGATTGTAAGAAAAGGGATAGGCAGAACACGGATCTTAGTACCCCTGGGAGTGGCTATTCGATTAGAGCATGCGACATTAGTAGGAAATGTCTTGTTTGAAGAAGAGCAGTTTTCCTTAAAAAATGAACAGATCAAAATCTGCAGCAGTGATTATGATGAAAATCCTCGCAGATTGAAGATCATTACCAATACCTTGGTTGGAGATGTCGAGGTGATACGAATATGA UPDATED NCBI_taxonomy_name with Enterococcus faecium UPDATED NCBI_taxonomy_id with 1352 UPDATED NCBI_taxonomy_cvterm_id with 36779 UPDATED accession with CUX99269.1 UPDATED sequence with MNSSWRFFVVVEALLLLFAVWQIVNNTGLLLLVIFGIFNIYLAMRKYPRTKFQNFQLILGSLVIFFSLVNSPALWMMVVLAVLFIGLKGVEISGIDLTKNAFWRKKQIMMVQTEQLKTHNNERKRQQLFGNQRIGNDVYEWDDINIAIISGDTIIDLGNTLLPKDDNIVIVRKGIGRTRILVPLGVAIRLEHATLVGNVLFEEEQFSLKNEQIKICSSDYDENPRRLKIITNTLVGDVEVIRI " 2294 UPDATE Campylobacter jejuni gyrA conferring resistance to fluoroquinolones antibiotic target alteration; fluoroquinolone antibiotic; nybomycin; fluoroquinolone resistant gyrA; ciprofloxacin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 960222 UPDATED strand with - UPDATED accession with NC_002163.1 UPDATED fmin with 957630 UPDATED sequence with ATGGAGAATATTTTTAGCAAAGATTCTGATATTGAACTTGTAGATATAGAAAATTCTATAAAAAGTAGTTATTTAGACTATTCTATGAGTGTTATTATAGGTCGTGCTTTGCCTGACGCAAGAGATGGTTTAAAGCCTGTTCATAGAAGAATTTTATATGCTATGCAAAATGATGAGGCAAAAAGTAGAACAGATTTTGTCAAATCAGCCCGTATAGTGGGTGCTGTTATAGGTCGTTATCACCCACATGGAGATACAGCAGTTTATGATGCTTTGGTTAGAATGGCTCAAGATTTTTCTATGAGATATCCAAGTATTACAGGACAAGGCAACTTTGGATCTATAGATGGTGATAGTGCCGCTGCGATGCGTTATACTGAAGCAAAAATGAGTAAACTTTCTCATGAGCTTTTAAAAGATATAGATAAAGATACGGTCGATTTTGTTCCAAATTATGATGGTTCAGAAAGCGAACCTGATGTTTTACCTTCTAGGGTTCCAAATTTATTATTAAATGGTTCAAGTGGTATAGCTGTAGGTATGGCGACAAACATCCCACCTCATAGTTTAAATGAGTTGATAGATGGACTTTTATATTTGCTTGATAATAAAGATGCAAGCCTAGAAGAGATTATGCAGTTTATCAAAGGTCCAGATTTTCCAACAGGTGGAATAATTTATGGTAAAAAAGGTATTATAGAAGCTTATCGCACAGGGCGTGGTCGCGTGAAAGTGCGAGCTAAAACTCATATTGAAAAAAAGACAAATAAAGATGTTATTGTTATCGATGAGCTTCCTTATCAAACCAATAAAGCTAGGCTTATAGAGCAGATTGCAGAGCTTGTTAAAGAAAGGCAAATTGAAGGAATATCTGAAGTAAGAGATGAGAGCAATAAAGAAGGAATCCGCGTTGTTATAGAGCTTAAACGTGAGGCTATGAGTGAAATTGTTTTAAATAATCTATTTAAATCTACCACTATGGAAAGTACTTTTGGTGTGATTATGTTGGCAATTCATAATAAAGAACCTAAAATTTTCTCTTTGTTGGAACTTTTAAATCTTTTCTTAACTCATAGAAAAACAGTTATTATTAGAAGAACGATTTTTGAACTTCAAAAGGCAAGAGCAAGAGCTCATATTTTAGAAGGTCTTAAAATTGCACTTGATAATATAGATGAAGTGATTGCTTTAATTAAAAATAGTTCTGATAATAATACCGCAAGAGATTCTTTAGTAGCTAAATTTGGTCTTAGTGAGCTTCAAGCCAATGCTATTTTAGATATGAAACTTGGTCGTTTAACAGGACTTGAAAGAGAAAAAATCGAAAATGAACTTGCAGAATTAATGAAAGAAATTGCAAGACTTGAAGAAATTTTAAAAAGTGAAACCTTGCTTGAAAATTTAATTCGCGATGAATTAAAAGAAATTAGAAGTAAATTTGATGTGCCACGTATTACTCAAATTGAAGATGATTACGATGATATTGATATTGAAGATTTGATTCCTAATGAAAATATGGTTGTAACTATCACACATCGTGGTTATATTAAGCGTGTGCCTAGTAAACAATATGAAAAACAAAAACGAGGTGGAAAAGGAAAATTAGCCGTTACGACTTATGATGATGATTTTATAGAAAGTTTCTTTACGGCAAATACACATGATACGCTTATGTTTGTAACAGATCGTGGACAGCTTTATTGGCTTAAAGTTTATAAAATTCCTGAAGGCTCAAGAACGGCTAAAGGAAAAGCAGTGGTAAATCTTATCAATTTACAAGCTGAAGAAAAAATCATGGCTATTATTCCAACCACGGATTTTGATGAGAGCAAATCTTTATGTTTCTTTACTAAAAATGGTATTGTAAAGCGTACAAATTTGAGTGAATATCAAAATATCAGAAGTGTAGGAGTTAGAGCGATCAACTTGGATGAAAATGATGAGTTGGTAACTGCTATTATTGTTCAAAGAGATGAAGATGAAATTTTTGCCACTGGTGGTGAAGAAAATTTAGAAAATCAAGAAATTGAAAATTTAGATGATGAAAATCTTGAAAATGAAGAAAGTGTAAGCACACAAGGTAAAATGCTCTTTGCAGTAACCAAAAAAGGTATGTGTATCAAATTCCCACTTGCTAAAGTGCGTGAAATCGGCCGTGTAAGTCGTGGGGTGACGGCTATTAAGTTTAAAGAGAAAAATGACGAATTAGTAGGTGCAGTTGTTATAGAAAATGATGAGCAAGAAATTTTAAGCATAAGTGCAAAAGGTATAGGAAAACGCACCAATGCTGGAGAATATAGATTGCAAAGCAGAGGTGGTAAGGGTGTAATTTGTATGAAACTTACAGAAAAAACCAAAGATCTTATTAGCGTAGTTATAGTAGATGAAACTATGGATTTAATGGCTCTTACAAGTTCAGGTAAGATGATACGTGTTGATATGCAAAGCATTAGAAAAGCAGGGCGTAATACGAGTGGTGTCATTGTAGTTAATGTGGAAAATGACGAGGTGGTTAGCATCGCTAAGTGTCCTAAAGAGGAAAATGACGAGGATGAGTTAAGCGATGAAAACTTTGGTTTAGATTTGCAATAA UPDATED NCBI_taxonomy_name with Campylobacter jejuni subsp. jejuni NCTC 11168 UPDATED NCBI_taxonomy_id with 192222 UPDATED NCBI_taxonomy_cvterm_id with 36956 UPDATED accession with YP_002344422.1 UPDATED sequence with MENIFSKDSDIELVDIENSIKSSYLDYSMSVIIGRALPDARDGLKPVHRRILYAMQNDEAKSRTDFVKSARIVGAVIGRYHPHGDTAVYDALVRMAQDFSMRYPSITGQGNFGSIDGDSAAAMRYTEAKMSKLSHELLKDIDKDTVDFVPNYDGSESEPDVLPSRVPNLLLNGSSGIAVGMATNIPPHSLNELIDGLLYLLDNKDASLEEIMQFIKGPDFPTGGIIYGKKGIIEAYRTGRGRVKVRAKTHIEKKTNKDVIVIDELPYQTNKARLIEQIAELVKERQIEGISEVRDESNKEGIRVVIELKREAMSEIVLNNLFKSTTMESTFGVIMLAIHNKEPKIFSLLELLNLFLTHRKTVIIRRTIFELQKARARAHILEGLKIALDNIDEVIALIKNSSDNNTARDSLVAKFGLSELQANAILDMKLGRLTGLEREKIENELAELMKEIARLEEILKSETLLENLIRDELKEIRSKFDVPRITQIEDDYDDIDIEDLIPNENMVVTITHRGYIKRVPSKQYEKQKRGGKGKLAVTTYDDDFIESFFTANTHDTLMFVTDRGQLYWLKVYKIPEGSRTAKGKAVVNLINLQAEEKIMAIIPTTDFDESKSLCFFTKNGIVKRTNLSEYQNIRSVGVRAINLDENDELVTAIIVQRDEDEIFATGGEENLENQEIENLDDENLENEESVSTQGKMLFAVTKKGMCIKFPLAKVREIGRVSRGVTAIKFKEKNDELVGAVVIENDEQEILSISAKGIGKRTNAGEYRLQSRGGKGVICMKLTEKTKDLISVVIVDETMDLMALTSSGKMIRVDMQSIRKAGRNTSGVIVVNVENDEVVSIAKCPKEENDEDELSDENFGLDLQ " 404 UPDATE OXA-217 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 403 UPDATE dfrA8 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATCGAGCTTCATGCCATTTTAGCTGCCACCGCCAATGGTTGCATTGGGAAGGACAACGCACTTCCCTGGCCACCACTAAAAGGCGATCTGGCCAGATTCAAAAAATTGACCATGGGGAAGGTGGTCATTATGGGGCGCAAGACCTATGAGAGCTTGCCCGTCAAATTAGAAGGTCGCACCTGCATCGTTATGACGCGCCAAGCGCTGGAGCTTCCGGGTGTTCGTGACGCTAACGGCGCTATCTTCGTGAACAACGTCAGCGACGCCATGCGGTTCGCTCAAGAAGAGAGCGTGGGCGATGTGGCCTACGTCATTGGTGGCGCTGAGATATTCAAGCGACTTGCCTTGATGATCACGCAGATTGAATTGACCTTTGTTAAGCGACTGTACGAAGGCGACACCTACGTTGATCTGGCCGAAATGGTCAAAGACTACGAGCAGAATGGCATGGAAGAACATGACCTTCACACTTACTTCACTTACCGTAAAAAGGAGCTTACAGAATGA " 2369 UPDATE ADC-80 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2368 UPDATE ADC-79 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2367 UPDATE ADC-78 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2366 UPDATE ADC-77 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2365 UPDATE ADC-76 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2364 UPDATE ADC-75 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2363 UPDATE ADC-74 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2362 UPDATE ADC-61 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2361 UPDATE ADC-56 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2360 UPDATE ADC-44 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1861 UPDATE LEN-15 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1860 UPDATE OXA-165 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1863 UPDATE VIM-3 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1862 UPDATE OXA-109 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1865 UPDATE ACC-5 penam; monobactam; cephalosporin; ACC beta-lactamase; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1864 UPDATE CMY-67 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGCATGGCCGTGGCAATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGTTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGACCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTACACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATGAAGTTACGGATAAAGCCGCATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGCGGTGCAACCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAATTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACAGGATCCACAGGCGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTAATGTTGGCAAACAAAAGCTACCCCAACCCGGCTCGCGTCGAGGTGGCCTGGCGCATTCTTGAAAAACTGCAATAA " 1867 UPDATE CTX-M-116 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1866 UPDATE KPC-7 antibiotic inactivation; penam; carbapenem; cephalosporin; monobactam; KPC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1869 UPDATE OXY-2-6 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATAAAAAGTTCGTGGCGTAAAATTGCAATGCTAGCCGCCGCCGTTCCGCTGCTGCTGGCGAGCAGCGCACTGTGGGCCAGTACCGATGCTATCCATCAGAAGCTGACAGATCTCGAGAAGCGTTCAGGCGGCAGGTTGGGCGTGGCGCTAATCAACACGGCAGATAATTCTCAAATCTTATATCGCGGCGACGAGCGTTTTGCCATGTGCAGCACCAGTAAAGTGATGGCCGCCGCCGCGGTATTAAAACAGAGCGAAAGCAATAAAGAGGTGGTAAATAAAAGGCTGGAGATTAACGCAGCCGATTTGGTGGTCTGGAGTCCGATTACCGAAAAACATCTCCAGAGCGGAATGACGCTGGCTGAGCTAAGCGCGGCGACGCTGCAATATAGCGACAATACGGCGATGAATCTGATCATCGGCTACCTTGGCGGGCCGGAAAAAGTCACCGCCTTCGCCCGCAGTATCGGCGATGCCACCTTTCGTCTCGATCGTACGGAGCCCACGCTGAATACCGCCATCCCGGGCGATGAGCGTGATACCAGCACGCCGCTGGCGATGGCTGAAAGCCTACGCAAGCTGACGCTTGGCGATGCGCTGGGCGAACAGCAACGCGCCCAGTTAGTCACCTGGCTGAAAGGCAATACCACCGGCGGGCAAAGCATTCGCGCGGGCCTGCCTGAAAGCTGGGTGGTCGGCGATAAAACCGGCGCCGGAGATTACGGCACCACCAATGATATTGCGGTTATCTGGCCGGAAGATCACGCTCCGCTGGTATTAGTCACCTACTTTACCCAGCCGCAGCAGGATGCGAAAAACCGCAAAGAGGTGTTAGCCGCAGCGGCAAAAATCGTGACCGAAGGGCTTTAA " 1868 UPDATE TEM-82 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGGTGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACAAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 964 UPDATE OXA-129 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAACCATAGCCGCATATTTAGTTCTAGTATTTTTTGCAGGCACTGCACTTTCAGAGTCTATTTCTGAAAATTTAGCTTGGAATAAAGAATTTTCCAGTGAATCAGTGCATGGTGTTTTTGTACTTTGTAAAAGCAGTAGTAATTCCTGTACAACAAATAATGCAACACGTGCATCTACGGCCTATATTCCAGCATCAACATTCAAAATTCCCAATGCTCTCATAGGCCTTGAAACCGGCGCCATAAAAGATGCGCGGCAGGTTTTCAAATGGGACGGCAAGCCCAGAGCCATGAAGCAATGGGAAAAAGACTTAACGCTAAGGGGCGCTATACAAGTTTCTGCTGTTCCGGTATTTCAACAAATTGCCAGAGACATTGGCAAAAAAAGAATGCAAAAATACCTTAACCTTTTTTCATATGGCAACGCCAATATAGGCGGAGGCATTGACAAATTTTGGCTAGAAGGTCAGCTTAGAATCTCAGCAGTCAATCAAGTTAAATTTTTAGAGTCGCTTTACCTAAATAATTTGCCAGCATCTAAAGCAAACCAACTTATAGTAAAAGAGGCAATAGTTACAGAAGCAACTCCAGAATATATAGTGCATTCAAAAACCGGGTATTCCGGTGTGGGCACAGAATCAAATCCTGGTGTCGCTTGGTGGGTTGGTTGGGTAGAAAAAGGAACTGAGGTTTACTTTTTTGCATTTAACATGGACATAGACAATGAGAGTAAGTTGCCGTCAAGAAAATCCATTCCAACGAAAATCATGGCAAGTGAAGGTATCATCATTGGTGGCTAA " 965 UPDATE OXA-333 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 966 UPDATE vanSC glycopeptide antibiotic; vanS; antibiotic target alteration; vancomycin; glycopeptide resistance gene cluster; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 967 UPDATE AAC(6')-Isa antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAGCTGCGCGGGGACGACGTCGTACTGCGACCGGTGGCCGACGGCGAGGGCGAGGTGCTCGACCGGATCGTGCGGGAGCCGGAGGTGGCGGCGTGGTGGTCGCCCCCGGAGGACTTCGCGGGCATGCTCGCCATCGTCTTCGAGGGCGAGGTCGTCGGAGCGATCCAGTTCTACGAGGAGACCGACCCCGAATTCCACCACGCCGGCATCGACGTCTTCCTGACGGCACGCCACCAGGGGAAGGGGCTGGGCACCGACGCGGTGCGCACGCTGGCCCGGTGGCTGGTGGCGGAACGCGGCCACCACCGGCTGACCATCGACCCCGCCGCCGCCAACACCGCGGCGATCCGCAGCTACCGCAAGGTCGGGTTCCGGCCGGTGGGCATCATGCGGGCGTACGGGCGCGACCACCGGACGGGACGCTGGCAGGACGCGCTGCTCATGGACCTGCTCGCCGACGAACTGACCTGA " 960 UPDATE TEM-137 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 961 UPDATE SHV-93 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 962 UPDATE OXA-356 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 963 UPDATE CMY-69 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 968 UPDATE MIR-15 antibiotic inactivation; monobactam; cephalosporin; MIR beta-lactamase; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 35962 " 969 UPDATE VEB-8 antibiotic inactivation; monobactam; cephalosporin; VEB beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2109 UPDATE Mycobacterium tuberculosis gyrB mutant conferring resistance to fluoroquinolone aminocoumarin antibiotic; antibiotic target alteration; moxifloxacin; fluoroquinolone resistant gyrB; grepafloxacin; trovafloxacin; ofloxacin; norfloxacin; nalidixic acid; lomefloxacin; gatifloxacin; coumermycin A1; ciprofloxacin; fleroxacin; levofloxacin; sparfloxacin; clorobiocin; novobiocin; Clofazimine; clinafloxacin; enoxacin; pefloxacin; fluoroquinolone antibiotic; cinoxacin; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2108 UPDATE Enterococcus faecium EF-Tu mutants conferring resistance to GE2270A pulvomycin; elfamycin resistant EF-Tu; GE2270A; LFF571; elfamycin antibiotic; enacyloxin IIa; antibiotic target alteration; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2103 UPDATE SHV-3 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 286 UPDATE SHV-162 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2104 UPDATE Ureaplasma urealyticum parC conferring resistance to fluoroquinolone fluoroquinolone self resistant parC; grepafloxacin; trovafloxacin; ofloxacin; norfloxacin; nalidixic acid; lomefloxacin; gatifloxacin; sparfloxacin; levofloxacin; fluoroquinolone resistant parC; antibiotic target alteration; enoxacin; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; moxifloxacin; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 635 UPDATE OXA-332 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 641 UPDATE CARB-6 penam; antibiotic inactivation; CARB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGTTTTTATTGGCATTTTCGCTTTTAATACCATCCGTGGTTTTTGCAAGTAGTTCAAAGTTTCAGCAAGTTGAACAAGACGTTAAGGCAATTGAAGTTTCTCTTTCTGCTCGTATAGGTGTTTCCGTTCTTGATACTCAAAATGGAGAATATTGGGATTACAATGGCAATCAGCGCTTCCCGTTAACAAGTACTTTTAAAACAATAGCTTGCGCTAAATTACTATATGATGCTGAGCAAGGAAAAGTTAATCCCAATAGTACAGTCGAGATTAAGAAAGCAGATCTTGTGACCTATTCCCCTGTAATAGAAAAGCAAGTAGGGCAGGCAATCACACTCGATGATGCGTGCTTCGCAACTATGACTACAAGTGATAATACTGCGGCAAATATCATCCTAAGTGCTGTAGGTGGCCCCAAAGGCGTTACTGATTTTTTAAGACAAATTGGGGACAAAGAGACTCGTCTAGACCGTATTGAGCCTGATTTAAATGAAGGTAAGCTCGGTGATTTGAGGGATACGACAACTCCTAAGGCAATAGCCAGCACGTTAAATCAATTATTATTTGGTTCCACATTATCTGAAGCTAGTCAGAAAAAATTAGAGTCTTGGATGGTGAACAATCAAGTTACGGGTAATTTATTGAGGTCAGTATTGCCAGTGAAGTGGAGTATTGCTGATCGCTCAGGAGCAGGTGGATTTGGTGCTAGGAGTATTACAGCGATTGTGTGGAGTGAAGAAAAAAAAACGATTATCGTAAGTATTTATCTAGCTCAAACCGAGGCTTCAATGGCAGAACGAAATGATGCGATAGTTAAAATTGGTCGTTCAATTTTTGAAGTTTATACATCACAGTCGCGCTGA " 878 UPDATE CTX-M-142 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 640 UPDATE tet(31) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 876 UPDATE smeE antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; fluoroquinolone antibiotic; phenicol antibiotic; tetracycline; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCACGCTTTTTCATCGATCGACCCATCTTTGCGTGGGTGATCGCCATCATCATCATGCTCGCCGGCGGCCTGGCGCTGTTCAAGCTGCCGGTCTCGATGTACCCCAACGTCGCACCGCCGGCGGTGGAAATCAGCGCCACCTACCCGGGTGCATCGGCCAAGGTGGTCGAGGACTCGGTGACGCAGATCATCGAGCAGAACATGAAGGGCCTTGATGGCCTGATCTACTTCTCCTCCAACAGCTCGTCCAACGGCCAGGCCACCATCACCCTGACCTTCGAGAGCGGCACCAACCCGGATATCGCCCAGGTGCAGGTGCAGAACAAGCTGCAGCTGGCCATGCCGCTGCTGCCGCAGGAAGTGCAGCGGCAGGGCATCAACGTGGCCAAGTCCAGCTCGGGCTTCCTGAACGCCATCGCGTTCGTGTCCGAGAACGGCAGCATGGACGCCAACGACATCGCCGACTACGTCGGTTCCAATGTCGTCGACCGCCTGAGCCGCGTGCCGGGCGTGGGCAACATCCAGGTGTTCGGTGGCAAGTACGCCATGCGCATCTGGCTGGACCCGAACAAGCTGCATACCTATGGCCTGTCGGTGCCGGAAGTGACCGCCGCGATCAAGGCGCAGAACGCCCAGGTGGCGATCGGCCAGCTCGGCGGTGCGCCGTCGGTGAAGGGCCAGCAGCTCAACGCCACCATCAACGCGCAGTCGCGCCTGCAGACCCCGGAACAGTTCCGAAACATCATCGTGCGCGGTGCGCAGGACGGTGCCGAGCTGCGCCTGGGTGATGTCGCCCGCGTCGAGCTGGGTGCCGAGTCCTACGACTTCGTCACCCGCTACAACGGCCAGCCGGCCAGTGGCCTGGCGGTCACCCTGGCCACCGGCGCCAACGCGCTGGATACCGCGGCCGGTGTGGATGCCGCGCTGGAAGACATGAAGGGCTTCTTCCCGGCCGGCCTGAAGGCCGAGATCCCGTACGACACCACCCCGTTCGTGCGCGTGTCGATCAAGGGCGTGGTGCAGACCCTGATCGAAGCGATCGTGCTGGTGTTCGTGGTGATGTACCTGTTCCTGCAGAACTTCCGCGCCACGCTGATCCCGACCATCGCCGTGCCGGTGGTGCTGCTGGGTACCTTCGGCGTGCTGGCGATGCTGGGCTTCTCGGTGAACATGCTGACCATGTTCGCGATGGTGCTGGCGATCGGCCTGCTGGTGGACGATGCCATCGTGGTGGTGGAGAACGTCGAGCGCATCATGTCCGAGGAAGGGCTGTCGCCGCTCGAAGCGACCCGCAAGTCGATGGGCCAGATCACCGGTGCGCTGGTGGGTATCGGCCTGGTGCTGTCGGCGGTGTTCGTGCCGATGGCCTTCATGAGCGGCTCCACCGGCGTGATCTATCGCCAGTTCTCGGCCACGATTGTCTCTGCGATGGCGTTGTCGGTGCTGGTGGCGATCGTGCTGACCCCGGCACTGTGCGCGACCATGCTCAAGCCGCTGAAGAAGGGTGAGCACCACGTCGCCCACCGTGGCCTGGCCGGTCGCTTCTTCAATGGCTTCAACCGTGGCTTCGATCGCACCAGCGAAAGCTACCAGCGCGGCGTGCGCGGCATCATCCACCGTCCGTGGCGCTTCATGGGCATCGTGGCGGCCTTGTTCGTGCTGATGGGCGTGCTGTTCGTGCGCCTGCCCAGCTCGTTCCTGCCCAACGAAGACCAGGGTGTGCTGATGGCGCTGGTGCAGGCGCCGGTCGGTGCCACCCAGGAACGCACGCTGGAATCGATCGCGGCACTGGAAAACCACTTCCTGCAGAACGAGAAGGATGCGGTGGACTCGGTGTTCTCCGTGCAGGGCTTCAGCTTCGCCGGCATGGGCCAGAACGCGGGCATGGCGTTCGTCAAGCTGAAGGACTGGAGCGAGCGTGACGCCGACAATGGCGTGATGCCGATCACCGGACGTGCGATGGCGGCCCTGGGCCAGATCAAGGATGCCTTCATCTTCGCCTTCCCGCCGCCGGCCATTCCGGAGCTGGGGACCGCCTCGGGCTACACCTTCTTCCTGAAGGACAACAGCGGCCAGGGCCACGAGGCACTGGTGGCCGCGCGCAACCAGCTGCTCGGCCTGGCCGCAGGCAGCAAGAAGCTGGCCAACGTACGCCCGAACGGCCAGGAAGACACGCCGCAGTTCCGCATCGACATCGACGCGGCCAAGGCGACCTCGCTGGGACTGTCGATCGACCAGATCAACGGCACGCTGGCGGCCGCGTGGGGCAGCTCGTACATCGATGACTTCGTCGATCGTGGCCGCGTCAAGCGCGTGTTCGTGCAGGCCGACCAGGCGTTCCGCATGGTGCCGGAGGACTTCGATCTCTGGTCCGTGAAGAACGACAAGGGTGAGATGGTGCCGTTCAGCGCCTTCGCTACCAAGCACTGGGACTACGGTTCGCCGCGCCTGGAACGCTACAACGGTGTGTCGGCAATGGAAATCCAGGGCGAACCGGCCCCGGGTGTCGCCTCCGGTGATGCCATGGCCGAGATCGAACAGCTGGCCAAGCAGCTGCCGGCGGGTTTCGGCATCGAATGGACGGCGATGTCCTACCAGGAACGCCAGGCCGGCTCGCAGACGCCGCTGCTGTACACGCTGTCGCTGATGATCGTGTTCCTGTGCCTGGCCGCGATGTATGAAAGCTGGAGCGTACCGACCGCGGTGCTGCTGGCGGCCCCGCTGGGTATCCTCGGCGCGGTGCTGGCCAACACCTTCAAGGGCCTGGAGCGCGACATCTACTTCCAGGTGGCGATGCTGACCACGGTGGGCCTGACCAGCAAGAACGCGATCCTGATCGTCGAGTTCGCCAAGGAAAACCTGGAAAAGGGCGCCAGCCTGATCGAGTCGATCATGCACGCCGTGCGCGACCGCCTGCGCCCGATCGTGATGACCTCGCTCGCCTTCGGCATGGGCGTGGTACCGCTGGCGATCTCCACCGGTGCCGGCTCCGGCGCCAAGCAGGCGATCGGCACCGGCGTGCTCGGCGGCATGATCGTCGGCACCGTGCTCGGCGTGTTCTTCGTGCCGCTGTTCTTCGTGGTGGTGCAGCGCGTGTTCAAGCGCAGATCCACGACGTGA " 877 UPDATE SHV-124 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 875 UPDATE dfrA19 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTCACCCACAACTTGAGCTAATAGTCGCTGTGGATTCTAAGTTGGGATTCGGGAAAGGCGGCAAGATTCCATGGAAATGCAAAGAAGACATGGCGCGATTTACGCGGATTTCTAAAGAGATCCGCGTGTGCGTTATAGGGAAACACACGTATACTGACATGCGTGACATGCAGTTAGAAAAGGATGGCGCCGAGGAGCGAATCAAGGAGAAAGGAATTCTCCCCGAACGCGAATCGTTCGTGATCTCCTCGACGTTAAAACAAGAAGATGTCATAGGCGCTACTGTCGTTCCTGATCTTCGTGCTGTGATCAACCTGTATGAGAATACCGATCAACGCATTGCTGTCATTGGTGGGGAGAAGTTGTACATTCAAGCTCTTTCATCAGCAACGAAACTGCACATGACCATAATTCCAAGAGAGTTCGACTGTGATCGATTTATTCCTGTTGATCCGATCCAGAACAATTTTCACATTGATTCCAGTGCCAGCGAGACTGTGGAGGCAACCGTTGATGAGACTCAAGAGCGCATTCACTTTGCTACTTACGTGCGTAACAATCAGTAA " 872 UPDATE vatC dalfopristin; antibiotic inactivation; streptogramin vat acetyltransferase; pristinamycin IIA; madumycin II; griseoviridin; streptogramin antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAATGGCAAAATCAGCAAGGCCCCAATCCAGAAGAAATATACCCTATAGAAGGTAATAAACATGTTCAATTTATTAAACCATCTATAACAAAGCCCAATATTTTAGTTGGGGAATATTCATATTACGATAGTAAAGATGGTGAATCTTTTGAAAGCCAAGTTCTTTATCACTATGAATTGATTGGGGATAAACTAATATTAGGGAAGTTTTGTTCTATTGGACCCGGAACGACATTTATAATGAATGGGGCTAATCATCGTATGGATGGTTCAACATTTCCATTCAATCTTTTCGGAAATGGTTGGGAGAAGCATACCCCTACATTGGAAGACCTTCCTTATAAGGGTAACACGGAAATTGGGAACGATGTTTGGATTGGACGAGATGTGACAATTATGCCCGGTGTAAAAATAGGAAACGGGGCTATTATTGCAGCAAAATCGGTTGTGACAAAGAACGTTGATCCTTATTCAGTTGTTGGCGGTAATCCTTCACGATTAATTAAGATAAGGTTTTCCAAGGAAAAAATCGCAGCATTACTAAAAGTAAGGTGGTGGGACCTAGAGATAGAGACGATAAATGAAAATATTGATTGCATCCTGAATGGTGATATAAAAAAGGTTAAAAGAAGTTAG " 873 UPDATE KPC-19 antibiotic inactivation; penam; carbapenem; cephalosporin; monobactam; KPC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 870 UPDATE otr(B) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGTCATCCGCAAATCCGGGCCCGGCGGGCACGGCGGACCAGGCAGGCGGGGCGTTCACGCATCGGCAGATCCTGACGGCCATGTCGGGACTGCTGCTGGCCGTGTTCCTCGCGGCCCTGGACCAGACGGTCATCGCCACCGCGATGCGCACCATCGCGGACGACCTCCACGGCCAGACCGAGCAGGCATGGGCGACGACGGGCTACCTCATCGCCTCCGTCCTGGCGATGCCGTTCTACGGCAAGCTGTCCGACATCTACGGGCGCAAGCCCATGTACCTGATCTCCATCGTGGTGTTCATCGGCGGCTCGGTGCTGTGCGGCACGGCCGGCTCGATGTGGGAGCTGGCCCTCTTCCGGGCCGTCCAGGGACTGGGCGGCGGCGGGCTGATGTCCCTGCCCACCGCGGTGGTCGCCGACCTCGCCCCGGTGCGCGAGCGCGGCCGCTACTTCGCCTTCCTCCAGATGGCGTGGGTGGTCGCCAGCGTCGCGGGCCCGCTGGCGGGCGGCTTCTTCGCGGAGGCGGGCCAGGTCTTCGGCATCGACGGCTGGCGCTGGGTGTTCCTGCTCAACGTACCGCTGGGCCTGCTGGCCCTGGTCACCGTGCGCAAGGCCCTGAACCTGCCGCACGAACGGCGCGAGCACCGCATGGACGTACTGGGCGCGGCGGCGCTGGCGCTGTTCCTGGTGCCCCTGCTGATCGTCGCCGAACAGGGCCGGACCTGGGGCTGGGGCTCGCCGGCCGCCCTCGCCCTCTTCGCGCTCGGCGCGGCCGGGCTGGCGGTCTTCATCCCCGTCGAGCTGCGGCGCGGCGACGAGGCCATCCTGCCGCTGGGGCTCTTCCGGCGCGGCAGCATCGCGCTGTGCTCCGCGGTCAACTTCACCATCGGCGTCGGCATCTTCGGCACGGTCACCACCCTGCCGCTGTTCCTCCAGATGGTGCAGGGGCGGACCCCGACCCAGGCCGGACTGGTGGTCATCCCGTTCATGCTGGGCACCATCGCCTCGCAGATGGTCTCCGGCAAGCTCATCGCGTCCTCGGGCCGGTTCAAGAAACTGGCGATCGTGGGCCTGGGCTCGATGGCCGGGGCGCTGCTGGCCATGGCCACCACCGGCGCGACGACCCCGATGTGGGGCATCGTCCTGATCGTCCTCTGGCTCGGCGTCGGCATCGGCCTGTCCCAGACCGTCATCACCTCGCCCATGCAGAACTCGGCCCCCAAGAGCCAGCTCGGCGTGGCGAACGGCGCCTCCGGCCTGTGCCGGCAGATCGGCGGCTCCACCGGCATCGCGGTTCTGTTCTCCGTGATGTTCGCGGTGGCGCTCGGCCGCCTCGCCGACCTGCTGCACACCCCGCGCTACGAGCGCCTCCTGACGGACCCGGCGATCACCGGCGACCCCGCCAACCACCGCTTCCTTGACATGGCCGAGTCCGGGCAGGGCGCGGGGATCAACCTTGACGACACGTCCCTGCTGAACGGCATCGACGCCCGGCTGATGCAGCCGGTGACGGATTCCTTCGCCCACGGCTTCCACATCATGTTCCTCGCCGGCGGCGTGGTGCTGCTGGCCGGGTTCGTCATGACCTGGTTCCTGCGCGAACTCCAGGAGGAGACCGCGCCGGAGGAGGAGCGGCCGGCCGAGAGCGGCGCCGGGGCGAAGAACGGGCCGCTGCCCGCGTCGGACGCCTGA " 871 UPDATE CGB-1 carbapenem; penam; cephalosporin; antibiotic inactivation; CGB beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2037 UPDATE tetT chlortetracycline; demeclocycline; oxytetracycline; tetracycline antibiotic; tetracycline; antibiotic target protection; minocycline; tetracycline-resistant ribosomal protection protein; doxycycline; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2036 UPDATE SHV-163 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2035 UPDATE CTX-M-15 antibiotic inactivation; cephalosporin; ceftazidime; cefalotin; ceftriaxone; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGGCTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA " 2034 UPDATE TEM-108 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2033 UPDATE mtrR penam; antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; linoleic acid; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; antibacterial free fatty acids; penicillin; palmitic acid; oleic acid; azithromycin; erythromycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2032 UPDATE CTX-M-62 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGTCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGAAGACTGGGGGTGGCATTGATTAACACAGCGGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTCGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTGGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGTCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCAGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGACTATGGCACCACCAACGATATCGCGGTGATTTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA " 2031 UPDATE OXA-173 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2030 UPDATE AAC(3)-IXa antibiotic inactivation; AAC(3); aminoglycoside antibiotic; neomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAAGAGATGAGCTTACTCAATCACTCCGGCGGTCCCGTTACCCGAAGCCGGATCAAGCATGACCTTGCTGATCTCGGTCTCAAAGACGGAGACGTGGTGATTTTCCACACCCGCATGTCTGCCATCGGGTACGTGGCTGGCGGAACGCAGACAATCATCGGCGCACTCCTCGACGTTGTGGGAGCCCGTGGAACCCTTATGGTGCCCTGTGGCTGGAACAACGCGCCTCCATATGACTTCCTCGATTGGCCACGGGACTGGCAGGACGCCCTGCGAGCAGAGCATCCCGCGTACGACCCGGACCTCAGTGAGGCGGACTACAATAATGGTCGTCTCCCAGAAGCGCTGCCGCGCTGGCCTGGCGCGATCCGAAGTCGGCACCCCGACGCCAGTTTCGCAGCCCTGGGGCCGGCTGCAGCCGAACTGATGGCAGAGCATCCGTGGGACCATCCTCACGGACCCGACACCCCGCTAGCACGGCTGATCGCCCATAGCGGCCGAGTCTTGTTACTTGGCGCTCCATTGGACACCATGACGCTGTTGCATCACGCTGAGGCGTTGGCCGACGTCCGCAGCAAACGGTTCGTGACCTACGAACAACCGATCCTCGTTAACGGCCAGCGGGTGTGGCGACAATTCCGCGATATCGACTCTGAGGAAGGAGCGTTTGACTACTCGACGGTGCGCCGAGGGGTGGAGCCGTTCGAGGCCATTGCACGGGACATGCTCTCGGCAGGAATCGGTCGTCAGGGCAGGGTCGGCGCCGCGGATAGCTACCTGTTTGACGCCGGGCCTGTCTTCAATTTTGCGATCAACTGGATCGAGGCCAAGCTGAAGAGATAG " 2749 UPDATE lnuG antibiotic inactivation; lincosamide nucleotidyltransferase (LNU); lincomycin; lincosamide antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 645 UPDATE mecR1 antibiotic target replacement; ceftaroline; ampicillin; flucloxacillin; ceftibuten; cefditoren; piperacillin; cefpodoxime; cefixime; cefdinir; meropenem; carbapenem; imipenem; aztreonam; cefradine; isopenicillin N; cefazolin; penicillin N; ceftazidime; cefepime; penicillin; oxacillin; cefmetazole; moxalactam; cloxacillin; cefadroxil; ceftriaxone; methicillin; loracarbef; ceftizoxime; cephalosporin; cefotaxime; cefaclor; phenoxymethylpenicillin; cefonicid; monobactam; cefuroxime; amoxicillin; mezlocillin; azlocillin; cefalexin; doripenem; cefotiam; ertapenem; penam; cefprozil; cephapirin; ceftobiprole; benzylpenicillin; methicillin resistant PBP2; cephamycin; carbenicillin; cefalotin; ceftiofur; mecillinam; propicillin; cefoxitin; dicloxacillin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGTTATCATCTTTTTTAATGTTAAGTATAATCAGTTCATTGCTCACGATATGTGTAATTTTTTTAGTGAGAATGCTCTATATAAAATATACTCAAAATATTATGTCACATAAGATTTGGTTATTAGTGCTCGTCTCCACGTTAATTCCATTAATACCATTTTACAAAATATCGAATTTTACATTTTCAAAAGATATGATGAATCGAAATGTATCTGACACGACTTCTTCGGTTAGTCATATGTTAGATGGTCAACAATCATCTGTTACGAAAGACTTAGCAATTAATGTTAATCAGTTTGAGACCTCAAATATAACGTATATGATTCTTTTGATATGGGTATTTGGTAGTTTGTTGTGCTTATTTTATATGATTAAGGCATTCCGACAAATTGATGTTATTAAAAGTTCGTCATTGGAATCGTCATATCTTAATGAACGACTTAAAGTATGTCAAAGTAAGATGCAGTTCTACAAAAAGCATATAACAATTAGTTATAGTTCAAACATTGATAATCCGATGGTATTTGGTTTAGTGAAATCCCAAATTGTACTACCAACTGTCGTAGTCGAAACCATGAATGACAAAGAAATTGAATATATTATTCTACATGAACTATCACATGTGAAAAGTCATGACTTAATATTCAACCAGCTTTATGTTGTTTTTAAAATGATATTCTGGTTTAATCCTGCACTATATATAAGTAAAACAATGATGGACAATGACTGTGAAAAAGTATGTGATAGAAACGTTTTAAAAATTTTGAATCGCCATGAACATATACGTTATGGTGAATCGATATTAAAATGCTCTATTTTAAAATCTCAGCACATAAATAATGTGGCAGCACAATATTTACTAGGTTTTAATTCAAATATTAAAGAACGTGTTAAGTATATTGCACTTTATGATTCAATGCCTAAACCTAATCGAAACAAGCGTATTGTTGCGTATATTGTATGTAGTATATCGCTTTTAATACAAGCACCGTTACTATCTGCACATGTTCAACAAGACAAATATGAAACAAATGTATCATATAAAAAATTAAATCAACTAGCTCCGTATTTCAAAGGATTTGATGGAAGTTTTGTGCTTTATAATGAACGGGAGCAAGCTTATTCTATTTATAATGAACCAGAAAGTAAACAACGATATTCACCTAATTCTACTTACAAAATTTATTTAGCGTTAATGGCATTCGACCAAAATTTACTCTCATTAAATCATACTGAACAACAATGGGATAAACATCAATATCCATTTAAAGAATGGAACCAAGATCAAAATTTAAATTCTTCAATGAAATATTCAGTAAATTGGTATTACGAAAATTTAAACAAACATTTAAGACAAGATGAGGTTAAATCTTATTTAGATCTAATTGAATATGGTAATGAAGAAATATCAGGGAATGAAAATTATTGGAATGAATCTTCATTAAAAATTTCTGCAATAGAACAGGTTAATTTGTTGAAAAATATGAAACAACATAACATGCATTTTGATAATAAGGCTATTGAAAAAGTTGAAAATAGTATGACTTTGAAACAAAAAGATACTTATAAATATGTAGGTAAAACTGGAACAGGAATCGTGAATCACAAAGAAGCAAATGGATGGTTCGTAGGTTATGTTGAAACGAAAGATAATACGTATTATTTTGCTACACATTTAAAAGGCGAAGACAATGCGAATGGCGAAAAAGCACAACAAATTTCTGAGCGTATTTTAAAAGAAATGGAATTAATATAA " 2039 UPDATE CARB-18 penam; antibiotic inactivation; CARB beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2038 UPDATE KPC-17 antibiotic inactivation; penam; carbapenem; cephalosporin; monobactam; KPC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 890 UPDATE SHV-53 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 891 UPDATE QnrB37 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 892 UPDATE APH(6)-Ic antibiotic inactivation; APH(6); streptomycin; aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAGCGCTGGCGCCTGCTGCGCGACGGCGAGCTGCTCACCACCCACTCGAGCTGGATACTTCCCGTCCGCCAGGGGGACATGCCGGCGATGCTGAAGGTCGCGCGCATTCCCGATGAAGAGGCCGGTTACCGCCTGTTGACCTGGTGGGACGGGCAGGGCGCCGCCCGAGTCTTCGCCTCGGCGGCGGGCGCTCTGCTCATGGAGCGCGCGTCCGGGGCCGGGGACCTTGCACAGATAGCGTGGTCCGGCCAGGACGACGAGGCTTGCAGGATCCTCTGCGACACCGCCGCTCGTCTGCACGCGCCGCGGTCCGGACCGCCGCCCGATCTCCATCCGCTACAGGAATGGTTCCAGCCGCTTTTCCGGTTGGCCGCTGAGCACGCGGCACTTGCGCCCGCCGCCAGCGTAGCGCGCCAACTTCTGGCGGCGCCGCGCGAGGTGTGCCCGCTCCACGGCGACCTGCACCACGAGAACGTGCTCGACTTCGGCGACCGCGGCTGGCTGGCCATCGACCCGCACGGACTGCTCGGCGAGCGCACCTTCGACTATGCCAACATCTTCACGAATCCCGATCTCAGCGACCCCGGTCGCCCGCTTGCGATCCTGCCGGGCAGGCTGGAGGCTCGACTCAGCATTGTGGTCGCGACGACCGGGTTTGAGCCCGAACGGCTTCTTCGCTGGATCATTGCATGGACGGGCTTGTCGGCAGCCTGGTTCATCGGCGACGGCGACGGCGAGGGCGAGGGCGCTGCGATTGATCTGGCCGTAAACGCCATGGCACGCCGGTTGCTTGACTAG " 894 UPDATE CMY-90 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 895 UPDATE SHV-122 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 896 UPDATE CTX-M-131 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 897 UPDATE OXA-383 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 852 UPDATED strand with - UPDATED accession with KF986262.1 UPDATED fmin with 27 UPDATED sequence with ATGAACATTAAAACACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGCGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGTACACACTACGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACCACAGAAGTATTTAAGTGGGACGGGCAAAAAAGGCTATTCCCAGAATGGGAAAAGAACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAATGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAATTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAAACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGCTTAGAACAATTAGGTATTTTATAG UPDATED NCBI_taxonomy_name with Acinetobacter baumannii UPDATED NCBI_taxonomy_id with 470 UPDATED NCBI_taxonomy_cvterm_id with 35507 UPDATED accession with AHL30281.1 UPDATED sequence with MNIKTLLLITSAIFISACSPYIVTANPNHSASKSDEKAEKIKNLFNEVHTTGVLVIQQGQTQQSYGNDLARASTEYVPASTFKMLNALIGLEHHKATTTEVFKWDGQKRLFPEWEKNMTLGDAMKASAIPVYQDLARRIGLELMSNEVKRVGYGNADIGTQVDNFWLVGPLKITPQQEAQFAYKLANKTLPFSQKVQDEVQSMLFIEEKNGNKIYAKSGWGWDVNPQVGWLTGWVVQPQGNIVAFSLNLEMKKGIPSSVRKEITYKSLEQLGIL " 898 UPDATE VEB-9 antibiotic inactivation; monobactam; cephalosporin; VEB beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 899 UPDATE OXA-94 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATTCAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGTCTGCTAATCCAAATCACAGTGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACCACAGAAGTATTTAAGTGGGATGGTAAAAAAAGGTTATTCCCAGAATGGGAAAAGGACATGACCCTAGGCGATGCCATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAGCTCATGTCTAAGGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAGTTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAAACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCATGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGTTTAGAACAATTAGGTATTTTATAG " 646 UPDATE OXA-349 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 649 UPDATE OXA-115 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATTAAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGCGCTTCAAAATCTGATGTAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACCACAGAAGTATTTAAGTGGGATGGTAAAAAAAGGTTATTCCCAGAATGGGAAAAGGACATGACCCTAGGCGATGCCATGAAAGCTTCCGCTATTCTAGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAGCTCATGTCTAAGGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGGTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAGTTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAACAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAAACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGCTTAGAACAATTAGGTATTTTATAG " 1248 UPDATE H-NS penam; antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; norfloxacin; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; cephamycin; oxacillin; ciprofloxacin; tetracycline antibiotic; cloxacillin; fluoroquinolone antibiotic; tetracycline; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1738104 UPDATED strand with - UPDATED accession with NC_002695.2 UPDATED fmin with 1737690 UPDATED sequence with ATGAGCGAAGCACTTAAAATTCTGAACAACATCCGTACTCTTCGTGCGCAGGCAAGAGAATGTACACTTGAAACGCTGGAAGAAATGCTGGAAAAATTAGAAGTTGTTGTTAACGAACGTCGCGAAGAAGAAAGCGCGGCTGCTGCTGAAGTTGAAGAGCGCACTCGTAAACTGCAGCAATATCGCGAAATGCTGATCGCTGACGGTATTGACCCGAACGAGCTGCTGAATAGCCTTGCCGCCGTTAAATCTGGCACCAAAGCTAAACGTGCTCAGCGTCCGGCAAAATATAGCTACGTTGACGAAAACGGCGAAACTAAAACCTGGACTGGCCAGGGCCGTACTCCAGCTGTAATCAAAAAAGCAATGGATGAGCAAGGTAAATCCCTCGACGATTTCCTGATCAAGCAATAA UPDATED NCBI_taxonomy_name with Escherichia coli O157:H7 str. Sakai UPDATED NCBI_taxonomy_id with 386585 UPDATED NCBI_taxonomy_cvterm_id with 36747 UPDATED accession with NP_309766.1 UPDATED sequence with MSEALKILNNIRTLRAQARECTLETLEEMLEKLEVVVNERREEESAAAAEVEERTRKLQQYREMLIADGIDPNELLNSLAAVKSGTKAKRAQRPAKYSYVDENGETKTWTGQGRTPAVIKKAMDEQGKSLDDFLIKQ " 1537 UPDATE GES-2 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1964 UPDATE IMP-45 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGCAAGTTATTTGTATTCTTTATGTTTTTGTTTTGTAGCATTACTGCCGCAGGAGAGTCTTTGCCAGATTTAAAAATTGAGAAGCTTGACGAAGGCGTTTATGTTCATACTTCGTTTGAAGAAGTTAACGGTTGGGGTGTTATTCCTAAACACGGCTTGGTGGTTCTTGTAAATACTGATGCCTATCTGATAGACACTCCATTTACTGCTAAAGATACTGAAAATTTAGTTAATTGGTTTGTTGAGCGCGGCTATAGAATAAAAGGCAGTATTTCCTCACATTTCCATAGCGACAGCACGGGTGGAATAGAGTGGCTTAATTCTCAATCTATCCCCACGTATGCATCTGAATTAACAAATGAACTTCTTAAAAAAGACGGTAAGGTACAAGCTAAATATTCATTTAGCGGAGTTAGCTATTGGCTAGTTAAGAAAAAGATTGAAGTTTTTTATCCTGGTCCAGGGCACGCTCCAGATAACGTAGTGGTTTGGCTGCCTGAAAATAGAGTTTTGTTCGGTGGTTGTTTTGTTAAACCCTACGGTCTAGGTAATTTGGGTGACGCAAATTTAGAAGCTTGGCCAAAATCCGCCAAATTATTAATGTCAAAATATAGTAAGGCAAAACTGGTTGTACCAGGTCATAGTGACATAGGAGATTCGTCGCTCTTGAAGCTTACATGGGAGCAGACGGTAAAAGGATTCAATGAAAGCAAAAAAAGTACCACTGCACATTAA " 1965 UPDATE LEN-11 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1966 UPDATE lmrA antibiotic efflux; ATP-binding cassette (ABC) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; antibiotic target alteration; lincosamide antibiotic; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 290698 UPDATED strand with - UPDATED accession with AL009126.3 UPDATED fmin with 290131 UPDATED sequence with ATGAGTTATGGAGATTCCCGTGAGAAAATCCTTTCGGCAGCTACCCGGCTTTTTCAGCTGCAAGGGTATTACGGCACGGGGCTGAACCAGATTATAAAGGAAAGCGGCGCGCCTAAAGGCTCTCTTTACTACCACTTTCCCGGGGGTAAAGAACAGCTTGCGATCGAAGCCGTGAATGAGATGAAGGAGTATATCCGTCAGAAAATCGCGGACTGCATGGAAGCCTGCACCGATCCAGCGGAAGGCATTCAAGCCTTTTTGAAGGAGCTCTCCTGCCAGTTTTCATGTACGGAAGACATTGAAGGCTTGCCTGTGGGCTTGCTAGCGGCTGAGACGTCATTGAAAAGCGAACCGTTGCGCGAAGCCTGTCATGAAGCCTACAAAGAATGGGCCTCTGTGTATGAGGAAAAACTGCGGCAGACTGGCTGCAGCGAGAGCCGTGCAAAAGAAGCCAGCACTGTGGTTAACGCGATGATTGAAGGCGGCATCCTTTTATCTTTGACGGCAAAAAACAGTACGCCGCTCCTTCATATCTCCAGCTGCATTCCTGACCTGCTGAAGAGATAA UPDATED NCBI_taxonomy_name with Bacillus subtilis subsp. subtilis str. 168 UPDATED NCBI_taxonomy_id with 224308 UPDATED NCBI_taxonomy_cvterm_id with 39579 UPDATED accession with CAB12062.1 UPDATED sequence with MSYGDSREKILSAATRLFQLQGYYGTGLNQIIKESGAPKGSLYYHFPGGKEQLAIEAVNEMKEYIRQKIADCMEACTDPAEGIQAFLKELSCQFSCTEDIEGLPVGLLAAETSLKSEPLREACHEAYKEWASVYEEKLRQTGCSESRAKEASTVVNAMIEGGILLSLTAKNSTPLLHISSCIPDLLKR " 1788 UPDATE ACT-6 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGACTAAATCCCTTTGCTGCGCCCTGCTGCTCAGCACCTCCTGCTCGGTATTGGCTGCCCCGATGTCAGAAAAACAGCTGGCTGAGGTGGTGGAACGTACCGTTACGCCGCTGATGAAAGCTCAGGCCATTCCGGGTATGGCGGTGGCGGTGATTTATCAGGGTCAGCCGCACTACTTTACCTTCGGTAAAGCCGATGTCGCGGCGAATAAACCCGTCACCCCACAAACCTTATTCGAGCTGGGCTCTATAAGTAAAACCTTCACCGGCGTACTCGGCGGCGATGCCATTGCTCGCGGTGAAATATCGCTGGGCGATCCGGTGACAAAATACTGGCCTGAGCTGACAGGCAAGCAGTGGCAGGGGATCCGCATGCTGGATCTGGCAACCTATACCGCAGGTGGTTTGCCGTTACAGGTACCGGATGAGGTCACGGATAACGCCTCACTGCTGCGCTTTTATCAAAACTGGCAGCCGCAGTGGAAGCCGGGCACCACGCGTCTTTACGCCAACGCCAGCATCGGTCTTTTTGGCGCGCTGGCGGTCAAACCTTCCGGCATGAGCTATGAGCAGGCCATAACGACGCGGGTCTTTAAGCCGCTCAAGCTGGACCATACCTGGATTAACGTTCCGAAAGCGGAAGAGGCGCATTACGCCTGGGGATACCGCGACGGTAAGGCGGTACACGTTTCGCCAGGAATGCTGGACGCTGAAGCCTATGGCGTAAAAACCAACGTGAAGGATATGGCAAACTGGGTGATGGTCAACATGAAGCCGGACTCGCTTCAGGATAGTTCACTCAAGGAAGGCATTACCCTGGCGCAGTCTCGCTACTGGCGCGTGGGTGCCATGTATCAGGGATTAGGCTGGGAAATGCTTAACTGGCCGGTCGATGCCAAAACCGTGGTTGAAGGTAGCGACAATAAGGTGGCGCTGGCACCGCTGCCTGCGAGAGAAGTGAATCCACCGGCGCCCCCGGTCAATGCGTCATGGGTCCATAAAACAGGCTCTACCGGCGGGTTTGGCAGCTACGTGGCATTTATTCCTGAAAAGCAGCTCGGCATTGTGATGCTGGCGAATAAAAGCTATCCGAACCCGGCACGCGTTGAGGCGGCATACCGTATCCTCGACGCGCTGCAGTAA " 1789 UPDATE QnrB44 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 768 UPDATE SHV-43 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACATTTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGTCTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACACCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGAGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATCGTGGTGATTTATCTGCGGGATACCCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 1967 UPDATE OXA-116 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1780 UPDATE OXA-146 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATAAATATTTTACTTGCTATGTGGTTGCTTCTCTTTTTCTTTCTGGTTGTACGGTTCAGCATAATTTAATAAATGAAACCCCGAGTCAGATTGTTCAAGGACATAATCAGGTGATTCATCAATACTTTGATGAAAAAAACACCTCAGGTGTGCTGGTTATTCAAACAGATAAAAAAATTAATCTATATGGTAATGCTCTAAGCCGCGCAAATACAGAATATGTGCCAGCCTCTACATTTAAAATGTTGAATGCCCTGATCGGATTGGAGAACCAGAAAACGGATATTAATGAAATATTTAAATGGAAGGGCGAGAAAAGGTCATTTACCGCTTGGGAAAAAGACATGACACTAGGAGAAGCCATGAAGCTTTCTGCAGTCCCAGTCTATCAGGAACTTGCGCGACGTATCGGTCTTGATCTCATGCAAAAAGAAGTAAAACGTATTGGTTTCGGTAATGCTGAAATTGGACAGCAGGTTGATAATTTCTGGTTGGTAGGACCATTAAAGGTTACGCCTATTCAAGAGGTAGAGTTTGTTTCCCAATTAGCACATACACAGCTTCCATTTAGTGAAAAAGTGCAGGCTAATGTAAAAAATATGCTTCTTTTAGAAGAGAGTAATGGCTACAAAATTTTTGGAAAGACTGGTTGGGCGGCAATGGATATAAAACCACAAGTGGGCTGGTTGACCGGCTGGGTTGAGCAGCCAGATGGAAAAATTGTCGCTTTTGCATTAAATATGGAAATGCGGTCAGAAATGCCGGCATCTATACGTAATGAATTATTGATGAAATCATTAAAACAGCTGAATATTATTTAA " 1612 UPDATE ErmR antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 1782 UPDATE TEM-12 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATAGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 1783 UPDATE VIM-36 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1784 UPDATE OXA-334 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1785 UPDATE TEM-48 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1786 UPDATE mexY erythromycin; arbekacin; tetracycline antibiotic; meropenem; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; ofloxacin; norfloxacin; macrolide antibiotic; carbapenem; cephalosporin; ciprofloxacin; gentamicin C; amikacin; aminoglycoside antibiotic; acridine dye; penam; efflux pump complex or subunit conferring antibiotic resistance; cephamycin; acriflavin; fluoroquinolone antibiotic; chloramphenicol; phenicol antibiotic; tetracycline; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCTCGTTTCTTCATTGACCGGCCGGTCTTCGCCTGGGTGATCTCCCTGCTGATCGTGCTCGCCGGGGTCCTGGCGATCCGCTTCCTGCCGGTCGCCCAGTACCCGGACATCGCGCCGCCGGTGGTCAACGTCAGCGCCACGTATCCCGGCGCCTCGGCCAAGGTGGTCGAGGAAGCGGTGACCGCGATCATCGAGCGCGAGATGAACGGCGCGCCCGGCCTGCTCTACACCAAGGCCACCAGCAGCACCGGCCAGGCCTCGCTGACCCTGACCTTCCGCCAGGGCGTGAACGCGAACCTCGCCGCGGTGGAAGTGCAGAACCGCCTGAAGATCGTCGAGTCGCGCCTGCCCGAATCGGTGCGGCGCGACGGCATCTACGTGGAGAAGGCGGCGGACAGCATCCAGCTGATCGTTACCCTTACCTCCTCCAGCGGCCGCTACGACGCCATGGAGCTGGGCGAGATCGCCTCGTCCAACGTGTTGCAGGCGCTGCGCCGGGTGGAGGGCGTGGGCAAGGTCGAGACCTGGGGCGCCGAGTACGCCATGCGCATCTGGCCCGACCCGGCCAAGCTGACCTCGATGAACCTCAGCGCCAGCGACCTGGTCAACGCCGTGCGCCGGCACAACGCCCGCCTCACCGTGGGCGACATCGGCAACCTCGGGGTCCCCGACTCGGCGCCGATCAGCGCCACGGTGAAGGTCGACGACACCCTGGTGACGCCCGAGCAGTTCGGCGAAATTCCGCTGGCGCATCCGCGCGACGGCGGCGCGATCCGCCTGCGCGACGTGGCCCGCGTCGAGTTCGGCCAGAGCGAGTACGGCTTCGTCTCGCGGGTCAACCAAATGACCGCCACCGGCCTGGCGGTGAAGATGGCGCCCGGCTCCAACGCGGTGGCCACCGCCAAGCGCATCCGCGCCACCCTCGACGAGCTGTCGCGCTACTTCCCGGAGGGCGTGAGCTACAACATCCCCTATGACACCTCGGCGTTCGTCGAGATCTCGATCAGGAAGGTGGTCAGCACCCTGCTCGAGGCGATGCTGCTGGTGTTCGCCGTGATGTACCTGTTCATGCAGAACTTCCGCGCCACCCTGATCCCGACACTGGTGGTGCCGGTGGCCCTGCTGGGCACCTTCACGGTGATGCTCGGCCTGGGCTTCTCGATCAACGTGCTGACCATGTTCGGCATGGTCCTGGCGATCGGCATCCTGGTGGACGACGCGATCATCGTGGTGGAGAACGTCGAGCGGCTGATGGCCGAGGAAGGCCTGTCGCCGCACGACGCCACGGTCAAGGCGATGCGCCAGATCAGCGGGGCCATCGTCGGCATCACCGTAGTGCTGGTCTCGGTGTTCGTGCCGATGGCGTTCTTCAGCGGCGCGGTGGGCAACATCTACCGCCAGTTCGCGGTGACCCTGGCGGTCTCCATCGGCTTCTCGGCGTTCCTCGCGCTGTCGCTGACCCCGGCCCTGTGCGCCACCCTGCTGCGCCCGATCGACGCCGACCACCACGAGAAGCGCGGCTTCTTCGGCTGGTTCAACCGCGCCTTCCTGCGCCTGACCGGACGCTACCGCAACGCGGTGGCCGGCATCCTCGCCCGGCCGATCCGCTGGATGCTGGTCTACACCCTGGTCATCGGCGTGGTCGCCCTGCTCTTCGTGCGCCTGCCGCAGGCGTTCCTGCCGGAAGAGGACCAGGGCGACTTCATGATCATGGTGATGCAGCCCGAAGGCACGCCGATGGCGGAGACCATGGCCAACGTCGGCGACGTCGAGCGCTACCTGGCGGAGCACGAACCGGTGGCCTACGCCTATGCGGTCGGCGGCTTCAGCCTGTACGGCGACGGCACCAGCTCGGCGATGATCTTCGCCACCCTGAAGGACTGGTCGGAACGCCGGGAGGCCAGCCAGCACGTCGGCGCCATCGTCGAGCGCATCAACCAGCGCTTCGCCGGCCTGCCCAACCGTACGGTGTATGCGATGAACTCGCCGCCGCTGCCGGACCTGGGTTCCACCAGCGGCTTCGACTTCCGCCTGCAGGACCGTGGCGGGGTTGGCTACGAGGCCCTGGTCAAGGCCCGCGACCAGTTGCTGGCGCGCGCCGCCGAGGACCCGCGCCTGGCCAACGTGATGTTCGCCGGCCAGGGCGAGGCGCCGCAGATCCGCCTGGACATCGACCGGCGCAAGGCGGAGACCCTTGGCGTGAGCATGGACGAGATCAACACCACCCTGGCGGTGATGTTCGGCTCGGACTACATCGGCGACTTCATGCACGGCAGCCAGGTGCGCAAGGTGGTGGTCCAGGCCGACCGGCGCAAGCGCCTGGGCATCGACGACATCGGCCGGCTTCACGTGCGCAACGAGCAGGGCGAGATGGGTGCCGCTGGCGACGTTCGCCAAGGCCGCCTGGACCCTCGGCCCGCCGCAACTGACCCGCTACAACGGCTATCCCTCGTTCAACCTCGAGGGCCAGGCCGCGCCGGGCTACAGCAGCGCGAAGCCATGCAGGCGATGGAGCAATTGATGCAGGGAACTGCCCGAGGCATTCGCCCACGAGTGGTCCGGCCAGTCCTTCGAAGAACGCCTGTTGCCGGCGCCCAGGCGCCGGCGCTGTTCGCCCTCTCGGTGTTGATCGTGTTCCTCGCCCTGGCCGCCCTCTACGAAAGCTGGTCGATCCCGCTGGCGGTGATCCTGGTGGTGCCGCTGGGCGTACTCGGCGCACTGCTCGGGGTGAGCCTGCGCGGTCTGCCCAACGACATCTACTTCAAGGTCGGCCTGATCACCATCATCGGCCTCTCGGCGAAGAACGCCATCCTCATCATCGAGGTGGCCAAGGACCATTACCAGGAAGGCATGAGCCTGCTGCAGGCGACCCTGGAGGCCGCGCGCCTGCGCCTGCGACCGATCGTCATGACCTCGCTGGCGTTCGGTTTCGGCGTGGTCCCGCTGGCGCTCTCCAGCGGCGCCGGTATCCGCGCCCAGGTCGCCATCGGCACCGGGGTGCTCGGCGGGATCGTCACCGCCACGGTACTCGCGGTGTTCCTGGTACCGCTGTTCTTCCTGGTGGTCGGGCGCCTGTTCCGGTTGCGCAAGGCGCCGCGCACCGGCAACTCGCCCCAGATCCCCACGGAGCAAGCCTGA " 1787 UPDATE VIM-42 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1962 UPDATE OXA-47 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1963 UPDATE TEM-190 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1078 UPDATE VIM-4 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTAAAAGTTATTAGTAGTTTATTGGTCTACATGACCGCGTCTGTCATGGCTGTCGCAAGTCCGTTAGCCCATTCCGGGGAGCCGAGTGGTGAGTATCCGACAGTCAACGAAATTCCGGTCGGAGAGGTCCGACTTTACCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTTTGATGGCGCGGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAAAAGCAAATTGGACTTCCCGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCCGAGGCAGAGGGGAACGAGATTCCCACGCATTCTCTAGAAGGACTCTCATCGAGCGGGGACGCAGTGCGCTTCGGTCCAGTAGAGCTCTTCTATCCTGGTGCTGCGCATTCGACCGACAATCTGGTTGTATACGTCCCGTCAGCGAACGTGCTATACGGTGGTTGTGCCGTTCATGAGTTGTCACGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCGTTGAGCGGATTCAAAAACACTACCCGGAAGCAGAGGTCGTCATTCCCGGGCACGGTCTACCGGGCGGTCTAGACTTGCTCCAGCACACAGCGAACGTTGTCAAAGCACACAAAAATCGCTCAGTCGCCGAGTAG " 1079 UPDATE OXA-161 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCAATCCGAATCTTCGCGATACTTTTCTCCATTTTTTCTCTTGCCACTTTCGCGCATGCGCAAGAAGGCACGCTAGAACGTTCTGACTGGAGGAAGTTTTTCAGCGAATTTCAAGCCAAAGGCACGATAGTTGTGGCAGACGAACGCCAAGCGGATCGTGCCATGTTGGTTTTTGATCCTGTGCGATCGAAGAAACGCTACTCGCCTGCATCGACATTCAAGATACCTCATACACTTTTTGCACTTGATGCAGGCGCTGTTCGTGATGAGTTCCAGATTTTTCGATGGGACGGCGTTAACAGGGGCTTTGCAGGCCACAATCAAGACCAAGATTTGCGATCAGCAATGCGGAATTCTACTGTTTGGGTGTATGAGCTATTTGCAAAGGAAATTGGTGATGACAAAGCTCGGCGCTATTTGAAGAAAATCGACTATGGCGACGCCGATCCTTCGACAAGTAATGGCGATTACTGGATAGAAGGCAGCCTTGCAATCTCGGCGCAGGAGCAAATTGCATTTCTCAGGAAGCTCTATCGTAACGAGCTGCCCTTTCGGGTAGAACATCAGCGCTTGGTCAAGGATCTCATGATTGTGGAAGCCGGTCGCAACTGGATACTGCGTGCAAAGACGGGCTGGGAAGGCCGTATGGGTTGGTGGGTAGGATGGGTTGAGTGGCCGACTGGCTCCGTATTCTTCGCACTGAATATTGATACGCCAAACAGAATGGATGATCTTTTCAAGAGGGAGGCAATCGTGCGGGCAATCCTTCGCTCTATTGAAGCGTTACCGCCCAACCCGGCAGTCAACTCGGACGCTGCGCGATAA " 1076 UPDATE IMP-37 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGAAATTATTTGTTTTATGTGTATGCTTCTTTTGTAGCATTACTGCCGCAGGAGCGGCTTTACCTGATTTAAAAATCGAGAAGCTTGAAGAAGGTGTTTTTGTTCATACATCGTTCGAAGAGGTTAACGGTTGGGGGGTTGTTACTAAACACGGTTTAGTGGTGCTTGTAAACACAGACGCCTATCTAATTGACACTCCATTTACTGCTACAGACACTGAAAAATTAGTCAATTGGTTTGTGGAGCGCGGCTATGAAATCAAAGGCACTATTTCATCACATTTCCATAGCGACAGCACAGGAGGAATAGAGTGGCTTAATTCTCAATCTATTCCCACGTATGCATCTGAATTAACAAATGAACTTTTGAAAAAATCCGGTAAGGTACAAGCTAAATATTCATTTAGCGAAGTTAGCTATTGGCTAGTTAAAAATAAAATTGAAGTTTTCTACCCTGGCCCAGGTCACACTCAAGATAACCTAGTGGTTTGGTTGCCTGAAAGTAAAATTTTATTCGGTGGTTGCTTTATTAAACCTCACGGTCTTGGCAATTTAGGTGACGCAAATTTAGAAGCTTGGCCAAAGTCCGCCAAAATATTAATGTCTAAATATGGCAAAGCAAAGCTTGTTGTTTCAAGTCATAGTGAAAAAGGGGACGCATCACTAATGAAACGTACATGGGAACAAGCCCTTAAAGGGCTTAAAGAAAGTAAAAAAACATCATCACAAAGTACAGCATCGTGA " 643 UPDATE OXY-2-5 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATAAAAAGTTCGTGGCGTAAAATTGCAATGCTAGCCGCCGCCGTTCCGCTGCTGCTGGCGAGCGGCGCACTGTGGGCCAGTACCGATGCTATCCATCAGAAGCTGACAGATCTCGAGAAGCGTTCAGGCGGCAGGTTGGGCGTGGCGCTAATCAACACGGCAGATAATTCTCAAATCTTATATCGCGGCGACGAGCGTTTTGCCATGTGCAGCACCAGTAAAGTGATGGCCGCCGCCGCGGTATTAAAACAGAGCGAAAGCAATAAAGAGGTGGTAAATAAAAGGCTGGAGATTAACGCAGCCGATTTGGTGGTCTGGAGCCCGATTACCGAAAAACATCTCCAGAGCGGAATGACGCTGGCTGAGCTAAGCGCGGCGACGCTGCAATATAGCGACAATACGGCGATGAATCTGATCATCGGCTACCTTGGCGGGCCGGAAAAAGTCACCGCCTTCGCCCGCAGTATCGGCGATGCCACCTTTCGTCTCGATCGTACGGAGTCCACGCTGAATACCGCCATCCCGGGCGATGAGCGTGATACCAGCACGCCGCTGGCGATGGCTGAAAGCCTGCGCAAGCTGACGCTTGGCGATGCGCTGGGCGAACAGCAACGCGCCCAGTTAGTCACCTGGCTGAAAGGCAATACCACCGGCGGGCAAAGCATTCGCGCGGGCCTGCCTGAAAGCTGGGTGGTCGGCGATAAAACCGGCTCCGGAGATTACGGCACCACCAATGATATTGCGGTTATCTGGCCGGAAGATCACGCTCCGCTGGTATTAGTCACCTACTTTACCCAGCCGCAGCAGGATGCGAAAAACCGCAAAGAGGTGTTAGCCGCAGCGGCAAAAATCGTGACCGAAGGGCTTTAA " 1074 UPDATE LEN-3 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TGTTATCTCCCTGTTAGCCACCCTGCCACTGGTGGTATACGCCGGTCCACAGCCGCTTGAGCAGATTAAACAAAGCGAAAGCCAGCTGTCGGGCCGCGTGGGGATGGTGGAAATGGATCTGGCCAGCGGCCGCACGCTGGCCGCCTGGCGCGCCGATGAACGCTTTCCCATGGTGAGCACCTTTAAAGTGCTGCTGTGCGGCGCGGTGCTGGCGCGGGTGGATGCCGGGCTCGAACAACTGGATCGGCGGATCCACTACCGCCAGCAGGATCTGGTGGACTACTCCCCGGTCAGCGAAAAACACCTTGTCGACGGGATGACGATCGGCGAACTCTGCGCCGCCGCCATCACCCTGAGCGATAACAGCGCTGGCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCGGGATTAACTGCCTTTCTGCGCCAGATCGGTGACAACGTCACCCGTCTTGACCGCTGGGAAACGGCACTGAATGAGGCGCTTCCCGGCGACGCGCGCGACACCACCACCCCGGCCAGCATGGCCGCCACGCTGCGCAAACTACTGACCGCGCAGCATCTGAGCGCCCGTTCGCAACAGCAACTCCTGCAGTGGATGGTGGACGATCGGGTTGCCGGCCCGCTGATCCGCGCCGTGCTGCCGCCGGGCTGGTTTATCGCCGACAAAACCGGGGCTGGCGAACGGGGTGCGCGCGGCATTGTCGCCCTGCTCGGCCCGGACGGCAAACCGGAGCGCATTGTGGTGATCTATCTGCGGGATACCCCGGCGAGTATGGCCGAGCGTAATCAACAAATCGCCGGGATCGGCGCGGCGCTGAT " 1075 UPDATE TEM-20 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1072 UPDATE OXA-37 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TTGATAATCCGATTTCTAGCACTGCTTTTCTCAGCTGTTGTACTTGTCTCTCTTGGTCATGCACAAGATAAAACGCATGAGAGCTCTAATTGGGGGAAATACTTTAGTGATTTCAACGCTAAAGGTACAATAGTTGTAGTAGATGAACGCACAAACGGTAATTCCACATCGGTTTATAATGAATCCCGGGCTCAGCAGCGCTATTCGCCTGCGTCCACATTCAAGATTCCGCATACCCTTTTTGCGCTGGATGCAGGGGCGGTTCGCGATGAGTTTCATGTTTTTCGATGGGACGGCGCTAAAAGAAGCTTTGCAGGTCACAATCAAGACCAAAACCTACGATCGGCAATGCGCAATTCTACCGTTTGGGTCTATCAACTATTCGCAAAAGAAATAGGCGAAAACAAAGCACGAAGCTACCTAGAAAAATTAAATTACGGCAATGCAGACCCCTCGACCAAGAGCGGTGACTACTGGATAGATGGAAATCTTGCAATTTCAGCAAATGAACAAATTTCCATCCTAAAGAAGCTTTATCGAAATGAGCTTCCTTTTAGGGTAGAGCACCAACGCTTGGTTAAAGACTTGATGATTGTCGAAGCCAAACGTGATTGGATACTACGTGCCAAAACAGGCTGGGATGGTCAAATGGGTTGGTGGGTCGGTTGGGTAGAGTGGCCTACAGGCCCAGTATTTTTTGCGTTAAATATCGACACGCCAAACAGGATGGAAGACCTTCATAAACGAGAGGCAATTGCGCGTGCTATTCTTCAATCCGTCAATGCTTTGCCACCCAACTAG " 1073 UPDATE OKP-B-19 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1070 UPDATE sul1 sulfadiazine; sulfadoxine; sulfacetamide; sulfadimidine; mafenide; sulfamethoxazole; sulfisoxazole; sulfonamide resistant sul; sulfone antibiotic; sulfamethizole; sulfasalazine; sulfonamide antibiotic; antibiotic target replacement; dapsone; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACGGTGTTCGGCATTCTGAATCTCACCGAGGACTCCTTCTTCGATGAGAGCCGGCGGCTAGACCCCGCCGGCGCTGTCACCGCGGCGATCGAAATGCTGCGAGTCGGATCAGACGTCGTGGATGTCGGACCGGCCGCCAGCCATCCGGACGCGAGGCCTGTATCGCCGGCCGATGAGATCAGACGTATTGCGCCGCTCTTAGACGCCCTGTCCGATCAGATGCACCGTGTTTCAATCGACAGCTTCCAACCGGAAACCCAGCGCTATGCGCTCAAGCGCGGCGTGGGCTACCTGAACGATATCCAAGGATTTCCTGACCCTGCGCTCTATCCCGATATTGCTGAGGCGGACTGCAGGCTGGTGGTTATGCACTCAGCGCAGCGGGATGGCATCGCCACCCGCACCGGTCACCTTCGACCCGAAGACGCGCTCGACGAGATTGTGCGGTTCTTCGAGGCGCGGGTTTCCGCCTTGCGACGGAGCGGGGTCGCTGCCGACCGGCTCATCCTCGATCCGGGGATGGGATTTTTCTTGAGCCCCGCACCGGAAACATCGCTGCACGTGCTGTCGAACCTTCAAAAGCTGAAGTCGGCGTTGGGGCTTCCGCTATTGGTCTCGGTGTCGCGGAAATCCTTCTTGGGCGCCACCGTTGGCCTTCCTGTAAAGGATCTGGGTCCAGCGAGCCTTGCGGCGGAACTTCACGCGATCGGCAATGGCGCTGACTACGTCCGCACCCACGCGCCTGGAGATCTGCGAAGCGCAATCACCTTCTCGGAAACCCTCGCGAAATTTCGCAGTCGCGACGCCAGAGACCGAGGGTTAGATCATGCCTAG " 1071 UPDATE DHA-22 antibiotic inactivation; cephalosporin; cephamycin; DHA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1678 UPDATE AAC(6')-Ib-cr antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; plazomicin; sisomicin; arbekacin; gentamicin B; netilmicin; ciprofloxacin; fluoroquinolone antibiotic; amikacin; dibekacin; neomycin; tobramycin; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with plazomicin UPDATED category_aro_cvterm_id with 40307 UPDATED category_aro_accession with 3003675 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Plazomicin is a neoglycoside, or next-generation, aminoglycoside, that has been identified as a potentially useful agent to combat drug-resistant bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa. " 1679 UPDATE OXA-49 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1674 UPDATE AAC(6')-It antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1675 UPDATE CTX-M-5 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGACTCAGAGCATTCGCCGCTCAATGTTAACGGTGATGGCGACGCTACCCCTGCTATTTAGCAGCGCAACGCTGCACGCGCAGACGAACAGCGTGCAGCAGCAGCTGGAAGCCCTGGAGAAAAGTTCGGGAGGTCGGCTTGGCGTTGCGCTGATTAACACCGCCGATAATTCGCAGATTCTCTACCGTGCCGATGAACGTTTTGCGATGTGCAGTACCAGTAAGGTGATGGCGGCCGCGGCGGTGCTTAAACAGAGCGAGAGCGATAAGCACCTGCTAAATCAGCGCGTTGAAATCAAGAAGAGCGACCTGGTTAACTACAATCCCATTGCGGAGAAACACGTTAACGGCACGATGACGCTGGCTGAGCTTGGCGCAGCGGCGCTGCAGTATAGCGACAATACTGCCATGAATAAGCTGATTGCCCATCTGGGTGGGCCCGATAAAGTGACGGCGTTTGCTCGCTCGTTGGGTGATGAGACCTTCCGTCTGGACAGAACCGAGCCCACGCTCAATACCGCCATTCCAGGCGACCCGCGTGATACCACCACGCCGCTCGCGATGGCGCAGACCCTGAAAAATCTGACGCTGGGTAAAGCGCTGGCGGAAACTCAGCGGGCACAGTTGGTGACGTGGCTTAAGGGCAATACTACCGGTAGCGCGAGCATTCGGGCGGGTCTGCCGAAATCATGGGGAGTGGGCGATAAAACCGGCAGCGGAGATTATGGCACCACCAACGATATCGCGGTTATCTGGCCGGCAAACCACGCACCGCTGGTTCTGGTGACCTACTTTACCCAACCGGAGCAGAAGGCGGAAAGCCGTCGGGATGTTCTGGCTGCGGCGGCGAAAATCGTAACCCACGGTTTCTGA " 1676 UPDATE GES-18 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1677 UPDATE cepA cepA beta-lactamase; antibiotic inactivation; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1670 UPDATE nalC sulfonamide antibiotic; penem; panipenem; tetracycline antibiotic; clavulanate; meropenem; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; aztreonam; trimethoprim; aminocoumarin antibiotic; cephalosporin; macrolide antibiotic; carbapenem; ceftazidime; ciprofloxacin; cephamycin; ceftriaxone; protein(s) and two-component regulatory system modulating antibiotic efflux; peptide antibiotic; diaminopyrimidine antibiotic; ampicillin; amoxicillin; penam; sulfamethoxazole; novobiocin; efflux pump complex or subunit conferring antibiotic resistance; trimethoprim-sulfamethoxazole; tetracycline; monobactam; fluoroquinolone antibiotic; erythromycin; phenicol antibiotic; azithromycin; chloramphenicol; model_sequences "UPDATED sequence with ATGAACGATGCTTCTCCCCGTCTGACCGAACGCGGCAGGCAACGCCGCCGCGCCATGCTCGACGCCGCTACCCAGGCCTTTCTCGAACACGGTTTCGAAGGCACCACCCTGGACATGGTGATAGAACGGGCCGGTGGTTCACGGGGGACCCTGTACAGCTCCTTCGGCGGCAAGGAGGGCCTGTTCGCCGCGGTGATCGCCCACATGATCGGGGAAATCTTCGACGACAGCGCCGATCAGCCGCGCCCCGCCGCCACGCTGAGCGCCACCCTCGAGCATTTCGGCCGGCGCTTTCTCACCAGCCTGCTCGATCCCCGCTGCCAGAGCCTCTATCGCCTGGTGGTGGCGGAATCCCCGCGGTTTCCGGCGATCGGCAAGTCCTTCTACGAGCAGGGGCCGCAGCAGAGCTATCTGCTGCTCAGCGAGCGACTGGCCGCGGTCGCTCCTCACATGGACGAGGAAACGCTCTACGCGGTGGCCTGCCAGTTTCTCGAGATGCTCAAGGCCGACCTGTTCCTCAAGGCCCTCAGCGTGGCCGACTTCCAGCCGACCATGGCGCTGCTGGAAACCCGCCTCAAGCTGTCGGTGGACATCATCGCCTGCTACCTGGAACACCTGTCGCAGAGCCCCGCGCAGGGCTGA " 1671 UPDATE Salmonella serovars soxS with mutation conferring antibiotic resistance penem; antibiotic target alteration; tetracycline antibiotic; antibiotic efflux; ATP-binding cassette (ABC) antibiotic efflux pump; major facilitator superfamily (MFS) antibiotic efflux pump; resistance-nodulation-cell division (RND) antibiotic efflux pump; norfloxacin; reduced permeability to antibiotic; carbapenem; cephalosporin; cefalotin; ciprofloxacin; protein(s) and two-component regulatory system modulating antibiotic efflux; rifampin; ampicillin; penam; triclosan; efflux pump complex or subunit conferring antibiotic resistance; cephamycin; tigecycline; glycylcycline; General Bacterial Porin with reduced permeability to beta-lactams; monobactam; fluoroquinolone antibiotic; chloramphenicol; phenicol antibiotic; tetracycline; rifamycin antibiotic; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 4504309 UPDATED strand with - UPDATED accession with NC_003197.2 UPDATED fmin with 4503985 UPDATED sequence with ATGTCGCATCAGCAGATAATTCAGACCCTTATCGAATGGATTGATGAACATATCGACCAACCGCTAAACATTGATGTGGTGGCAAAAAAATCGGGCTACTCCAAGTGGTATTTGCAGCGGATGTTTCGTACGGTAACGCATCAAACATTAGGCGAGTATATTCGCCAGCGCCGTCTCCTGTTGGCGGCCGTTGAGCTACGAACGACCGAGCGCCCGATTTTTGATATCGCGATGGACCTGGGCTATGTATCGCAGCAAACCTTCTCGCGTGTATTCCGCCGCGAGTTCGATCGCACTCCCAGCGATTACCGTCACCGCCTGTAG UPDATED NCBI_taxonomy_name with Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 UPDATED NCBI_taxonomy_id with 99287 UPDATED NCBI_taxonomy_cvterm_id with 35734 UPDATED accession with NP_463130.1 UPDATED sequence with MSHQQIIQTLIEWIDEHIDQPLNIDVVAKKSGYSKWYLQRMFRTVTHQTLGEYIRQRRLLLAAVELRTTERPIFDIAMDLGYVSQQTFSRVFRREFDRTPSDYRHRL " 1672 UPDATE TEM-211 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1673 UPDATE QnrA6 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1094 UPDATE CARB-17 penam; antibiotic inactivation; CARB beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1095 UPDATE SHV-59 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACCCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGTCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATCGTGGTGATTTATCTGCGGGATACGCTGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 1096 UPDATE TEM-79 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTGGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 1097 UPDATE Erm(38) antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 678 UPDATE PDC-10 antibiotic inactivation; cephalosporin; carbapenem; ceftazidime; PDC beta-lactamase; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 679 UPDATE SHV-108 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1092 UPDATE tet(39) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1093 UPDATE AAC(6')-31 antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACCGAGCACGACCTTCCGATGCTCCATGACTGGCTAAATCGGCCTCACATCGTTGAGTGGTGGGGCGGAGAAGAAACACGTCCAACACTTGCTGAAGTGCTGGAGCAATACCTACCAAGCGCCCTGGCGAAAGAGTCCGTCACTCCCTACATCGCAATGCTGGATGAAGAACCGATTGGGTACGCTCAGTCGTACATTGCACTCGGAAGCGGTGACGGATGGTGGGAAGACGAAACCGATCCAGGAGTACGCGGAATAGACCAGTCTCTGGCGAATCCATCGCAGCTGGGCAAGGGCTTGGGAACCAAGCTCGTTTGCGCGCTCGTTGAGATGCTGTTCAAAGACGCTGAGGTAACCAAGATCCAAACGGACCCGTCGCCGAACAACTTACGCGCAATCCGGTGCTACGAGAAGGCGGGTTTTGTGGCGCAAAGAACCATAAACACCCCAGATGGACCGGCCGTATACATGGTTCAAACACGTCAGGCGTTCGAGCAGGCGCGCAGTGCTGTCTAA " 674 UPDATE OXA-15 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCAATCCGAATCTTCGCGATACTTTTCTCCATTTTTTCTCTTGCCACTTTCGCGCATGCGCAAGAAGGCACGCTAGAACGTTCTGACTGGAGGAAGTTTTTCAGCGAATTTCAAGCCAAAGGCACGATAGTTGTGGCAGACGAACGCCAAGCGGATCGTGCCATGTTGGTTTTTGATCCTGTGCGATCGAAGAAACGCTACTCGCCTGCATCGACATTCAAGATACCTCATACACTTTTTGCACTTGATGCAGGCGCTGTTCGTGATGAGTTCCAGATTTTTCGATGGGACGGCGTTAACAGGGGCTTTGCAGGCCACAATCAAGACCAAGATTTGCGATCAGCAATGCGGAATTCTACTGTTTGGGTGTATGAGCTATTTGCAAAGGAAATTGGTGATGACAAAGCTCGGCGCTATTTGAAGAAAATCGACTATGGCAACGCCGGTCCTTCGACAAGTAATGGCGATTACTGGATAGAAGGCAGCCTTGCAATCTCGGCGCAGGAGCAAATTGCATTTCTCAGGAAGCTCTATCGTAACGAGCTGCCCTTTCGGGTAGAACATCAGCGCTTGGTCAAGGATCTCATGATTGTGGAAGCCGGTCGCAACTGGATACTGCGTGCAAAGACGGGCTGGGAAGGCCGTATGGGTTGGTGGGTAGGATGGGTTGAGTGGCCGACTGGCTCCGTATTCTTCGCACTGAATATTGATACGCCAAACAGAATGGATGATCTTTTCAAGAGGGAGGCAATCGTGCGGGCAATCCTTCGCTCTATTGAAGCGTTACCGCCCAACCCGGCAGTCAACTCGGACGCTGCGCGATAA " 675 UPDATE OXA-25 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAATTTATACTTCCTATATTCAGCATTTCTATTCTAGTTTCTCTCAGTGCATGTTCATCTATTAAAACTAAATCTGAAGATAATTTTCATATTTCTTCTCAGCAACATGAAAAAGCTATTAAAAGCTATTTTGATGAAGCTCAAACACAGGGTGTAATTATTATTAAAGAGGGTAAAAATCTTAGCACCTATGGTAATGCTCTTGCACGAGCAAATAAAGAATATGTCCCTGCATCAACATTTAAGATGCTAAATGCTTTAATCGGGCTAGAAAATCATAAAGCAACAACAAATGAGATTTTCAAATGGGATGGTAAAAAAAGAACTTATCCTATGTGGGAGAAAGATATGACTTTAGGTGAGGCAATGGCATTGTCAGCAGTTCCAGTATATCAAGAGCTTGCAAGACGGACTGGCCTAGAGCTAATGCAGAAAGAAGTAAAGCGGGTTAATTTTGGAAATACAAATATTGGAACACAGGTCGATAATTTTTGGTTAGTTGGCCCCCTTAAAATTACACCAGTACAAGAAGTTAATTTTGCCGATGACCTTGCACATAACCGATTACCTTTTAAATTAGAAACTCAAGAAGAAGTTGAAAAAATGCTTCTAATTAAAGAAGTAAATGGTAGTAAGATTTATGCAAAAAGTGGATGGGGAATGGGTGTTACTCCACAGGTAGGTTGGTTGACTGGTTGGGTGGAGCAAGCTAATGGAAAAAAAATCCCCTTTTCGCTCAACTTAGAAATGAAAGAAGGAATGTCTGGTTCTATTCGTAATGAAATTACTTATAAGTTGCTAGAAAATCTTGGAATCATTTAA " 676 UPDATE AAC(6')-Ih antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATATTATGCCGATATCTGAATCACAATTATCAGATTGGTTAGCATTAAGATGCTTACTTTGGCCTGATCATGAAGATGTGCATTTACAGGAAATGCGCCAACTGATCACACAGGCACATCGTTTACAATTATTGGCTTATACCGACACCCAACAAGCAATTGCCATGTTGGAAGCTTCAATTCGGTATGAATATGTGAATGGCACACAAACATCGCCTGTGGCTTTTTTGGAAGGGATTTTTGTATTGCCTGAATATCGTCGTTCAGGTATCGCAACGGGGTTGGTTCAACAAGTGGAAATTTGGGCGAAACAGTTTGCATGTACAGAGTTTGCTTCGGATGCAGCGTTGGATAATCAGATCAGCCACGCCATGCATCAAGCACTCGGTTTTCATGAAACTGAACGTGTGGTGTATTTTAAGAAAAATATCGGCTAA " 677 UPDATE OXA-171 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 670 UPDATE IND-3 carbapenem; antibiotic inactivation; IND beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 671 UPDATE CTX-M-137 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 672 UPDATE CMY-27 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 673 UPDATE IMP-48 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1533 UPDATE SHV-143 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1742 UPDATED strand with - UPDATED accession with JQ341060.1 UPDATED fmin with 881 UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTACTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCTCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATACCCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA UPDATED NCBI_taxonomy_name with Klebsiella pneumoniae UPDATED NCBI_taxonomy_id with 573 UPDATED NCBI_taxonomy_cvterm_id with 35915 UPDATED accession with AFQ32277.1 UPDATED sequence with MRYIRLCIISLLATLPLAVHASPQPLEQIKLSESQLSGRVGMIEMDLASGRTLTAWRADERFPMMSTFKVVLCGAVLARVDAGDEQLERKIHYRQQDLVDYSPVSEKHLADGMTVGELCAAAITMSDNSAANLLLATVGGPAGLTAFLRQIGDNVTRLDLWETELNEALPGDARDTTTPASMAATLRKLLTSQRLSARSQRQLLQWMVDDRVAGPLIRSVLPAGWFIADKTGAGERGARGIVALLGPNNKAERIVVIYLRDTPASMAERNQQIAGIGAALIEHWQR " 1418 UPDATE DHA-6 antibiotic inactivation; cephalosporin; cephamycin; DHA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1419 UPDATE OXA-454 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1410 UPDATE OXA-19 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAACATTTGCCGCATATGTAATTACTGCGTGTCTTTCAAGTACGGCATTAGCTAGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTTTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATAACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAACGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAACAATGGGAAAGAGACTTGAGCTTAAGAGGGGCAATACAAGTTTCAGCGGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATACCTTAAAAAATTTTCATATGGCAACCAGAATATCAGTGGTGGCATTGACAAATTCTGGTTGGAGGATCAGCTAAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATTTTTAAATAAATTGTCAGCATCAAAAGAAAATCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCTGCGCCTGAATATCTTGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGTTGGGTTGAGAAGGGAACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAATAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGCAAGTGAGGGCATCATTGGTGGCTAA " 1411 UPDATE OXA-62 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1412 UPDATE SHV-167 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1413 UPDATE OXA-172 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1414 UPDATE QnrB15 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1415 UPDATE AAC(2')-Id antibiotic inactivation; AAC(2'); arbekacin; gentamicin B; gentamicin C; amikacin; aminoglycoside antibiotic; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGCTCACCCAGCATGTCAGTGAGGCTCGCACGCGCGGTGCGATCCACACCGCGCGTCTGATCCACACCTCCGATCTGGACCAGGAAACCCGCGACGGCGCGCGCCGCATGGTGATCGAGGCGTTCCGCGATCCGTCCGGAGACAGTGATTTCACCGACGATTTCACCGACGACGACTGGGACCACGCGCTCGGCGGCATGCACGCGCTGATCTCTCACCACGGTGCGCTCATCGCGCACGGCGCCGTCGTCCAACGTCGGTTGATGTACCGGGGACCCGACGGTAGAGGTCACGCGCTGCGCTGCGGTTACGTCGAGGCCGTCGCGGTGCGCGAGGACCGGCGGGGCGACGGTCTGGGCACCGCCGTGCTCGACGCGCTCGAGCAGGTGATCCGCGGCGCCTATCAGATCGGCGCGCTGAGCGCGTCGGACATCGCCCGGCCGATGTACATTGCCAGGGGCTGGCTGTCGTGGGAGGGTCCGACATCGGTGCTGACCCCCACCGAGGGCATCGTTCGCACCCCTGAGGACGACCGGTCGCTGTTCGTCCTGCCGGTCGATCTCCCGGACGGCCTCGAGTTGGACACCGCGCGCGAGATCACGTGCGACTGGCGCTCCGGCGACCCCTGGTGA " 1416 UPDATE OXA-89 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1417 UPDATE OXA-131 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1322 UPDATE SHV-65 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1323 UPDATE Salmonella serovars parE conferring resistance to fluoroquinolones fluoroquinolone resistant parE; grepafloxacin; trovafloxacin; ofloxacin; norfloxacin; nalidixic acid; lomefloxacin; gatifloxacin; levofloxacin; sparfloxacin; antibiotic target alteration; enoxacin; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 3345861 UPDATED strand with - UPDATED accession with NC_003197.2 UPDATED fmin with 3343968 UPDATED sequence with ATGACGCAAACTTATAACGCTGATGCCATTGAGGTACTCACTGGGCTTGAGCCGGTACGCCGCCGCCCGGGGATGTACACCGATACGACCCGCCCCAACCATTTGGGTCAGGAAGTGATTGATAATAGTGTGGATGAAGCACTGGCAGGTCACGCCAAACGCGTGGATGTCATTTTACATGCCGATCAATCGCTGGAAGTGATTGACGACGGACGCGGGATGCCGGTGGATATCCATCCGGAAGAGGGGGTTCCGGCGGTAGAACTGATCCTCTGTCGGCTTCATGCCGGCGGTAAATTCTCCAATAAGAACTATCAGTTCTCTGGTGGTCTGCATGGGGTGGGGATTTCGGTAGTAAATGCCCTGTCAAAGCGCGTGGAAGTGACCGTGCGCCGCGACGGTCAGGTCTATAACATCGCGTTTGAAAACGGCGAAAAAGTGCAGGATTTGCAGGTTGTCGGCACCTGCGGTAAACGTAATACTGGAACCAGCGTCCATTTCTGGCCGGACGAAAGTTTCTTCGACAGCCCGCGTTTTTCTGTCTCTCGCTTAATGCACGTTCTGAAAGCAAAAGCGGTGCTGTGTCCCGGCGTGGAAATCACTTTTAAAGATGAAGTGAATAACAGCGAGCAGCGCTGGTGCTACCAGGATGGTCTGAACGACTATCTGGGCGAAGCGGTAAACGGCCTGCCGACGCTGCCGGAAAAGCCGTTTATCGGTAATTTTAACGGTGAAACGGAAGCGGTTGACTGGGCGCTATTGTGGCTGCCGGAAGGCGGCGAATTACTGACGGAAAGCTACGTCAACCTGATCCCGACCATGCAGGGGGGGACGCACGTCAACGGTCTGCGCCAGGGCCTGCTCGACGCGATGCGCGAATTTTGCGAATACCGCAATATTCTGCCGCGCGGCGTCAAACTGTCGGCGGAAGATATCTGGGATCGCTGCGCTTATGTGCTTTCCGTGAAAATGCAGGACCCGCAATTTGCCGGGCAGACCAAAGAGCGTCTGTCGTCGCGTCAATGTGCGGCATTTGTTTCCGGCGTGGTGAAAGATGCCTTCAGCCTGTGGCTGAACCAGAACGTGCAGGCGGCGGAACAACTGGCAGAGATGGCGATTGCCAGCGCGCAGCGGCGACTGCGCGCCGCAAAAAAAGTGGTGCGCAAAAAGCTCACCAGCGGCCCGGCGTTGCCGGGGAAACTGGCGGACTGTACCGCGCAGGATCTTAATCGGACCGAGCTGTTCCTTGTGGAAGGGGATTCGGCGGGCGGTTCCGCCAAGCAGGCGCGCGATCGCGAATATCAGGCGATCATGCCGCTCAAAGGTAAGATCCTTAACACCTGGGAGGTCTCTTCCGATGAAGTGCTGGCCTCGCAAGAAGTGCATGATATTTCCGTGGCGATCGGTATCGATCCGGACAGCGACGATCTGAGTCAGCTGCGCTACGGCAAGATCTGTATCCTGGCGGATGCGGACTCCGATGGTTTGCATATCGCTACTCTGCTTTGCGCGCTGTTTGTCAGACACTTCCGCGCGCTGGTGAAGAATGGTCATGTCTACGTCGCGCTACCGCCGCTATACCGTATCGATTTGGGTAAAGAGGTCTATTACGCGCTGACGGAAGAAGAGAAGGCGGGCGTACTGGAACAACTGAAGCGTAAGAAAGGCAAGCCGAACGTACAGCGTTTCAAAGGCCTGGGAGAAATGAACCCGATGCAGTTACGCGAAACCACGCTTGATCCGAATACTCGCCGCCTGGTGCAGCTCACCATTAGCGATGAAGACGATCAGCGTACTAATGCGATGATGGATATGCTGCTGGCGAAGAAACGTTCTGAAGATCGACGCAACTGGCTACAGGAAAAAGGCGATCTCGCGGATCTCGACGTGTAA UPDATED NCBI_taxonomy_name with Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 UPDATED NCBI_taxonomy_id with 99287 UPDATED NCBI_taxonomy_cvterm_id with 35734 UPDATED accession with NP_462096.1 UPDATED sequence with MTQTYNADAIEVLTGLEPVRRRPGMYTDTTRPNHLGQEVIDNSVDEALAGHAKRVDVILHADQSLEVIDDGRGMPVDIHPEEGVPAVELILCRLHAGGKFSNKNYQFSGGLHGVGISVVNALSKRVEVTVRRDGQVYNIAFENGEKVQDLQVVGTCGKRNTGTSVHFWPDESFFDSPRFSVSRLMHVLKAKAVLCPGVEITFKDEVNNSEQRWCYQDGLNDYLGEAVNGLPTLPEKPFIGNFNGETEAVDWALLWLPEGGELLTESYVNLIPTMQGGTHVNGLRQGLLDAMREFCEYRNILPRGVKLSAEDIWDRCAYVLSVKMQDPQFAGQTKERLSSRQCAAFVSGVVKDAFSLWLNQNVQAAEQLAEMAIASAQRRLRAAKKVVRKKLTSGPALPGKLADCTAQDLNRTELFLVEGDSAGGSAKQARDREYQAIMPLKGKILNTWEVSSDEVLASQEVHDISVAIGIDPDSDDLSQLRYGKICILADADSDGLHIATLLCALFVRHFRALVKNGHVYVALPPLYRIDLGKEVYYALTEEEKAGVLEQLKRKKGKPNVQRFKGLGEMNPMQLRETTLDPNTRRLVQLTISDEDDQRTNAMMDMLLAKKRSEDRRNWLQEKGDLADLDV " 1320 UPDATE Klebsiella mutant PhoP conferring antibiotic resistance to colistin antibiotic efflux; ATP-binding cassette (ABC) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; pmr phosphoethanolamine transferase; macrolide antibiotic; peptide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; antibiotic target alteration; erythromycin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2326308 UPDATED strand with - UPDATED accession with FO834906.1 UPDATED fmin with 2325636 UPDATED sequence with ATGCGCGTACTCGTGGTTGAGGATAATGCCCTGCTGCGTCACCACCTCAAAGTTCAGCTGCAGGAGCTGGGCCATCAGGTCGATGCGGCGGAAGATGCCAGGGAAGCGGACTACTATCTGGGCGAACATCTCCCGGATATCGCCATCGTCGATCTCGGCCTGCCGGATGAAGACGGTTTATCACTGATCCGCCGCTGGCGCAGCCACGACGTGTCGCTGCCGGTGCTGGTGCTGACCGCCCGCGAAGGATGGCAGGATAAAGTGGAAGTGCTGAGCGCCGGGGCGGATGATTACGTCACCAAGCCTTTCCATATTGAAGAGGTTGCCGCCCGCATGCAGGCGCTGCTGCGCCGTAACAGCGGTCTGGCCTCGCAGGTGATCTCCCTGCCGCCGTTCCAGGTCGACCTCTCCCGGCGCGAGCTGTCGGTGAATGACCAGCCGATCAAGCTGACCGCCTTTGAATACACCATTATGGAAACCCTGATCCGTAACCGCGGCAAAGTGGTCAGCAAAGATTCGCTGATGCTCCAGCTTTACCCGGATGCCGAACTGCGAGAAAGCCACACCATCGACGTGCTGATGGGTCGGCTGCGCAAGAAAATTCAGGCTGAATACCCACAGGACGTCATCACCACGGTGCGCGGCCAGGGCTATCTGTTCGAATTGCGCTGA UPDATED NCBI_taxonomy_name with Klebsiella pneumoniae UPDATED NCBI_taxonomy_id with 573 UPDATED NCBI_taxonomy_cvterm_id with 35915 UPDATED accession with CDO13981.1 UPDATED sequence with MRVLVVEDNALLRHHLKVQLQELGHQVDAAEDAREADYYLGEHLPDIAIVDLGLPDEDGLSLIRRWRSHDVSLPVLVLTAREGWQDKVEVLSAGADDYVTKPFHIEEVAARMQALLRRNSGLASQVISLPPFQVDLSRRELSVNDQPIKLTAFEYTIMETLIRNRGKVVSKDSLMLQLYPDAELRESHTIDVLMGRLRKKIQAEYPQDVITTVRGQGYLFELR " 1321 UPDATE mecA antibiotic target replacement; ceftaroline; ampicillin; flucloxacillin; ceftibuten; cefditoren; piperacillin; cefpodoxime; cefixime; cefdinir; meropenem; carbapenem; imipenem; aztreonam; cefradine; isopenicillin N; cefazolin; penicillin N; ceftazidime; cefepime; penicillin; oxacillin; cefmetazole; moxalactam; cloxacillin; cefadroxil; ceftriaxone; methicillin; loracarbef; ceftizoxime; cephalosporin; cefotaxime; cefaclor; phenoxymethylpenicillin; cefonicid; monobactam; cefuroxime; amoxicillin; mezlocillin; azlocillin; cefalexin; doripenem; cefotiam; ertapenem; penam; cefprozil; cephapirin; ceftobiprole; benzylpenicillin; methicillin resistant PBP2; cephamycin; carbenicillin; cefalotin; ceftiofur; mecillinam; propicillin; cefoxitin; dicloxacillin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAGATAAAAATTGTTCCACTTATTTTAATAGTTGTAGTTGTCGGGTTTGGTATATATTTTTATGCTTCAAAAGATAAAGAAATTAATAATACTATTGATGCAATTGAAGATAAAAATTTCAAACAAGTTTATAAAGATAGCAGTTATATTTCTAAAAGCGATAATGGTGAAGTAGAAATGACTGAACGTCCGATAAAAATATATAATAGTTTAGGCGTTAAAGATATAAACATTCAGGATCGTAAAATAAAAAAAGTATCTAAAAATAAAAAACGAGTAGATGCTCAATATAAAATTAAAACAAACTACGGTAACATTGATCGCAACGTTCAATTTAATTTTGTTAAAGAAGATGGTATGTGGAAGTTAGATTGGGATCATAGCGTCATTATTCCAGGAATGCAGAAAGACCAAAGCATACATATTGAAAATTTAAAATCAGAACGTGGTAAAATTTTAGACCGAAACAATGTGGAATTGGCCAATACAGGAACAGCATATGAGATAGGCATCGTTCCAAAGAATGTATCTAAAAAAGATTATAAAGCAATCGCTAAAGAACTAAGTATTTCTGAAGACTATATCAAACAACAAATGGATCAAAATTGGGTACAAGATGATACCTTCGTTCCACTTAAAACCGTTAAAAAAATGGATGAATATTTAAGTGATTTCGCAAAAAAATTTCATCTTACAACTAATGAAACAAAAAGTCGTAACTATCCTCTAGAAAAAGCGACTTCACATCTATTAGGTTATGTTGGTCCCATTAACTCTGAAGAATTAAAACAAAAAGAATATAAAGGCTATAAAGATGATGCAGTTATTGGTAAAAAGGGACTCGAAAAACTTTACGATAAAAAGCTCCAACATGAAGATGGCTATCGTGTCACAATCGTTGACGATAATAGCAATACAATCGCACATACATTAATAGAGAAAAAGAAAAAAGATGGCAAAGATATTCAACTAACTATTGATGCTAAAGTTCAAAAGAGTATTTATAACAACATGAAAAATGATTATGGCTCAGGTACTGCTATCCACCCTCAAACAGGTGAATTATTAGCACTTGTAAGCACACCTTCATATGACGTCTATCCATTTATGTATGGCATGAGTAACGAAGAATATAATAAATTAACCGAAGATAAAAAAGAACCTCTGCTCAACAAGTTCCAGATTACAACTTCACCAGGTTCAACTCAAAAAATATTAACAGCAATGATTGGGTTAAATAACAAAACATTAGACGATAAAACAAGTTATAAAATCGATGGTAAAGGTTGGCAAAAAGATAAATCTTGGGGTGGTTACAACGTTACAAGATATGAAGTGGTAAATGGTAATATCGACTTAAAACAAGCAATAGAATCATCAGATAACATTTTCTTTGCTAGAGTAGCACTCGAATTAGGCAGTAAGAAATTTGAAAAAGGCATGAAAAAACTAGGTGTTGGTGAAGATATACCAAGTGATTATCCATTTTATAATGCTCAAATTTCAAACAAAAATTTAGATAATGAAATATTATTAGCTGATTCAGGTTACGGACAAGGTGAAATACTGATTAACCCAGTACAGATCCTTTCAATCTATAGCGCATTAGAAAATAATGGCAATATTAACGCACCTCACTTATTAAAAGACACGAAAAACAAAGTTTGGAAGAAAAATATTATTTCCAAAGAAAATATCAATCTATTAACTGATGGTATGCAACAAGTCGTAAATAAAACACATAAAGAAGATATTTATAGATCTTATGCAAACTTAATTGGCAAATCCGGTACTGCAGAACTCAAAATGAAACAAGGAGAAACTGGCAGACAAATTGGGTGGTTTATATCATATGATAAAGATAATCCAAACATGATGATGGCTATTAATGTTAAAGATGTACAAGATAAAGGAATGGCTAGCTACAATGCCAAAATCTCAGGTAAAGTGTATGATGAGCTATATGAGAACGGTAATAAAAAATACGATATAGATGAATAA " 1326 UPDATE OXA-170 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1327 UPDATE AAC(6')-Iq antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TTGGACTATTCAATATGCGATATAGCGGAATCAAATGAATTAATCCTTGAAGCAGCAAAAATACTTAGGAAAAGCTTTCTTGATGCTGGAAATGAATCATGGGTAGATATCAAAAAGGCTATTGAAGAAGTTGAGGATTGTATAGAACACCCAAATCTATGCTTGGGAATATGTCTGGATGATAAACTGATTGGCTGGACCGGATTAAGGCCGATGTACGATAAGACCTGGGAACTTCATCCCATGGTTATAAAAACTGAGTATCAATGCAGGGGTATTGGGAAAGTCTTAATAAAAGAACTAGAGAAGAGAGCGAAGGGTAGGGGAATTATCGGAATAGCTCTTGGAACTGATGATGAATATCAGAAAACTAGTTTGTCTATGATTGATATAAACGAACGAAACATCTTCGATGAAATCGGGAACATAAAGAACGTTACTAATCATCCATATGAGTTTTATAAGAAATGTGGTTATATGATCGTTGGAATAATCCCTAATGCTAATGGAAAAAGAAAACCAGATATTTGGATGTGGAAAGATATTAGCTAG " 1324 UPDATE LRA-2 penam; antibiotic inactivation; subclass B3 LRA beta-lactamase; cephalosporin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 11083 UPDATED strand with - UPDATED accession with EU408347.1 UPDATED fmin with 10174 UPDATED sequence with ATGATGGATGGAATAAAGAAGAAGACGGCGGCCGGCGCTGCAGCAGGTTCACTGCTGATGATGCTGGGTGTTTTTGCCACGCCCGCCGCGGGCGGTGAAGCGGCATTCAAGGATTGCCCGCAGTGCGCCCAGTGGAATCAGCAGCGCAAGCCGTTTCGCATCTACGGTAATACCTATTTCGTCGGCACCGCCGGTCTCAGCTCGATTCTCGTCACCTCCGACTACGGCCATGTGCTGATCGACGGCGGGCTCGCGCAATCCGCGCCGCTCATCAAGGCAAACATCGAAGCACTGGGCTTCAAGCTCACCGATGTAAAGGCCATCCTGGTCTCGCATGTGCATCCAGACCATGCGGGTGGCGTCGCCGAGCTGCAGCGGCAGAGCGGTGCGCAGGTCTATGCATTGCGAACCGCAGAAGCCGTGCTGCGAACGGGCAGGCTCACGCAGGACGATCCCCAATCCGCCAGCAAGACGGCAACCATCACACCGGTGCCGCAGGTCTGGGTGGTGCAGGATGACCAGCTGCTCGGCGTCGGCGCGCTGCGGATGCGGGCCATCGCGACCCCCGGTCACACGCCTGGCGGTACCAGCTGGACCTGGGACGCCTGCGAAGACGGCAACTGCCTGAAGATGATCTATGCAGACAGCCTGTCCGCCGTAGCTGCCGGCAAGTATCGCTTCAAGGATCACCCCGAAGTGCTGCAGGCCTTTGCCAGCAGCTTCTCCCGGGCGGAGTCCGCACCCTGCGATGTACTGCTCACGCCGCATCCGGATGCTTCGCAGTTGTTCCAGCGGCTGGATCCGGAGGGCGGCACCCGGGCAGCCAGCATCAAGGACGACACGGCATGCCGGCGATACGTGCAGGCAGCGCGGGACACGCTTGCCCGGAAACTCGCCAGCGAGGGCTGA UPDATED NCBI_taxonomy_name with uncultured bacterium BLR2 UPDATED NCBI_taxonomy_id with 506520 UPDATED NCBI_taxonomy_cvterm_id with 39080 UPDATED accession with ACH58985.1 UPDATED sequence with MMDGIKKKTAAGAAAGSLLMMLGVFATPAAGGEAAFKDCPQCAQWNQQRKPFRIYGNTYFVGTAGLSSILVTSDYGHVLIDGGLAQSAPLIKANIEALGFKLTDVKAILVSHVHPDHAGGVAELQRQSGAQVYALRTAEAVLRTGRLTQDDPQSASKTATITPVPQVWVVQDDQLLGVGALRMRAIATPGHTPGGTSWTWDACEDGNCLKMIYADSLSAVAAGKYRFKDHPEVLQAFASSFSRAESAPCDVLLTPHPDASQLFQRLDPEGGTRAASIKDDTACRRYVQAARDTLARKLASEG " 1325 UPDATE OXA-65 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1328 UPDATE vanSM glycopeptide antibiotic; vanS; antibiotic target alteration; vancomycin; glycopeptide resistance gene cluster; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCTAAAATGAGAAGCAGTTTTCGCACCAAAATCATCTTGTTATTTGCTGTAAGCATGCTTCTGGCTGGTATGGTAACTTACTTACTTTTTAAAGGACTACAGCTTTATTATCATACTATGATTCATCGTGGTAACCCATTAGCCGAACTTCGCGATTTCATAGAGAGTATTGGAGACTTTAACTTCTTTTTCCTATTATTTATCTTACTGTCGCTGTCGGTTTTCTATATACTCACTAAGCCCTATTCTGCTTATTTCGATGAAATATCAACCGGAATTCAATACCTCGCACTTGGCGACTTTAAACGCCGGGTTAATATCCAATCAAATGATGAATTTGGGGATATTGCTCAAGCTATTAATCAGGCAAGTGAAAAATTAGAAGAAGCCATACAAAGAGGTGATTTTTCAGAAAACAGCAAAGAACAATTAGTTGTAAATTTGGCTCATGATTTGCGTACGCCGCTAACTTCTGTTTTAGGTTATTTAGATTTAGTTCTTAAGGATGAGAAGTTGACAAAAGAACAAGTCAGGCATTTTTTAACGATCGCCTTTACGAAATCACAGCGTTTAGAAAAACTGATTGATGAATTATTCGAAATCACGAGAATGAACTATGGCATGCTATCAATTGAAAAAAAGCCAATTAATTTAACTGATCTGCTTCTTCAATTGAAAGAAGAATTGTATCCGATTTTCGAGAAAAACGGTTTGACCGCTCGAATGAATACACTGCCTCATTTACCTGTTTCGGCTGATGGAGAGATGTTGGCTCGAGTGTTTGAAAATCTGTTGACCAATGCCAATCGTTACGGACATGACGGTCAGTTTGTAGATATTAATGGGTTTGTTGATGAAGAAGAAGTGGTTGTTCAAGTTGTGAATTATGGAGATAGCATTCCTCCGAACGAACTTCCGTATCTTTTTGATATGTTCTATACCGGTGATAAAGCACGAACCCATAAAGAGGATAGCACTGGTCTTGGACTATTTATTGCGAAGAATATTGTGGAACAGCATAATGGAACGGTTACGGCTGAAAGCAGTCTAATACGTACGGTATTTGAAGTTCGTTTACCGCTGGAAAGTGCTCCTATTGACCAAGTTTAA " 1329 UPDATE ANT(4')-IIb antibiotic inactivation; aminoglycoside antibiotic; ribostamycin; paromomycin; kanamycin A; gentamicin B; ANT(4'); isepamicin; G418; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGCAACATACTATCGCCCGTTGGGTTGATCGCCTTCGCGAGGAGTACGCCGATGCCGTCGCGATTCTACTGAAGGGCAGTTACGCCCGGGGCGATGCTGCGACGTGGAGCGATATCGATTTCGATGTATTGGTAAGCACGCAGGATGTGGAGGATTACCGCACCTGGATAGAGCCGGTCGGCGATCGGCTGGTGCATATCTCGGCGGCGGTCGAGTGGGTCACCGGTTGGGAGCGCGATACCGTCGATCCATCCAGTTGGAGTTACGGCCTGCCAACGCAGGAAACCACCCGACTTATGTGGGCGATTAATGACGAGACTCGGCGGCGCATGGATCGTCCTTACAAAACGCATCCGGCCGCCGAACCCGAGGTGGAGAATACCGTTGAGGCGCTAGGCAAAATTCGCAATGCCATTGCTCGCGGCGATGACCTGGGCGTGTATCAATCCGCACAGACCGTGGCAAAGTTAGTGCCGACATTGTTGATCCCCATCAATCCACCGGTGACCGTGTCGCACGCACGGCAGGCGATCGAGGCGATTCTCGCGTTTCCCCGCGTGCCCGTGGGGTTTGCAGCAGATTGGCTCACCTGCCTCGGATTGGTGGAAGAGCGAAGTGCGCGCTCGACCGCCGCAGCGGCCGAGCGCATGGTTCGTGGCGTGCTCGAAATGCTCCCTACCGATCCCGACCTCCTAGGCGAGGATATCGCCCGATTGATGAACGCCGGGTTGCTCGAGAAATACGTGCAGCAGTGA " 656 UPDATE OXA-219 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1531 UPDATE TEM-81 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGCTGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCGTAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 1524 UPDATE Lactobacillus reuteri cat-TC antibiotic inactivation; thiamphenicol; chloramphenicol acetyltransferase (CAT); azidamfenicol; phenicol antibiotic; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1525 UPDATE TEM-160 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1254 UPDATE CTX-M-46 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAATGCGGTGCAACAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCCCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA " 1527 UPDATE SHV-51 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1520 UPDATE SHV-85 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCATGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACAAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGTGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATCGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 1521 UPDATE VIM-32 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTAAAAGTTATTAGTAGTTTATTGGTCTACATGACCGCGTCTGTCATGGCTGTCGCAAGTCCGTTAGCCCATTCCGGGGAGCCGAGTGGTGAGTATCCGACAGTCAACGAAATTCCGGTCGGAGAGGTCCGACTTTACCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTTTGATGGCGCGGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAAAAGCAAATTGGACTTCCCGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCCGAGGCAGCGGGGAACGAGATTCCCACGCATTCTCTAGAAGGACTCTCATCGAGCGGGGACGCAGTGCGCTTCGGTCCAGTAGAGCTCTTCTATCCTGGTGCTGCGCATTCGACCGACAATCTGGTTGTATACGTCCCGTCAGCGAACGTGCTATACGGTGGTTGTGCCGTTCATGAGTTGTCAAGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCGTTGAGCGGATTCAAAAACACTACCCGGAAGCAGAGGTCGTCATTCCCGGGCACGGTCTACCGGGCGGTCTAGACTTGCTCCAGCACACAGCGAACGTTGTCAAAGCACACAAAAATCGCTCAGTCGCCGAGTAG " 1522 UPDATE IMP-38 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1523 UPDATE MexD penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; ofloxacin; trimethoprim; aminocoumarin antibiotic; novobiocin; macrolide antibiotic; phenicol antibiotic; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; diaminopyrimidine antibiotic; tetracycline antibiotic; gentamicin C; chloramphenicol; aminoglycoside antibiotic; fluoroquinolone antibiotic; tetracycline; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCCGAATTCTTCATCAAGCGGCCGAACTTCGCCTGGGTGGTGGCCCTGTTCATCTCCCTGGGCGGCCTGCTGGTCATTTCCAAATTGCCGGTAGCGCAGTACCCCAATGTCGCGCCGCCACAGATCACCATCACCGCCACCTATCCCGGCGCCTCGGCGAAGGTGCTGGTGGACTCCGTCACCAGTGTGCTCGAGGAGTCGCTGAACGGCGCCAAGGGCCTGCTCTACTTCGAGTCGACCAACAACTCCAACGGCACCGCCGAGATCGTCGTCACCTTCGAGCCGGGCACCGATCCGGACCTGGCCCAGGTGGACGTGCAGAACCGCCTGAAGAAAGCCGAGGCGCGCATGCCGCAGGCGGTGCTGACCCAGGGCCTGCAGGTCGAGCAGACCAGCGCCGGTTTCCTGCTGATCTATGCGCTCAGCTACAAGGAAGGCGCTCAGCGCAGCGACACCACCGCCCTCGGCGACTACGCCGCGCGCAATATCAACAACGAGCTGCGGCGCCTGCCGGGCGTCGGCAAGCTGCAATTCTTCTCTTCCGAGGCGGCCATGCGGGTCTGGATCGATCCGCAGAAGCTGGTGGGCTTCGGCCTCTCCATCGACGACGTGAGCAATGCCATCCGCGGGCAGAACGTGCAGGTGCCGGCCGGCGCCTTCGGCAGCGCACCGGGCAGTTCCGCGCAGGAGCTGACGGCGACCCTGGCGGTGAAGGGCACCCTGGACGATCCGCAGGAGTTCGGCCAGGTAGTGCTGCGCGCCAACGAGGACGGCTCGCTGGTCCCGGCTCGCCGATGTCGCGCGCCTGGAACTCGGCAAGGAGAGCTACAACATTTCCTCGCGACTGAACGGCACGCCCACCGTGGGCGGGGCTATCCAGCTGTCGCCCGGGGCCAACGCGATCCAGACCCTACCCTGGTGAAACAGCGTCTCGCCGAACTGTCGGCGTTCTTCCCCGAGGACATGCAGTACAGCGTGCCCTACGACACCTCGCGCTTCGTCGACGTGGCCATCGAGAAGGTGATCCACACCCTGATCGAAGCGATGGTCCTGGTGTTCCTGGTGATGTTCCTGTTCCTGGAGAACGTCCGCTACACCCTGATCCCGTCCATCGTGGTGCCGGTGTGCCTGCTGGGTACGCTGATGGTGATGTACCTGCTGGGGTTCTCGGTGAACATGATGACCATGTTCGGCATGGTCCTGGCGATCGGCATCCTGGTGGACGACGCCATCGTGGTGGTGGAGAACGTCGAGCGGATCATGGCGGAGGAGGGGATTTCCCCGGCCGAGGCCACGGTCAAGGCGATGAAGCAGGTATCCGGCGCCATCGTCGGCATCACCCTGGTGCTCTCGGCGGTGTTCCTGCCGCTGGCTTTCATGGCCGGTTCGGTGGGGGTGATCTACCAGCAGTTCTCGGTGTCGCTGGCGGTCTCGATCCTGTTCTCCGGCTTCCTCGCCCTGACCTTCACCCCGGCGCTGTGCGCCACGCTGTTCAAGCCCATTCCCGAAGGGCACCACGAGAAGCGCGGCTTCTTCGGCGCCTTCAACCGTGGCTTCGCCCGCGTCACCGAGCGCTATTCGCTGCTCAACTCGAAGCTGGTGGCGCGCGCCGGACGCTTCATGCTGGTGTACGCCGGCCTGGTGGCCATGCTCGGCTACTTCTACCTGCGCCTGCCGGAAGCCTTCGTGCCGGCGGAAGACCTCGGCTACATGGTGGTCGACGTGCAACTGCCGCCTGGCGCTTCGCGCGTGCGCACCGATGCCACCGGCGAGGAGCTCGAGCGCTTCCTCAAGTCCCGCGAGGCGGTGGCTTCGGTGTTCCTGATCTCGGGCTTCAGCTTCTCCGGCCAGGGCGACAATGCCGCGCTGGCCTTCCCAACCTTCAAGGACTGGTCCGAGCGAGGCGCCGAGCAGTCGTCCGCCGCCGAGATCGCCGCGCTGAACGAGCATTTCGCGCTGCCCGACGATGGCACGGTCATGGCCGTGTCGCCGCCACCGATCAACGGTCTGGGTAACTCCGGCGGCTTCGCATTGCGCCTGATGGACCGTAGCGGGGTCGGCCGCGAAGCGCTGCTGCAGGCTCGCGATACTCTTCTTGGCGAGATCCAGACCAACCCGAAATTCCTTTACGCGATGATGGAAGGACTGGCCGAAGCGCCGCAACTGCGCCTGTTGATCGACCGGGAGAAGGCCCGTGCCCTGGGGGTGAGCTTCGAGACCATCAGCGGCACGCTGTCCGCTGCCTTCGGCTCGGAGGTGATCAACGACTTCACCAATGCGGGGCGCCAACAGCGGGTGGTGATCCAGGCCGAACAGGGCAACCGGATGACCCCGGAAAGCGTGCTCGAGCTATACGTGCCTAACGCTGCTGGCAACCTGGTACCGCTCAGCGCCTTCGTCAGCGTGAAATGGGAAGAGGGACCGGTGCAATTGGTGCGCTATAACGGCTACCCGTCGATCCGCATCGTCGGTGACGCCGCGCCCGGCTTCAGTACCGGCGAAGCCATGGCGGAAATGGAGCGCCTGGCCTCGCAGCTGCCGGCCGGCATCGGCTACGAGTGGACCGGCCTGTCCTATCAGGAGAAGGTCTCCGCCGGGCAGGCCACCAGCCTGTTCGCCCTCGCCATCCTGGTGGTGTTCCTGTTGCTGGTGGCGCTCTACGAGAGCTGGTCGATCCCGCTGTCGGTGATGCTGATCGTGCCGATCGGCGCCATCGGCGCGGTGCTCGCGGTGATGGTCAGCGGTATGTCCAACGACGTGTATTTCAAGGTCGGCCTGATCACCATCATCGGTCTTTCGGCGAAGAACGCGATCCTCATCGTCGAGTTCGCCAAGGAACTCTGGGAACAGGGACATAGCCTGCGCGACGCCGCCATCGAGGCCGCGCGCCTGCGCTTCCGGCCGATCATCATGACTTCCATGGCGTTCATCCTCGGCGTGATACCCCTGGCCCTGGCCAGCGGTGCCGGCGCGGCGAGCCAGCGTGCCATCGGCACCGGAGTGATCGGCGGGATGCTCAGCGCCACCTTCCTCGGCGTGCTGTTCGTACCTATCTGTTTCGTCTGGCTGCTGTCGCTGCTGCGCAGCAAGCCGGCACCCATCGAACAGGCCGCTTCGGCCGGGGAGTGA " 1528 UPDATE TEM-168 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1529 UPDATE TEM-130 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1258 UPDATE OXA-55 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATAAAGGTTTGCACAGAAAGCGCCTGAGTAAGCGTTTGCTGCTGCCCATGTTGCTGTGTTTATTGGCTCAACAAACGCAGGCTGTGGCAGCTGAGCAGACCAAGGTCAGTGACGTCTGCTCTGAGGTCACGGCTGAGGGTTGGCAAGAGGTACGCCGCTGGGACAAGCTGTTCGAATCCGCAGGAGTTAAAGGCAGTTTGCTGCTTTGGGATCAAAAGCGTTCTTTGGGGCTCTCCAACAATCTAAGTCGCGCCGCCGAAGGCTTTATTCCGGCTTCCACCTTCAAGCTCCCCTCCAGCCTTATTGCGTTGGAAACCGGGGCGGTGCGCGATGAAACCAGTCGTTTTAGCTGGGACGGAAAGGTTCGCGAAATTGCCGTCTGGAACAGGGACCAGAGTTTTCGCACCGCAATGAAGTACTCTGTGGTGCCTGTATATCAGCAGTTGGCCAGGGAGATAGGCCCCAAAGTGATGGCAGCTATGGTGCGGCAGCTGGAATATGGCAATCAGGATATCGGTGGCCAAGCGGACAGCTTCTGGCTCGACGGCCAACTGAGAATTACAGCATTTCAACAAGTGGATTTTCTAAGGCAACTGCATGACAACAAGTTGCCTGTGTCCGAGCGCAGCCAGCGAATTGTCAAACAGATGATGCTGACCGAAGCGAGTACTGACTATATTATTCGCGCCAAGACAGGCTATGGTGTGCGGCGTACGCCGGCCATAGGTTGGTGGGTCGGTTGGTTGGAGTTGGACGACAACACTGTCTATTTCGCCGTTAACCTGGATCTGGCCTCGGCCAGCCAGTTACCGTTGCGCCAACAACTGGTGAAACAGGTGCTCAAGCAGGAACAGCTGCTGCCTTGA " 1259 UPDATE SHV-31 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 308 UPDATE CMY-118 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 309 UPDATE CMY-35 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 300 UPDATE AAC(6')-29a antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 301 UPDATE CMY-95 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGTTATGCTGCGCTCTGCTGCTGACAGCCTCTTTCTCCACATTTGCTGCCGCAAAAACAGAACAACAGATTGCCGATATCGTTAATCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCCGTTATCTACCAGGGAAAACCCTATTATTTCACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGATCGGTTAGTAAGACGTTTAACGGCGTGTTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCAGGGTATCCGCCTGCTGCACTTAGCCACCTATACGGCAGGCGGCCTACCGCTGCAGATCCCCGATGACGTTAGGGATAAAGCCGCATTACTGCATTTTTATCAAAACTGGCAGCCGCAATGGACTCCGGGCGCTAAGCGACTTTACGCTAACTCCAGCATTGGTCTGTTTGGCGCGCTGGCGGTGAAACCCTCAGGAATGAGTTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAGAACGAACAAAAAGATTATGCCTGGGGCTATCGCGAAGGGAAGCCCGTACACGCTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATTGATATGGCCCGCTGGGTTCAGGCCAACATGGATGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGCGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATCGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCCGCCCCCGCAGTGAAAGCCTCATGGGTGCATAAAACGGGCTCCACTGGTGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGCGGCCTGGCGCATTCTTGAAAAGCTGCAATAA " 302 UPDATE TEM-207 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGGGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 303 UPDATE ErmQ antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAGCTAAAAGTAATAATTATAGAGGAAAAGTTGATATTAGTGTATCGCAAAATTTTATTACTAGTAAAAATACTATATATAAATTAATAAAAAAAACAAATATATCCAAAAATGATTTTGTTATTGAAATTGGACCAGGAAAAGGTCATATAACAGAAGCTTTATGTGAAAAAAGTTATTGGGTTACAGCTATAGAACTAGATAGAAGTTTATATGGAAATTTAATAAATAAATTTAAAAGTAAAAATAATGTTACTCTTATTAATAAAGATTTTTTAAATTGGAAATTACCTAAAAAAAGAGAATATAAGGTATTTTCTAATATTCCTTTTTATATAACAACAAAGATTATTAAGAAATTATTATTAGAAGAGTTAAATTCACCAACTGATATGTGGCTAGTTATGGAGAAAGGTTCCGCAAAAAGATTTATGGGAATACCTAGAGAGAGTAAATTATCATTACTTTTAAAAACTAAATTTGATATTAAGATAGTGCACTATTTTAATAGAGAAGACTTCCATCCCATGCCTAGTGTAGATTGCGTCTTAGTATATTTTAAAAGAAAATATAAATATGATATATCTAAAGATGAATGGAATGAATATACAAGTTTTATATCTAAGTCTATTAATAACTTAAGAGATGTATTTACAAAAAATCAAATTCATGCAGTAATTAAATACCTAGGTATAAATCTTAATAATATTAGTGAAGTTTCTTATAATGATTGGATACAGTTATTTAGATATAAACAAAAGATAGATTAG UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 304 UPDATE IND-11 carbapenem; antibiotic inactivation; IND beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAAAGTATTCAGCTTTTGATGATGTCAATGTTTTTAAGCCCATTGATCAATGCCCAGGTTAAAGATTTTGTAATTGAGCCGCCTGTTAAACCCAACCTGTATCTTTATAAAAGTTTCGGAGTTTTCGGGGGTAAAGAATATTCTGCCAATGCTGTATATCTTACCACTAAGAAAGGAGTTGTCTTATTTGATGTCCCATGGCAAAAGGAACAATATCAAACCCTTATGGACACCATACAAAAGCGTCATCACCTTCCTGTAATTGCTGTATTTGCCACCCACTCTCATGATGACAGAGCGGGTGATCTAAGCTTTTACAATCAAAAAGGAATTAAAACATATGCGACCGCCAAGACCAATGAACTGTTGAAAAAAGACGGAAAAGCAACCTCAACCGAAATTATAAAAACAGGAAAACCTTACAAAATTGGTGGTGAAGAATTTATGGTAGACTTTCTTGGAGAAGGACATACAGTTGATAATGTTGTTGTATGGTTCCCCAAATATAAAGTACTGGACGGAGGATGTCTTGTAAAAAGCAGGACAGCCACTGACCTGGGATATACCGGTGAAGCAAATGTAAAACAATGGCCGGAAACCATGCGAAAACTAAAAACGAAATATGCTCATGCCACTCTGGTAATCCCGGGACACGACGAATGGAAAGGCGGTGGCCATGTACAGCATACTCTGGATCTTCTGGATAAGAATAAAAAGCCGGAATAA " 305 UPDATE chrB antibiotic target alteration; non-erm 23S ribosomal RNA methyltransferase (G748); macrolide antibiotic; lincosamide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 23495 UPDATED strand with - UPDATED accession with AY509120 UPDATED fmin with 22652 UPDATED sequence with ATGCTCAACAGGATCGTGCGCTACCTCGCCTGCCCGCACTGCGGTGCTTCGCTGGCTCAGGGCGACCGCGCACTTTTCTGCCCCGCCGGACACTCCTTCGACATCGCGAAGCAGGGTTATGTGAATCTGCTTCCCAGGGCGACGAAGCTGCGGGCCGACACCAAGGAAATGGTGGAGGCCCGGGACGCATTCCTGTCGGCGGGTCACTACGACCCCGTGATGGATGCGCTGGTCGATCTGGCGCGGCGGACGGCCGATCCGGCCGTGCCCGGCTGTGTGGTCGACATCGGTGGGGGGACGGGCCACTATCACGCCGGGGTCATGGAAGCGTTCCCCGATGCCCAGGGCCTGCTGCTGGACATCTCCAAGTACGCCGTGCGGCGTGCCGCGAAGGCGCATCCGCGGATCGCGGCCGCGGTGACCGACGCCTGGCAGACGCTTCCGCTGCGGGATGCCGCAGCCGGCATGGTGATCAACACGTTCGCTCCCCGCAACGGTCCTGAACTGCATCGCGTTCTCCATCCCCGTGGCGTTCTCCTGGTTGTCACTCCTCTGCCCGATCACCTGCGGGAGGTGATCGGCGCCCTCGGCCTGCTGCAGGTGGACGAAGGCAAGGAGTCGCGTCTCGCGGAGCAGCTCGCTCCGCACTTCTCGGCCGTCGCCACGGAGGAGTTGACCCGGACCATGGCTCTCGACCACCAGGCTCTGGCGCACCTGGTCGGCATGGGGCCCAATGCCTGGCACCGTGACGCGCAGCGGGATCTGGAGACGATCCAGCGGCTGCCGGCGCCGACTCGGGTCACGCTCTCCGTGCGGCTCTCCGCCTACCGGTTGTCGGCGTAG UPDATED NCBI_taxonomy_name with Streptomyces bikiniensis UPDATED NCBI_taxonomy_id with 1896 UPDATED NCBI_taxonomy_cvterm_id with 39573 UPDATED accession with AAS79458.1 UPDATED sequence with MLNRIVRYLACPHCGASLAQGDRALFCPAGHSFDIAKQGYVNLLPRATKLRADTKEMVEARDAFLSAGHYDPVMDALVDLARRTADPAVPGCVVDIGGGTGHYHAGVMEAFPDAQGLLLDISKYAVRRAAKAHPRIAAAVTDAWQTLPLRDAAAGMVINTFAPRNGPELHRVLHPRGVLLVVTPLPDHLREVIGALGLLQVDEGKESRLAEQLAPHFSAVATEELTRTMALDHQALAHLVGMGPNAWHRDAQRDLETIQRLPAPTRVTLSVRLSAYRLSA " 306 UPDATE SHV-32 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACATCTTGCCGACGGCATGACGGTCGGCGAACTCTGTGCCGCCGTCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGACGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAGCGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 307 UPDATE CTX-M-101 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTATCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGGCTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA " 2858 UPDATE PDC-79 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1446 UPDATE PDC-6 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 114 UPDATE dfrA13 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACCCGGAATCGGTCCGCATTTATCTGGTCGCTGCCATGGGTGCCAATCGGGTTATTGGCAATGGTCCCGATATCCCCTGGAAAATCCCAGGTGAGCAGAAGATTTTTCGCAGGCTCACCGAGAGCAAAGTGGTCGTTATGGGCCGCAAGACATTTGAGTCCATAGGCAAGCCCTTACCAAACCGCCACACAGTGGTGCTCTCGCGCCAAGCTGGTTATAGCGCTCCTGGTTGTGCAGTTGTTTCAACGCTGTCACACGTATCGCCATCGACAGCCGAACACGGCAAAGAACTCTACGTAGCGCGCGGAGCCGAGGTATATGCGCTGGCGCTACCGCATGCCAACGGCGTCTTTCTATCTGAGGTACATCAAACCTTTGAGGGTGACGCCTTCTTCCCAGTGCTTAACGCAGCAGAATTCGAGGTTGTCTCATCCGAAACCATTCAAGGCACAATCACGTACACGCACTCCGTCTATGCGCGTCGTAACGGCTAA " 2358 UPDATE ADC-42 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2359 UPDATE ADC-43 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2352 UPDATE ADC-22 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2353 UPDATE ADC-23 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2350 UPDATE ADC-20 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2351 UPDATE ADC-21 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2356 UPDATE ADC-39 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2357 UPDATE ADC-41 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2354 UPDATE ADC-25 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2355 UPDATE ADC-31 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1898 UPDATE OXA-379 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATTAAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGTTCACCTTATATAGTGACTGCTAATCCAAATCACAGCACTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACCACAGAAGTATTTAAGTGGAACGGGCAAAAAAGGCTGTTCCCAGAATGGGAAAAGGACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAATGAAGTGAAGCGTATTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAGTTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGTTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGAATGGGATGTAGACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGAAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGCTTAGAACAATTAGGTATTTTATAG " 1899 UPDATE vanYF glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanY; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAGTGGGGACTTTTATTGGTTTTTGCATTATTTCTAGTATTTATTTTTAATATATTACCGATATCCCAAGATAAAGTAGAGGATCGAATATATGAACAAAATGACAAAGATACATCGGATGATAAAATGACAGCTGAAAATATGCAAAAGATTGAGCTTACGGAAGAGCAGATCTATCAAGGGAATCTACTCTTGGTCAACAATGAACATCCTGTTCACCAAAAGAGTATAAAATCGGATATTATAAATTTATTTACGCACAAAGAATTGACAAAGGGGTATGGGTTACTTGATAACGAAATTAAATTGTCAGAGGAAATAGCTGGGAAATTTTCAGAGATGATAGCTGCGGCTGAAGAGGATGGCGTTAGTAATTTTTTAATTAGCAGTGGTTATCGAGACTTGGATGAGCAAAGCAGACTTTATGAGGAAATGGGTTCTGATTTTGCTTTGCCAGCAGGTCATAGTGAACACAACTTGGGGTTATCGCTTGATGTAGGATCTACTCAAATGAAGATGGATAAAGCGCCTGAAGGAAAGTGGATAGAAAAAAATTGTTGGGAATACGGCTTTATATTACGCTATCCCTTGGATAAAACGGATGTTACAGGAATTCAATATGAACCTTGGCATATTCGCTATGTCGGTTTGCCTCACAGTGCGATTATGCAGGAAATGAATTTAGCTTTGGAAGAATATTTAGATTATTTAAAAGAAGAAAAGAGCATTTCTGTTCGTGTTGATGGGAAAAAATATACAATTTCATATGATCCCATTTCTCAAAACGAGACAATTGAAGTTGAAGTACCAGCGGATGAACAGTATGAAATATCTGGTAATAATATTGATGGAGTAATTGTGACCACATTTTCTTGA " 1894 UPDATE Salmonella enterica ramR mutants penam; antibiotic efflux; triclosan; rifampin; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; antibiotic target alteration; tetracycline antibiotic; cephalosporin; cefalotin; tigecycline; glycylcycline; ampicillin; fluoroquinolone antibiotic; rifamycin antibiotic; phenicol antibiotic; tetracycline; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 614017 UPDATED strand with - UPDATED accession with CP001138.1 UPDATED fmin with 613435 UPDATED sequence with GTGGCTCGTCCGAAGAGTGAAGACAAAAAACAAGCATTACTGGAAGCGGCAACCCAGGCGATAGCGCAATCCGGTATCGCCGCCTCAACGGCGGTGATTGCGCGTAACGCAGGTGTTGCAGAAGGAACATTGTTTCGCTATTTCGCGACCAAAGATGAGCTGATTAACACGTTGTATTTGCATTTAAAGCAGGATCTCTGCCAGTCAATGATAATGGAGCTGGATCGATCCATTACCGATGCCAAAATGATGACCCGTTTTATCTGGAACAGTTACATCAGTTGGGGTCTGAACCATCCCGCGCGCCATCGGGCGATCCGTCAACTGGCCGTCAGCGAAAAGCTCACCAAAGAGACGGAACAACGGGCCGACGATATGTTCCCCGAATTGCGCGATTTATGTCATCGTTCCGTTTTGATGGTGTTTATGTCGGATGAGTACCGCGCCTTCGGCGACGGCCTTTTTCTGGCGCTGGCTGAAACAACAATGGATTTCGCCGCGCGCGATCCCGCTCGCGCTGGCGAATATATTGCGCTGGGATTCGAAGCCATGTGGCGCGCGCTGACTCGCGAGGAGCAATAA UPDATED NCBI_taxonomy_name with Salmonella enterica subsp. enterica serovar Agona str. SL483 UPDATED NCBI_taxonomy_id with 454166 UPDATED NCBI_taxonomy_cvterm_id with 35834 UPDATED accession with ACH50230.1 UPDATED sequence with MARPKSEDKKQALLEAATQAIAQSGIAASTAVIARNAGVAEGTLFRYFATKDELINTLYLHLKQDLCQSMIMELDRSITDAKMMTRFIWNSYISWGLNHPARHRAIRQLAVSEKLTKETEQRADDMFPELRDLCHRSVLMVFMSDEYRAFGDGLFLALAETTMDFAARDPARAGEYIALGFEAMWRALTREEQ " 1895 UPDATE CfxA3 antibiotic inactivation; cephamycin; CfxA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAAAAAAACAGAAAAAAACAAATCGTAGTTTTGAGTATAGCTTTAGTTTGCATTTTCATCTTGGTATTTTCATTGTTCCATAAATCAGCGACAAAAGATAGCGCAAATCCTCCTTTAACAAATGTTTTGACTGATAGCATTTCTCAAATTGTCTCAGCTTGTCCTGGCGAAATTGGTGTGGCGGTTATTGTTAATAACAGAGATACGGTTAAGGTCAATAATAAGAGTGTTTATCCTATGATGAGTGTGTTTAAGGTTCATCAGGCATTAGCTCTTTGTAATGACTTTGACAATAAAGGAATTTCACTTGATACCTTAGTAAATATAAATAGGGATAAACTTGACCCAAAGACTTGGAGTCCTATGCTGAAAGATTATTCAGGGCCAGTCATATCATTGACAGTGAGAGATTTGCTGCGTTATACTCTTACTCAGAGTGACAACAATGCAAGCAACCTTATGTTTAAGGATATGGTTAATGTCGCTCAAACAGATAGTTTTATAGCCACACTCATTCCTCGTTCAAGTTTTCAGATAGCTTATACGGAAGAGGAAATGTCGGCTGACCATAACAAGGCTTACTCTAACTATACATCTCCTCTTGGTGCTGCAATGTTGATGAATCGTTTGTTTACTGAAGGTCTTATCGATGATGAGAAACAAAGTTTCATTAAGAATACGTTAAAAGAATGCAAAACAGGTGTAGATAGGATAGCAGCTCCACTTCTTGATAAAGAAGGGGTTGTTATAGCGCATAAGACAGGTTCAGGTGATGTTAATGAAAATGGTGTTCTTGCAGCTCACAATGATGTTGCCTATATATGTCTGCCTAATAATATCAGTTATACCTTAGCGGTATTTGTTAAGGATTTCAAGGGAAATGAATCACAAGCGTCACAATATGTTGCGCATATATCAGCTGTAGTATATTCTTTATTAATGCAAACTTCAGTAAAATCTTAA " 1896 UPDATE NDM-12 antibiotic inactivation; penam; carbapenem; cephalosporin; cephamycin; NDM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAATTGCCCAATATTATGCACCCGGTCGCGAAGCTGAGCACCGCATTAGCCGCTGCATTGATGCTGAGCGGGTGCATGCCCGGTGAAATCCGCCCGACGATTGGCCAGCAAATGGAAACTGGCGACCAACGGTTTGGCGATCTGGTTTTCCGCCAGCTCGCACCGAATGTCTGGCAGCACACTTCCTATCTCGACATGCCGGGTTTCGGGGCAGTCGCTTCCAACGGTTTGATCGTCAGGGATGGCGGCCGCGTGCTGGTGGTCGATACCGCCTGGACCGATGACCAGACCGCCCAGATCCTCAACTGGATCAAGCAGGAGATCAACCTGCCGGTCGCGCTGGCGGTGGTGACTCACGCGCATCAGGACAAGATGGGCGGTATGGACGCGCTGCATGCGGCGGGGATTGCGACTTATGCCAATGCGTTGTCGAACCAGCTTGCCCCGCAAGAGGGGCTGGTTGCGGCGCAACACAGCCTGACTTTCGCCGCCAATGGCTGGGTCGAACCAGCAACCGCGCCCAACTTTGGCCCGCTCAAGGTATTTTACCCCGGCCCCGGCCACACCAGTGACAATATCACCGTTGGGATCGACGGCACCGACATCGCTTTTGGTGGCTGCCTGATCAAGGACAGCAAGGCCAAGTCGCTCGGCAATCTCGATGATGCCGACACTGAGCACTACGCCGCGTCAGCGCGCGCGTTTGGTGCGGCGTTCCCCAAGGCCAGCATGATCGTGATGAGCCATTCCGCCCCCGATAGCCGCGCCGCAATCACTCATACGGCCCGCATGGCCGACAAGCTGCGCTGA " 1897 UPDATE tet(L) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1890 UPDATE TEM-86 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1891 UPDATE AAC(6')-Iih antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATTATCAGTGAGTTTGATCGTGATAATTTGGTTTTACGTGACCAATTAGCCGATCTTTTGAGATTGACTTGGCCAGATGAATACGGTGAACAGCCGATGAAAGAAGTAGAGCGACTGCTGGAAGATGAAAGGATCGCCGTCTCTGCAATCGAAGGAGATGAGCTGATTGGTTTTGTCGGTGCGATTCCACAATATGGTCAAACTGGTTGGGAACTGCATCCCTTAGTCGTCGAAAGTATGTACCGTAAGCAACAAGTTGGTACACGCCTAGTGAGTTATCTAGAAAAAGAGATTGCCTCACAAGGAGGAATCGTTGTCTATTTAGGAACTGATGATGTGGAAGGGCAAACAAGCTTGGCGATTGAAGAAGACCTGTTTGAAGATACCTTTGACAAGCTTGAAACGATTCAAAACAGGAAAGATCATCCTTATGAATTCTATGAGAAACTTGGCTATCAGATCGTTGGGGTAATTCCGGATGCGAATGGCTGGAACAAGCCAGATATTTGGATGGCCAAACGAATTGCTAGAAAACATGGAAGTGAATGA " 1892 UPDATE OXA-114a penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1893 UPDATE SHV-127 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 959 UPDATE OXA-64 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2137 UPDATE Escherichia coli EF-Tu mutants conferring resistance to kirromycin pulvomycin; elfamycin resistant EF-Tu; GE2270A; LFF571; elfamycin antibiotic; enacyloxin IIa; antibiotic target alteration; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2134 UPDATE CMY-36 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2135 UPDATE ACT-33 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2130 UPDATE opcM efflux pump complex or subunit conferring antibiotic resistance; fluoroquinolone antibiotic; aminoglycoside antibiotic; resistance-nodulation-cell division (RND) antibiotic efflux pump; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 951 UPDATE ACT-15 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCCCTTTGCTGCGCCCTGCTGCTCGGCATTTCTTGCTCTGCTCTCGCCACGCCAGTGTCAGAAAAACAGCTGGCGGAGGTGGTCGCGAATACGGTTACCCCGCTGATGAAAGCCCAGTCTGTTCCAGGCATGGCGGTGGCCGTTATTTATCAGGGAAAACCGCACTATTACACGTTTGGCAAGGCCGATATCGCGGCGAATAAACCCGTTACGCCTCAGACCCTGTTCGAGCTGGGTTCTATAAGTAAAACCTTCACCGGCGTTTTAGGTGGGGATGCCATTGCTCGCGGTGAAATTTCGCTGGACGATCCGGTGACCAGATACTGGCCACAGCTGACGGGCAAGCAGTGGCAGGGTATTCGTATGCTGGATCTCGCCACCTACACCGCTGGCGGCCTGCCGCTACAGGTACCGGATGAGGTCACGGATAACGCCTCCCTGCTGCGCTTTTATCAAAACTGGCAGCCGCAGTGGAAGTCTGGCACAACGCGTCTTTACGCCAACGCCAGCATCGGTCTTTTTGGTGCGCTGGCGGTCAAACCTTCTGGCATGCCCTATGAGCAGGCCATGACGACGCGGGTCCTTAAGCCGCTCAAGCTGGACCATACCTGGATTAACGTGCCGAAAGCGGAAGAGGCGCATTACGCCTGGGGCTATCGTGACGGTAAAGCGGTGCGCGTTTCGCCGGGTATGCTGGATGCACAAGCCTATGGCGTGAAAACCAACGTGCAGGATATGGCGAACTGGGTCATGGCAAACATGGCGCCGGAGAACGTTGCTGATGCCTCACTTAAGCAGGGCATCGCGCTGGCGCAGTCGCGCTACTGGCGTATCGGGTCAATGTATCAGGGTCTGGGCTGGGAGATGCTCAACTGGCCCGTGGAGGCCAACACGGTGGTCGAGGGCAGCGACAGTAAGGTAGCGCTGGCGCCGTTGCCCGTGGTAGAAGTGAATCCACCGGCTCCCCCGGTCAAAGCGTCCTGGGTCCATAAAACGGGCTCTACTGGCGGGTTTGGCAGCTACGTGGCCTTTATTCCTGAAAAGCAGATCGGTATTGTGATGCTCGCGAATACAAGCTATCCGAACCCGGCACGTGTTGAGGCGGCATACCATATCCTCGAGGCGCTACAGTAA " 950 UPDATE ErmX antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2969 UPDATED strand with - UPDATED accession with AF024666.2 UPDATED fmin with 2207 UPDATED sequence with ATGTCTGCATACGGACACGGCCGTCACGAGCATGGCCAAAATTTTCTCACCAACCACAAGATCATCAACTCCATCATCGACCTTGTGAAACAAACCTCCGGCCCCATCATTGAGATCGGACCAGGAAGCGGTGCCCTCACTCACCCGATGGCCCACTTGGGGAGGGCGATAACGGCAGTTGAAGTGGACGCAAAACTAGCTGCCAAAATCACACAAGAAACCTCCTCGGCGGCGGTCGAAGTGGTCCATGATGATTTCCTTAACTTCCGGTTACCCGCCACTCCCTGCGTCATTGTGGGAAACATTCCCTTTCACCTCACCACTGCCATTCTTCGAAAGTTGCTGCATGCGCCAGCATGGACTGACGCTGTACTCCTCATGCAGTGGGAAGTCGCTCGCCGCCGGGCCGGGGTAGGCGCAAGCACGATGATGACGGCTCAGTGGTCCCCATGGTTCACATTTCACCTGGGTTCTCGGGTACCAAGGCCTGCTTTCCGGCCACAGCCAAACGTTGACGGGGGGATCTTAGTGATCCGCCGGGTGGGTGACCCGAAGATTCCGATAGAGCAGCGCAAAGCCTTTCAGGCGATGGTGCACACCGTTTTCACTGCCCGGGGACGCGGGATAGGGGAAATTCTCCGAAGGCAGGGTTGTTTTCATCACGTTCAGAAACACAATCATGGTTGCGCTCGCGAGGAATCGACCCCGCGACCCTACCTCCCAGATTGCACACCAACGACTGGATCGATCTCTTCCAGGTGA UPDATED NCBI_taxonomy_name with Corynebacterium striatum UPDATED NCBI_taxonomy_id with 43770 UPDATED NCBI_taxonomy_cvterm_id with 39554 UPDATED accession with AAG03357.1 UPDATED sequence with MSAYGHGRHEHGQNFLTNHKIINSIIDLVKQTSGPIIEIGPGSGALTHPMAHLGRAITAVEVDAKLAAKITQETSSAAVEVVHDDFLNFRLPATPCVIVGNIPFHLTTAILRKLLHAPAWTDAVLLMQWEVARRRAGVGASTMMTAQWSPWFTFHLGSRVPRPAFRPQPNVDGGILVIRRVGDPKIPIEQRKAFQAMVHTVFTARGRGIGEILRRQGCFHHVQKHNHGCAREESTPRPYLPDCTPTTGSISSR UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 953 UPDATE Enterococcus faecalis liaF mutant conferring daptomycin resistance peptide antibiotic; antibiotic target alteration; daptomycin resistant liaF; daptomycin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2791552 UPDATED strand with - UPDATED accession with AE016830.1 UPDATED fmin with 2790820 UPDATED sequence with ATGAATAACCCTTGGCGCTTTTTTATCGTCGCAGAAGCATTACTTTTTATTCTGGCGTTATGGCAAATTGTACATAATCCTGGATTAGCTGTTTTATTAACAATTGGCGTTTTACTTGTGGCCTACGTTTCCAGGAAAGCATCTAAAACACATTTTAACAACTTTCAATTCGTCCTCGGCGTTGTTTTTATTGTCATTGGTGCAATGAATAGCACGGCTGTTTGGTTTATGTTGATTTTTGGCGTACTCTTTATCGGCTTAAAAGGCTTTGAGATTTCAGGCGTGGATATAGCTGAGCGAGCACCTTGGCGAAAAAAACAAATGATTATGGTGGAGACGGCGGCAAAAGAACCTAAAAATGGCAAACGGTTTAAACGCCGCTGGTTTGCCAACGAACGCATTGGTAACAATATCTATGAATGGGACGATATCAATATTGATTTAATCTCTGGGGACACCATTATTGATTTAGGTAATACGCTACTACCGAAAGAAGACAATATTATTATTATTCGTAAAGGTTTTGGCCGCACGCGAATTCTAGTGCCGTTAGGTGTAGCTATTTTGTTAGAACATTCAACTTTTTACGGAACGGTACGTTTTGAAGAAGAAAAATATCAATTGAAAAACGAATCATTAAAAATTTACAGCAATGATTATGATACCAATCTTCGTCGTTTGAAAATTATGACGAACACTTTAGTAGGAGATGTTGAGGTGATCCGTGTATGA UPDATED NCBI_taxonomy_name with Enterococcus faecalis V583 UPDATED NCBI_taxonomy_id with 226185 UPDATED NCBI_taxonomy_cvterm_id with 37592 UPDATED accession with AAO82601.1 UPDATED sequence with MNNPWRFFIVAEALLFILALWQIVHNPGLAVLLTIGVLLVAYVSRKASKTHFNNFQFVLGVVFIVIGAMNSTAVWFMLIFGVLFIGLKGFEISGVDIAERAPWRKKQMIMVETAAKEPKNGKRFKRRWFANERIGNNIYEWDDINIDLISGDTIIDLGNTLLPKEDNIIIIRKGFGRTRILVPLGVAILLEHSTFYGTVRFEEEKYQLKNESLKIYSNDYDTNLRRLKIMTNTLVGDVEVIRV " 952 UPDATE sul2 sulfadiazine; sulfadoxine; sulfacetamide; sulfadimidine; mafenide; sulfamethoxazole; sulfisoxazole; sulfonamide resistant sul; sulfone antibiotic; sulfamethizole; sulfasalazine; sulfonamide antibiotic; antibiotic target replacement; dapsone; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 21084 UPDATED strand with - UPDATED accession with AY055428.1 UPDATED fmin with 20268 UPDATED sequence with ATGAATAAATCGCTCATCATTTTCGGCATCGTCAACATAACCTCGGACAGTTTCTCCGATGGAGGCCGGTATCTGGCGCCAGACGCAGCCATTGCGCAGGCGCGTAAGCTGATGGCCGAGGGGGCAGATGTGATCGACCTCGGTCCGGCATCCAGCAATCCCGACGCCGCGCCTGTTTCGTCCGACACAGAAATCGCGCGTATCGCGCCGGTGCTGGACGCGCTCAAGGCAGATGGCATTCCCGTCTCGCTCGACAGTTATCAACCCGCGACGCAAGCCTATGCCTTGTCGCGTGGTGTGGCCTATCTCAATGATATTCGCGGTTTTCCAGACGCTGCGTTCTATCCGCAATTGGCGAAATCATCTGCCAAACTCGTCGTTATGCATTCGGTGCAAGACGGGCAGGCAGATCGGCGCGAGGCACCCGCTGGCGACATCATGGATCACATTGCGGCGTTCTTTGACGCGCGCATCGCGGCGCTGACGGGTGCCGGTATCAAACGCAACCGCCTTGTCCTTGATCCCGGCATGGGGTTTTTTCTGGGGGCTGCTCCCGAAACCTCGCTCTCGGTGCTGGCGCGGTTCGATGAATTGCGGCTGCGCTTCGATTTGCCGGTGCTTCTGTCTGTTTCGCGCAAATCCTTTCTGCGCGCGCTCACAGGCCGTGGTCCGGGGGATGTCGGGGCCGCGACACTCGCTGCAGAGCTTGCCGCCGCCGCAGGTGGAGCTGACTTCATCCGCACACACGAGCCGCGCCCCTTGCGCGACGGGCTGGCGGTATTGGCGGCGCTGAAAGAAACCGCAAGAATTCGTTAA UPDATED NCBI_taxonomy_name with Vibrio cholerae UPDATED NCBI_taxonomy_id with 666 UPDATED NCBI_taxonomy_cvterm_id with 36789 UPDATED accession with AAL59753.1 UPDATED sequence with MNKSLIIFGIVNITSDSFSDGGRYLAPDAAIAQARKLMAEGADVIDLGPASSNPDAAPVSSDTEIARIAPVLDALKADGIPVSLDSYQPATQAYALSRGVAYLNDIRGFPDAAFYPQLAKSSAKLVVMHSVQDGQADRREAPAGDIMDHIAAFFDARIAALTGAGIKRNRLVLDPGMGFFLGAAPETSLSVLARFDELRLRFDLPVLLSVSRKSFLRALTGRGPGDVGAATLAAELAAAAGGADFIRTHEPRPLRDGLAVLAALKETARIR " 955 UPDATE SHV-96 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 954 UPDATE APH(3')-IIb antibiotic inactivation; aminoglycoside antibiotic; paromomycin; kanamycin A; APH(3'); gentamicin B; ribostamycin; G418; neomycin; butirosin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCATGATGCAGCCACCTCCATGCCGCCGCAGGCTCCCTCAACCTGGGCCGACTACCTTGCCGGCTACCGCTGGCGAGGGCAGGGCGAAGGATGTTCCGCGGCCACGGTCCACCGCCTGGAGGCTGCGCGGCGGCCGACCCTGTTCGTCAAGCAGGAAGTGCTGTCCGCACATGCCGAGCTGCCCGCCGAAATCGCCCGCCTGCGCTGGCTGCACGGTGCCGGCATCGACTGCCCGCAGGTGCTGAACGAAACCCAGAGCGACGGCCGGCAATGGCTGCTGATGAGCGCAATGCCGGGGGACACGCTGTCCGCGCTGGCGCAGCGCGACGAGCTGGAGCCCGAGCGCCTGGTGCGCCTGGTGGCCGCCGCCCTGCGCCGGCTGCACGATCTCGATCCGGCCGCCTGTCCCTTCGATCATCGCCTGGAACGGCGTCTGGACACCGTGCGCCAGCGGGTCGAGGCCGGGCTGGTGGACGAGGCGGACTTCGACGACGACCATCGCGGTCGCAGCGCCACGGAGCTGTACCGCCTGCTGCTCGACCGGCGTCCGGCGGTCGAAGACCTGGTGGTCGCCCACGGCGACGCCTGCCTGCCCAACCTCTTGGCGGAGGGCCGGCGCTTCAGCGGCTTCATCGATTGCGGGCGGCTCGGCGTCGCCGACCGGCACCAGGACCTGGCCCTGGCCGCGCGGGACATCGAGGCCGAACTCGGCGCGGCCTGGGCCGAGGCCTTCCTCGTCGAATACGGCGGCGATATCGACGGCGAACGGCTGGCGTACTTCAGGCTATTGGACGAGTTCTTCTAG " 2138 UPDATE NmcA penam; carbapenem; NmcA beta-lactamase; cefazolin; cephalosporin; antibiotic inactivation; cephamycin; amoxicillin; ampicillin; clavulanate; cefoxitin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2139 UPDATE vanSD glycopeptide antibiotic; vanS; antibiotic target alteration; vancomycin; glycopeptide resistance gene cluster; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2643 UPDATE tetA(46) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; ATP-binding cassette (ABC) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2644 UPDATE tetB(46) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; ATP-binding cassette (ABC) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2645 UPDATE tetA(60) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; ATP-binding cassette (ABC) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2646 UPDATE tetB(60) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; ATP-binding cassette (ABC) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2002 UPDATE Bacillus pumilus cat86 antibiotic inactivation; thiamphenicol; chloramphenicol acetyltransferase (CAT); azidamfenicol; phenicol antibiotic; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2003 UPDATE pmrA antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; norfloxacin; efflux pump complex or subunit conferring antibiotic resistance; ciprofloxacin; fluoroquinolone antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2000 UPDATE TEM-24 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATAAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTAAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATAGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAACCGGTAAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 2001 UPDATE OXA-250 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2006 UPDATE IMP-27 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2007 UPDATE OXA-335 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2004 UPDATE TEM-189 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2005 UPDATE CTX-M-89 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAGAAAAAGCGTAAGGCGGGCGATGTTAATGACGACAGCCTGTGTTTCGCTGCTGTTGGCCAGTGTGCCGCTGTGTGCCCAGGCGAACGATGTTCAACAAAAGCTCGCGGCGCTGGAGAAAAGCAGCGGGGGACGACTGGGTGTGGCGTTGATTAACACCGCCGATAACACGCAGACGCTCTACCGCGCCGACGAGCGTTTTGCCATGTGCAGCACCAGTAAAGTGATGGCGGTAGCGGCGGTGCTTAAGCAAAGTGAAACGCAAAAGGGCTTGTTGAGTCAGCGGGTTGAAATTAAGCCCTCAGACTTGATTAACTACAACCCCATTGCGGAAAAACACGTCAATGGCACGATGACATTCGGGGAGTTGAGCGCGGCGGCGCTACAGTACAGCGATAATACTGCCATGAATAAGCTGATTGCCCATCTCGGGGGGCCGGATAAAGTGACGGCATTTGCCCGTACGATTGGCGATGACACGTTCCGGCTCGATCGTACCGAGCCGACGCTCAACACCGCGATCCCCGGCGACCCGCGCGATACCACCACGCCGTTAGCGATGGCGCAGGCTCTGCGCAATCTGACGTTGGGCAATGCCCTGGGTGACACTCAGCGTGCGCAGCTGGTGATGTGGCTGAAAGGCAACACCACCGGCGCTGCCAGCATTCAGGCAGGGCTACCCACATCGTGGGTTGTCGGGGATAAAACCGGCAGCGGCGATTATGGTACGACGAATGATATCGCGGTTATTTGGCCGGAAGGTCGCGCGCCGCTCGTTCTGGTGACTTACTTCACCCAGTCGGAGCCGAAGGCAGAGAGCCGTCGTGACGTGCTCGCTGCTGCCGCCAGAATTGTCACCGACGGTTATTAA " 2008 UPDATE SHV-145 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2009 UPDATE aadA6 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTAACGCAGTACCCGCCGAGATTTCGGTACAGCTATCACTGGCTCTCAACGCCATCGAGCGTCATCTGGAATCAACGTTGCTGGCCGTGCATTTGTACGGCTCTGCACTGGACGGTGGCCTGAAGCCATACAGTGATATTGATTTGCTGGTTACTGTGGCTGCACGGCTCGATGAGACTGTCCGACAAGCCCTGGTCGTAGATCTCTTGGAAATTTCTGCCTCCCCTGGCCAAAGTGAAGCTCTCCGCGCCTTGGAAGTTACCATCGTCGTGCATGGTGATGTTGTCCCTTGGCGTTATCCGGCCAGACGGGAACTGCAATTCGGGGAGTGGCAGCGTAAGGACATTCTTGCGGGCATCTTCGAGCCCGCCACAACCGATGTTGATCTGGCTATTCTGCTAACTAAAGTAAGGCAGCATAGCCTTGCATTGGCAGGTTCGGCCGCAGAGGATTTCTTTAACCCAGTTCCGGAAGGCGATCTATTCAAGGCATTGAGCGACACTCTGAAACTATGGAATTCGCAGCCGGATTGGGAAGGCGATGAGCGGAATGTAGTGCTTACCTTGTCTCGCATTTGGTACAGCGCAGCAACCGGCAAGATCGCACCGAAGGATATCGTTGCCAACTGGGCAATGGAGCGTCTGCCAGATCAACATAAGCCCGTACTGCTTGAAGCCCGGCAGGCTTATCTTGGACAAGGAGAAGATTGCTTGGCCTCACGCGCGGATCAGTTGGCGGCGTTCGTTCACTTCGTGAAACATGAAGCCACTAAATTGCTTAGTGCCATGCCAGTGATGTCTAACAATTCATTCAAGCCGACGCCGCTTCGCGGCGCGGCTTAA " 2852 UPDATE PDC-73 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1263 UPDATE QnrB56 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 666 UPDATE CTX-M-34 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1261 UPDATE rosA peptide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 25527 UPDATED strand with - UPDATED accession with U46859.1 UPDATED fmin with 24294 UPDATED sequence with ATGACCGATCGTTCTGAGACGGAGCTCCCTCCCTCCGTCAATACCCAGCCCTTCGATAATACCAAGGTAAAACGCACCTCTTTCTCTATATTAGGTGCTATTAGCGTATCTCACTTACTTAACGATATGATCCAGTCGCTGATTCTGGCGATTTATCCGCTATTACAAGCCGAGTTTTCGCTGAGTTTTGCGCAGATTGGATTAATCACCCTCACTTATCAGCTTACCGCCTCATTATTACAGCCACTTATTGGTCTTTATACCGATAAGCATCCGCAGCCCTATTCACTGCCGATTGGCATGGGTTTCACCTTATCAGGTATCTTGCTGCTTGCGGTTGCCACGACTTTCCCAGGTGGTTTTACATGGCATGCGGCATTAGTCGGAACCGGTTCTTCGGTCTTCCACCCAGAATCCTCACGCGTAGCCGCTAGGCTACCGGTGGCCGCCACGGTATGGCTCAGTCTATTTTTGGGTGGGAGGCAATTTCGGCAGCGCCTTGGCCCACTATTAGCCGCGATCCTTATCGCACCTTACGGTAAAGGCAATGTAGGTTGGTTTTCACTCGCGGCACTGCTGGCTATTGTGGTGCTGTTGCAGGTCAGTAAATGGTATCAGCAACAACAAAGAGCAACCTATGGCAAAGTAGTAAAAGTCTCATCGGCCAAAATACTGCCTAAAAAGACGGTTATTAGCGCCCTAGCTATCTTAATGGTGCTGATATTCTCTAAATACTTCTACTTGACCAGTATTAGTAGCTATTACACCTTTTATTTGATGCATAAGTTTGGTGTTTCGGTACAAAATGCCCAAATACATTTATTTGTCTTCTTATTCGCAGTGGCCGCTGGCACCATCATTGGCGGCCCTCTTGGCGATAGGATAGGTCGAAAGTATGTTATTTGGGGGTCAATATTGGGCGTTGCGCCATTTACCCTTATTTTACCCTACGTTTCTCTGTATTGGACCGGGGTTTTAACCGTGATCATTGGCCTTATCCTTGCCTCTGCCTTCTCGGCAATACTGGTGTATGCGCAAGAGCTTATTCCGGGTAAAGTGGGCATGGTATCCGGTCTATTCTTCGGTTTTGCTTTCGGTATGGGGGGGTTAGGTGCGGCTGTACTAGGGTATGTTGCTGATTTAACCAGTATTGAACTGGTTTATCAAATATGCGCCTTCTTACCATTACTGGGGATAATTACGGTCTTCCTGCCCAATATAGAAGATAAGTAA UPDATED NCBI_taxonomy_name with Yersinia enterocolitica (type O:8) UPDATED NCBI_taxonomy_id with 34054 UPDATED NCBI_taxonomy_cvterm_id with 39589 UPDATED accession with AAC60781.1 UPDATED sequence with MTDRSETELPPSVNTQPFDNTKVKRTSFSILGAISVSHLLNDMIQSLILAIYPLLQAEFSLSFAQIGLITLTYQLTASLLQPLIGLYTDKHPQPYSLPIGMGFTLSGILLLAVATTFPGGFTWHAALVGTGSSVFHPESSRVAARLPVAATVWLSLFLGGRQFRQRLGPLLAAILIAPYGKGNVGWFSLAALLAIVVLLQVSKWYQQQQRATYGKVVKVSSAKILPKKTVISALAILMVLIFSKYFYLTSISSYYTFYLMHKFGVSVQNAQIHLFVFLFAVAAGTIIGGPLGDRIGRKYVIWGSILGVAPFTLILPYVSLYWTGVLTVIIGLILASAFSAILVYAQELIPGKVGMVSGLFFGFAFGMGGLGAAVLGYVADLTSIELVYQICAFLPLLGIITVFLPNIEDK " 1799 UPDATE TEM-147 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1798 UPDATE SHV-183 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 719 UPDATE CMY-33 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 718 UPDATE LRA-8 penam; antibiotic inactivation; subclass B3 LRA beta-lactamase; cephalosporin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCGAAATCTTCCCTGAAGGGTCTGGTTCTTCTGGCTCTGGTGGCAGCCATCGCGGCCCCGTCGTGGGCGGCGCGCAAGGAAAAACCGGCCGCAAAGGCGCCGCCGTGCGAGCAGTGCGCGGTGTGGAACGCGGACCAGGAGCCGTTCAAGATCTGGGGCAACACGTACTACGTGGGCGTGAAGGGCCTGTCGTCCGTGCTCGTGACCTCCGACTGGGGCCACGTGCTCCTCGACGGCGGACTGCCCGAGTCCGCGCCGAAGATCGCCGCGAACATCGAGAAGCTCGGCTTCAAGGTCACGGACGTGAAGGCGATCCTGAGCTCGCACGTCCACGCGGATCACGCCGGCGGCATCGCCGAGCTGCAGCGGCGCAGCGGCGCCAAGGTGTACCAGCGCCGCCCGAGCGACCAGGTGCTGCGCACGGGCAAGCCCGATCCCGGCGATCCGCAGCTCGCGCGCGCCGGTCCGATCCCGCCGGTGGAGAACGTGTGGGTCGTGCACGACGAGGAGCTCCTCGGGCTCGGCCCCACGCGCTTCACGGTGGTGGCCACGCCGGGCCACACGCCCGGCGGCACCAGCTGGGCCTGGGAGTCCTGCGAAGGGGCGCAGTGCCTGAAGATCGTGTACGCCGACAGCCTCAACGCGGTGTCCGCCGAGGGGTTCCGCTTCACCGCGAGCACTACCTATCCGAACGTGCTGCAGGACTTGGAGCAGAGCTTCAAGCGCGTCGAGTCGTTGCCGTGCGACGTGATCGTGTCCGTGCATCCCGAGCAGTCCGACTTTTTCCCGCGCATGGCGAAGCGTGTGGACGGCAAGCCCGAGTCGATCAAGGACCCGGAAGGCTGCAAGCGCTATGTGGCCGGCGCACGCGAGCGTCTCGCGCTGCGCGTCGCCAGCGAGAAGCAAGGCTCCTGA " 717 UPDATE CTX-M-100 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1792 UPDATE DHA-20 antibiotic inactivation; cephalosporin; cephamycin; DHA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1791 UPDATE TEM-164 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 714 UPDATE dfrB1 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAGCGTGTCGTCGGGCCACATAGAACACCTAGAAGTTCACAAGAAAGGTCGGAAATGGAACGAAGTAGCAATGAAGTCAGTAATCCAGTTGCTGGCAATTTTGTATTCCCATCGAACGCCACGTTTGGTATGGGAGATCGCGTGCGCAAGAAATCCGGCGCCGCCTGGCAAGGTCAGATTGTCGGGTGGTACTGCACAAATTTGACCCCCGAAGGCTACGCCGTCGAGTCTGAGGCTCACCCAGGCTCAGTACAGATTTATCCTGTTGCGGCGCTTGAACGCATCAACTGA " 713 UPDATE CTX-M-81 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 712 UPDATE catB2 antibiotic inactivation; thiamphenicol; chloramphenicol acetyltransferase (CAT); azidamfenicol; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 4157 UPDATED strand with - UPDATED accession with NC_004771 UPDATED fmin with 3524 UPDATED sequence with ATGACGAATTATTTTGAGAGTCCCTTCAAAGGGAAGCTTCTGACTGAGCAGGTGAAGAATCCGAACATCAAGGTAGGGCGGTATAGCTACTATTCCGGCTATTACCATGGGCACTCGTTTGATGATTGTGCTCGCTACCTTCTACCAGACCGTGATGACGTTGATCAGCTGATTATCGGCAGCTTCTGCTCCATCGGATCAGGCGCAGCTTTTATTATGGCTGGGAATCAAGGCCACCGATATGATTGGGTCTCTTCTTTCCCTTTCTTCTACATGAACGAGGAGCCCGCGTTTGCAAAATCAGTCGATGCATTCCAGCGGGCTGGCGACACAGTTATAGGAAGTGATGTGTGGATCGGTTCGGAGGCCATGATCATGCCCGGGATCAAGATCGGGCATGGAGCGGTGATAGGTAGCCGCGCTTTGGTTACCAAAGACGTGGAACCCTACACCATAGTGGGGGGAAACCCTGCAAAGTCGATTAGGAAGCGCTTTTCTGAAGAAGAAATTTCTATGCTTTTAGATATGGCTTGGTGGGATTGGCCGCTGGAACAAATCAAGGAAGCAATGCCTTTTCTTTGTTCGTCTGGCATTGCCAGCCTGTATCGTCGCTGGCAAGGCACAAGCGCCTAA UPDATED NCBI_taxonomy_name with Pasteurella multocida UPDATED NCBI_taxonomy_id with 747 UPDATED NCBI_taxonomy_cvterm_id with 36867 UPDATED accession with NP_848167.1 UPDATED sequence with MTNYFESPFKGKLLTEQVKNPNIKVGRYSYYSGYYHGHSFDDCARYLLPDRDDVDQLIIGSFCSIGSGAAFIMAGNQGHRYDWVSSFPFFYMNEEPAFAKSVDAFQRAGDTVIGSDVWIGSEAMIMPGIKIGHGAVIGSRALVTKDVEPYTIVGGNPAKSIRKRFSEEEISMLLDMAWWDWPLEQIKEAMPFLCSSGIASLYRRWQGTSA " 1795 UPDATE VEB-2 antibiotic inactivation; monobactam; cephalosporin; VEB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAATCGTAAAAAGGATATTATTAGTATTGTTAAGTTTATTTTTTACAATTGTGTATTCAAATGCTCAAGCTGACAACTTAACTTTGAAAATTGAGAATGTTTTAAAGGCAAAAAATGCCAGAATAGGAGTAGCAATATTCAACAGCAATGAGAAGGATACTTTGAAGATTAATAACGACTTCCATTTCCCGATGCAAAGCGTTATGAAATTTCCGATTGCTTTAGCCGTTTTGTCTGAGATAGATAAAGGGAATCTTTCTTTTGAACAAAAAATAGAGATTACCCCTCAAGACCTTTTGCCTAAAACGTGGAGTCCGATTAAAGAGGAATTCCCTAATGGAACAACTTTGACGATTGAACAAATACTAAATTATACAGTATCAGAGAGCGACAATATTGGTTGTGATATTTTGCTAAAATTAATCGGAGGAACTGATTCTGTTCAAAAATTCTTGAATGCTAATCATTTCACTGATATTTCAATCAAAGCAAACGAAGAACAAATGCACAAGGATTGGAATACCCAATATCAAAATTGGGCAACCCCAACAGCGATGAACAAACTGTTAATAGATACTTATAATAATAAGAACCAATTACTTTCTAAAAAAAGTTATGATTTTATTTGGAAAATTATGAGAGAAACAACAACAGGAAGTAACCGATTAAAAGGACAATTACCAAAGAATACAATTGTTGCTCATAAAACAGGGACTTCCGGAATAAATAATGGAATTGCAGCAGCCACTAATGATGTTGGGGTAATTACTTTACCGAATGGACAATTAATTTTTATAAGCGTATTTGTTGCAGAGTCCAAAGAAACTTCGGAAATTAATGAAAAGATTATTTCAGACATTGCAAAAATAACGTGGAATTACTATTTGAATAAATAA " 1794 UPDATE tmrB nucleoside antibiotic; reduced permeability to antibiotic; tunicamycin; tunicamycin resistance protein; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 339749 UPDATED strand with - UPDATED accession with AL009126.3 UPDATED fmin with 339155 UPDATED sequence with ATGATCATTTGGATAAACGGGGCATTCGGTTCGGGAAAAACACAAACAGCCTTCGAACTGCACAGAAGGCTGAACCCATCTTACGTGTATGATCCCGAGAAAATGGGTTTTGCGCTGCGCTCCATGGTGCCGCAGGAGATCGCAAAGGACGATTTTCAAAGCTATCCTTTATGGCGGGCGTTCAATTACAGTTTGCTAGCTTCTCTGACAGATACATACCGCGGCATCCTTATTGTGCCTATGACGATTGTACACCCTGAATACTTCAATGAGATCATCGGCAGGCTCAGACAGGAAGGCAGGATCGTTCACCACTTTACACTAATGGCTTCAAAGGAAACCTTGTTAAAAAGGCTGCGCACCAGAGCAGAAGGAAAAAACTCATGGGCCGCCAAACAAATTGACCGCTGTGTTGAAGGATTATCATCACCCATTTTTGAGGACCACATTCAAACAGACAACCTGTCGATTCAGGATGTGGCAGAGAACATTGCCGCGAGAGCCGAACTCCCATTAGATCCTGATACAAGAGGCAGCCTCCGAAGGTTCGCCGACAGATTAATGGTAAAGCTGAATCATATCCGCATCAAATAA UPDATED NCBI_taxonomy_name with Bacillus subtilis subsp. subtilis str. 168 UPDATED NCBI_taxonomy_id with 224308 UPDATED NCBI_taxonomy_cvterm_id with 39579 UPDATED accession with CAB12108.2 UPDATED sequence with MIIWINGAFGSGKTQTAFELHRRLNPSYVYDPEKMGFALRSMVPQEIAKDDFQSYPLWRAFNYSLLASLTDTYRGILIVPMTIVHPEYFNEIIGRLRQEGRIVHHFTLMASKETLLKRLRTRAEGKNSWAAKQIDRCVEGLSSPIFEDHIQTDNLSIQDVAENIAARAELPLDPDTRGSLRRFADRLMVKLNHIRIK " 661 UPDATE VIM-5 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 716 UPDATE QnrB32 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 505 UPDATE Mycobacterium tuberculosis iniC mutant conferring resistance to ethambutol antibiotic efflux; polyamine antibiotic; Ethambutol resistant iniC; efflux pump complex or subunit conferring antibiotic resistance; ethambutol; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with GTGAGCACCAGCGACCGGGTCCGCGCGATTCTGCACGCAACCATCCAGGCCTACCGGGGTGCGCCGGCCTATCGTCAGCGTGGCGACGTTTTTTGCCAGCTGGACCGCATCGGTGCGCGCCTAGCCGAACCGCTGCGCATCGCGTTGGCTGGCACACTCAAGGCCGGAAAATCCACTCTCGTCAACGCCCTTGTCGGCGACGACATCGCTCCGACCGATGCCACCGAGGCCACCCGGATTGTGACCTGGTTCCGGCACGGTCCGACACCGCGGGTCACCGCCAACCATCGCGGCGGTCGACGCGCCAACGTGCCGATCACCCGTCGGGGCGGGCTGAGTTTCGACCTGCGCAGGATCAACCCGGCCGAGCTGATCGACCTGGAAGTCGAGTGGCCAGCCGAGGAACTCATCGACGCCACCATTGTTGACACCCCGGGAACGTCGTCGTTGGCATGCGATGCCTCCGAGCGCACGTTGCGGCTGCTGGTCCCCGCCGACGGGGTGCCTCGGGTGGATGCGGTGGTGTTCCTGTTGCGCACCCTGAACGCCGCTGACGTCGCGCTGCTCAAACAGATCGGTGGGCTGGTCGGCGGGTCGGTGGGAGCCCTGGGCATCATCGGGGTGGCGTCTCGCGCGGATGAGATCGGCGCGGGCCGCATCGACGCGATGCTCTCGGCCAACGACGTGGCCAAGCGGTTCACCCGCGAACTGAACCAGATGGGCATTTGCCAGGCGGTGGTGCCGGTATCCGGACTTCTTGCGCTGACCGCGCGCACACTGCGCCAGACCGAGTTCATCGCGCTGCGCAAGCTGGCCGGTGCCGAGCGCACCGAGCTCAATAGGGCCCTGCTGAGCGTGGACCGTTTTGTGCGCCGGGACAGTCCGCTACCGGTGGACGCGGGCATCCGTGCGCAATTGCTCGAGCGGTTCGGCATGTTCGGCATCCGGATGTCGATTGCCGTGCTGGCGGCCGGCGTGACCGATTCGACCGGGCTGGCCGCCGAACTGCTGGAGCGCAGCGGGCTGGTGGCGCTGCGCAATGTGATAGACCAGCAGTTCGCGCAGCGCTCCGACATGCTTAAGGCGCATACCGCCTTGGTCTCCTTGCGCCGATTCGTGCAGACGCATCCGGTGCCGGCGACCCCGTACGTCATTGCCGACATCGACCCGTTGCTAGCCGACACCCACGCCTTCGAAGAACTCCGAATGCTAAGCCTTTTGCCTTCGCGGGCAACGACATTGAACGACGACGAAATCGCGTCGCTGCGCCGCATCATCGGCGGGTCGGGCACCAGTGCCGCCGCTCGGCTGGGCCTGGATCCCGCGAATTCTCGCGAGGCCCCGCGCGCCGCGCTGGCCGCAGCGCAACACTGGCGTCGCCGTGCGGCGCATCCACTCAACGATCCGTTCACTACCAGGGCCTGTCGCGCGGCGGTGCGCAGCGCCGAGGCGATGGTGGCGGAGTTCTCTGCTCGCCGCTGA " 660 UPDATE Streptococcus pneumoniae parC conferring resistance to fluoroquinolone fluoroquinolone self resistant parC; grepafloxacin; trovafloxacin; ofloxacin; norfloxacin; nalidixic acid; lomefloxacin; gatifloxacin; sparfloxacin; levofloxacin; fluoroquinolone resistant parC; antibiotic target alteration; enoxacin; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with ATGTCTAACATTCAAAACATGTCCCTGGAGGACATCATGGGAGAGCGCTTTGGTCGCTACTCCAAGTACATTATTCAAGACCGGGCTTTGCCAGATATTCGTGATGGGTTGAAGCCGGTTCAGCGCCGTATTCTTTATTCTATGAATAAGGATAGCAATACTTTTGACAAGAGCTACCGTAAGTCGGCCAAGTCAGTCGGGAACATCATGGGGAATTTCCACCCACACGGGGATTCTTCTATCTATGATGCCATGGTTCGTATGTCACAGAACTGGAAAAATCGTGAGATTCTAGTTGAAATGCACGGTAATAACGGTTCTATGGACGGAGATCCTCCTGCGGCTATGCGTTATACTGAGGCACGTTTGTCTGAAATTGCAGGCTACCTTCTTCAGGATATCGAGAAAAAGACAGTTCCTTTTGCATGGAACTTTGACGATACGGAGAAAGAACCAACGGTCTTGCCAGCAGCCTTTCCAAACCTCTTGGTCAATGGTTCGACTGGGATTTCGGCTGGTTATGCCACAGACATTCCTCCCCATAATTTAGCTGAGGTCATAGATGCTGCAGTTTACATGATTGACCACCCAACTGCAAAGATTGATAAACTCATGGAATTCTTGCCTGGACCAGACTTCCCTACAGGGGCTATTATTCAGGGTCGTGATGAAATCAAGAAAGCTTATGAGACTGGGAAAGGGCGCGTGGTTGTTCGTTCCAAGACTGAAATTGAAAAGCTAAAAGGTGGTAAGGAACAAATCGTTATTATTGAGATTCCTTATGAAATCAATAAGGCCAATCTAGTCAAGAAAATCGATGATGTTCGTGTTAATAACAAGGTAGCTGGGATTGCTGAGGTTCGTGATGAGTCTGACCGTGATGGTCTTCGTATCGCTATCGAACTTAAGAAAGACGCTAATACTGAGCTTGTTCTCAACTACTTATTTAAGTACACCGACCTACAAATCAACTACAACTTTAATATGGTGGCGATTGACAATTTCACACCTCGTCAGGTTGGGATTGTTCCAATCCTGTCTAGCTATATCGCTCACCGTCGAGAAGTGATTTTGGCGCGTTCACGCTTTGACAAAGAAAAGGCTGAGAAACGTCTCCATATCGTCGAAGGTTTGATTCGTGTGATTTCGATTTTGGATGAAGTCATTGCTCTTATCCGTGCTTCTGAGAATAAGGCGGACGCCAAGGAAAACCTCAAAGTTAGCTATGATTTTACGGAAGAACAGGCTGAGGCTATCGTAACTTTGCAACTGTACCGTTTGACCAATACCGATGTGGTTGTCTTGCAGGAAGAAGAAGCAGAGCTTCGTGAGAAGATTGCTATGCTGGCGGCTATTATCGGTGATGAAAGGACTATGTACAATCTCATGAAGAAAGAACTTCGTGAGGTCAAGAAGAAATTTGCAACTCCTCGTTTGAGTTCTTTAGAAGACACTGCGAAAGCAATTGAGATTGATACAGCTAGTCTTATCGCTGAGGAAGATACCTACGTCAGCGTGACCAAGGCAGGTTACATCAAGCGTACCAGTCCACGTTCCTTTGCGGCTTCCACCTTGGAAGAAATTGGCAAGCGTGATGATGACCGTTTGATTTTTGTTCAATCTGCCAAGACAACCCAGCACCTCTTGATGTTCACAAGTCTTGGAAATGTCATCTACAGACCAATCCATGAGTTGGCAGATATTCGTTGGAAGGACATCGGAGAGCATCTGAGCCAAACCATCACAAACTTTGAAACGAATGAAGAAATCCTTTATGTGGAAGTACTGGATCAGTTTGACGATGCGACAACCTACTTTGCAGTGACTCGCCTTGGTCAAATCAAACGGGTAGAGCGAAAAGAATTCACTCCATGGCGGACCTATAGATCTAAGTCTGTCAAGTATGCTAAGCTCAAAGACGATACAGATCAGATTGTAGCAGTGGCTCCGATTAAACTAGATGATGTTGTCTTGGTTAGTCAAAATGGTTATGCCCTGCGTTTCAATATCGAAGAGGTTCCGGTTGTCGGTGCTAAGGCAGCAGGTGTCAAGGCTATGAATTTGAAAGAAGATGATGTCCTCCAATCTGGCTTTATCTGTAATACTTCGTCCTTCTACCTCTTGACCCAGCGTGGAAGCTTGAAACGTGTTTCCATTGAGGAAATTCTAGCAACCAGCCGTGCCAAACGAGGATTACAAGTCTTGCGTGAGTTGAAAAACAAACCGCATCGTGTCTTCTTGGCAGGAGCAGTTGCAGAGCAAGGATTTGTTGGCGATTTCTTCAGTACGGAAGTGGATGTGAACGACCAAACTCTGCTTGTCCAATCCAATAAAGGAACAATCTATGAAAGCCGATTGCAAGACTTGAACTTGTCAGAACGCACTAGCAATGGAAGCTTCATTTCTGACACGATTTCAGATGAAGAAGTTTTTGACGCTTATCTTCAGGAAGTAGTTACTGAAGATAAATAA " 1069 UPDATE IMP-35 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1068 UPDATE AAC(6')-Ib3 antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGACCAACAGCAACGATTCCGTCACACTGCGCCTCATGACTGAGCATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATTGTCGAGTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAACAGTACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTCACTCCATACATTGCAATGCTGAATGGAGAGCCGATTGGGTATGCCCAGTCGTACGTTGCTCTTGGAAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCAGGAGTACGCGGAATAGACCAGTTACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGAACCAAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCACCAAGATCCAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCTACGAGAAAGCGGGGTTTGAGAGGCAAGGTACCGTAACCACCCCAGATGGTCCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGCGAACACGCAGTGATGCCTAA " 1061 UPDATE OXY-2-10 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1060 UPDATE SHV-103 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1063 UPDATE QnrB73 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1062 UPDATE SHV-71 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1065 UPDATE OXA-384 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 915 UPDATED strand with - UPDATED accession with KF986263.1 UPDATED fmin with 90 UPDATED sequence with ATGAACATTCAAGCCCTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGTGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATAGGCCTTGAGCACCATAAGGCAACCACTACAGAAGTATTTAAGTGGGACGGGCAAAAAAGGCTATTCCCAGAATGGGAAAAGAACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAATGAAGTGAAGCGTATTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAACAAGAGGCACAATTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAAACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTCAGAAATGAAAAAAGGAATATCTAGCTCTGTTCGAAAAGAGATTACTTATAGAAGTTTAGAACAATTAGGTATTTTATAG UPDATED NCBI_taxonomy_name with Acinetobacter baumannii UPDATED NCBI_taxonomy_id with 470 UPDATED NCBI_taxonomy_cvterm_id with 35507 UPDATED accession with AHL30282.1 UPDATED sequence with MNIQALLLITSAIFISACSPYIVTANPNHSASKSDEKAEKIKNLFNEAHTTGVLVIQQGQTQQSYGNDLARASTEYVPASTFKMLNALIGLEHHKATTTEVFKWDGQKRLFPEWEKNMTLGDAMKASAIPVYQDLARRIGLELMSNEVKRIGYGNADIGTQVDNFWLVGPLKITPQQEAQFAYKLANKTLPFSQKVQDEVQSMLFIEEKNGNKIYAKSGWGWDVNPQVGWLTGWVVQPQGNIVAFSLNSEMKKGISSSVRKEITYRSLEQLGIL " 1064 UPDATE CTX-M-141 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGACTCAGAGCATTCGCCGCTCAATGTTAACGGTGATGGCGACGCTACCCCTGCTATTTAGCAGCGCAACGCTGCATGCGCAGGCGAACAGCGTGCAACAGCAGCTGGAAGCCCTGGAGAAAAGTTCGGGAGGTCGGCTTGGCGTTGCGCTGATTAACACCGCCGATAATTCGCAGATTCTCTACCGTGCCGATGAACGTTTTGCGATGTGCAGTACCAGTAAGGTGATGGCGGCCGCGGCGGTGCTTAAACAGAGCGAGAGCGATAAGCACCTGCTAAATCAGCGCGTTGAAATCAAGAAGAGCGACCTGGTTAACTACAATCCCATTGCGGAGAAACACGTTAACGGCACGATGACGCTGGCTGAGCTTGGCGCAGCGGCGCTGCAGTATAGCGACAATACTGCCATGAATAAGCTGATTGCCCATCTGGGTGGTCCCGATAAAGTGACGGCGTTTGCTCGCTCGTTGGGTGATGAGACCTTCCGTCTGGACAGAACCGAGCCCACGCTCAATACCGCCATTCCAGGCGACCCGCGTGATACCACCACGCCGCTCGCGATGGCGCAGACCCTGAAAAATCTGACGCTGGGTAAAGCGCTGGCGGAAACTCAGCGGGAACAGTTGGTGACGTGGCTTAAGGGCAATACTACCGGTAGCGCGAGCATTCGGGCGGGTCTGCCGAAATCATGGGTAGTGGGCGATAAAACCGGCAGCGGAGATTATGGCACCACCAACGATATCGCGGTTATCTGGCCGGAAAACCACGCACCGCTGGTTCTGGTGACCTACTTTACCCAACCGGAGCAGAAGGCGGAAAGCCGTCGGGATATTCTGGCTGCGGCGGCGAAAATCGTAACCCACGGTTTCTGA " 1067 UPDATE MexE antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; norfloxacin; trimethoprim; efflux pump complex or subunit conferring antibiotic resistance; diaminopyrimidine antibiotic; ciprofloxacin; fluoroquinolone antibiotic; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAACAGTCATCCCACTTCTCCTGGCGCTACCCCCTCGCACTCGCGGCCGTACTGGTCCTGAGCGCCTGCGGCAAGGCCCCGGAAACCACCCAAGGCATGGCGGCGCCCAAGGTCAGCGTCGCCGAAGTCATCGAACAACCGCTGAACGAGTGGGACGAATTCACCGGCCGCCTGGAGGCCCCGGAGTCGGTGGAGCTGCGCCCGCGGGTGTCGGGCTACATCGACCGCGTGGCCTTCCATGAAGGCGCACTGGTGAAGAAAGGCGACCTGCTGTTCCAGATCGACCCGCGCCCGTTCGAGGCCGAGGTCAAGCGCCTCGAAGCCCAGCTGCAACAGGCCCGCGCGGCCCAGGCGCGGAGCGTCAACGAAGCCCAGCGCGGCGAACGCCTGCGCGCCAGCAACGCGATCTCCGCGGAACTCGCCGACGCCCGCACCACCGCCGCCCAGGAAGCCAAGGCGGCGGTCGCCGCGACCCAGGCGCAACTGGACGCGGCGCGCCTGAACCTGAGCTTCACCCGGATCACCGCGCCGATCGACGGTCGCGTCAGCCGCGCCGAGGTCACCGCCGGCAACCTGGTCAACTCCGGGGAGACCCTGCTCACCACCCTGGTCAGCACCGACAAGGTCTACGCCTACTTCGACGCCGACGAGCGCGTGTTCCTCAAGTACGTCGAGCTGGCCCGCCAGGCCGGTCGCGACACGCGCAGCGAGAGCCCGGTGTACCTCGGCCTGAGCAGCGAGGACGGCAACCCGCACCTGGGCCGGCTGGACTTCCTCGACAACCAGGTCAACCCGCGTACCGGCACCATCCGCGGCCGCGCCGTGTTCGACAACGCCAAGGGCGAGTTCACCCCGGGCCTCTACGTGCGCCTGAAGCTGGTCGGCAGCAAGACCTACGCCGCCACCCTGATCAAGGACGAAGCGGTCGGCACCGACCTGGGCAAGAAGTTCGTGCTGGTCCTGGATGGCGACAACAAGACCGTCTACCGCACCGTCGAGATGGGACCGAAGCTGGAGGGCCTGCGCATCGTCCGCAGCGGCCTGAGCAAGGGCGACCGGATCGTCGTGAATGGCCTGCAGCGGGTCCGCCCGGGCATGCAGGTGGATCCGCAGAAGGTCGAGATGGCCAGCGCCGACACCCTGGCCACCCTCGCGCGCCTGCGGCAGTCGGTCGGCGACAGCGAACCACCGAAGGTGGCGGCGTCCAAGGACAACGCCACTCGCAACGAGCCGCGCGGCTGA " 1066 UPDATE TEM-118 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1669 UPDATE vanZF vanZ; glycopeptide resistance gene cluster; antibiotic target alteration; glycopeptide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCTTACACCACTTACAGTTTTATATACTTATTTTTGTACTATTATTTTTTGTATTGTGTTTCAAATTGGATTTTTTTTTAAAGCGCTAAAAAATATATCTATTAGGCATTTTCTATGGGTGTATGTTTTTCTGTTCTACCTTGCGCTAGTGTATATGATGACGGGGATAGGGAATGTATGGGTAGTAGGAAGATATGAAACATTGATTCGTGTAAGTGAAATCAACTTACTTCCATTTTCTTCTGAAGGTGTTACTACGTATATTTTGAACATTATTCTGTTTATGCCGTTAGGTTTTTTATTGCCAACTATTTGGCCGCAGTTTAGAACAATTAAAAATACTGCATGTACTGGATTCTTTTTTTCATTGGCTATTGAGCTAACTCAATTGCTAAATCATAGAATTACAGATATTGATGATTTACTTATGAACACCCTGGGGGCGATTATTGGGTATTTATTATATAGAGCTTTTAAAATGATATATACAAGAGATGAAAAAAAGCTTGATAATAAATCTTCTCTAGTAATAAAATACGAGGCTATTTTTTATATAGTTTGCTCGTTTATAGGTATGATATTACTTTATTATCCATTTTTATTACGAAAAATTATTTGA " 1668 UPDATE CMY-68 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCACTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGCATTGCCGTGGCAATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAATTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATGAAGTTACGGATAAAGCCGAATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGTTGGTGGTAAAACCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAATTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACAGGTGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATAGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGCGTCGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA " 1667 UPDATE TEM-80 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGCTGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCGTAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAGATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 1666 UPDATE vanXB glycopeptide antibiotic; glycopeptide resistance gene cluster; vanX; antibiotic target alteration; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1665 UPDATE ramA penem; tetracycline antibiotic; antibiotic efflux; rifampin; resistance-nodulation-cell division (RND) antibiotic efflux pump; reduced permeability to antibiotic; carbapenem; cephalosporin; cefalotin; protein(s) and two-component regulatory system modulating antibiotic efflux; ampicillin; penam; triclosan; efflux pump complex or subunit conferring antibiotic resistance; cephamycin; tigecycline; glycylcycline; General Bacterial Porin with reduced permeability to beta-lactams; monobactam; fluoroquinolone antibiotic; chloramphenicol; phenicol antibiotic; tetracycline; rifamycin antibiotic; ARO_description; model_description "UPDATED ARO_description with RamA (resistance antibiotic multiple) is a positive regulator of AcrAB-TolC and leads to high level multidrug resistance in Klebsiella pneumoniae, Salmonella enterica, and Enterobacter aerugenes, increasing the expression of both the mar operon as well as AcrAB. RamA also decreases OmpF expression. UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1664 UPDATE adeK antibiotic efflux; imipenem; rifampin; resistance-nodulation-cell division (RND) antibiotic efflux pump; trimethoprim; rifamycin antibiotic; penem; macrolide antibiotic; carbapenem; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; diaminopyrimidine antibiotic; ticarcillin; tetracycline antibiotic; fluoroquinolone antibiotic; lincosamide antibiotic; phenicol antibiotic; tetracycline; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAAAAAGTATGGTCTATTTCAGGTCGTAGCATTGCGGTGTCTGCACTTGCGCTTGCTTTGGCAGCTTGTCAAAGCATGCGCGGCCCAGAACCAGTCGTGAAAACCGATATACCACAAAGCTATGCATATAACAGCGCTTCTGGTACGTCTATTGCTGAACAGGGTTATAAACAGTTCTTTGCTGACCCGCGTTTGCTTGAAGTGATTGATTTGGCTCTTGCCAATAACCGTGACTTACGTACAGCAACGCTCAATATTGAACGTGCTCAACAGCAATATCAGATTACACAGAACAACCAGCTTCCAACAATCGGAGCAAGTGGTAGTGCAATTCGTCAGGTTTCTCAAAGCCGTGATCCGAATAACCCCTACTCTACTTATCAAGTAGGTTTGGGTGTAACTGCTTATGAGCTAGATTTCTGGGGTCGTGTTCGTAGCCTCAAAGATGCTGCTTTAGATAGTTATCTTGCAACACAAAGTGCTCGTGATTCGACTCAAATCAGTCTGATTAGCCAAGTTGCTCAAGCATGGTTAAATTATTCGTTTGCAACAGCAAACTTAAGACTGGCAGAGCAAACGCTTAAAGCACAGTTAGATTCTTACAATCTCAACAAAAAACGTTTTGATGTAGGTATTGACAGTGAAGTTCCATTACGTCAAGCACAGATTTCTGTAGAAACTGCGCGTAATGATGTAGCGAACTACAAAACTCAAATTGCTCAAGCACAAAACTTGTTGAACTTGCTTGTAGGCCAACCTGTTCCACAAAACTTGTTACCTACACAACCTGTAAAACGCATTGCTCAACAAAATGTGTTTACTGCCGGTTTACCAAGTGACTTGTTAAATAACCGTCCGGATGTAAAAGCTGCTGAATACAACTTAAGCGCTGCGGGTGCGAATATCGGTGCTGCAAAAGCACGTTTATTCCCAACCATTAGCTTAACGGGTTCGGCTGGTTATGCATCAACTGACTTAAGTGATCTATTTAAGTCTGGTGGTTTTGTATGGTCAGTTGGTCCAAGCTTAGATTTACCAATCTTTGACTGGGGTACACGCCGTGCCAATGTAAAAATTTCTGAAACCGATCAGAAAATTGCATTGTCTGATTATGAAAAATCAGTTCAGTCGGCGTTCCGTGAAGTTAATGACGCGCTTGCAACTCGTGCCAATATTGGTGAGCGTTTAACAGCACAACAACGTCTAGTAGAAGCAACTAACCGCAACTACACACTTTCAAATGCCCGCTTCCGTGCCGGTATTGATAGTTACTTGACTGTTCTTGATGCACAGCGTTCTTCATATGCAGCTGAACAAGGTTTGTTATTGCTTCAACAAGCAAACTTAAACAACCAAATCGAGTTATACAAAACTCTAGGTGGTGGTTTAAAAGCAAATACTTCAGATACAGTGGTTCACCAACCATCTAGTGCTGAACTTAAAAAGCAATAA " 1663 UPDATE ACC-1 penam; monobactam; cephalosporin; ACC beta-lactamase; antibiotic inactivation; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAGAACACATTGAAGCTGTTATCCGTGATTACCTGTCTGGCAGCAACTGTCCAAGGTGCTCTGGCTGCTAATATCGATGAGAGCAAAATTAAAGACACCGTTGATGACCTGATCCAGCCGCTGATGCAGAAGAATAATATTCCCGGTATGTCGGTCGCAGTGACCGTCAACGGTAAAAACTACATTTATAACTATGGGTTAGCGGCAAAACAGCCTCAGCAGCCGGTTACGGAAAATACGTTATTTGAAGTGGGTTCGCTGAGTAAAACGTTTGCTGCCACCTTGGCGTCCTATGCGCAGGTGAGCGGTAAGCTGTCTTTGGATCAAAGCGTTAGCCATTACGTTCCAGAGTTGCGTGGCAGCAGCTTTGACCACGTTAGCGTACTCAATGTGGGCACGCATACCTCAGGCCTACAGCTATTTATGCCGGAAGATATTAAAAATACCACACAGCTGATGGCTTATCTAAAAGCATGGAAACCTGCCGATGCGGCTGGAACCCATCGCGTTTATTCCAATATCGGTACTGGTTTGCTAGGGATGATTGCGGCGAAAAGTCTGGGTGTGAGCTATGAAGATGCGATTGAGAAAACCCTCCTTCCTCAGTTAGGCATGCATCACAGCTACTTGAAGGTTCCGGCTGACCAGATGGAAAACTATGCGTGGGGCTACAACAAGAAAGATGAGCCAGTGCACGTGAATATGGAGATTTTGGGTAACGAAGCTTATGGTATCAAAACCACCTCCAGCGACTTGTTACGCTACGTGCAAGCCAATATGGGGCAGTTAAAGCTTGATGCTAATGCCAAGATGCAACAGGCTCTGACAGCCACCCACACCGGCTATTTCAAATCGGGTGAGATTACTCAGGATCTGATGTGGGAGCAGCTGCCATATCCGGTTTCTCTGCCGAATTTGCTCACCGGTAACGATATGGCGATGACGAAAAGCGTGGCTACGCCGATTGTTCCGCCGTTACCGCCACAGGAAAATGTGTGGATTAATAAGACCGGATCAACTAACGGCTTCGGTGCCTATATTGCGTTTGTTCCTGCTAAGAAGATGGGGATCGTGATGCTGGCTAACAAAAACTACTCAATCGATCAGCGAGTGACGGTGGCGTATAAAATCCTGAGCTCATTGGAAGGGAATAAGTAG " 1662 UPDATE OKP-B-17 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1661 UPDATE CARB-8 penam; antibiotic inactivation; CARB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGACGTACGTAAACACAAGGCTAGTTTTTTTAGCGTAGTAATTACTTTTTTATGTCTCACGCTATCATTAAATGCTAATGCAACAGACTCAGTACTTGAAGCGGTTACCAATGCTGAAACTGAATTAGGCGCTAGAATTGGTCTAGCTGTGCATGATTTGGAAACGGGAAAACGTTGGGAACATAAATCTAATGAACGTTTTCCTCTAAGTAGTACCTTTAAAACACTTGCCTGTGCAAACGTTCTTCAAAGAGTTGATCTAGGTAAAGAAAGAATTGATAGAGTTGTGAGATTCTCTGAAAGCAATCTCGTTACATACTCACCTGTAACAGAAAAACATGTGGGTAAAAAAGGGATGTCGCTCGCAGAGCTGTGTCAGGCCACATTATCAACCAGTGATAATTCAGCTGCCAATTTTATTCTACAAGCGATTGGTGGACCTAAGGCTCTAACGAAATTTTTGCGTTCCATTGGCGACGATACTACGCGCCTTGATCGCTGGGAAACAGAACTTAACGAAGCGGTGCCTGGAGATAAGCGAGACACGACAACACCAATTGCAATGGTAACGACACTTGAAAAGTTACTAATTGACGAAACACTATCTATCAAATCTCGTCAACAACTAGAATCTTGGCTTAAAGGTAATGAGGTTGGCGATGCATTGTTTCGTAAAGGCGTTCCAAGTGACTGGATAGTAGCAGATAGAACAGGTGCTGGTGGTTATGGGTCGCGTGCTATTACTGCGGTGATGTGGCCTCCAAATCGCAAGCCTATCGTAGCCGCTCTATACATTACAGAGACAGACGCCTCGTTTGAAGAAAGAAATGCTGTCATTGCAAAAATTGGTGAGCAAATAGCGAAGACAATATTAATGGAGAATAGCCGTAACTGA " 1660 UPDATE OXA-375 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 865 UPDATED strand with - UPDATED accession with KF986256.1 UPDATED fmin with 40 UPDATED sequence with ATGAACATTAAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGCGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAAAATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATCCAACAAGGCCAAACTCAACAAAGCTATGGTAATGATCTTGTTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACCACAGAAGTATTTAAGTGGGATGGTAAAAAAAGGTTATTCCGAGAATGGGAAAAGGACATGACCCTAGGCGATGCCATGAAAGCTTCCGCTATTCCAGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAATGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAATTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAAACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGCTTAGAACAATTAGGTATTTTATAG UPDATED NCBI_taxonomy_name with Acinetobacter baumannii UPDATED NCBI_taxonomy_id with 470 UPDATED NCBI_taxonomy_cvterm_id with 35507 UPDATED accession with AHL30275.1 UPDATED sequence with MNIKALLLITSAIFISACSPYIVTANPNHSASKSDEKAEKIKNLFNEAHTTGVLVIQQGQTQQSYGNDLVRASTEYVPASTFKMLNALIGLEHHKATTTEVFKWDGKKRLFREWEKDMTLGDAMKASAIPVYQDLARRIGLELMSNEVKRVGYGNADIGTQVDNFWLVGPLKITPQQEAQFAYKLANKTLPFSQKVQDEVQSMLFIEEKNGNKIYAKSGWGWDVNPQVGWLTGWVVQPQGNIVAFSLNLEMKKGIPSSVRKEITYKSLEQLGIL " 1087 UPDATE OXA-253 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAATTTATACTTCCTATCTTCAGCATTTCTATTCTACTTTCTCTCAGTGCATGCTCATCTATTCAAACTAAATTTGAAGATACTTCTGATATTTCTGATCAGCAACAAGGAAAAGCCATTAAAAGCTATTTTGATGAAGCTCAAACACAAGGTGTAATCATTATTAAAGAGGGAAAGAATATTAGTACCTATGGTAATAACCTGGCACGAGCACATACAGAATATGTCCCTGCATCAACATTTAAGATGCTAAATGCCTTAATTGGATTAGAAAATCATAAAGCTACAACAACTGAGATTTTCAAATGGGATGGTAAAAAAAGATCTTATCCTATGTGGGAAAAAGATATGACTTTAGGTGATGCCATGGCACTTTCAGCAGTTCCTGTATATCAAGAACTTGCAAGACGGACTGGTTTAGACCTAATGCAAAAAGAAGTCAAACGGGTTGGTTTTGGTAATATGAACATTGGAACACAAGTTGATAACTTCTGGTTGGTTGGCCCGCTTAAAATTACACCAATACAAGAGGTTAATTTTGCCGACGATCTCGCTAATAATCGATTACCCTTTAAATTAGAAACTCAAGAAGAAGTAAAAAAAATGCTTCTGATTAAAGAAGTCAATGGTAGTAAAATTTATGCGAAAAGCGGATGGGGAATGGATGTAATCCCTCAGGTAGGTTGGTTAACAGGTTGGGTAGAAAAATCTAATGGCGAAAAAGTTCCCTTTTCTCTAAACCTAGAAATGAAGCAAGGAATGTCTGGTTCTATTCGTAATGAAATTACTTATAAGTCATTAGAAAATTTAGGGATTATATAG " 1086 UPDATE CMY-41 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCACAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTGGCGATTATCTACGAGGAGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAATTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTACCGCTGCAGATCCCCGATGAAGTTACGGATAAAGCCGCATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGCGGTGAAACCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAATTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGTTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACAGGTGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATAGTGATGCTGGCAAACAAAAGCTACCCCAACCCGGCTCGCGTCGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA " 1085 UPDATE OKP-B-5 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 592 UPDATE lmrB efflux pump complex or subunit conferring antibiotic resistance; ATP-binding cassette (ABC) antibiotic efflux pump; antibiotic efflux; lincosamide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 113503 UPDATED strand with - UPDATED accession with JYFL01000006.1 UPDATED fmin with 112069 UPDATED sequence with TTGGAAACAACAGCTAAAGCATCTCAGCAATACAAAGTGATGCCGATTATGATTTCCTTGCTGTTGGCCGGTTTTATCGGCATGTTCAGTGAAACAGCGCTGAATATTGCGTTAACCGACCTTATGAAGGAATTGAACATTACAGCGGCAACCGTCCAATGGTTAACGACGGGCTACCTGCTTGTACTCGGTATCCTTGTTCCTGTTTCAGGACTGCTGTTGCAGTGGTTCACAACAAGACAGCTTTTTACCGTGTCACTTATCTTTTCAATTTTAGGTACATTCATTGCGGCGCTTGCGCCGAGCTTCTCGTTTTTATTAGCGGCAAGGATCGTTCAGGCACTTGGAACCGGTCTTTTACTGCCGCTGATGTTTAACACAATCTTGGTGATTTTCCCGCCTCATAAACGGGGTGCCGCAATGGGAACGATCGGGCTTGTCATTATGTTCGCGCCCGCCATCGGCCCAACTTTCTCAGGATTGGTTCTGGAGCATCTCAACTGGCACTGGATTTTCTGGATCTCTCTTCCATTCCTTGTGCTGGCGCTTGTTTTCGGTATCGCATATATGCAAAATGTATCTGAAACGACAAAGCCGAAAATCGATGTATTGTCTATCATCCTGTCGACGATTGGCTTCGGCGGCATTGTATTCGGATTCAGCAACGCGGGTGAAGGCTCCGGGGGATGGTCCAGCCCGACTGTTATCGTGTCGCTGATTGTCGGCGTTGTCGGCCTTATCTTATTTTCAATCCGCCAGCTGACAATGAAGCAGCCTATGATGAACCTCCGTGCGTTCAAATACCCGATGTTTATTTTGGGTGTGATCATGGTGTTCATTTGTATGATGGTCATTCTGTCATCTATGCTGCTTCTGCCGATGTATCTGCAAGGCGGCTTAGTCCTCACTGCATTTGCATCTGGTCTTGTTCTCTTGCCGGGCGGTATTTTAAATGGATTTATGTCCCCTGTTACAGGCCGCTTGTTCGATAAATACGGGCCGAAATGGCTTGTCATTCCGGGATTTGTGATTGTCACCGTTGTACTATGGTTCTTCTCAAATGTCACGACCACTTCAACAGCTGTGCTGATTATCATCCTGCACACCTGCTTGATGATCGGGATTTCTATGATCATGATGCCTGCACAGACAAACGGTTTAAACCAACTGCCGCGTGAATTTTATCCAGACGGCACCGCCATTATGAACACGCTGCAGCAAATGGCCGGCGCTATCGGAACAGCGGTTGCGGTCAGCATTATGGCTGCAGGCCAGCATGATTATATGAGTACAGTTAAAAACCCTGCCGATCCGGCAGTCATCCCGCAAGCTTTGACAGCAGGCGTACAGCACGCATTTGTGTTTGCAATGATTGTTGCCATTATCGGTTTAATTGGCGCTTTCTTTATGAAACGCGTTAAAGTAGATCATTAA UPDATED NCBI_taxonomy_name with Bacillus subtilis UPDATED NCBI_taxonomy_id with 1423 UPDATED NCBI_taxonomy_cvterm_id with 36833 UPDATED accession with KIX81495.1 UPDATED sequence with METTAKASQQYKVMPIMISLLLAGFIGMFSETALNIALTDLMKELNITAATVQWLTTGYLLVLGILVPVSGLLLQWFTTRQLFTVSLIFSILGTFIAALAPSFSFLLAARIVQALGTGLLLPLMFNTILVIFPPHKRGAAMGTIGLVIMFAPAIGPTFSGLVLEHLNWHWIFWISLPFLVLALVFGIAYMQNVSETTKPKIDVLSIILSTIGFGGIVFGFSNAGEGSGGWSSPTVIVSLIVGVVGLILFSIRQLTMKQPMMNLRAFKYPMFILGVIMVFICMMVILSSMLLLPMYLQGGLVLTAFASGLVLLPGGILNGFMSPVTGRLFDKYGPKWLVIPGFVIVTVVLWFFSNVTTTSTAVLIIILHTCLMIGISMIMMPAQTNGLNQLPREFYPDGTAIMNTLQQMAGAIGTAVAVSIMAAGQHDYMSTVKNPADPAVIPQALTAGVQHAFVFAMIVAIIGLIGAFFMKRVKVDH " 1083 UPDATE OXA-323 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 594 UPDATE QnrB41 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 597 UPDATE Klebsiella pneumoniae ramR mutants penam; antibiotic efflux; triclosan; rifampin; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; antibiotic target alteration; tetracycline antibiotic; cephalosporin; cefalotin; tigecycline; glycylcycline; ampicillin; fluoroquinolone antibiotic; rifamycin antibiotic; phenicol antibiotic; tetracycline; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 622621 UPDATED strand with - UPDATED accession with CP000647.1 UPDATED fmin with 622039 UPDATED sequence with GTGGCTCGTCCAAAGAGTGAAGATAAAAAGCAAGCGTTACTGGAAGCTGCCACCGCGGCTTTCGCCCAGTCCGGCATAGCCGCCTCGACGTCGGCCATCGCCCGCAGCGCCGGTGTGGCCGAGGGAACGCTGTTTCGCTATTTCGCCACCAAGGATGAGTTGCTCAACGAGCTGTACCTCGCGATTAAGCTGCGCCTGGTGCGCACAATGATCGCCGGGCTGGATCCGGACGAGAAGCGCCCGAAAGAGAACGCGCGCAATATCTGGAACAGCTATATCGACTGGGGCGTGCGCAACCCGATGGAGCACAAAGCGATCCGCCGGATGGCGCTCAGCGAGCGCATCACCGACGAAACCCGCCGCCAGGTAAAAGAGAGCTTTCCGGAGCTCAACGAAATGTGCCAGCTGTCGGTGAAAGAGATATTCCTCAGCGAGGCGTACCGCGCCTTTGGCGACGCCCTGTTTCTGTCGCTGGCGGAAACCACCATCGAATTCGCCAGCCACGATCCGCAGCGCGCCCGGGAGATTATCGCCCTCGGCTTTGAAGCCATGTGGCACGCCCTGCATGAGGCGGACGCCTAA UPDATED NCBI_taxonomy_name with Klebsiella pneumoniae subsp. pneumoniae MGH 78578 UPDATED NCBI_taxonomy_id with 272620 UPDATED NCBI_taxonomy_cvterm_id with 37607 UPDATED accession with ABR76005.1 UPDATED sequence with MARPKSEDKKQALLEAATAAFAQSGIAASTSAIARSAGVAEGTLFRYFATKDELLNELYLAIKLRLVRTMIAGLDPDEKRPKENARNIWNSYIDWGVRNPMEHKAIRRMALSERITDETRRQVKESFPELNEMCQLSVKEIFLSEAYRAFGDALFLSLAETTIEFASHDPQRAREIIALGFEAMWHALHEADA " 1080 UPDATE SHV-158 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 599 UPDATE OKP-A-3 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 598 UPDATE dfrA16 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGAAGTTATCACTAATGGCTGCCAAGTCGAAGAACGGTATTATCGGTAATGGACCAGATATTCCATGGAGCGCCAAAGGCGAGCAACTTCTATTTAAGGCAATTACATATAATCAATGGCTTTTAGTTGGACGCAAAACTTTTGAGTCAATGGGCGCTCTCCCAAATCGAAAGTATGCAGTTGTAACTCGCTCTAATTTTTCTACGAATGATGAGGGTGTAATGGTTTTCTCCTCAATTCAGGATGCCTTAATAAATTTAGAGGAAATCACGGATCATGTTATCGTTTCTGGTGGTGGTGAAATATACAAAAGCTTGATTTCCAAAGTAGATACTTTGCATATTTCAACAGTCGACATCGAGCGAGATGGAGACATAGTTTTTCCTGAAATCCCAGATACATTCAAGTTGGTATTTGAGCAAGATTTCGAGTCTAACATTAACTATTGTTATCAAATCTGGCAAAAGAGTTAA " 1089 UPDATE CMY-14 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1088 UPDATE Staphylococcus aureus rpoB mutants conferring resistance to daptomycin peptide antibiotic; daptomycin resistant beta-subunit of RNA polymerase (rpoB); antibiotic target alteration; daptomycin; rifamycin antibiotic; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2828 UPDATE mecD antibiotic target replacement; ceftaroline; ampicillin; flucloxacillin; ceftibuten; cefditoren; piperacillin; cefpodoxime; cefixime; cefdinir; meropenem; carbapenem; imipenem; aztreonam; cefradine; isopenicillin N; cefazolin; penicillin N; ceftazidime; cefepime; penicillin; oxacillin; cefmetazole; moxalactam; cloxacillin; cefadroxil; ceftriaxone; methicillin; loracarbef; ceftizoxime; cephalosporin; cefotaxime; cefaclor; phenoxymethylpenicillin; cefonicid; monobactam; cefuroxime; amoxicillin; mezlocillin; azlocillin; cefalexin; doripenem; cefotiam; ertapenem; penam; cefprozil; cephapirin; ceftobiprole; benzylpenicillin; methicillin resistant PBP2; cephamycin; carbenicillin; cefalotin; ceftiofur; mecillinam; propicillin; cefoxitin; dicloxacillin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2829 UPDATE dfrA2d iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1526 UPDATE AAC(6')-Iaa antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGACATCAGGCAAATGAACAGAACCCATCTGGATCACTGGCGCGGATTGCGAAAACAGCTCTGGCCTGGTCACCCGGATGACGCCCATCTGGCGGACGGCGAAGAAATTCTGCAAGCCGATCATCTGGCATCATTTATTGCGATGGCAGACGGGGTGGCGATTGGCTTTGCGGATGCCTCAATCCGCCACGATTATGTCAATGGCTGTGACAGTTCGCCCGTGGTTTTCCTTGAAGGTATTTTTGTTCTCCCCTCATTCCGTCAACGCGGCGTAGCGAAACAATTGATTGCAGCGGTGCAACGATGGGGAACGAATAAAGGGTGTCGGGAAATGGCCTCCGATACCTCGCCGGAAAATACAATTTCCCAGAAAGTTCATCAGGCGTTAGGATTTGAGGAAACAGAGCGCGTCATTTTCTACCGAAAGCGTTGTTGA " 2824 UPDATE Mycoplasma pneumoniae 23S rRNA mutation conferring resistance to erythromycin antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; chloramphenicol; phenicol antibiotic; erythromycin; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2825 UPDATE Halobacterium halobium 23S rRNA mutation conferring resistance to chloramphenicol antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to phenicol antibiotics; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2826 UPDATE Streptococcus pneumoniae 23S rRNA mutation conferring resistance to macrolides and streptogramins antibiotics antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; 23S rRNA with mutation conferring resistance to streptogramins antibiotics; tylosin; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; josamycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2827 UPDATE Mycobacterium tuberculosis ribD with mutation conferring resistance to para-aminosalicylic acid para-aminosalicylic acid; aminosalicylate resistant dihydrofolate reductase; antibiotic target replacement; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2820 UPDATE Chlamydia trachomatis 23S rRNA with mutation conferring resistance to macrolide antibiotics antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2822 UPDATE Mycoplasma hominis 23S rRNA with mutation conferring resistance to macrolide antibiotics antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2823 UPDATE Mycoplasma fermentans 23S rRNA with mutation conferring resistance to macrolide antibiotics antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 1409 UPDATE CMY-6 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1408 UPDATE TEM-124 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1403 UPDATE OXA-388 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATTCAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGTGCTTCAAAATCTGATGAAAAAGCAGAGAAAATTAAATATTTATTTAACGAAGCACACACTACGGGTGTTTTAGTTATTCAACAAGGCCAAATTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACTACAGAAGTATTTAAGTGGGACGGGCAAAAAAGGCTATTCCCAGAATGGGAAAAGAACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAATGAAGTGAAGCGTATTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAGTTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGTTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAGACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGAAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGCTTAGAACAATTAGGTATTTTATAG " 1402 UPDATE OXA-390 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 873 UPDATED strand with - UPDATED accession with KJ135342.1 UPDATED fmin with 48 UPDATED sequence with ATGAACATTAAAGCACTCTTACTTATAACAAGCGCTATTTTTATTTCAGCCTGCTCACCTTATATAGTGACTGCTAATCCAAATCACAGTGCTTCAAAATCTGATGACAAAGCAGAGAAAATTAAAAATTTATTTACCGAAGCACACACTACGGGTGTTTTAGTTATCCATCAAGGTCAAACTCAACAAAGCTATGGTAATGATCTTGCTCGTGCTTCGACCGAGTATGTACCTGCTTCGACCTTCAAAATGCTTAATGCTTTGATCGGCCTTGAGCACCATAAGGCAACCACCACAGAAGTATTTAAGTGGAACGGGCAAAAAAGGCTGTTCCCAGAATGGGAAAAGGACATGACCCTAGGCGATGCTATGAAAGCTTCCGCTATTCCGGTTTATCAAGATTTAGCTCGTCGTATTGGACTTGAACTCATGTCTAATGAAGTGAAGCGTGTTGGTTATGGCAATGCAGATATCGGTACCCAAGTCGATAATTTTTGGCTGGTGGGTCCTTTAAAAATTACTCCTCAGCAAGAGGCACAATTTGCTTACAAGCTAGCTAATAAAACGCTTCCATTTAGCCAAAAAGTCCAAGATGAAGTGCAATCCATGCTATTCATAGAAGAAAAGAATGGAAATAAAATATACGCAAAAAGTGGTTGGGGATGGGATGTAGACCCACAAGTAGGCTGGTTAACTGGATGGGTTGTTCAGCCTCAAGGGAATATTGTAGCGTTCTCCCTTAACTTAGAAATGAAAAAAGGAATACCTAGCTCTGTTCGAAAAGAGATTACTTATAAAAGTTTAGAACAATTAGGTATTTTATAG UPDATED NCBI_taxonomy_name with Acinetobacter baumannii UPDATED NCBI_taxonomy_id with 470 UPDATED NCBI_taxonomy_cvterm_id with 35507 UPDATED accession with AHL30283.1 UPDATED sequence with MNIKALLLITSAIFISACSPYIVTANPNHSASKSDDKAEKIKNLFTEAHTTGVLVIHQGQTQQSYGNDLARASTEYVPASTFKMLNALIGLEHHKATTTEVFKWNGQKRLFPEWEKDMTLGDAMKASAIPVYQDLARRIGLELMSNEVKRVGYGNADIGTQVDNFWLVGPLKITPQQEAQFAYKLANKTLPFSQKVQDEVQSMLFIEEKNGNKIYAKSGWGWDVDPQVGWLTGWVVQPQGNIVAFSLNLEMKKGIPSSVRKEITYKSLEQLGIL " 1401 UPDATE mefE efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; macrolide antibiotic; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TTGAAAATAGATAAAAAAAACGAGGCTTTCCTTATTGTAAGTAGAGGCATATCTCGAATTGGAGATATTATGTTTGACTTTGCGAATAATACCTTTCTTGCAGGATTAAATCCAACATCTTTATCATTGGTTGCAGTATATCAGTCACTAGAAAGTGTGATAGGTGTTCTTTTTAATTTATTTGGTGGAGTCATTGCAGATAGTTTCAAGCGGAAAAAAATTATTATTGTTGCAAATATCTTATGTGGTATTGCTTGTATAATTCTTTCATTCATATCACAAGAGCAGTGGATGGTCTTTGCAATTGTCATCACTAATATTATCTTGGCATTTATGAGTGCTTTTTCTGGACCGTCCTATAAAGCATTTACAAAAGAAATTGTAAAAAAGGATAGTATATCACAACTTAATTCATTGCTAGAGATAACAAGTACTATAATTAAAGTAACAATACCAATGGTAGCAATTTTATTATATAAGCTACTTGGGATACATGGTGTTTTACTATTGGATGGATTCTCATTTCTAATTGCTGCATCACTGATTTCCTTTATTGTACCCGTTAATGACGAAGTGGTCACAAAGGATAAAATGACAATAGGAGGAGTTTTAAATGACTTAAAAATAGGGTTTAAGTATATTTATAGTCATAAGACAATATTTATGATTATTATTCTCTCTGCTTTTGTTAATTTTTTTCTAGCAGCTTATAATTTATTGTTACCTTATAGTAATCAAATGTTTGGAGAAATTTCAGATGGGCTTTATGGTGTTTTTCTAACTGCGGAAGCAATTGGAGGATTTATTGGAGCGATATTAAGTGGTGTTATAAATAAAACCTTGTCAAGCAAACGTTTAATGGTCTTCTTATCATGTTCAGGATTGATGTTAATGCTATCAACGCCACTCTATTTTTTGTTTCAAAACTTCATTATTCTAGCCTTTTCTCCGGCATTATTTAGTCTATTTATTTCTATTTTTAATATTCAATTTTTCTCTATTGTTCAAAGAGAAGTTGATACTGAGTTTCTCGGTAGAGTCTTTGGAATCATCTTTACGGTAGCTATTCTTTTTATGCCAGTTGGGTCTGGATTTTTCTCAGTAGTTTTAAATCCTAACAATACTTTTAATCTTTTTATTATTGGTGTATCTATTACGATATTATCGCTAATATTCAGCACGCTATTGAAGAGGTATGATAAAAATAGCTGA " 1400 UPDATE CTX-M-74 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1407 UPDATE CMY-62 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1406 UPDATE OXA-121 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1405 UPDATE armA kanamycin A; aminoglycoside antibiotic; isepamicin; 16S rRNA methyltransferase (G1405); sisomicin; arbekacin; gentamicin B; netilmicin; antibiotic target alteration; gentamicin C; amikacin; dibekacin; G418; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1404 UPDATE IMP-3 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1546 UPDATE Erm(43) antibiotic target alteration; streptogramin antibiotic; Erm 23S ribosomal RNA methyltransferase; macrolide antibiotic; lincosamide antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 449 UPDATE SHV-133 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATGGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAGCGGGGTGCGCGCGGCATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATATATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 448 UPDATE dfrG iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAGTTTCTTTGATTGCTGCGATGGATAAGAATAGAGTGATTGGCAAAGAGAATGACATTCCTTGGAGGATTCCCAAGGACTGGGAATATGTTAAAAATACTACAAAGGGACATCCGATAATATTAGGTAGGAAGAACCTTGAATCAATCGGAAGAGCCTTACCTGACAGAAGAAATATTATTCTGACGAGAGATAAGGGGTTTACCTTTAATGGTTGTGAAATTGTTCATTCAATAGAAGATGTTTTTGAGTTATGTAAAAACGAAGAAGAAATTTTTATTTTCGGAGGAGAACAGATTTATAATTTGTTTTTCCCTTATGTTGAGAAAATGTACATCACAAAAATACATCATGAATTCGAAGGAGATACTTTTTTTCCAGAAGTGAATTATGAGGAATGGAATGAGGTATTTGCCCAAAAAGGGATAAAGAATGATAAAAATCCGTATAACTACTATTTTCATGTATATGAAAGAAAAAACTTATTGAGTTAA " 1339 UPDATE Mycobacterium tuberculosis embR mutant conferring resistance to ethambutol antibiotic target alteration; ethambutol resistant arabinosyltransferase; polyamine antibiotic; ethambutol; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 1417347 UPDATED strand with - UPDATED accession with AL123456.3 UPDATED fmin with 1416180 UPDATED sequence with ATGGCTGGTAGCGCGACAGTGGAGAAGCGGCTCGACTTCGGCCTGCTTGGACCATTGCAGATGACTATCGACGGCACCCCGGTGCCATCGGGCACCCCCAAGCAACGGGCTGTGCTAGCCATGTTGGTCATCAACCGCAACAGGCCCGTAGGAGTCGACGCCCTAATCACCGCCCTCTGGGAGGAGTGGCCACCCTCGGGCGCACGCGCGAGTATCCACTCCTACGTGTCTAATCTGCGTAAGCTCCTCGGTGGCGCCGGGATCGACCCACGGGTGGTGTTGGCCGCAGCGCCGCCGGGTTATCGGCTCAGCATCCCCGACAACACTTGCGATCTGGGGCGGTTTGTTGCCGAAAAAACCGCGGGCGTGCACGCGGCCGCCGCCGGCCGGTTCGAACAAGCCAGCCGCCACCTGTCGGCCGCATTGAGAGAATGGCGTGGGCCGGTGCTCGATGACCTGCGCGACTTCCAGTTCGTCGAACCCTTTGCCACGGCGCTGGTAGAAGACAAGGTTCTTGCCCATACCGCCAAGGCGGAGGCCGAAATCGCGTGTGGGCGGGCCAGCGCAGTGATCGCCGAGCTCGAGGCTCTGACATTCGAACACCCCTACCGGGAGCCGCTGTGGACACAGCTGATCACCGCCTACTACCTCTCCGACCGGCAATCCGATGCGCTGGGCGCCTATCGCCGGGTGAAGACAACACTGGCCGACGACCTCGGCATCGACCCCGGTCCGACGTTGCGCGCTCTCAACGAGCGGATTCTGCGTCAGCAACCGCTGGATGCCAAGAAGTCCGCCAAAACCACCGCTGCCGGCACCGTCACGGTGCTCGATCAGCGCACCATGGCGTCGGGCCAGCAGGCGGTGGCCTACCTGCACGACATCGCCTCGGGTCGCGGCTACCCACTGCAAGCCGCGGCGACCCGGATCGGGCGTCTGCATGACAACGACATCGTCCTAGACAGCGCCAACGTCAGCCGCCACCACGCCGTCATCGTCGACACGGGCACCAACTACGTCATCAACGACCTCCGATCGTCCAACGGCGTGCATGTGCAGCACGAGCGAATCCGCTCCGCGGTCACGCTGAACGACGGCGACCACATTCGCATCTGTGACCATGAATTCACGTTCCAGATCAGCGCGGGGACGCATGGCGGCACGTAG UPDATED NCBI_taxonomy_name with Mycobacterium tuberculosis H37Rv UPDATED NCBI_taxonomy_id with 83332 UPDATED NCBI_taxonomy_cvterm_id with 39507 UPDATED accession with CCP44023.1 UPDATED sequence with MAGSATVEKRLDFGLLGPLQMTIDGTPVPSGTPKQRAVLAMLVINRNRPVGVDALITALWEEWPPSGARASIHSYVSNLRKLLGGAGIDPRVVLAAAPPGYRLSIPDNTCDLGRFVAEKTAGVHAAAAGRFEQASRHLSAALREWRGPVLDDLRDFQFVEPFATALVEDKVLAHTAKAEAEIACGRASAVIAELEALTFEHPYREPLWTQLITAYYLSDRQSDALGAYRRVKTTLADDLGIDPGPTLRALNERILRQQPLDAKKSAKTTAAGTVTVLDQRTMASGQQAVAYLHDIASGRGYPLQAAATRIGRLHDNDIVLDSANVSRHHAVIVDTGTNYVINDLRSSNGVHVQHERIRSAVTLNDGDHIRICDHEFTFQISAGTHGGT " 1338 UPDATE Bla1 penam; class A Bacillus anthracis Bla beta-lactamase; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1547 UPDATE vanRC glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanR; vancomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCAGAAAAAATAGTCGTTGTTGATGATGAAAAAGAAATTGCGGACTTAGTCACGACCTTTTTGCAAAACGAAGGATTTAGTGTGCAGCCGTTTTATGATGGTACTAGTGCCATCGCCTATATTGAAAAAGAAGCCATTGATTTGGCCGTTTTAGATGTCATGTTGCCGGACATTGATGGTTTTCAACTGTTACAGCAGATCCGCAAGACCCATTTTTTCCCAGTGTTGATGCTGACTGCCAAGGGAGAGGATCTAGACAAAATCACTGGATTGAGTTTGGGAGCGGATGACTATGTCACCAAACCTTTTAATCCTTTAGAAGTTGTGGCTCGGGTAAAAACCCAATTGCGGCGCTACCAGCGATACAATCATTCCACTGCTTCTCCAACAGTAGAAGAATATGAAAAAGACGGCTTGATACTCAAAATCAACAGTCATCAATGCATTCTCTACGGCAAAGAAGTTTTCCTGACTCCCATTGAGTTCAAAATATTGCTTTATTTATTTGAGCACCAAGGATCCGTCGTCTCTTCCGAAACACTTTTCGAAGCGGTTTGGAAAGAAAAATATTTAGATAACAATAATACTGTCATGGCACACATTGCTCGTTTAAGAGAAAAATTGCATGAAGAACCTCGTAAACCTAAATTAATCAAAACCGTATGGGGGGTCGGCTATATCATTGAAAAATAG " 1335 UPDATE QnrB8 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1334 UPDATE SHV-126 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1337 UPDATE baeR antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; aminocoumarin antibiotic; novobiocin; efflux pump complex or subunit conferring antibiotic resistance; aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACCGAGTTACCAATCGACGAAAACACACCGCGTATTTTGATCGTGGAAGATGAACCGAAGCTGGGGCAGTTGCTCATTGATTATCTGCGTGCTGCGAGCTATGCGCCGACGCTTATCAGCCACGGCGATCAGGTACTGCCGTATGTGCGCCAGACACCACCGGATCTGATCCTGTTAGATCTGATGCTCCCTGGCACCGATGGCCTGACGCTGTGCCGGGAAATTCGTCGTTTTTCTGACATTCCGATCGTGATGGTGACGGCAAAAATCGAAGAGATCGATCGCCTGCTGGGGCTGGAGATTGGCGCAGATGATTATATCTGTAAGCCGTACAGCCCACGGGAAGTGGTAGCGCGCGTCAAAACCATTTTGCGCCGTTGCAAACCGCAGCGCGAGTTGCAGCAACAGGATGCTGAAAGCCCGTTGATTATCGACGAAGGTCGTTTTCAGGCTTCATGGCGCGGTAAAATGCTTGACCTGACGCCTGCGGAATTTCGTCTGCTGAAAACGCTCTCTCACGAACCAGGAAAAGTGTTCTCCCGCGAGCAATTGCTCAATCATCTTTATGACGACTACCGCGTAGTAACCGACCGCACCATCGACAGCCACATTAAAAACCTGCGCCGCAAGCTGGAATCTCTCGACGCCGAACAGTCATTTATCCGCGCCGTTTATGGCGTCGGTTACCGCTGGGAAGCCGACGCCTGCCGCATCGTTTAG " 1336 UPDATE BcII penam; antibiotic inactivation; cephalosporin; Bc beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAATACATTATTAAAATTAGGGGTATGTGTTAGTTTACTAGGAATAACTCCATTTGTTAGTACAATTTCTTCTGTACAAGCAGAACGAACGGTAGAGCATAAAGTAATAAAAAATGAGACAGGAACTATTTCGATTTCTCAGTTAAACAAAAATGTATGGGTTCATACGGAGTTAGGTTATTTTAGCGGAGAAGCAGTTCCTTCGAACGGTTTAGTCCTTAATACTTCTAAAGGGTTAGTACTTGTCGATTCTTCTTGGGATGATAAGTTAACGAAGGAATTAATAGAGATGGTAGAAAAGAAATTTAAGAAGCGCGTAACAGATGTCATTATTACACATGCACACGCTGATCGAATTGGTGGAATGAAAACATTGAAAGAAAGGGGCATTAAAGCGCATAGTACAGCGTTAACTGCGGAATTAGCAAAGAAAAATGGATATGAAGAACCACTTGGAGACTTACAAAGCGTTACAAATTTGAAGTTTGGAAATATGAAAGTAGAAACATTTTATCCAGGGAAGGGACATACAGAAGATAATATTGTTGTTTGGTTGCCACAATATCAAATTTTAGCTGGAGGCTGTTTAGTTAAATCTGCGTCCTCTAAAGATTTAGGAAACGTTGCTGATGCGTATGTAAATGAATGGTCCACATCGATTGAAAATGTGCTGAAGCGATATGGAAATATAAATTTAGTAGTGCCTGGTCATGGAGAAGTAGGGGATAGAGGATTACTTTTACATACATTGGATTTGTTGAAATAA " 1331 UPDATE CTX-M-52 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGTGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGTCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGACTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA " 690 UPDATE OXA-347 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2407 UPDATED strand with - UPDATED accession with JN086160 UPDATED fmin with 1582 UPDATED sequence with ATGAAAAATATTTTATTTGTAGTTTTTATTTCAATGATATTTTTATTTGTTTGCTGTAACACAACAACGAATAAAAACATAATTGAAACAGAAATTTCTGATTTTGACAAAATTTTAGATAGTTTTCAAGTAAATGGTTCAATTCTAATTTATGATAACGACAAGAATACTTTTTACTCAAATGACTTTGATTGGGCTAAAAACGGAAAATTACCTGCATCAACATTCAAAATTCCAAATTCTATAATTGCTGTTGAATTAGGCATTATTGAAAATGATACAACTATTTTAAAATGGAATGGCGAGCAGAGAAAAATGGATATTTGGGAAAAAGATTTATCATTTAAAGATGCTTTTAGAATTTCCTGTGTTCCTTGCTATCAGGAAATTGCAAGGAAAATCGGAACAATTAAAATGAAAGAATATTTAGAAAAATTTGAGTATAAAAATATGATTTTTGACAGTTTAACGATTGACAATTTTTGGCTTGAAGGAAATTCAAAAATATCTCAAAAACAACAAATCGACTTTTTAAGGAAATTCTATTTTTCAAAATTTCCAATTTCTGATAGGACAATAAAGATTGTCAAAAATATTATGGAAATTGAGCGAACTGAAAATTACATTTTAAGCGGTAAGACTGGATTAAGTTCGATAGAAGAAAAATATAATGGTTGGTTTGTTGGTTATGTTGAAACAAAATCTAATGTTTATTTTTTTGCAACAAATGTAATTCCGACAGACGGATTGAATGTTGATGATTTTATTTCATCGAGAATTAATGTAACAAAAAATGCGTTAAAGCAAATGAATATAATGAAATGA UPDATED NCBI_taxonomy_name with uncultured bacterium UPDATED NCBI_taxonomy_id with 77133 UPDATED NCBI_taxonomy_cvterm_id with 36791 UPDATED accession with AET35493.1 UPDATED sequence with MKNILFVVFISMIFLFVCCNTTTNKNIIETEISDFDKILDSFQVNGSILIYDNDKNTFYSNDFDWAKNGKLPASTFKIPNSIIAVELGIIENDTTILKWNGEQRKMDIWEKDLSFKDAFRISCVPCYQEIARKIGTIKMKEYLEKFEYKNMIFDSLTIDNFWLEGNSKISQKQQIDFLRKFYFSKFPISDRTIKIVKNIMEIERTENYILSGKTGLSSIEEKYNGWFVGYVETKSNVYFFATNVIPTDGLNVDDFISSRINVTKNALKQMNIMK " 1333 UPDATE vanHD glycopeptide antibiotic; glycopeptide resistance gene cluster; vanH; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAGGAAAAAATAGATATTACGGTTTTTGGGTGTGAGCGGGATGAAGCGGCGGTATTCCGTAAACTTTCATCTGAGTATGGCGTCACAGTTTCGCTCATCGAAGATGTCGTATCAGAGCACAATGCAAAATTAGCGGACGGATGCCAGTGTGTCAGCGTAAGCCATAAGGCGGAGCTGTCGGAGCAGCTTCTCCTTGCGCTGAAACACGCAGGAGTGAAATACATCAGTACCCGGAGCATTGGATTCAACCATATTGATATACAGGCTGCAGGTCAGTTGGGTATGGCTGTTGGCACAGTGGCATACTCACCGGGAAGCGTGGCCGATTATACCGTCATGCTGATGCTCATGCTGCTGCGCGGCACAAAGTCGGTTCTACGAGGAACCCAGAAGCAGAATTATTGTCTGAATGACTGCCGTGGAAAAGAACTGCAGGATTTGACGGTTGGCGTCCTGGGAACCGGACGAATCGGACAGGCAGTCATGGAACGCCTGGAGGGAATCGGCTGCAAGGTGTTGGCCTATGACCGAACTCACAAAGCCGGAGCAAATTATGTTTCGTTTTGTGAATTATTGAAGAGCAGCGACATTGTTACGCTGCATGTGCCTCTGGCAGAGGATACCCGCCATATGATTGGGCGCGAGCAGCTAGAGATGATGAAGAGGGAGGCACTTCTGATCAACACGGCACGGGGGGCTTTAGTGGATACGGCTGCACTGGTTGCTGCGCTGAAAGAACAAAAAATCGGCGGAGCCGCCTTAGATGTCCTGGAAGGGGAAGAAGGCATCTTTTACCATGAATGCACACAAAAAACGATAGGGCATCCTTACCTCTCCGTTTTGCAGAAAATGCCCAATGTCATTGTTACGCCGCATACGGCCTATCATACGGATCGGGTACTGGTCGATACCGTGAGCAATACCATCCGAAATTGTCTGAATTTTGAAAGGAGTCTTGGAAATGTATAA " 1332 UPDATE APH(3')-IIIa antibiotic inactivation; aminoglycoside antibiotic; plazomicin; paromomycin; kanamycin A; APH(3'); gentamicin B; lividomycin B; lividomycin A; ribostamycin; G418; neomycin; butirosin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCTAAAATGAGAATATCACCGGAATTGAAAAAACTGATCGAAAAATACCGCTGCGTAAAAGATACGGAAGGAATGTCTCCTGCTAAGGTATATAAGCTGGTGGGAGAAAATGAAAACCTATATTTAAAAATGACGGACAGCCGGTATAAAGGGACCACCTATGATGTGGAACGGGAAAAGGACATGATGCTATGGCTGGAAGGAAAGCTGCCTGTTCCAAAGGTCCTGCACTTTGAACGGCATGATGGCTGGAGCAATCTGCTCATGAGTGAGGCCGATGGCGTCCTTTGCTCGGAAGAGTATGAAGATGAACAAAGCCCTGAAAAGATTATCGAGCTGTATGCGGAGTGCATCAGGCTCTTTCACTCCATCGACATATCGGATTGTCCCTATACGAATAGCTTAGACAGCCGCTTAGCCGAATTGGATTACTTACTGAATAACGATCTGGCCGATGTGGATTGCGAAAACTGGGAAGAAGACACTCCATTTAAAGATCCGCGCGAGCTGTATGATTTTTTAAAGACGGAAAAGCCCGAAGAGGAACTTGTCTTTTCCCACGGCGACCTGGGAGACAGCAACATCTTTGTGAAAGATGGCAAAGTAAGTGGCTTTATTGATCTTGGGAGAAGCGGCAGGGCGGACAAGTGGTATGACATTGCCTTCTGCGTCCGGTCGATCAGGGAGGATATCGGGGAAGAACAGTATGTCGAGCTATTTTTTGACTTACTGGGGATCAAGCCTGATTGGGAGAAAATAAAATATTATATTTTACTGGATGAATTGTTTTAG UPDATED category_aro_name with plazomicin UPDATED category_aro_cvterm_id with 40307 UPDATED category_aro_accession with 3003675 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Plazomicin is a neoglycoside, or next-generation, aminoglycoside, that has been identified as a potentially useful agent to combat drug-resistant bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa. " 1545 UPDATE Escherichia coli gyrA conferring resistance to fluoroquinolones nybomycin; grepafloxacin; trovafloxacin; ofloxacin; norfloxacin; nalidixic acid; lomefloxacin; gatifloxacin; fluoroquinolone resistant gyrA; levofloxacin; sparfloxacin; antibiotic target alteration; enoxacin; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2339420 UPDATED strand with - UPDATED accession with U00096.3 UPDATED fmin with 2336792 UPDATED sequence with ATGAGCGACCTTGCGAGAGAAATTACACCGGTCAACATTGAGGAAGAGCTGAAGAGCTCCTATCTGGATTATGCGATGTCGGTCATTGTTGGCCGTGCGCTGCCAGATGTCCGAGATGGCCTGAAGCCGGTACACCGTCGCGTACTTTACGCCATGAACGTACTAGGCAATGACTGGAACAAAGCCTATAAAAAATCTGCCCGTGTCGTTGGTGACGTAATCGGTAAATACCATCCCCATGGTGACTCGGCGGTCTATGACACGATCGTCCGCATGGCGCAGCCATTCTCGCTGCGTTATATGCTGGTAGACGGTCAGGGTAACTTCGGTTCTATCGACGGCGACTCTGCGGCGGCAATGCGTTATACGGAAATCCGTCTGGCGAAAATTGCCCATGAACTGATGGCCGATCTCGAAAAAGAGACGGTCGATTTCGTTGATAACTATGACGGCACGGAAAAAATTCCGGACGTCATGCCAACCAAAATTCCTAACCTGCTGGTGAACGGTTCTTCCGGTATCGCCGTAGGTATGGCAACCAACATCCCGCCGCACAACCTGACGGAAGTCATCAACGGTTGTCTGGCGTATATTGATGATGAAGACATCAGCATTGAAGGGCTGATGGAACACATCCCGGGGCCGGACTTCCCGACGGCGGCAATCATTAACGGTCGTCGCGGTATTGAAGAAGCTTACCGTACCGGTCGCGGCAAGGTGTATATCCGCGCTCGCGCAGAAGTGGAAGTTGACGCCAAAACCGGTCGTGAAACCATTATCGTCCACGAAATTCCGTATCAGGTAAACAAAGCGCGCCTGATCGAGAAGATTGCGGAACTGGTAAAAGAAAAACGCGTGGAAGGCATCAGCGCGCTGCGTGACGAGTCTGACAAAGACGGTATGCGCATCGTGATTGAAGTGAAACGCGATGCGGTCGGTGAAGTTGTGCTCAACAACCTCTACTCCCAGACCCAGTTGCAGGTTTCTTTCGGTATCAACATGGTGGCATTGCACCATGGTCAGCCGAAGATCATGAACCTGAAAGACATCATCGCGGCGTTTGTTCGTCACCGCCGTGAAGTGGTGACCCGTCGTACTATTTTCGAACTGCGTAAAGCTCGCGATCGTGCTCATATCCTTGAAGCATTAGCCGTGGCGCTGGCGAACATCGACCCGATCATCGAACTGATCCGTCATGCGCCGACGCCTGCAGAAGCGAAAACTGCGCTGGTTGCTAATCCGTGGCAGCTGGGCAACGTTGCCGCGATGCTCGAACGTGCTGGCGACGATGCTGCGCGTCCGGAATGGCTGGAGCCAGAGTTCGGCGTGCGTGATGGTCTGTACTACCTGACCGAACAGCAAGCTCAGGCGATTCTGGATCTGCGTTTGCAGAAACTGACCGGTCTTGAGCACGAAAAACTGCTCGACGAATACAAAGAGCTGCTGGATCAGATCGCGGAACTGTTGCGTATTCTTGGTAGCGCCGATCGTCTGATGGAAGTGATCCGTGAAGAGCTGGAGCTGGTTCGTGAACAGTTCGGTGACAAACGTCGTACTGAAATCACCGCCAACAGCGCAGACATCAACCTGGAAGATCTGATCACCCAGGAAGATGTGGTCGTGACGCTCTCTCACCAGGGCTACGTTAAGTATCAGCCGCTTTCTGAATACGAAGCGCAGCGTCGTGGCGGGAAAGGTAAATCTGCCGCACGTATTAAAGAAGAAGACTTTATCGACCGACTGCTGGTGGCGAACACTCACGACCATATTCTGTGCTTCTCCAGCCGTGGTCGCGTCTATTCGATGAAAGTTTATCAGTTGCCGGAAGCCACTCGTGGCGCGCGCGGTCGTCCGATCGTCAACCTGCTGCCGCTGGAGCAGGACGAACGTATCACTGCGATCCTGCCAGTGACCGAGTTTGAAGAAGGCGTGAAAGTCTTCATGGCGACCGCTAACGGTACCGTGAAGAAAACTGTCCTCACCGAGTTCAACCGTCTGCGTACCGCCGGTAAAGTGGCGATCAAACTGGTTGACGGCGATGAGCTGATCGGCGTTGACCTGACCAGCGGCGAAGACGAAGTAATGCTGTTCTCCGCTGAAGGTAAAGTGGTGCGCTTTAAAGAGTCTTCTGTCCGTGCGATGGGCTGCAACACCACCGGTGTTCGCGGTATTCGCTTAGGTGAAGGCGATAAAGTCGTCTCTCTGATCGTGCCTCGTGGCGATGGCGCAATCCTCACCGCAACGCAAAACGGTTACGGTAAACGTACCGCAGTGGCGGAATACCCAACCAAGTCGCGTGCGACGAAAGGGGTTATCTCCATCAAGGTTACCGAACGTAACGGTTTAGTTGTTGGCGCGGTACAGGTAGATGACTGCGACCAGATCATGATGATCACCGATGCCGGTACGCTGGTACGTACTCGCGTTTCGGAAATCAGCATCGTGGGCCGTAACACCCAGGGCGTGATCCTCATCCGTACTGCGGAAGATGAAAACGTAGTGGGTCTGCAACGTGTTGCTGAACCGGTTGACGAGGAAGATCTGGATACCATCGACGGCAGTGCCGCGGAAGGGGACGATGAAATCGCTCCGGAAGTGGACGTTGACGACGAGCCAGAAGAAGAATAA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. MG1655 UPDATED NCBI_taxonomy_id with 511145 UPDATED NCBI_taxonomy_cvterm_id with 36849 UPDATED accession with AAC75291.1 UPDATED sequence with MSDLAREITPVNIEEELKSSYLDYAMSVIVGRALPDVRDGLKPVHRRVLYAMNVLGNDWNKAYKKSARVVGDVIGKYHPHGDSAVYDTIVRMAQPFSLRYMLVDGQGNFGSIDGDSAAAMRYTEIRLAKIAHELMADLEKETVDFVDNYDGTEKIPDVMPTKIPNLLVNGSSGIAVGMATNIPPHNLTEVINGCLAYIDDEDISIEGLMEHIPGPDFPTAAIINGRRGIEEAYRTGRGKVYIRARAEVEVDAKTGRETIIVHEIPYQVNKARLIEKIAELVKEKRVEGISALRDESDKDGMRIVIEVKRDAVGEVVLNNLYSQTQLQVSFGINMVALHHGQPKIMNLKDIIAAFVRHRREVVTRRTIFELRKARDRAHILEALAVALANIDPIIELIRHAPTPAEAKTALVANPWQLGNVAAMLERAGDDAARPEWLEPEFGVRDGLYYLTEQQAQAILDLRLQKLTGLEHEKLLDEYKELLDQIAELLRILGSADRLMEVIREELELVREQFGDKRRTEITANSADINLEDLITQEDVVVTLSHQGYVKYQPLSEYEAQRRGGKGKSAARIKEEDFIDRLLVANTHDHILCFSSRGRVYSMKVYQLPEATRGARGRPIVNLLPLEQDERITAILPVTEFEEGVKVFMATANGTVKKTVLTEFNRLRTAGKVAIKLVDGDELIGVDLTSGEDEVMLFSAEGKVVRFKESSVRAMGCNTTGVRGIRLGEGDKVVSLIVPRGDGAILTATQNGYGKRTAVAEYPTKSRATKGVISIKVTERNGLVVGAVQVDDCDQIMMITDAGTLVRTRVSEISIVGRNTQGVILIRTAEDENVVGLQRVAEPVDEEDLDTIDGSAAEGDDEIAPEVDVDDEPEEE " 1542 UPDATE amrA efflux pump complex or subunit conferring antibiotic resistance; aminoglycoside antibiotic; resistance-nodulation-cell division (RND) antibiotic efflux pump; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2152165 UPDATED strand with - UPDATED accession with NC_006350.1 UPDATED fmin with 2150965 UPDATED sequence with ATGAAATACGAATGGGCACGCACGCGCCGCTTGTCGGCGGCGCTCGCGGTCGCGGCGTTCGTCGCGGCCGGCTGCGGCAAGCACGAAAGCGAGCACGACGCCGCCGCGCCGCGCGAGGCGAGCGTCGTCACGGTGAAGAAGACATCGGTGCCGCTGTCGGTCGAATTGCCGGGCCGGCTCGACGCGTACCGGCAGGCCGAGGTGCGCGCGCGGGTCGCGGGCATCGTGACCGCGCGCACCTACGAGGAAGGGCAGGAAGTCAAGCGCGGCGCGGTGCTGTTCAGGATCGATCCCGCGCCGTTCAAGGCGGCGCGCGACGCGGCCGCGGGCGCGCTCGAGAAGGCGCGGGCCGCGCACCTCGCGGCGCTCGACAAGCGCCGCCGCTATGACGAGCTCGTGCGCGACCGCGCGGTCAGCGAGCGCGACCACACCGAGGCGCTCGCCGACGAACGGCAGGCGAAGGCGGCCGTCGCGTCGGCGCGCGCGGAGCTCGCGCGCGCGCAACTGCAGCTCGATTACGCGACCGTCACCGCGCCGATCGACGGCCGCGCGCGCCGCGCGCTCGTGACCGAAGGCGCGCTCGTCGGCCAGGATCAGGCGACGCCGCTCACGACCGTCGAGCAGCTCGATCCGATCTACGTGAACTTCTCGCAGCCCGCGGCCGACGTCGAATCGCTGCGGCGCGCGGTGAAGAGCGGACGCGCGGCGGGCATCGCGCAGCAGGACGTCGAGGTGACGCTCGTGCGCCCGGACGGCAGCACGTACGCGCGCAAGGGCAAGCTGCTGTTCGCGGATCTTGCCGTCGACCCGTCCACCGACACGGTGGCGATGCGTGCGCTCTTTCCGAACCCGGAGCGCGAACTGCTGCCCGGCGCGTACGTGCGGATCGCGCTCGATCGCGCGGTCGCGCGCGACGCGATCCTCGTGCCGCGCGACGCGCTGCTGCGCACGGCCGACAGCGCGACCGTCAAGGTCGTCGGCCAGAACGGCAAGATACGCGACGTGACGGTCGAGGCCGCGCAGATGAAAGGCCGCGACTGGATCGTCACGCGCGGGCTCGCGGGCGGCGAGCGCGTCGTCGTCGTCGACGCCGCGCAATTCGAAGCAGGCACGACGGTGAAGGCGCTCGAGCGCGGCGCCGCCGCGCAGCCGGCCTCCGGCGCCGCCGCGGCTTCCGCGCCCGGCCGGCGCTCAACCTGA UPDATED NCBI_taxonomy_name with Burkholderia pseudomallei K96243 UPDATED NCBI_taxonomy_id with 272560 UPDATED NCBI_taxonomy_cvterm_id with 41211 UPDATED accession with YP_108403.1 UPDATED sequence with MKYEWARTRRLSAALAVAAFVAAGCGKHESEHDAAAPREASVVTVKKTSVPLSVELPGRLDAYRQAEVRARVAGIVTARTYEEGQEVKRGAVLFRIDPAPFKAARDAAAGALEKARAAHLAALDKRRRYDELVRDRAVSERDHTEALADERQAKAAVASARAELARAQLQLDYATVTAPIDGRARRALVTEGALVGQDQATPLTTVEQLDPIYVNFSQPAADVESLRRAVKSGRAAGIAQQDVEVTLVRPDGSTYARKGKLLFADLAVDPSTDTVAMRALFPNPERELLPGAYVRIALDRAVARDAILVPRDALLRTADSATVKVVGQNGKIRDVTVEAAQMKGRDWIVTRGLAGGERVVVVDAAQFEAGTTVKALERGAAAQPASGAAAASAPGRRST " 1631 UPDATE CTX-M-71 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCTGTGGCTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA " 1543 UPDATE CMY-22 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 39 UPDATE AAC(3)-Ia antibiotic inactivation; AAC(3); plazomicin; sisomicin; gentamicin B; gentamicin C; aminoglycoside antibiotic; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with plazomicin UPDATED category_aro_cvterm_id with 40307 UPDATED category_aro_accession with 3003675 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Plazomicin is a neoglycoside, or next-generation, aminoglycoside, that has been identified as a potentially useful agent to combat drug-resistant bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa. " 38 UPDATE APH(3')-Va antibiotic inactivation; aminoglycoside antibiotic; paromomycin; APH(3'); ribostamycin; G418; neomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGACGACAGCACGTTGCGCCGGAAGTACCCGCACCACGAGTGGCACGCAGTGAACGAAGGAGACTCGGGCGCCTTCGTCTACCAGCTCACCGGCGGCCCCGAGCCCCAGCCCGAGCTCTACGCGAAGATCGCCCCCCGCGCCCCCGAGAACTCCGCCTTCGACCTGTCCGGCGAGGCCGACCGGCTGGAGTGGCTCCACCGCCACGGGATCCCCGTCCCCCGCGTCGTCGAGCGCGGTGCCGACGACACCGCCGCGTGGCTCGTCACGGAGGCCGTCCCCGGCGTCGCGGCGGCCGAGGAGTGGCCCGAGCACCAGCGGTTCGCCGTGGTCGAGGCGATGGCGGAGCTGGCCCGCGCCCTCCACGAGCTGCCCGTGGAGGACTGCCCCTCCGACCGGCGCCTCGACGCGGCGGTCGCCGAGGCCCGGCGGAACGTCGCCGAGGGCTTGGTGGACCTCGACGACCTGCAGGAGGAGCGGGCCGGGTGGACCGGCGACCAGCTCCTGGCGGAGCTCGACCGCACCCGTCCCGAGAAGGAGGACCTGGTCGTCTGCCATGGCGACCTGTGCCCCAACAACGTCCTGCTCGACCCCGGGACCTGCCGGGTCACCGGCGTGATCGACGTCGGCCGCCTCGGGGTCGCCGACCGCCACGCCGACATCGCCTTGGCCGCCCGCGAGCTGGAGATCGACGAGGACCCCTGGTTCGGCCCCGCCTACGCCGAGCGGTTCCTGGAGCGGTACGGCGCCCACCGCGTCGACAAGGAGAAGCTGGCCTTCTACCAGCTTCTCGACGAGTTCTTCTAG " 1540 UPDATE rmtC kanamycin A; aminoglycoside antibiotic; isepamicin; 16S rRNA methyltransferase (G1405); sisomicin; arbekacin; gentamicin B; netilmicin; antibiotic target alteration; gentamicin C; amikacin; dibekacin; G418; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 33 UPDATE msrE streptogramin antibiotic; ABC-F ATP-binding cassette ribosomal protection protein; antibiotic target protection; macrolide antibiotic; erythromycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTTTAATTATTAAAGCGAGAAACATACGCTTGGATTATGCTGGGCGTGATGTTTTGGATATTGATGAATTGGAAATTCACTCTTATGACCGTATTGGTCTTGTGGGTGATAACGGAGCAGGAAAGAGTAGTTTACTCAAAGTACTTAATGGCGAAATTGTTTTAGCCGAAGCGACATTACAGCGTTTTGGTGATTTTGCACATATCAGCCAACTGGGCGGAATCGAAATAGAAACGGTCGAAGACCGGGCAATGTTATCTCGCCTTGGTGTTTCCAATGTACAAAACGACACAATGAGTGGCGGAGAGGAAACTCGTGCAAAAATTGCTGCCGCATTTTCCCAACAAGTACATGGCATTCTAGCGGATGAACCAACCAGCCACCTTGATCTCAATGGAATAGATCTACTTATTGGTCAACTTAAAGCATTTGATGGAGCATTACTTGTTATCAGTCATGACCGATATTTTCTTGATATGGTTGTAGACAAGATATGGGAGTTAAAAGACGGTAAAATTACGGAATATTGGGGTGGTTACTCGGATTACTTGCGTCAAAAAGAAGAAGAGCGACAACACCAAGCCGTAGAATATGAGCTGATGATGAAGGAACGGGAGCGATTAGAATCTGCTGTGCAAGAAAAACGCCAGCAAGCTAATCGATTAGACAATAAGAAAAAAGGAGAAAAATCCAAAAACTCTACCGAAAGTGCTGGACGACTTGGGCATGCAAAAATGACTGGCACCAAGCAAAGAAAACTGTATCAGGCAGCTAAGAGTATGGAAAAGCGTTTGGCTGCATTAGAAGATATTCAAGCACCAGAGCATTTGCGTTCTATTCGTTTTCGTCAAAGTTCAGCCCTAGAACTGCACAATAAGTTCCCGATTACGGCAGATGGTCTGAGCTTAAAATTTGGTAGCCGTACTATCTTTGATGACGCTAACTTTATAATACCGCTTGGCGCTAAAGTCGCTATAACTGGATCGAATGGAACAGGGAAAACGTCCTTGTTAAAAATGATATCAGAACGTGCTGATGGATTAACCATATCTCCAAAAGCTGAAATTGGCTACTTTACACAAACAGGATATAAATTTAACACGCATAAATCTGTGCTCTCCTTTATGCAGGAAGAGTGCGAGTACACAGTTGCGGAAATTCGTGCAGTATTGGCTTCAATGGGGATCGGAGCGAATGATATTCAAAAAAACTTATCCGACTTATCGGGAGGTGAAATCATCAAACTGCTTTTATCCAAAATGCTTTTAGGAAAATATAATATTTTGCTTATGGATGAACCAGGAAACTATCTTGACCTAAAAAGTATTGCCGCATTAGAAACAATGATGAAGTCCTATGCAGGAACTATTATCTTCGTATCTCATGACAAGCAATTGGTCGATAATATTGCTGACATTATCTACGAGATCAAAGACCACAAAATCATCAAGACTTTTGAGAGAGATTGTTAA DELETED 36001 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. UPDATED category_aro_name with erythromycin UPDATED category_aro_cvterm_id with 35925 UPDATED category_aro_accession with 0000006 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited. " 32 UPDATE DHA-15 antibiotic inactivation; cephalosporin; cephamycin; DHA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 31 UPDATE CTX-M-155 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 30 UPDATE OXA-226 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 37 UPDATE Escherichia coli mdfA antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; benzalkonium chloride; tetracycline antibiotic; rhodamine; tetracycline; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 36 UPDATE Mycobaterium leprae gyrA conferring resistance to fluoroquinolones nybomycin; grepafloxacin; trovafloxacin; ofloxacin; norfloxacin; nalidixic acid; lomefloxacin; gatifloxacin; fluoroquinolone resistant gyrA; levofloxacin; sparfloxacin; antibiotic target alteration; enoxacin; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with ATGACTGATATCACGCTGCCACCAGGTGACGGTTCTATACAGCGGGTTGAGCCGGTCGACATTCAGCAGGAAATGCAGCGCAGCTATATTGATTACGCGATGAGTGTGATTGTGGGCCGGGCGTTGCCTGAAGTCCGCGATGGTCTCAAACCGGTACATCGTCGGGTCTTGTACGCGATGTTAGACTCCGGTTTCCGCCCGGACCGTAGCCACGCTAAGTCAGCACGGTCAGTCGCTGAGACGATGGGCAATTACCATCCGCACGGCGACGCATCGATTTATGACACGTTAGTGCGCATGGCGCAGCCGTGGTCGCTGCGGTATCCCTTGGTTGATGGGCAAGGCAATTTCGGTTCGCCGGGTAATGACCCACCGGCAGCGATGCGTTATTGTGTGTCAGGAAATTCCTTGGTGAGGTTGCTATTTGGGAAATCAATACGAATCGGTGATATCGTTACTGGAGCTCAGTTCAATTCGGACAATCCGATCGACTTGAAGGTTCTTGATCGGCATGGTAATCCGGTTGTAGCCGATTATTTATTCCATTCAGGAGAGCACCAAACCTATACAGTGCGCACCACTGAAGGCTATGAGATCACCGGGACGTCGAACCATCCCTTGTTGTGTTTAGTGAATGTCGGCGGTATACCCACCTTGTTGTGGAAGCTGATTGGAGAAATTCGATCAGGAGACTACGTTGTTTTACAGCGGATCCCACCAGTGGAATTTGGTCCGGCGGACTGGTATTCTACGATGGAAGCATTGTTATTCGGAGCCTTTATTAGTGGGGGCTTCGTTTTTCAGGACCATGCTGGATTTAACAGCCTTGACCGTGACTATTTCACCATGGTTGTTAATGCTTATGATACGGTTGTGGGTGGCCTGCGTTGCATATCTTCTCGAATCACCGTATCGGGGTCGACGCTACTCGAACTTGATGTTTATAACCTCATCGAGTTTAAGAAGACAAGACTTAGCGGTTTATGCGGGCAACGGTCTGCGGACAAGTTGGTACCTGACTGGTTGTGGCACTCACCTTCCACCGTCAAACGAGCATTCCTTCAGGCATTGTTTGAAGGTGAAGGATTTTCTTCGATATTGTCGCGAAATATAATTGAGATTTCCTACTCGACACTTAGTGAGCGACTGGCCGCCGACGTCCAGCAGATGCTGCTTGAATTCGGAGTCGTGTCTGAGCGCTATTGCCATACTGTCAATGAGTACAAGGTTGTCATAGCTAACCGCGCTCAAGTAGAAATGTTTTTCACCCAAGTCGGTTTCGGTGTTACTAAACAAGCTAAGCTTATCCGGGACGTGGTATCTATGTCTCCATGCGTTGGCATGGATATCAACTGCGTACCAGGTTTGGCCACTTTCATTCGTAAGCATTGTGATAACCGCTGGGTCGAGGAAGACTCATTTAATCAGCATAATGTTGATTGCGTCCAACATTGGCACCATCATAGCGCGGAAATCGTCGGCCACATCGCCGATCCCGATATTCGTGCCATCGTGACTGACCTTACTGATGGCCGGTTCTACTACGCGCGCGTCGCGTCCGTGACTGATACCGGTATTCAACCTGTGTTCAGTCTACATGTGGACACCGAGGATCATTCGTTTTTGACTAATGGATTCATCAGCCATAACACCGAGGCTCGGCTTACTCCATTGGCGATGGAAATGTTGCGCGAGATCGACGAGGAGACAGTTGATTTCATATCTAACTACGATGGCCGGGTGCAGGAACCGATGGTGTTGCCTAGCCGTTTTCCCAACCTGTTGGCTAATGGTTCTGGCGGTATCGCGGTCGGCATGGCTACCAATATCCCGCCGCACAACCTGTATGAGCTCGCCGACGCTGTGTTTTGGTGCCTAGAGAACCATGACGCTGACGAAGAGACGATGCTGGTCGCTGTTATGGAACGGGTCAAAGGTCCTGATTTCCCTACCGCCGGGTTGATTGTCGGTTCGCAAGGCATTGCCGATGCTTACAAGACTGGCCGTGGTTCCATTCGGATACGCGGAGTTGTTGAGGTTGAAGAAGATTCACGCGGAAGGACGTCATTGGTCATCACTGAGCTACCGTATCAGGTCAACCACGACAACTTCATCACTTCTATCGCTGAGCAAGTCCGCACTGGCCGGCTAGCCGGCATCTCCAATGTAGAAGACCAAGGCAGCGACCGGGTTGGTGTACGTATCGTCATCGAGATCAAGCGTGACGCGGTGGCCAAAGTGGTGCTCAATAACCTGTACAAGCATACTCAGCTGCAAACTAGTTTCGGAGCCAACATGTTGTCAATCGTTGACGGCGTGCCGCGCACTTTGCGGTTGGATCAGATGATTTGTTATTATGTCGAACATCAACTGGACGTCATTGTCCGGCGCACTACCTACCGATTGCGTAAAGCCAACGAGCGGGCTCATATTTTGCGTGGATTGGTCAAAGCGCTCGATGCGTTAGATGAGGTTATTACGTTGATTCGGGCATCGCAGACCGTGGATATTGCTCGTGTTGGGGTGGTCGAGTTACTCGATATCGACGACATTCAGGCTCAAGCTATCCTGGACATGCAGCTGCGGCGTTTGGCGGCTTTGGAGCGTCAACGCATTATTGATGATCTCGCTAAGATTGAGGTCGAGATCGCTGATCTGGGAGATATTCTGGCTAAGCCGGAGCGTCGGCGTGGTATCATTCGTAATGAACTGACTGAGATCGCAGAGAAGTACGGTGATGACCGTCGTACTCGGATAATAGCGGTTGATGGTGATGTCAACGACGAGGATTTGATTGCTCGTGAAGAGGTCGTTGTCACGATAACTGAAACTGGATATGCTAAACGTACTAAAACTGACCTGTATCGCAGCCAGAAACGCGGCGGGAAAGGTGTTCAAGGCGCCGGTTTGAAGCAGGACGACATCGTCCGGCATTTCTTCGTGTGTTCAACTCACGATTGGATCCTGTTTTTCACCACCCAAGGCCGCGTATACCGGGCCAAGGCCTATGAATTGCCAGAGGCTTCTCGAACGGCACGCGGGCAACACGTGGCCAATTTGCTTGCATTCCAGCCTGAAGAGCGCATCGCTCAGGTAATTCAGATCCGTAGCTATGAAGACGCTCCATACTTGGTCCTTGCCACGCGCGCCGGTCTGGTTAAGAAGTCAAAGTTGACCGATTTTGACTCTAATCGTTCGGGTGGGATCGTGGCAATTAATTTACGTGACAACGATGAGTTGGTCGGTGCAGTGTTGTGCGCGGCCGACGGCGACTTGCTTCTGGTATCGGCTAACGGCCAGTCTATCCGGTTCTCAGCGACTGACGAGGCCTTGCGTCCGATGGGGCGGGCTACCTCTGGTGTGCAGGGCATGCGGTTTAACGCCGATGATCGACTGTTGTCGTTGAATGTGGTTCGCGAAGATACTTACCTGCTTGTCGCAACGTCTGGGGGTTACGCTAAACGCACCTCGATTGAGGAGTACCCGATGCAGGGCCGTGGCGGAAAGGGTGTTCTAACGGTCATGTACGATCGTCGGCGCGGTAGCTTGGTTGGGGCCATCGTGGTTGATGAAGACAGCGAGTTGTACGCGATCACCTCAGGGGGTGGGGTAATTCGTACAACGGCACGCCAGGTTCGCCAGGCAGGACGCCAGACCAAGGGTGTTCGGTTGATGAACTTAGGTGAGGGCGACACGCTGTTAGCCATCGCACGTAATGCCGAAGAAAGCGCCGACGGCGGTGTCGGTTAA " 35 UPDATE FosA2 fosfomycin; fosfomycin thiol transferase; antibiotic inactivation; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCTGCAATCACTCAACCATCTGACCCTCGCGGTCAGCGACCTGCAAAAAAGCGTTACCTTCTGGCACGAGCTGCTGGGGCTGACGCTGCACGCCCGCTGGAATACCGGGGCCTATCTTACCTGCGGCGATCTGTGGGTCTGCCTGTCCTATGACGAGGCGCGCGGTTACGTGCCGCCGCAGGAGAGCGACTATACCCATTACGCGTTTACCGTTGCGGCGGAAGATTTTGAGCCGTTCTCGCACAAGCTGGAGCAGGCGGGCGTTACCGTCTGGAAGCAAAACAAAAGTGAGGGGGCATCGTTCTATTTTCTCGACCCGGACGGGCACAAGCTGGAGCTGCACGTGGGCAGCCTCGCCGCGCGGCTGGCGGCGTGCCGGGAGAAACCCTATGCCGGAATGGTCTTCACCTCAGACGAGGCTTGA " 34 UPDATE OXY-6-3 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1241 UPDATE TEM-144 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1240 UPDATE Bacillus Cluster A intrinsic mph antibiotic inactivation; macrolide phosphotransferase (MPH); macrolide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 72986 UPDATED strand with - UPDATED accession with ACMJ01000036.1 UPDATED fmin with 72074 UPDATED sequence with TTGGAGGAAATAAAAATGAACACACTTAAAATTAAACAATTAGCAACTAAGGAAGGCCTAAATATCTTAGAAGATTCAATAAAAATCAATGAATCTGGTGTTGACTTTCAAGTAGCACACGCTAAAGAACAAAACGGAGATAAATGGATACTAAGAATTCCTCGTAGACCAGAATCTATGAGACATGTCCTACAAGAAAAAAAGGCATTGGAAATCATAAAAAACCATGCAGGATTCCAAGTTCCTGATTGGTCTATATTCACTGAAGACTTAATTGCCTATAAGCAACTAAGTGGCGTTCCTGCCGCCACTATTGATATAGAACAACAAGGATATATATGGAGCTTTAATGAAAAAAACGCACCATCTGAATACCATATTTCATTAGGAAAAGTTCTAGCGAATTTACACTCATTACCTCAACAAGAATTTAATAATATCGGTATTGAAATTCTTACTGCTAATGAATTAAGAGCTTCTATGGAACAAAGGATGAATCGAGTGAAGGAACAATACTATGTCAATCAAAAATTATGGGATCGTTGGCAAGCATGGCTAACTGAAGATTCTTTTTGGCCATCTCATGTAGGAGTAACGCATGGGGATATACATCCAGGTCATATCCTGATTGATAAGAAAAATAATGTAACTGGCTTAATCGATTGGACAGAAGTAGGGATAGCTGATGTTTCTATAGATTTCACATCACATTATCTGCTCTTTGGGAAAGATGGACTAACAAAGTTAATTAGCTCTTATGACAATGCTGGTGGTAAAACTTGGTCAAGAATGGATGAACATATTATCGAACTTCTAACAACAAGTAGTATCACTGTTGCTGAATATGCTCAAGTGTCAGGTTTGAAAGAGATGCATGAAGCAGCTGTACACATGCTAGCAACTGAAAGTTAA UPDATED NCBI_taxonomy_name with Bacillus cereus Rock3-29 UPDATED NCBI_taxonomy_id with 526984 UPDATED NCBI_taxonomy_cvterm_id with 39617 UPDATED accession with EEL41021.1 UPDATED sequence with MEEIKMNTLKIKQLATKEGLNILEDSIKINESGVDFQVAHAKEQNGDKWILRIPRRPESMRHVLQEKKALEIIKNHAGFQVPDWSIFTEDLIAYKQLSGVPAATIDIEQQGYIWSFNEKNAPSEYHISLGKVLANLHSLPQQEFNNIGIEILTANELRASMEQRMNRVKEQYYVNQKLWDRWQAWLTEDSFWPSHVGVTHGDIHPGHILIDKKNNVTGLIDWTEVGIADVSIDFTSHYLLFGKDGLTKLISSYDNAGGKTWSRMDEHIIELLTTSSITVAEYAQVSGLKEMHEAAVHMLATES " 1535 UPDATE CMY-16 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1534 UPDATE PER-5 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; PER beta-lactamase; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1245 UPDATE TEM-114 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1532 UPDATE OXA-249 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1247 UPDATE CMY-72 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTGGCGATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATGACGTTACGGATAAAGCCGAATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGCGGTGAAATCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAACTATGCCTGGGGCTATCTCGAAGGGAAGCCTGTGCACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACAGGTGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATAGTGATGCTGGCAAACAAAAGCTATCCTAACCCGGCTCGCGTAGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA " 1530 UPDATE OXA-67 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1249 UPDATE FOX-5 antibiotic inactivation; cephamycin; cephalosporin; FOX beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 648 UPDATE GES-4 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGCTTCATTCACGCACTATTACTGGCAGGGATCGCTCACTCTGCATATGCGTCGGAAAAATTAACCTTCAAGACCGATCTTGAGAAGCTAGAGCGCGAAAAAGCAGCTCAGATCGGTGTTGCGATCGTCGATCCCCAAGGAGAGATCGTCGCGGGCCACCGAACGGCGCAGCGCTTTGCAATGTGCTCAACGTTCAAGTTTCCGCTAGCCGCGCTGGTCTTTGAAAGAATTGACTCAGGCACCGAGCGGGGGGATCGAAAACTTTCATATGGGCCGGACATGATCGTCAAATGGTCTCCTGCCACGGAGCGGTTTCTAGCATCGGGACACATGACGGTTCTCGAGGCAGCGCAAGCTGCGGTGCAGCTTAGCGACAATGGGGCTACTAACCTCTTACTGAGAGAAATTGGCGGACCTGCTGCAATGACGCAGTATTTTCGTAAAATTGGCGACTCTGTGAGTCGGCTAGACCGGAAAGAGCCGGAGATGAGCGACAACACACCTGGCGACCTCAGAGATACAACTACGCCTATTGCTATGGCACGTACTGTGGCTAAAGTCCTCTATGGCGGCGCACTGACGTCCACCTCGACCCACACCATTGAGAGGTGGCTGATCGGAAACCAAACGGGAGACGCGACACTACGAGCGGGTTTTCCTAAAGATTGGGTTGTTGGAGAGAAAACTGGTACCTGCGCCAACGGGGGCCGGAACGACATTGGTTTTTTTAAAGCCCAGGAGAGAGATTACGCTGTAGCGGTGTATACAACGGCCCCGAAACTATCGGCCGTAGAACGTGACGAATTAGTTGCCTCTGTCGGTCAAGTTATTACACAACTCATCCTGAGCACGGACAAATAG " 1539 UPDATE aadA3 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGGGTAGCGGTGACCATCGAAATTTCGAACCAACTATCAGAGGTGCTAAGCGTCATTGAGCGCCATCTGGAATCAACGTTGCTGGCCGTGCATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCATACAGCGATATTGATTTGTTGGTTACTGTGGCCGTAAAGCTTGATGAAACGACGCGGCGAGCATTGCTCAATGACCTTATGGAGGCTTCGGCTTTCCCTGGCGAGAGCGAGACGCTCCGCGCTATAGAAGTCACCCTTGTCGTGCATGACGACATCATCCCGTGGCGTTATCCGGCTAAGCGCGAGCTGCAATTTGGAGAATGGCAGCGCAATGACATTCTTGCGGGTATCTTCGAGCCAGCCATGATCGACATTGATCTAGCTATCCTGCTTACAAAAGCAAGAGAACATAGCGTTGCCTTGGTAGGTCCGGCAGCGGAGGAATTCTTTGACCCGGTTCCTGAACAGGATCTATTCGAGGCGCTGAGGGAAACCTTGAAGCTATGGAACTCGCAGCCCGACTGGGCCGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAATAACCGGCAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATAAAACGCCTACCTGCCCAGTATCAGCCCGTCTTACTTGAAGCTAAGCAAGCTTATCTGGGACAAAAAGAAGATCACTTGGCCTCACGCGCAGATCACTTGGAAGAATTTATTCACTACGTGAAAGGCGAGATCACCAAGGTAGTCGGCAAATAA " 1538 UPDATE SHV-104 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 339 UPDATE ANT(3'')-Ii-AAC(6')-IId fusion protein antibiotic inactivation; kanamycin A; ANT(3''); aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTAACGCAGTACCCGCCGAGATTTCGGTACAGCTATCACTGGCTCTCAACGCCATCGAGCGTCATCTGGAATCAACGTTGCTGGCCGTGCATTTGTACGGCTCTGCACTGGACGGTGGCCTGAAGCCATACAGTGATATTGATTTGCTGGTTACTGTGGCTGCACAGCTCGATGAGACTGTCCGACAAGCCCTGGTCGTAGATCTCTTGGAAATTTCTGCCTCCCCTGGCCAAAGTGAGGCTCTCCGCGCCTTGGAAGTTACCATCGTCGTGCATGGTGATGTTGTCCCTTGGCGTTATCCGGCCAGACGGGAACTGCAATTCGGGGAGTGGCAGCGTAAAGACATTCTTGCGGGCATCTTCGAGCCCGCCACAACCGATGTTGATCTGGCTATTCTGCTAACTAAAGTAAGGCAGCATAGCCTTGCATTGGCAGGTTCGGCCGCAGAGGATTTCTTTAACCCAGTTCCGGAAGGCGATCTATTCAAGGCATTGAGCGACACTCTGAAACTATGGAATTCGCAGCCGGATTGGGAAGGCGATGAGCGGAATGTAGTGCTTACCTTGTCTCGCATTTGGTACAGCGCAGCAACCGGCAAGATCGCACCGAAGGATATCGTTGCCAACTGGGCAATTGAGCGTCTGCCAGATCAACATAAGCCCGTACTGCTTGAAGCCCGGCAGGCTTATCTTGGACGAGGAGAAGATTGCTTGGCCTCACGCGCGGATCAGTTGGCGGCGTTCGTTCACTTCGTGAAACATGAAGCCACTAAATTGCTTGGTGCCATGCCAGTGATGTCTAAAACAAAGTTAGGCATCACAAAGTACAGCATCGTGACCAACAGCAACGATTCCGTCACACTGCGCCTCATGACTGAGCATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATCGTCGAGTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAACAGTACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTCACTCCATACATTGCAATGCTGAATGGAGAGCCGATTGGGTATGCCCAGTCGTACGTTGCTCTTGGAAGCGGGGACGGATGGTGGGAAGAAGAAACCGATCCAGGAGTACGCGGAATAGACCAGTCACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGAACCAAGCTGGTTCGAGCTCTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCACCAAGATCCAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCTACGAGAAAGCGGGGTTTGAGAGGCAAGGTACCGTAACCACCCCAGATGGTCCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGCGAACACGCAGTGATGCCTAA " 338 UPDATE OXY-1-2 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 335 UPDATE Staphylococcus aureus parE conferring resistance to fluoroquinolones fluoroquinolone resistant parE; grepafloxacin; trovafloxacin; ofloxacin; norfloxacin; nalidixic acid; lomefloxacin; gatifloxacin; levofloxacin; sparfloxacin; antibiotic target alteration; enoxacin; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with TTGGCAATGAATAAACAAAATAATTATTCAGATGATTCAATACAGGTTTTAGAGGGGTTAGAAGCAGTTCGTAAAAGACCTGGTATGTATATTGGATCAACTGATAAACGGGGATTACATCATCTAGTATATGAAATTGTCGATAACTCCGTCGATGAAGTATTGAATGGTTACGGTAACGAAATAGATGTAACAATTAATAAAGATGGTAGTATTTCTATAGAAGATAATGGACGTGGTATGCCAACAGGTATACATAAATCAGGTAAACCGACAGTCGAAGTTATCTTTACTGTTTTACATGCAGGAGGTAAATTTGGACAAGGCGGCTATAAAACTTCAGGTGGTCTTCACGGCGTTGGTGCTTCAGTTGTAAATGCATTGAGTGAATGGCTTGAAGTTGAAATCCATCGAGATGGTAATATATATCATCAAAGTTTTAAAAACGGTGGTTCGCCATCTTCTGGTTTAGTGAAAAAAGGTAAAACTAAGAAAACAGGTACCAAAGTAACATTTAAACCTGATGACACAATTTTTAAAGCATCTACATCATTTAATTTTGATGTTTTAAGTGAACGACTACAAGAGTCTGCGTTCTTATTGAAAAATTTAAAAATAACGCTTAATGATTTACGCAGTGGTAAAGAGCGTCAAGAGCATTACCATTATGAAGAAGGAATCAAAGAATTTGTTAGTTATGTCAATGAAGGAAAAGAAGTTTTGCATGACGTGGCTACATTTTCAGGTGAAGCAAATGGTATAGAGGTAGACGTAGCTTTCCAATATAATGATCAATATTCAGAAAGTATTTTAAGTTTTGTAAATAATGTACGTACTAAAGATGGTGGTACACATGAAGTTGGTTTTAAAACAGCAATGACACGTGTATTTAATGATTATGCACGTCGTATTAATGAACTTAAAACAAAAGATAAAAACTTAGACGGTAATGATATTCGTGAAGGTTTAACAGCTGTTGTGTCTGTACGTATTCCAGAAGAATTACTACAATTTGAAGGACAAACGAAATCTAAATTGGGTACTTCTGAAGCAAGAAGTGCTGTTGATTCAGTAGTTGCAGACAAATTACCATTCTATTTAGAAGAAAAAGGACAATTGTCTAAATCACTTGTAAAAAAAGCAATTAAAGCACAACAAGCAAGGGAAGCTGCACGTAAAGCTCGTGAAGATGCTCGTTCAGGTAAGAAAAACAAGCGTAAAGACACTTTGCTATCTGGTAAATTAACACCTGCACAAAGTAAAAATACAGATAAAAATGAATTGTATTTAGTCGAAGGTGATTCTGCGGGAGGTTCAGCAAAACTTGGACGAGACCGCAAATTCCAAGCGATATTACCATTACGTGGTAAGGTAATTAATACAGAGAAAGCACGTCTGGAAGATATTTTTAAAAATGAAGAAATTAATACAATTATCCACACAATCGGGGCAGGCGTTGGTACTGACTTTAAAATTGAAGATAGTAACTATAATCGTGTAATTATTATGACTGATGCTGATACTGATGGTGCGCATATTCAAGTGCTATTGTTAACATTCTTCTTCAAATATATGAAACCGCTTGTTCAAGCAGGTCGTGTATTTATTGCTTTACCTCCACTTTATAAATTGGAAAAAGGTAAAGGCAAAACAAAGCGAGTTGAATACGCTTGGACAGACGAAGAGCTTAATAAATTACAAAAAGAACTTGGTAAGGGCTTCACGTTACAACGTTACAAAGGTTTGGGTGAGATGAACCCTGAACAATTATGGGAAACGACGATGAACCCAGAAACACGAACTTTAATTCGTGTACAAGTTGAAGATGAAGTGCGTTCATCTAAACGTGTAACAACATTAATGGGTGACAAAGTACAACCTAGACGTGAATGGATTGAAAAGCATTTTGAGTTTGGTATGCAAGAGGACCAAAGTATTTTAGATAATTCTGAAGTACAAGTGCTTGAAAATGATCAATTTGATGAGGAGGAAATCTAG " 334 UPDATE mexX erythromycin; arbekacin; tetracycline antibiotic; meropenem; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; ofloxacin; norfloxacin; macrolide antibiotic; carbapenem; cephalosporin; ciprofloxacin; gentamicin C; amikacin; aminoglycoside antibiotic; acridine dye; penam; efflux pump complex or subunit conferring antibiotic resistance; cephamycin; acriflavin; fluoroquinolone antibiotic; chloramphenicol; phenicol antibiotic; tetracycline; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGACCGGCTCGCTGCGCGGCTGCTGGCGGCCCTGGTCGCCCTATTCCTGCTGGGCTGCGAAGAAGCAGCGGACGCCGGGAAGACTGCGGAGGCCCCCGCCGAGGTCGGCGTGATCGTCGCCAGGCCGGCGCCTATCGGCATCACCAGCGAGCTGCCCGGACGCCTGGAAGCGTACCGCCAGGCTGAAGTGCGGGCGCGCGTCGCCGGCATCGTCACCCGTCGCCTGTACGAGGAAGGCCAGGACGTCCGCGCCGGCACCGTGCTGTTCCAGATCGACCCTGCGCCCTTGAAGGCGGCCCTGGACATCAGCCGCGGCGCCCTGCCCGGCCGAGGCCAGCCACGCGCGGCGGCCGACAAGCTCAAGGCGTACGCCGACCTGATCAAGGACCGCGCCATCAGCGAACGCGAGTACACCGAAGCGCAGACCGACGCGCGCCAGGCCCTGGCGCAGATCGCCTCGGCCAAGGCCGAACTGGAGCAGGCCCGCCTGCGCCTGGGCTACGCCACGGTCACCGCGCCGATCGACGGCCGCGCGCGGCGTGCGCTGGTCACCGAAGGCGCGCTGGTCGGCGAGGACTCGCCGACACCGCTGACCCGCGTCGAGCAGATCGATCCGATCTACGTGAACTTCTCCCAGCCGGCCGCGAAGTCGCGCCATGCAGCGGGCGATCCGCGAAGGCCAGGTGAAGGGTGTCGCCGACAAGGACATCGCCGTGCGCCTGGTCCTGGCCGACGGCAGCGAGTACCGCTGGCCGGCGAGCTGCTGTTCATCGACCTGGCGGTCGACCCCGGCACCGACACCATCGCCATGCGTGCCCTGTTCCGCAATCCGCATCGCGAATTGCTGCCCGGCGGCTACGTGCAGGTGCGCCTGCAGCGCGCGGTGAACCCGCAGGCGATCACCGTCCCGGACGCGCTGATCCGTACCGCCCAGTCCGCCGTGGTCAAGGTGGTCAACCCAAAGGGCTTGGTGGAAGACGTGGAGGTCCGCGCCGACACCCTGCAGGGCCGCGACTGGATCATCAGCCGCGGGCTCAAGGGCGGCGAGTGGGTGATCGTCGAGAACGCCGCCCAGCATGCCGCCGGCTCCAGCGTCCAGGCGGTGGTCCGCCAGCCGGCCAGCGCCGACGCCCCCTCACCGCTGGCCGCCTCGCCGGCGGGCCAGTGA " 337 UPDATE adeC antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; tigecycline; glycylcycline; tetracycline antibiotic; tetracycline; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 336 UPDATE tlrB conferring tylosin resistance antibiotic target alteration; non-erm 23S ribosomal RNA methyltransferase (G748); macrolide antibiotic; lincosamide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGGAAGAACGTCGTGCGATATCTGCGCTGTCCGCACTGCGCAGCCCCTCTGCGGTCATCCGACCGCACCCTCCGCTGCGAAAACGGGCACACCTTCGACGTCGCCCGGCAGGGCTATGTGAATCTGCTCAGACGCCCGACGAAGCTCGCCGCCGACACCACCGACATGGTCGCCGCCCGGGCCGCGCTGCTGGACAGCGGGCATTACGCGCCGCTGACCGAGCGGCTGGCCGGGACGGCCGGGCGCGCGGCGGGCGCCGGGGCACCGGACTGCGTCGTGGACATCGGCGGGGGCACCGGTCACCATCTCGCCCGTGTCCTGGAGGAGTTCGAGGACGCCGAGGGACTCCTGCTGGACATGTCCAAGCCGGCCGTGCGCAGGGCCGCCCGCGCCCATCCCCGGGCCAGCTCCGCCGTCGCCGACGTATGGGACACACTTCCGCTGCGGGACGGGGCCGCCGCGATGGCCCTCAACGTCTTCGCCCCGCGCAACCCGCCGGAGATCCGCAGGATCCTCCGCCCCGGCGGCACCCTGCTGGTCGTCACGCCCCAGCAGGACCACCTCGCCGAACTCGTGGACGCGCTGGGGCTGTTGCGCGTACGGGACCACAAGGAGGGCCGGCTGGCCGAACAGCTCGCGCCGCACTTCGAGGCCGTCGGGCAGGAGCGGCTGCGGACCACTCTCCGCCTCGATCACGACGCGCTCGGCCGGGTGGTCGCCATGGGGCCCAGTTCCTGGCACCAGGACCCGGATGAACTGGCGCGGCGGATCGCGGAGTTGCCCGGCATCCACGAGGTCACGCTCTCGGTCACCTTCACCGTCTGCCGCCCTCTGCCCTGA " 331 UPDATE TEM-166 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 330 UPDATE IMP-26 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGCAAGTTATCTGTATTCTTTATATTTTTGTTTTGTAGCATTGCTACCGCAGCAGAGCCTTTGCCAGATTTAAAAATTGAAAAACTTGATGAAGGCGTTTATGTTCATACTTCGTTTGAAGAAGTTAACGGGTGGGGCGTTTTTCCTAAACATGGTTTGGTTGTTCTTGTAGATGCTGAAGCTTATCTAATTGACACTCCATTTACGGCTAAAGATACTGAAAAGTTAGTCACTTGGTTTGTGGAACGTGGCTATAAAATAAAAGGCAGTATTTCCTCTCATTTTCATAGTGACAGCACGGGCGGAATAGAGTGGCTTAATTCTCAATCCATCCCCACGTATGCGTCTGAATTAACTAATGAGCTGCTTAAAAAAGACGGTAAGGTTCAAGCTAAAAATTCATTTGGCGGGGTTAACTATTGGCTAGTTAAAAATAAAATTGAAGTTTTTTATCCAGGCCCAGGACACACTCCAGATAACCTAGTAGTTTGGCTGCCTGAAAGGAAAATATTATTCGGTGGTTGTTTTATTAAACCGTACGGTCTAGGTAATTTGGGTGACGCAAATTTAGAAGCTTGGCCAAAGTCCGCTAAATTATTAATATCCAAATATGGTAAGGCAAAACTGGTTGTTCCAAGTCACAGTGAAGCTGGAGACGCATCACTCTTGAAACTTACATTAGAGCAGGCGGTTAAAGGGTTAAACGAAAGTAAAAAACCATCAAAACTAAGCAACTAA " 333 UPDATE CARB-23 penam; antibiotic inactivation; CARB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGGTTAGAGTATTCACTCGTTATAGTTTGCTTAACATCGCCAAAGTGCGAATCAAAACCAAAGAACGAAGAACACCACGCATGAAAAAGTTATTCCTGTTGGTTGGGCTGATGGTTTGCTCAACTGTTAGTTACGCCTCCAAATTAAATTTAAATGAAGACATCTCCCTCATCGAGAAACAAACATCTGGGCGAATTGGAGTGTCAGTCTGGGATACACAAACGGACGAGCGTTGGGATTATCGCGGAGACGAACGTTTCCCATTAATGAGCACATTTAAAACGTTAGCGTGTGCCACCATGCTAAGCGACATGGACAGCGGCAAACTCAACAAAAATGCCACAGCGAAAATCGATGAACGCAATATTGTGGTTTGGTCTCCGGTGATGGATAAACTGGCTGGACAAAGTACACGTATCGAACACGCTTGTGAGGCCGCCATGTTGATGAGCGACAACACCGCCGCGAACTTAGTGCTAAATGAAATTGGTGGTCCTAAAGCGGTCACACTGTTTTTGCGCTCTATTGGCGACAAAGCAACGCGACTTGACCGATTGGAGCCCCGTTTGAATGAAGCAAAACCGGGCGACAAGCGAGACACCACAACGCCTAACGCCATGGTAAACACCCTACACACCTTGATGGAAGATAACGCCCTATCTTACGAGTCACGCACACAGCTGAAAATCTGGATGCAAGACAACAAAGTATCGGATTCTCTCATGCGCTCTGTTCTGCCAAAAGGCTGGTCGATTGCAGACCGCTCTGGCGCAGGTAACTACGGTTCACGCGGCATTAGCGCGATGATTTGGAAAGACAACTACAAGCCGGTTTACATCAGTATTTACGTCACAGACACTGACCTTTCGCTTCAAGCTCGCGATCAACTGATCGCGCAAATCAGCCAACTGATTTTAGAGCACTACAAAGAAAGTTAA " 332 UPDATE R39 penam; R39 beta-lactamase; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1634 UPDATE CMY-78 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTGGCGATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGGTGACGTTACGGATAAAGCCGAATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGCGGTGAAATCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAACTATGCCTGGGGCTATCTCGAAGGGAAGCCTGTGCACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACAGGATCCACAGGCGGATTTGGCAGCTACGTTGCTTTCGTTCCAGAAAAAAACCTTGGCATCGTAATGTTGGCAAACAAAAGCTACCCCAACCCGGCTCGCGTCGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA " 8 UPDATE NDM-6 antibiotic inactivation; penam; carbapenem; cephalosporin; cephamycin; NDM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2119 UPDATE LRA-10 penam; antibiotic inactivation; cephalosporin; class C LRA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1180 UPDATED strand with - UPDATED accession with EU408357.1 UPDATED fmin with 52 UPDATED sequence with ATGGCAATCGCCATCCTGTCTTCCTGTTTCGCGCCGCTCGCCAGCCGGGCCGCCGACGACAGCGCCAGGATCCGCGCCATCGTCGACCAGGCGATACGCCCCGTCATGGCCGAACACGACGTGCCGGGCATGGCGGTCGCCGTGACGGTCGACGGCCAACCGTTCGTCTTCAACTATGGCGTCGCCTCGCGCGAGAGCAACACGCCCGTCAGCGACGCGACGCTGTTCGAGCTCGGCTCCATCAGCAAGACTTTTGCCGCCACGCTGGCCTCGTATGCGCAGGTGACCGGCAAGCTGTCGCTGGACGACCATCCCGGCAAGTACATGCCGCAGCTGAAGGGCAGCGCGATCGACAAGGCCACCCTGCTCAATCTGGGCACCTACACGGCGGGCGGACTGCCGCTGCAATTCCCGGACGACGTCTCGGACCAGCAGATGGCCAGCTACTTCCAGCACTGGAAACCGAAGGCCGCGCCCGGCGTACAACGGACCTATTCCAATCCCAGCCTCGGGCTGTTCGGACACCTGACCAGCCTTGCGCTGAAGAGCCGTTTTACCGACGCGCTGGAAACGAATGTCCTCACGCAGATGGGCATGAAGAGCACCTATGTCCACGTGCCACAAAGCGCCATGGCCAATTACGCCTGGGGATACGATCAAGCAAACAAGCCTGGCCGCATGAACCCCGGCGTCCTCGCCGACGGAATCTATGGCATCCGGTCGACAGCCGCCGACATGATCCGCTATGTGCAAGCCAACATCGCCCCGGGCAAGCTGGAAACGCCGTTGCGGCGCGCGGTGGAAGGCACCCATGTCGGCTACTTCAAGGTGGGCGGCATGGTGCAGGGACTCGGCTGGGAGCAATACCCTTACCCGGTCTCCCTGCAGCAGCTACAGGCCGGCAACTCCACCACCATGGCATGGGAAGCCAACCCCGCGCAGAAACTCACGCCGCCGAGCGTACCGTCCGGCGCGACCCTGTTCAACAAGACCGGCTCCACCAGCCGCTTCGGCGCCTACGTGGCGTTCGTGCCGGAGAAGAAAATCGGCATCGTCATCCTCGCGAACAAGAACATCCCGGGTCCGGACCGTATCAAGGCGGCCCATGCGATCCTGGAACAACTGTAA UPDATED NCBI_taxonomy_name with uncultured bacterium BLR10 UPDATED NCBI_taxonomy_id with 506513 UPDATED NCBI_taxonomy_cvterm_id with 39682 UPDATED accession with ACH58999.1 UPDATED sequence with MAIAILSSCFAPLASRAADDSARIRAIVDQAIRPVMAEHDVPGMAVAVTVDGQPFVFNYGVASRESNTPVSDATLFELGSISKTFAATLASYAQVTGKLSLDDHPGKYMPQLKGSAIDKATLLNLGTYTAGGLPLQFPDDVSDQQMASYFQHWKPKAAPGVQRTYSNPSLGLFGHLTSLALKSRFTDALETNVLTQMGMKSTYVHVPQSAMANYAWGYDQANKPGRMNPGVLADGIYGIRSTAADMIRYVQANIAPGKLETPLRRAVEGTHVGYFKVGGMVQGLGWEQYPYPVSLQQLQAGNSTTMAWEANPAQKLTPPSVPSGATLFNKTGSTSRFGAYVAFVPEKKIGIVILANKNIPGPDRIKAAHAILEQL " 1353 UPDATE GES-5 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1636 UPDATE QnrB57 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1462 UPDATE LRA-19 penam; antibiotic inactivation; subclass B3 LRA beta-lactamase; cephalosporin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACTCAGAAATGTCTCAAACTTCTTTTAAAATCAGGATATTGGTGACCTGCCTCCTATCCATTGCCCAGTTAACAATGGCGCAACAAGTACAGGTAACTGAACCCCCGATCACAAATCAGGATTGGGTCAAACCCTATCCTCCATTCCGTATAGTCGGCAATTTGTATTATGTGGGCACTTACGATTTAGCCTGTTACCTCATTGTCACCCCACAGGGGAATATCCTTATCAATACAGGACTCGCTTCCTCCGCGCCTATGATCGAGGCAAGCATCAAAGCATTAGGCTTCAAGTTTTCCGACACGAAAATTCTGTTGACAACCCAGGCCCATTACGATCATGTGGGCGCCATGGCCGCAATTAAAAAGTCAACCAACGCGCAACTTATGATTGATGAAAAAGATTCACCCGTGATGGCTGATGGTGGAAGCTCGGATTATGAATTGTTTGGAAGTACCGGCAGCACCTATGAACCGGTTAAGGCCGATAGGCTTTTAAAGAATGGCGATAAAATAACATTGGGAGGTACCACCCTTGTCATGCTCCATCACCCCGGTCACACCAAAGGCTCATGTAGTTTTCTGTTTGATGTGAAAGACGAGAGCAAATCCTACAAAGTACTTATCGCCAACATGCCATCGATCATCACATCTAAAAAGTTTTCCGACATACCCACATATCCTGGCATTGCCGAAGACTATACCTACACGTTCGATGCAATGAAAAAAGTGCACTTCGATATCTGGCTCTCCTCACATGCTAGTCAGTTTGGGATGCATTCAAAACACAAACCAGGTGAAGCCTACAACCCTGGTGTCTTCATAGACCGGGCCGGATATGACAAGGCTGTGGGTGATCTGGAAGATAAATTTTCAAAAAAGAAGCAGGCGGACAAATAG " 1352 UPDATE OXA-251 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAACATTTGCCGCATATGTAATTATCGCGTGTCTTTCGAGTACGGCATTAGCTGGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTCTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATGACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAACGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAGCAATGGGAAAGAGACTTGACCTTAAGAGGGGCAATACAAGTTTCAGCTGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGACGAAGTAAGAATGCAGAAATACCTTAAAAACTTTTCCTATGGCAACCAGAATATCAGTGGTGGCATTGACAAATTCTGGTTGGAAGGCCAGCTTAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATATTTAAATAAATTGTCAGCATCTAAAGAAAACCAGCTAACAGTAAAAGAGGCTTTGGTAACGGAGGCGGCACCTGAATATCTAGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGGTGGGTTGAGAAGGAGACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAGTAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGAAAGTGAGGGCATCATTGGTGGCTAA " 2854 UPDATE PDC-75 PDC beta-lactamase; monobactam; cephalosporin; antibiotic inactivation; carbapenem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2345 UPDATE ADC-15 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2344 UPDATE ADC-14 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2347 UPDATE ADC-17 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2346 UPDATE ADC-16 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2341 UPDATE ADC-8 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2340 UPDATE ADC-7 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2343 UPDATE ADC-13 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2342 UPDATE ADC-12 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1310 UPDATE IMP-10 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGCAAGTTATCTGTATTCTTTATATTTTTGTTTTGCAGCATTGCTACCGCAGCAGAGTCTTTGCCAGATTTAAAAATTGAAAAGCTTGATGAAGGCGTTTATGTTCATACTTCGTTTGAAGAAGTTAACGGGTGGGGCGTTTTTCCTAAACATGGTTTGGTGGTTCTTGTAAATGCTGAGGCTTACCTAATTGACACTCCATTTACGGCTAAAGATACTGAAAAGTTAGTCACTTGGTTTGTGGAGCGTGGCTATAAAATAAAAGGCAGCATTTCCTCTCATTTTCATAGCGACAGCACGGGCGGAATAGAGTGGCTTAATTCTCGATCTATCCCCACGTATGCATCTGAATTAACAAATGAACTGCTTAAAAAAGACGGTAAGGTTCAAGCCACAAATTCATTTAGCGGAGTTAACTATTGGCTAGTTAAAAATAAAATTGAAGTTTTTTATCCAGGCCCGGGACACACTCCAGATAACGTAGTGGTTTGGTTGCCTGAAAGGAAAATATTATTCGGTGGTTGTTTTATTAAACCGTACGGTTTAGGCAATTTGGGTGACGCAAATATAGAAGCTTGGCCAAAGTCCGCCAAATTATTAAAGTCCAAATATGGTAAGGCAAAACTGGTTGTTCCAAGTCACAGTGAAGTTGGAGACGCATCACTCTTGAAACTTACATTAGAGCAGGCGGTTAAAGGGTTAAACGAAAGTAAAAAACCATCAAAACCAAGCAACTAA " 2349 UPDATE ADC-19 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2348 UPDATE ADC-18 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1889 UPDATE NDM-4 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; ticarcillin; NDM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1888 UPDATE MIR-10 antibiotic inactivation; monobactam; cephalosporin; MIR beta-lactamase; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 35962 " 1887 UPDATE TEM-70 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCAGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 1886 UPDATE LEN-24 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1885 UPDATE tet(Z) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1884 UPDATE CTX-M-111 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1883 UPDATE DHA-10 antibiotic inactivation; cephalosporin; cephamycin; DHA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1882 UPDATE OXA-80 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1881 UPDATE OXA-72 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1880 UPDATE adeN antibiotic efflux; imipenem; rifampin; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; trimethoprim; rifamycin antibiotic; penem; macrolide antibiotic; carbapenem; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; diaminopyrimidine antibiotic; ticarcillin; tetracycline antibiotic; fluoroquinolone antibiotic; lincosamide antibiotic; phenicol antibiotic; tetracycline; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2121 UPDATE LRA-7 penam; antibiotic inactivation; subclass B3 LRA beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2123 UPDATE vgaC dalfopristin; pleuromutilin; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; ABC-F ATP-binding cassette ribosomal protection protein; antibiotic target protection; streptogramin antibiotic; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 36001 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. " 2124 UPDATE Clostridium difficile EF-Tu mutants conferring resistance to elfamycin pulvomycin; elfamycin resistant EF-Tu; GE2270A; LFF571; elfamycin antibiotic; enacyloxin IIa; antibiotic target alteration; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 948 UPDATE mecI antibiotic target replacement; ceftaroline; ampicillin; flucloxacillin; ceftibuten; cefditoren; piperacillin; cefpodoxime; cefixime; cefdinir; meropenem; carbapenem; imipenem; aztreonam; cefradine; isopenicillin N; cefazolin; penicillin N; ceftazidime; cefepime; penicillin; oxacillin; cefmetazole; moxalactam; cloxacillin; cefadroxil; ceftriaxone; methicillin; loracarbef; ceftizoxime; cephalosporin; cefotaxime; cefaclor; phenoxymethylpenicillin; cefonicid; monobactam; cefuroxime; amoxicillin; mezlocillin; azlocillin; cefalexin; doripenem; cefotiam; ertapenem; penam; cefprozil; cephapirin; ceftobiprole; benzylpenicillin; methicillin resistant PBP2; cephamycin; carbenicillin; cefalotin; ceftiofur; mecillinam; propicillin; cefoxitin; dicloxacillin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 949 UPDATE CTX-M-77 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 946 UPDATE QnrB48 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 947 UPDATE OXA-100 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 944 UPDATE bcrB peptide antibiotic; ATP-binding cassette (ABC) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; antibiotic efflux; bacitracin B; bacitracin F; bacitracin A; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TTGGCTAAAAAAGCCAAGTACCCTGATGTACCGATTCGCTTCAGTGAGACCTTTTCCGATACCAACCTGTATATTGTGCTTTTGATCGGAGTCCCGTTGTATGGTGTGATTACATCATATTTATTCAATCGGGAATACGCTGAAAGCACGCTAAAGAATCTATTGACGATTCCTGTTTCAAGAATCAGCCTGATTGTCAGCAAATTGGTTCTGCTTCTCATTTGGATCATGATGCTGACGTTAATCGCCTGGGTGCTGACGCTGCTGTTCGGGCTGATCGGTCAGTTTGAAGGGCTCAGTTCGGCGGTTTTAATTGAAGGGTTTAAACAATTTATGATAGGCGGGGCACTTCTTTTCTTCCTGGTCAGTCCGATTATATTTGTGACACTGCTGTTTAAAAACTACGTGCCCACCATTATCTTTACGATCATTATATCAATGGTCAGCATTATGGTATACGGCACGGAATACAGCGCTTTATTCCCTTGGTCAGCGGTATGGGTGATCGCTTCGGGTACGTTCTTTCCGGAATATCCGCCCGAATATTCTTTTATCAGTGTTGCCGCCACAACCGTTCTTGGATTAGCCGCGACAATCGTTTACTTTAAAAAAATCGATATTCATTGA " 1084 UPDATE LEN-5 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTGTTATCTCCCTGTTAGCCACCCTGCCACTGGCGGTATACGCCGGTCCACAGCCGCTTGAGCAGATTAAACAAAGCGAAAGCCAGCTGTCGGGCCGCGTGGGGATGGTGGAAATGGATCTGGCCAGCGGCCGCACGCTGGCGGCCTGGCGCGCCGATGAACGCTTTCCCATGGTGAGCACCTTTAAAGTGCTGCTGTGCGGCGCGGTGCTGGCGCGGGTGGATGCCGGGCTCGAACAACTGGATCGGCGGATCCACTACCGCCAGCAGGATCTGGTGGACTACTCCCCGGTCAGCGAAAAACACCTTACCGACGGGATGACGATCGGCGAACTTTGCGCCGCCGCCATCACCCTGAGCGATAACAGCGCTGGCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCGGGATTAACTGCCTTTCTGCGCCAGATCGGTGACAACGTCACCCGCCTTGACCGCTGGGAAACGGCACTGAATGAGGCGCTTCCCGGCGACGCGCGCGACACCACCACCCCGGCCAGCATGGCCGCCACGCTGCGCAAACTACTGACCGCGCAGCATCTGAGCGCCCGTTCGCAACAGCAACTCCTGCAGTGGATGGTGGACGATCGGGTTGCCGGCCCGCTGATCCGCGCCGTGCTGCCGCCGGGCTGGTTTATCGCCGACAAAACCGGGGCTGGCGAACGGGGTGCGCGCGGCATTGTCGCCCTGCTCGGCCCGGACGGCAAACCGGAGCGCATTGTGGTGATCTATCTGCGGGATACCCCGGCGAGTATGGCCGAGCGTAATCAACATATCGCCGGGATCGGCGCAGCGCTGATCGAGCACTGGCAACGCTAA " 942 UPDATE OXA-104 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 943 UPDATE vanUG glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanU; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTGTTAGTTATAATAAGCTCTGGAAGCTTTTAATTGATAGGGACATGAAAAAAGGCGAGCTTCGTGAGGCTGTTGGAGTAAGTAAAAGCACATTTGCGAAATTGGGCAAGAATGAGAATGTTTCTTTGACTGTTTTGTTAGCAATATGTGAGTATTTGAATTGTGATTTTGGCGATATTATAGAAGCGTTGCCAGAAACCCCCGATAAGGAGCGTGACAGTTGA " 940 UPDATE TEM-125 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 941 UPDATE GES-1 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGCTTCATTCACGCACTATTACTGGCAGGGATCGCTCACTCTGCATATGCGTCGGAAAAATTAACCTTCAAGACCGATCTTGAGAAGCTAGAGCGCGAAAAAGCAGCTCAGATCGGTGTTGCGATCGTCGATCCCCAAGGAGAGATCGTCGCGGGCCACCGAATGGCGCAGCGTTTTGCAATGTGCTCAACGTTCAAGTTTCCGCTAGCCGCGCTGGTCTTTGAAAGAATTGACTCAGGCACCGAGCGGGGGGATCGAAAACTTTCATATGGGCCGGACATGATCGTCGAATGGTCTCCTGCCACGGAGCGGTTTCTAGCATCGGGACACATGACGGTTCTCGAGGCAGCGCAAGCTGCGGTGCAGCTTAGCGACAATGGGGCTACTAACCTCTTACTGAGAGAAATTGGCGGACCTGCTGCAATGACGCAGTATTTTCGTAAAATTGGCGACTCTGTGAGTCGGCTAGACCGGAAAGAGCCGGAGATGGGCGACAACACACCTGGCGACCTCAGAGATACAACTACGCCTATTGCTATGGCACGTACTGTGGCTAAAGTCCTCTATGGCGGCGCACTGACGTCCACTTCGACCCACACCATTGAGAGGTGGCTGATCGGAAACCAAACGGGAGACGCGACACTACGAGCGGGTTTTCCTAAAGATTGGGTTGTTGGAGAGAAAACTGGTACCTGCGCCAACGGGGGCCGGAACGACATTGGTTTTTTTAAAGCCCAGGAGAGAGATTACGCTGTAGCGGTGTATACAACGGCCCCGAAACTATCGGCCGTAGAACGTGACGAATTAGTTGCCTCTGTCGGTCAAGTTATTACACAACTCATCCTGAGCACGGACAAATAG " 1594 UPDATE vgbA virginiamycin S2; pristinamycin IB; quinupristin; vernamycin B-gamma; ostreogrycin B3; vernamycin C; pristinamycin IA; antibiotic inactivation; streptogramin antibiotic; streptogramin vgb lyase; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2410 UPDATE Salmonella enterica parC conferring resistance to fluoroquinolones ofloxacin; norfloxacin; nalidixic acid; levofloxacin; fluoroquinolone resistant parC; antibiotic target alteration; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 3339212 UPDATED strand with - UPDATED accession with NC_003197.2 UPDATED fmin with 3336953 UPDATED sequence with ATGAGCGATATGGCAGAGCGCCTTGCGCTACATGAATTTACGGAAAACGCCTACTTAAACTACTCCATGTACGTGATCATGGATCGTGCGTTGCCGTTTATTGGCGACGGCCTGAAGCCGGTACAGCGCCGCATCGTCTATGCGATGTCAGAGCTGGGGCTGAACGCCACCGCTAAATTTAAAAAATCCGCCCGTACCGTTGGTGACGTACTGGGTAAGTATCACCCGCATGGCGACAGCGCCTGCTATGAAGCCATGGTGCTGATGGCGCAGCCGTTCTCTTACCGTTACCCGCTGGTCGATGGCCAGGGGAACTGGGGCGCGCCGGATGATCCGAAGTCATTCGCGGCGATGCGTTATACCGAATCCCGCCTGTCCAAATACGCCGAGCTGCTGTTAAGCGAACTCGGTCAGGGGACGGCGGACTGGGTGCCAAACTTCGACGGCACCATGCAGGAACCGAAAATGTTACCGGCGCGTCTGCCGAACATCCTGCTGAACGGCACCACCGGTATTGCGGTGGGCATGGCAACAGATATCCCGCCGCACAACCTGCGCGAAGTGGCGAAAGCGGCGATTACGCTGATTGAGCAGCCGAAAACGACGCTGGATCAGTTGCTGGATATCGTTCAGGGGCCGGATTACCCGACCGAAGCGGAGATCATTACCCCACGTGCGGAAATTCGTAAAATTTACGAAAACGGGCGGGGCTCCGTGCGTATGCGCGCGGTATGGACCAAAGAAGACGGCGCTGTGGTAATTTCCGCGCTGCCGCATCAGGTCTCTGGCGCGAAAGTGCTGGAGCAGATTGCTGCGCAGATGCGTAATAAAAAACTGCCGATGGTGGACGATCTGCGCGATGAATCGGATCACGAAAACCCGACGCGTTTAGTGATTGTGCCACGCTCCAACCGTGTGGATATGGAACAGGTGATGAACCATCTGTTCGCCACCACCGATCTGGAAAAAAGCTACCGTATTAACCTGAACATGATCGGTCTGGATGGTCGTCCGGCGGTGAAAAACCTGCTGGAGATCCTCACCGAGTGGCTGGCGTTCCGCCGCGACACGGTGCGCCGTCGTCTGAACTATCGTCTGGAGAAAGTGCTTAAGCGCCTGCATATCCTCGAAGGTTTGCTGGTGGCGTTTCTCAACATCGACGAAGTGATTGAGATTATCCGTAGCGAAGACGAGCCAAAACCCGCGCTGATGTCGCGTTTCGGCATCAGCGAAACCCAGGCGGAAGCGATTCTCGAACTGAAACTGCGCCATCTCGCCAAACTGGAAGAGATGAAAATTCGCGGCGAGCAGGACGAGCTGGAAAAAGAGAGGGACCAGTTGCAGGGCATTCTCGCGTCCGAACGCAAAATGAATACCTTGCTGAAAAAAGAACTACAGGCGGACGCCGATGCCTATGGCGACGATCGCCGTTCTCCGCTGCGTGAGCGCGAAGAAGCTAAAGCGATGAGCGAACACGATATGCTGCCGTCCGAACCGGTGACTATCGTGCTGTCGCAGATGGGCTGGGTGCGCAGCGCCAAAGGTCATGATATTGATGCGCCGGGGCTTAACTATAAAGCGGGCGACAGCTTTAAAGCCGCGGTGAAAGGTAAGAGCAATCAACCGGTGGTGTTTATTGATACCACCGGGCGCAGCTATGCTATTGATCCCATTACGCTTCCGTCGGCGCGTGGGCAGGGCGAGCCGCTGACCGGCAAACTCACGCTGCCGCCGGGGGCGACCGTAGAGCATATGCTGATGGAAGGCGATGACCAGAAACTGCTGATGGCGTCGGATGCGGGCTACGGCTTCGTTTGTACGTTTAACGATCTGGTTGCCCGTAACCGTGCCGGTAAGACATTGATTACACTGCCGGAAAATGCGCACGTCATGCCGCCGCTGGTGATTGAAGACGAGCACGATATGCTGCTGGCGATTACCCAGGCCGGACGGATGTTGATGTTCCCGGTAGACTCTCTGCCGCAGCTGTCGAAAGGCAAAGGGAATAAGATCATTAATATCCCCTCTGCAGAAGCGGCGAAAGGCGATGATGGACTGGCGCACCTGTACGTGCTGCCGCCACAAAGCACTCTGACTATCCATGTCGGGAAGCGCAAAATCAAACTGCGCCCTGAAGAGTTACAAAAGGTGGTCGGTGAACGCGGACGCCGTGGCACATTAATGCGCGGCCTGCAGCGTATCGATCGCATTGAGATTGATTCGCCGCATCGCGTAAGTCATGGCGACAGCGAAGAGTAA UPDATED NCBI_taxonomy_name with Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 UPDATED NCBI_taxonomy_id with 99287 UPDATED NCBI_taxonomy_cvterm_id with 35734 UPDATED accession with NP_462089.1 UPDATED sequence with MSDMAERLALHEFTENAYLNYSMYVIMDRALPFIGDGLKPVQRRIVYAMSELGLNATAKFKKSARTVGDVLGKYHPHGDSACYEAMVLMAQPFSYRYPLVDGQGNWGAPDDPKSFAAMRYTESRLSKYAELLLSELGQGTADWVPNFDGTMQEPKMLPARLPNILLNGTTGIAVGMATDIPPHNLREVAKAAITLIEQPKTTLDQLLDIVQGPDYPTEAEIITPRAEIRKIYENGRGSVRMRAVWTKEDGAVVISALPHQVSGAKVLEQIAAQMRNKKLPMVDDLRDESDHENPTRLVIVPRSNRVDMEQVMNHLFATTDLEKSYRINLNMIGLDGRPAVKNLLEILTEWLAFRRDTVRRRLNYRLEKVLKRLHILEGLLVAFLNIDEVIEIIRSEDEPKPALMSRFGISETQAEAILELKLRHLAKLEEMKIRGEQDELEKERDQLQGILASERKMNTLLKKELQADADAYGDDRRSPLREREEAKAMSEHDMLPSEPVTIVLSQMGWVRSAKGHDIDAPGLNYKAGDSFKAAVKGKSNQPVVFIDTTGRSYAIDPITLPSARGQGEPLTGKLTLPPGATVEHMLMEGDDQKLLMASDAGYGFVCTFNDLVARNRAGKTLITLPENAHVMPPLVIEDEHDMLLAITQAGRMLMFPVDSLPQLSKGKGNKIINIPSAEAAKGDDGLAHLYVLPPQSTLTIHVGKRKIKLRPEELQKVVGERGRRGTLMRGLQRIDRIEIDSPHRVSHGDSEE " 2659 UPDATE Klebsiella pneumoniae acrA penam; antibiotic efflux; triclosan; rifampin; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; cephalosporin; cefalotin; tigecycline; glycylcycline; ampicillin; fluoroquinolone antibiotic; rifamycin antibiotic; phenicol antibiotic; tetracycline; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 642 UPDATE aadA25 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2656 UPDATE Escherichia coli emrE efflux pump complex or subunit conferring antibiotic resistance; antibiotic efflux; small multidrug resistance (SMR) antibiotic efflux pump; macrolide antibiotic; erythromycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2655 UPDATE Pseudomonas aeruginosa emrE aminoglycoside antibiotic; gentamicin C; antibiotic efflux; small multidrug resistance (SMR) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2654 UPDATE adeL antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; fluoroquinolone antibiotic; tetracycline; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1428 UPDATED strand with - UPDATED accession with KR297239.1 UPDATED fmin with 414 UPDATED sequence with ATGAGAGTATTCAACAAAGTTGTTGAAACAAATAGTTTCAGTTTAGCAGCTGATAGTTTGGGTTTACCGCGTGCTTCTGTGACTACAACCATTCAGGCTTTAGAGAAGCATTTACAAGTTCGATTGCTTAATCGGACAACACGAAAAATTAGTCTCACACCGGATGGCGCCGTATATTATGATCGGACAGCCCGTATTTTAGCGGATGTTGCCGATATTGAATCTTCTTTTCATGATGCAGAGCGGGGGCCAAGAGGTCAGCTTCGTATTGATGTGCCTGTATCGATTGGACGTTTAATTTTAATTCCAAGGCTCCGTGATTTTCATGCACGCTATCCTGATATTGATTTAGTGATTGGTCTGAACGACCGACCTGTAGACTTGGTTGGAGAAGCGGTTGATTGTGCAATTCGGGTGGGTGAATTAAAAGATTCAAGCTTAATTGCGCGTCGTATCGGAACTTTCCAGTGTGCAACAGCTGCTTCACCGATTTATTTAGAAAAATATGGCGAACCTACCTCAATTGAAGATTTGCAAAAAAATCATAAAGCGATTCACTTCTTTTCAAGCCGTACCGGACGCAACTTCGATTGGGACTTTGTGGTTGATGATTTAATTAAAAGTGTGTCAGTACGTGGACGTGTTTCGGTAAATGACGGTGATGCTTATATCGACTTGGCTTTGCAAGGTTTTGGTATAATTCAAGGCCCACGTTATATGCTCACCAACCATTTAGAATCAGGTTTGTTAAAAGAGGTATTGCCTCAGTGGACGCCAGCACCGATGCCGATTTCAGCAGTTTATCTTCAAAATCGTCATTTATCGCTTAAAGTAAAAGTGTTTGTAGATTGGGTCGCTGAACTTTTTGCAGGCTGTCCATTACTTGGCGGTACAGCTTTACCTTTCGACCAGAAATGTGAATTTGCCTGTGATAAAGAAACTGGTCATGAATATACAATTCGTACTTTGGTCGAGCAGCATAATATTGCTGAAGCTTATACGCTCAAAACTTAA UPDATED NCBI_taxonomy_name with Acinetobacter baumannii UPDATED NCBI_taxonomy_id with 470 UPDATED NCBI_taxonomy_cvterm_id with 35507 UPDATED accession with ALH22601.1 UPDATED sequence with MRVFNKVVETNSFSLAADSLGLPRASVTTTIQALEKHLQVRLLNRTTRKISLTPDGAVYYDRTARILADVADIESSFHDAERGPRGQLRIDVPVSIGRLILIPRLRDFHARYPDIDLVIGLNDRPVDLVGEAVDCAIRVGELKDSSLIARRIGTFQCATAASPIYLEKYGEPTSIEDLQKNHKAIHFFSSRTGRNFDWDFVVDDLIKSVSVRGRVSVNDGDAYIDLALQGFGIIQGPRYMLTNHLESGLLKEVLPQWTPAPMPISAVYLQNRHLSLKVKVFVDWVAELFAGCPLLGGTALPFDQKCEFACDKETGHEYTIRTLVEQHNIAEAYTLKT " 133 UPDATE arr-8 antibiotic inactivation; rifampin; rifapentine; rifabutin; rifampin ADP-ribosyltransferase (Arr); rifaximin; rifamycin antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 132 UPDATE TEM-198 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 131 UPDATE CTX-M-50 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCCCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA " 130 UPDATE CTX-M-112 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 137 UPDATE APH(2'')-Ie antibiotic inactivation; kanamycin A; gentamicin B; aminoglycoside antibiotic; sisomicin; arbekacin; APH(2''); netilmicin; gentamicin C; amikacin; isepamicin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACAACTTATACTTTCGACCAGGTAGAAGAGGCAATAGAGCAGTTATATCCTGATTTTACTATCAATACAATAGAGATTTCAGGAGAAGGCAATGACTGTATTGCATATGAAATAAACGGGAATTTTATTTTTAAATTTCCAAAGCATTCAAGAGCTTCGATTAATCTCTTGAATGAAGTAACCGTACTCAAAACAATCCACAATGAATTATCACTACCCATTCCCGAGGTGGTTTTTACAGGAATGCCATCAGAAATGTGCCAAATGTCTTTCGCAGGTTTTACAAAAATTAAAGGAGTACCTTTGACACCTCTTCTACTCAAAAATCTGCCGAAGCAATCTCAAGATCAGGCAGCTAAGGACCTGGCCCGATTTTTAAGTGAACTTCACAGCATAAATATCTCTGGATTCAAAAGTAATCTGGTATTAGATTTTCGAGAGAAGATAAATGAAGATAATAAAAAAATCAAAAAGTTACTATCCAGGGAATTAAAGGGTCACCAGATGAAGAAAGTGGATGATTTTTACAGGGATATTCTAGACAACGAAATCTACTTCAAATACTATCCTTGTCTTATTCATAACGATTTCAGCAGCGATCATATTTTATTTGATACCGAAAAAAATACCATTTGTGGAATAATCGATTTTGGAGATGCAGCTATTTCTGATCCCGACAATGATTTTATAAGTTTGATGGAAGATGATGAAGAGTACGGCATGGAATTCGTATCAAAAATATTGAACCATTACAAACATAAGGATATACCGACAGTTTTGGAAAAATATATGATGAAAGAAAAATACTGGTCGTTCGAAAAGATTATCTATGGAAAGGAATATGGTTATATGGATTGGTATGAAGAGGGATTAAATGAAATCAGAAGCATTAAAATTAAATAG " 136 UPDATE CMY-9 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAACAACGACAATCCATCCTGTGGGGGGCCGTGGCCACCCTGATGTGGGCCGGTCTGGCCCATGCAGGTGAGGCTTCACCGGTCGATCCCCTGCGCCCCGTGGTGGATGCCAGCATCCAGCCGCTGCTCAAGGAGCACAGGATCCCGGGCATGGCGGTGGCCGTGCTCAAGGATGGCAAGGCCCACTATTTCAATTACGGGGTGGCCAACCGGGAGAGCGGGGCCAGCGTCAGCGAGCAGACCCTGTTCGATATAGGATCCGTGAGCAAGACCCTGACTGCGACCCTGGGGGCCTATGCGGTGGTCAAGGGAGCGATGCAGCTGGATGACAAGGCGAGCCGGCACGCGCCCTGGCTCAAGGGATCCGTCTTTGACAGCATCACCATGGGGGAGCTTGCCACCTACAGCGCCGGAGGCCTGCCACTGCAATTCCCCGAGGAGGTGGATTCATCCGAGAAGATGCGCGCCTACTACCGCCAGTGGGCCCCTGTCTATTCGCCGGGCTCCCATCGCCAGTACTCCAACCCCAGCATAGGGCTGTTCGGCCACCTGGCGGCGAGCAGCCTGAAGCAGCCATTTGCCCAGTTGATGGAGCAGACCCTGCTGCCCGGGCTCGGCATGCACCACACCTATGTCAATGTGCCGAAGCAGGCCATGGCGAGTTATGCCTATGGCTATTCGAAAGAGGACAAGCCCATCCGGGTCAACCCTGGCATGCTGGCGGACGAGGCCTACGGCATCAAGACCAGCTCGGCGGATCTGCTCGCCTTCGTGAAGGCCAACATCGGCGGGGTTGATGACAAGGCGTTGCAGCAGGCCATCTCCCTGACCCACAAAGGGCATTACTCGGTAGGCGGGATGACCCAGGGGCTGGGTTGGGAGAGTTACGCCTATCCCGTCACCGAGCAGACATTGCTGGCGGGCAATTCGGCCAAGGTGATCCTCGAAGCCAATCCGACGGCGGCTCCCCGGGAGTCGGGGAGCCAGGTGCTCTTCAACAAGACCGGCTCGACCAATGGCTTTGGCGCCTATGTGGCCTTCGTGCCGGCCAGGGGGATCGGCATCGTCATGCTGGCCAATCGCAACTATCCCATCCCGGCCAGGGTGAAGGCGGCCCACGCCATCCTGGCGCAGTTGGCCGGTTGA " 135 UPDATE SME-5 carbapenem; antibiotic inactivation; SME beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 134 UPDATE rgt1438 antibiotic inactivation; rifampin; rifapentine; rifampin glycosyltransferase; rifabutin; rifaximin; rifamycin antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 36821 UPDATED strand with - UPDATED accession with JX028276.1 UPDATED fmin with 35585 UPDATED sequence with ATGCGCATGCTGCTGACCACGTACGGATCGCGCGGAGATGTCGAGCCGCTGGCCGGACTCGCGGCGGGATTGCGAAAGTTGGGCGTGGAGGCGCGGGTGTGCGCGCCGCCGGACGAGGAGTTCGCGGCGTTGCCGGCGCGTGCGGGCGTTCCGCTGATTCCGCTCGGCCCGCCGGTGCGTCCGGTGGTGGCCGGTGAGCGGCCACCGACACCTCAGGACGCCTTCCGGCTCGCCGCCGAACTGGTCACCGCCCGCTTCGACACGCTCACCGAGGCGGCCGAGGGTTGTCAGGCGGTGCTGGCCACGGGGTTGATGCCGGCCGGTGTCCGCGACGTGGCCGAGAAGCTGGGGATTCCCTACGTCTTCGCCTGCTTCCACATCTACGGGCTGCCGTCGCGGCACTTTCCTCCGGGCGCGCGTCCGGGCACCCCGCCCGCACCGGACGGGACCGACCACCGGGAGTTGTGGGAACAGGACGCCCGGAGCGTGAACGCGCTGTACGGCGACGCCCTCAACCGTCACCGCACCGGGATCGGCCTGCCGCCCGTGCGGAACGTCCGGGACCACGTCCTCACCGACCGGCCGTGGCTCGCAGCGGACCCGGTGCTGTGTCCCGCGGAGGGGATGACGGAGTTCGACCTCGTACAGACCGGACCGTGGTTCCTGCCGGACGAACGTCCGCTGCCCGCCGGGCTGGAGGAGTTCCTCGGCGCCGGGGCACCACCGGTGTACGTGGGCTTCGGCAGCATGGGCGCCTACGCTCCGGAGGGCATCGCCCGGGTGGCCGTCGAAGCCTGCCGTGCGCAGGGGCGCCGTGTGGTCCTCGCTCGCGGGTGGGCCGGGCTGACTCCGGACGACGGCGGTGCCGACTGCTTCGCGGTCGGCGAGGTCAACCAGCAGGCGCTGTTCCGCCGGGTGGCCGCCGTGGTGCACCACGGCGGGGCGGGGACCACGACGACGGCCGCCCGCGCGGGGGCGCCCCAGGTGGTGGTTCCGAGGATCGCGGACCAGCCGTACTGGGCCGAGAGGGTGAGGGACCTCGGCATCGGCTCGGCTCATCCCGACCCGGTGGTGACCTTCGACTCCCTGTCCGCCGCGCTGACGACGGCTCTGGCACCCGAAGTCCGGGCACGGGCACGGACGGTGGCGGGCACCATCCGCACGGACGGTGCCTCGGTGGCCGCGCGGCTCCTCGTCGAGACCGCCGACCGGGCGGGGCGGCCGGTGTCCCCGTGA UPDATED NCBI_taxonomy_name with Streptomyces sp. WAC1438 UPDATED NCBI_taxonomy_id with 1214076 UPDATED NCBI_taxonomy_cvterm_id with 39592 UPDATED accession with AFO53532.1 UPDATED sequence with MRMLLTTYGSRGDVEPLAGLAAGLRKLGVEARVCAPPDEEFAALPARAGVPLIPLGPPVRPVVAGERPPTPQDAFRLAAELVTARFDTLTEAAEGCQAVLATGLMPAGVRDVAEKLGIPYVFACFHIYGLPSRHFPPGARPGTPPAPDGTDHRELWEQDARSVNALYGDALNRHRTGIGLPPVRNVRDHVLTDRPWLAADPVLCPAEGMTEFDLVQTGPWFLPDERPLPAGLEEFLGAGAPPVYVGFGSMGAYAPEGIARVAVEACRAQGRRVVLARGWAGLTPDDGGADCFAVGEVNQQALFRRVAAVVHHGGAGTTTTAARAGAPQVVVPRIADQPYWAERVRDLGIGSAHPDPVVTFDSLSAALTTALAPEVRARARTVAGTIRTDGASVAARLLVETADRAGRPVSP " 139 UPDATE QnrB10 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 138 UPDATE Streptomyces lividans cmlR antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCCTCTTCCGCTGTACCTGCTCGCCGTGGCCGTCTGCGCCATGGGCACCTCGGAGTTCATGCTCGCCGGTCTCGTGCCGGACATCGCCTCGGATCTCGGCGTCACCGTCGGGACCGCAGGCACGCTCACCTCCGCCTTCGCGACCGGCATGATCGTCGGCGCTCCCCTCGTGGCGGCGCTGGCCCGCACCTGGCCCAGGCGTTCCAGCCTCCTCGGATTCATCCTCGCCTTCGCGGCGGCACACGCCGTGGGAGCCGGCACCACGAGCTTCCCCGTCCTGGTGGCCTGCCGGGTCGTGGCCGCGCTCGCGAACGCGGGATTCCTCGCGGTCGCACTGACGACTGCCGCCGCACTGGTCCCTGCCGACAAGCAGGGACGCGCGCTGGCCGTGCTGCTGTCCGGCACGACGGTGGCCACGGTCGCCGGCGTCCCCGGCGGGTCACTCCTCGGCACGTGGCTCGGCTGGCGGGCCACGTTCTGGGCCGTCGCCGTCTGCTGCCTGCCCGCGGCGTTCGGCGTGCTGAAGGCAATCCCCGCCGGACGTGCGACGGCAGCGGCGACCGGTGGGCCGCCGCTGCGAGTCGAGCTCGCCGCGCTCAAGACCCCCCGGTTGCTGCTGGCGATGCTGCTGGGCGCGCTGGTGAACGCGGCAACCTTCGCGAGCTTCACCTTCCTGGCCCCCGTCGTGACCGACACCGCAGGGCTGGGCGACCTGTGGATCTCTGTCGCCCTGGTGCTCTTCGGCGCCGGTTCCTTCGCCGGCGTCACCGTCGCCGGACGACTGTCCGACCGACGCCCCGCCCAGGTGCTCGCCGTCGCCGGTCCGCTGCTGCTCGTCGGCTGGCCCGCGCTGGCGATGCTGGCCGACCGGCCGGTCGCCCTGCTGACCCTCGTGTTCGTCCAAGGCGCACTGTCGTTCGCGCTGGGCAGCACGCTGATCACGCGGGTCCTCTACGAGGCGGCGGGAGCACCCACCATGGCCGGTTCGTACGCGACCGCCGCCCTCAACGTGGGCGCCGCGGCCGGACCGCTCGTCGCCGCGACCACTCTCGGCCACACGACCGGCAACCTCGGGCCGCTGTGGGCGAGCGGGCTCCTGGTCGCCGTCGCGCTGCTCGTCGCGTTCCCCTTCCGCACGGTGATCACGACGGCCGCACCCGCCGACGCGACCCGGTGA " 1354 UPDATE Mycobacterium tuberculosis embA mutant conferring resistance to ethambutol antibiotic target alteration; ethambutol resistant arabinosyltransferase; polyamine antibiotic; ethambutol; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with GTGCCCCACGACGGTAATGAGCGATCTCACCGGATCGCACGCCTAGCAGCCGTCGTCTCGGGAATCGCGGGTCTGCTGCTGTGCGGCATCGTTCCGCTGCTTCCGGTGAACCAAACCACCGCGACCATCTTCTGGCCGCAGGGCAGCACCGCCGACGGCAACATCACCCAGATCACCGCCCCTCTGGTATCCGGGGCGCCACGCGCGCTGGACATCTCGATCCCCTGCTCGGCCATCGCCACGCTGCCCGCCAACGGCGGCCTGGTGCTGTCCACACTGCCGGCCGGTGGCGTGGATACCGGTAAGGCCGGGCTGTTCGTCCGCGCCAACCAGGACACGGTCGTCGTGGCGTTCCGCGACTCGGTGGCCGCGGTGGCGGCCCGCTCCACGATCGCAGCGGGAGGCTGTAGCGCGCTGCATATCTGGGCCGATACCGGCGGCGCGGGCGCTGATTTTATGGGTATACCCGGCGGCGCCGGGACCCTGCCGCCGGAGAAGAAGCCACAGGTTGGCGGCATCTTCACCGACCTGAAGGTCGGAGCGCAGCCCGGGCTGTCGGCCCGCGTCGACATCGACACTCGGTTTATCACGACGCCCGGCGCGCTCAAGAAGGCCGTGATGCTCCTCGGCGTGCTGGCGGTCCTGGTAGCCATGGTGGGGCTGGCCGCGCTGGACCGGCTCAGCAGGGGCCGCACCCTGCGCGACTGGCTGACCCGATATCGCCCGCGGGTGCGGGTCGGATTCGCCAGCCGGCTCGCTGACGCAGCGGTGATCGCGACCTTGTTGCTCTGGCATGTCATCGGCGCCACCTCGTCCGATGACGGCTACCTTCTGACCGTCGCCCGGGTCGCCCCGAAGGCCGGCTATGTAGCCAACTACTACCGGTATTTCGGCACGACGGAGGCGCCGTTCGACTGGTATACATCGGTGCTTGCCCAGCTGGCGGCGGTGAGCACCGCCGGCGTCTGGATGCGCCTGCCCGCCACCCTGGCCGGAATCGCCTGCTGGCTGATCGTCAGCCGTTTCGTGCTGCGGCGGCTGGGACCGGGCCCGGGCGGGCTGGCGTCCAACCGGGTCGCTGTGTTCACCGCTGGTGCGGTGTTCCTGTCCGCCTGGCTGCCGTTCAACAACGGCCTGCGTCCCGAGCCGCTGATCGCGCTGGGTGTGCTGGTCACGTGGGTGTTGGTGGAACGGTCGATCGCGCTCGGACGGCTGGCCCCGGCCGCGGTAGCCATCATCGTGGCGACGCTTACCGCGACGCTGGCACCGCAGGGGTTGATCGCGCTGGCCCCGCTGCTGACTGGTGCGCGCGCCATCGCCCAGAGGATCCGGCGCCGCCGGGCGACCGATGGACTGCTGGCGCCGCTGGCGGTGCTGGCCGCGGCGTTGTCGCTGATCACCGTGGTGGTGTTTCGGGACCAGACGCTGGCCACGGTGGCCGAATCGGCACGCATCAAGTACAAGGTCGGCCCGACCATCGCCTGGTACCAGGACTTCCTGCGCTACTACTTCCTTACCGTGGAGAGCAACGTTGAGGGGTCGATGTCCCGCCGGTTCGCGGTGCTGGTGTTGCTGTTCTGCCTGTTCGGGGTGCTGTTCGTGCTGCTGCGGCGCGGCCGGGTGGCGGGGCTGGCCAGCGGCCCGGCCTGGCGACTGATCGGCACTACGGCGGTCGGCCTGCTGCTGCTCACGTTCACGCCAACCAAGTGGGCCGTGCAGTTCGGCGCATTCGCCGGGCTGGCCGGGGTGTTGGGTGCGGTCACCGCGTTCACCTTTGCCCGCATCGGTCTACATAGTCGACGCAACCTCACGCTGTACGTGACCGCGTTGCTGTTCGTGCTGGCGTGGGCAACCTCGGGCATCAACGGGTGGTTCTACGTCGGCAACTACGGGGTGCCGTGGTATGACATCCAGCCCGTCATCGCCAGCCACCCGGTGACGTCGATGTTTCTGACGCTGTCGATCCTCACCGGATTGCTGGCAGCCTGGTATCACTTCCGGATGGACTACGCCGGGCACACCGAAGTCAAAGACAACCGGCGCAACCGCATCTTGGCCTCTACGCCACTGCTGGTGGTCGCGGTGATCATGGTCGCAGGCGAAGTCGGCTCGATGGCCAAGGCCGCGGTGTTCCGTTACCCGCTTTACACCACCGCCAAGGCCAACCTGACCGCGCTCAGCACCGGGCTGTCCAGCTGTGCGATGGCCGACGACGTGCTGGCCGAGCCCGACCCCAATGCCGGCATGCTGCAACCGGTTCCGGGCCAGGCGTTCGGACCGGACGGACCGCTGGGCGGTATCAGTCCCGTCGGCTTCAAACCCGAGGGCGTGGGCGAGGACCTCAAGTCCGACCCGGTGGTCTCCAAACCCGGGCTGGTCAACTCCGATGCGTCGCCCAACAAACCCAACGCCGCCATCACCGACTCCGCGGGCACCGCCGGAGGGAAGGGCCCGGTCGGGATCAACGGGTCGCACGCGGCGCTGCCGTTCGGATTGGACCCGGCACGTACCCCGGTGATGGGCAGCTACGGGGAGAACAACCTGGCCGCCACGGCCACCTCGGCCTGGTACCAGTTACCGCCCCGCAGCCCGGACCGGCCGCTGGTGGTGGTTTCCGCGGCCGGCGCCATCTGGTCCTACAAGGAGGACGGCGATTTCATCTACGGCCAGTCCCTGAAACTGCAGTGGGGCGTCACCGGCCCGGACGGCCGCATCCAGCCACTGGGGCAGGTATTTCCGATCGACATCGGACCGCAACCCGCGTGGCGCAATCTGCGGTTTCCGCTGGCCTGGGCGCCGCCGGAGGCCGACGTGGCGCGCATTGTCGCCTATGACCCGAACCTGAGCCCTGAGCAATGGTTCGCCTTCACCCCGCCCCGGGTTCCGGTGCTGGAATCTCTGCAGCGGTTGATCGGGTCAGCGACACCGGTGTTGATGGACATCGCGACCGCAGCCAACTTCCCCTGCCAGCGACCGTTTTCCGAGCATCTCGGCATTGCCGAGCTTCCGCAGTACCGGATCCTGCCGGACCACAAGCAGACGGCGGCGTCGTCGAACCTATGGCAGTCCAGCTCGACCGGCGGTCCGTTCCTGTTCACCCAGGCGCTGCTGCGCACCTCGACGATCGCCACGTACCTGCGTGGGGACTGGTATCGCGACTGGGGATCGGTGGAGCAGTACCACCGGCTGGTGCCGGCCGATCAGGCTCCAGACGCCGTTGTCGAGGAGGGCGTGATCACTGTGCCCGGCTGGGGTCGGCCAGGACCGATCAGGGCGCTGCCATGA " 2019 UPDATE OXA-213 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2018 UPDATE CMY-76 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTGGCGATTATCTACGAGGAGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAATTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATGACGTTACGGATAAAGCCGCATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGCGGTGCAACCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAATTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACAGGTGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATAGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGCGTCGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA " 2015 UPDATE DHA-3 antibiotic inactivation; cephalosporin; cephamycin; DHA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAATCGTTATCTGCAACACTGATTTCCGCTCTGCTGGCGTTTTCCGCCCCGGGGTTTTCTGCCGCTGATAATGTCGCGGCGGTGGTGGACAGCACCATTAAACCGCTGATGGCACAGCAGGATATTCCCGGGATGGCGGTTGCCGTCTCCGTAAAGGGTAAGCCCTATTATTTCAATTATGGTTTTGCCGATATTCAGGCAAAACAGCCGGTCACTGAAAATACACTATTTGAGCTCGGATCTGTAAGTAAAACTTTCACAGGTGTGCTGGGTGCGGTTTCTGTGGCGAAAAAAGAGATGGCGCTGAATGATCCGGCGGCAAAATACCAGCCGGAGCTGGCTCTGCCGCAGTGGAAGGGGATCACATTGCTGGATCTGGCTACCTATACCGCAGGCGGACTGCCGTTACAGGTGCCGGATGCGGTAAAAAGCCGTGCGGATCTGCTGAATTTCTATCAGCAGTGGCAGCCGTCCCGGAAACCGGGCGATATGCGTCTGTATGCAAACAGCAGTATCGGCCTGTTTGGTGCTCTGACCGCAAACGCGGCGGGGATGCCGTATGAGCAGTTGCTGACTGCACGGATCCTGGCACCGCTGGGGTTATCTCACACCTTTATTACTGTGCCGGATAGTGCGCAAAGCCAGTATGCGTACGGTTATAAAAACAAAAAACCGGTCCGCGTGTCGCCAGGACAGCTTGATGCGGAATCTTACGGCGTGAAATCCGCCTCAAAAGATATGCTGCGCTGGGCGGAAATGAATATTGAGCCGTCACGGGCCGGTAATGCGGATCTGGAAATGGCAATGTATCTCGCCCAGACCCGCTACTATAAAACCGCCGCGATTAACCAGGGGCTGGGCTGGGAAATGTATGACTGGCCGCAGCAGAAAGATATGATCATTAACGGCGTGACCAACGAGGTCGCATTGCAGCCGCATCCGGTAACAGACAACCAGGTTCAGCCGTATAACCGTGCTTCCTGGGTGCATAAAACGGGCGCAACAACTGGTTTCGGCGCCTATGTGGCCTTTATTCCGGAAAAACAGGTGGCGATTGTGATTCTGGCGAATAAAAACTACCCGAATACCGAAAGAGTCAAAGCTGCACAGGCTATTTTGAGTGCACTGGAATAA " 2014 UPDATE PmrF pmr phosphoethanolamine transferase; peptide antibiotic; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTTGAAATCCACCCTGTTAAGAAAGTCTCGGTGGTTATTCCCGTTTATAACGAGCAGGAAAGCTTACCGGAATTAATCAGGCGCACCACCACAGCCTGTGAATCGTTGGGGAAAGAGTATGAGATCCTGCTGATTGATGACGGCAGTAGCGATAATTCCGCGCATATGCTGGTCGAAGCCTCACAAGCGGAGAACAGCCATATTGTGTCTATTTTGCTTAACCGCAATTACGGGCAACATTCAGCGATTATGGCGGGATTCAGTCACGTTACTGGCGACTTAATTATTACCCTTGATGCCGATCTCCAGAATCCGCCAGAAGAAATCCCCCGCCTGGTGGCAAAAGCCGATGAAGGTTACGACGTGGTAGGGACTGTACGCCAGAACCGCCAGGACAGCTGGTTTCGTAAAACCGCTTCGAAGATGATTAACCGGCTTATTCAGCGCACCACTGGCAAAGCGATGGGTGATTACGGTTGTATGCTGCGCGCCTATCGCCGTCATATTGTCGATGCGATGTTGCACTGCCATGAACGCAGCACCTTTATCCCGATTCTGGCGAATATCTTCGCCCGCCGTGCCATTGAAATTCCAGTACATCATGCCGAGCGTGAGTTTGGTGAATCCAAATACAGTTTTATGCGCCTGATTAATTTGATGTACGACCTGGTGACCTGCCTTACCACAACGCCGCTACGTATGCTGAGTCTGCTCGGCAGCATTATTGCGATTGGAGGTTTTAGCATTGCGGTGCTGCTGGTGATTTTACGCCTGACCTTCGGACCACAATGGGCGGCAGAAGGCGTCTTTATGCTATTTGCCGTGCTGTTTACTTTTATTGGCGCTCAGTTTATCGGCATGGGATTACTCGGTGAATATATCGGCAGGATCTACACCGATGTCCGCGCCCGCCCCCGCTATTTTGTTCAGCAAGTTATCCGTCCATCCAGCAAGGAAAATGAATAA " 2017 UPDATE CTX-M-37 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2016 UPDATE OXA-370 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2011 UPDATE QnrB60 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCTCTGGCATTAATTGGCGAAAAAATTGACAGAAACCGCTTCACCGGTGAAAAAGTTGAAAATAGCACTTTTTTTAACTGTGATTTTTCGGGTGCCGACCTTAGCGGTACTGAATTTATCGGCTGTCAGTTCTATGATCGAGAAAGCCAGAAAGGGTGCAATTTCAGTCGCGCAATACTGAAAGATGCCATTTTTAAAAGCTGTGATTTATCCATGGCGGATTTTCGCAACGTCAGTGCGTTGGGCATAGAAATTCGCCACTGCCGCGCACAGGGTGCAGATTTTCGCGGCGCAAGTTTCATGAATATGATCACCACGCGCACCTGGTTTTGCAGCGCATATATCACTAATACCAATCTAAGCTACGCCAACTTTTCGAAGGCCGTGCTTGAAAAGTGCGAATTGTGGGAAAATCGCTGGATGGGAACTCAGGTGCTGGGTGCGACGTTGAGTGGTTCCGATCTCTCCGGTGGCGAGTTTTCGTCGTTCGACTGGCGGACGGCAAATTTCACGCACTGTGATTTGACCAATTCAGAACTGGGTGATTTAGATATTCGGGGCGTCGATTTACAAGGTGTCAAATTGGACAGCTATCAGGCCGTATTGCTCATGGAACGTCTTGGCATCGCTGTCATTGGCTAA " 2010 UPDATE CTX-M-129 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAGAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGGCTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA " 2013 UPDATE Erm(41) antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2012 UPDATE SHV-178 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2112 UPDATE patB antibiotic efflux; ATP-binding cassette (ABC) antibiotic efflux pump; norfloxacin; efflux pump complex or subunit conferring antibiotic resistance; ciprofloxacin; fluoroquinolone antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1360395 UPDATED strand with - UPDATED accession with NC_003098.1 UPDATED fmin with 1359228 UPDATED sequence with ATGGGAAAATATGATTTTACAAGCCTGCCCAACCGTTTAGGGCACCATACCTATAAATGGAAAGAAACAGAAACGGATAGTGAAGTTCTACCAGCTTGGATAGCGGATATGGACTTTGTAGTCTTGCCTGAAATCCACCAAGCCGTGCAAACTTACGCAGACCAACTGGTTTATGGTTATACCTATGCCAGTGAAGACTTAATTAAGGAAGTTCAAAAGTGGGAAGCTACACAATACGGTTACAACTTTGACAAAGAGGCTCTTGTCTTTATCGAGGGTGTGGTACCAGCCATCTCAACAGCTATTCAAACCTTTACAAAAGAAGGCGAGGCGGTTTTAATTAACACGCCTGTCTACCCACCCTTTGCTCGCAGTGTCAAGTTGAATAATCGTAGATTGATTACTAATTCCTTAGTGGAAAAGGATAGTCTGTTTGAGATTGACTTTGACCAACTTGAAAAGGATTTGGTGGAAGAGGAGGTTAAACTCTATGTTCTTTGCAACCCTCACAATCCTGGTGGACGTGTTTGGGAAAAAGAAGTGTTGGAGAAGATTGGCCAACTCTGCCAAAAACACGGTGTTTTGTTAGTTTCGGATGAGATTCACCAAGATTTGACCCTCTTTGGTCACAAACACCAGTCTTTCAATACCATCAATCCTGCCTTCAAAAATTTTGCTATCGTCTTGAGCAGTGCCACTAAAACATTTAATATTGCTGGAACAAAAAATTCCTATGCAGTCATTGAAAATCCTAAGTTGAGACTGGCTTTCCAGAAACGCCTGTTGGCCAATAATCAGCATGAAATTTCAGGCTTGGGTTATTTGGCGACAGAAGCTGCCTATCGATACGGTAAAGATTGGCTAGAGGAACTCAAGCAAGTCTTTGAAGACCACATCAATTATGTGGTGGATCTATTTGGAAAAGAGACTAAAATCAAGGTCATGAAACCGCAAGGTACCTACTTGATTTGGCTTGACTTTTCAGCTTATGACCTGACTGATGAAACATTGCAAGAGTTGTTGAGAAATGAAGCCAAGGTTATCCTCAACCGTGGTTTGGATTTTGGAGAGGAAGGAAGTCTCCATGCCCGCATCAATATAGCTATGCCCAAATCTCTGTTGCAAGAAGTCTGTCAGCGGATTGTGGCTACTTTTGCCAAATGTTAA UPDATED NCBI_taxonomy_name with Streptococcus pneumoniae R6 UPDATED NCBI_taxonomy_id with 171101 UPDATED NCBI_taxonomy_cvterm_id with 39596 UPDATED accession with NP_358969.1 UPDATED sequence with MGKYDFTSLPNRLGHHTYKWKETETDSEVLPAWIADMDFVVLPEIHQAVQTYADQLVYGYTYASEDLIKEVQKWEATQYGYNFDKEALVFIEGVVPAISTAIQTFTKEGEAVLINTPVYPPFARSVKLNNRRLITNSLVEKDSLFEIDFDQLEKDLVEEEVKLYVLCNPHNPGGRVWEKEVLEKIGQLCQKHGVLLVSDEIHQDLTLFGHKHQSFNTINPAFKNFAIVLSSATKTFNIAGTKNSYAVIENPKLRLAFQKRLLANNQHEISGLGYLATEAAYRYGKDWLEELKQVFEDHINYVVDLFGKETKIKVMKPQGTYLIWLDFSAYDLTDETLQELLRNEAKVILNRGLDFGEEGSLHARINIAMPKSLLQEVCQRIVATFAKC " 2900 UPDATE EBR-2 carbapenem; penam; cephalosporin; EBR beta-lactamase; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 708 UPDATE CTX-M-49 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAAGGCGGCTGGGCGTCCCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA " 709 UPDATE TEM-213 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 704 UPDATE OprJ penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; ofloxacin; trimethoprim; aminocoumarin antibiotic; novobiocin; macrolide antibiotic; phenicol antibiotic; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; diaminopyrimidine antibiotic; tetracycline antibiotic; gentamicin C; chloramphenicol; aminoglycoside antibiotic; fluoroquinolone antibiotic; tetracycline; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGCAAACCTGCTTTCGGCGTATCGGCGCTGCTGATCGCCCTGACCCTCGGCGCCTGCTCCATGGCGCCGACCTACGAACGTCCCGCCGCGCCGGTGGCCGACAGCTGGAGCGGCGCCGCCGCCCAGCGCCAGGGCGCGGCGATCGACACGCTGGATTGGAAGAGTTTCATCGTCGATGCCGAACTACGCCGCCTGGTGGACATGGCCCTGGATAACATCCGCTCGCTGCGCCAGACCCTCCTGGATATCGAGGCGGCCCGCGCGCAGTACCGAATCCAGCGCGCCGACCGGGTTCCGGGCCTGAATGCCGCTGCCACCGGCAACCGCCAGCGGCAGCCGGCCGACCTGTCCGCCGGCAATCGCTCGGAAGTGGCCAGCAGCTACCAGGTCGGGCTGGCCCTGCCGGAGTACGAACTGGACCTCTTCGGTCGGGTCAAGAGCCTGACCGACGCAGCCCTGCAACAGTACCTGGCCAGCGAGGAGGCAGCGCGCGCGGCACGGATCGCCCTGGTCGCCGAGGTCAGCCAGGCCTACCTGAGCTACGACGGCGCCCTGCGGCGCCTGGCGCTGACCCGTCAGACCCTGGTCAGCCGCGAGTATTCCTTCGCCCTGATCGACCAGCGCCGCGCGGCCGGCGCCGCCACCGCGCTGGACTACCAGGAAGCCCTTGGCCTGGTGGAGCAGGCGCGCGCCGAGCAGGAGCGCAACCTGCGGCAGAAACAGCAGGCATTCAACGCGCTGGTGTTGCTGCTGGGTAGCGACGATGCCGCGCAGGCGATTCCGCGGAGTCCGGGGCAGCGGCCGAAGCTGCTGCAGGACATCGCTCCCGGCACGCCGTCCGAGCTGATCGAGCGACGTCCGGACATCCTTGCCGCCGAACATCGTTTGCGGGCGCGCAACGCGGATATCGGCGCGGCGCGCGCGGCGTTCTTCCCGCGCATCAGCCTGACCGGCAGCTTCGGCACCTCCAGCGCGGAAATGTCCGGCCTGTTCGATGGCGGCTCGCGCTCCTGTAGCTTCCTGCCGACGTTGACGCTGCCGATCTTCGATGGCGGGCGCAACCGTGCCAACCTGAGCCTGGCCGAGGCGCGCAAGGATTCGGCGGTGGCCGCCTACGAGGGGACCATCCAGACCGCTTTCCGCGAGGTCGCCGACGCCCTGGCGGCCAGCGATACCCTGCGTCGCGAAGAGAAGGCCCTGCGCGCCCTGGCGAACAGCAGCAACGAAGCCCTGAAGCTGGCCAAGGCACGCTACGAGAGTGGCGTCGACAACCACCTGCGCTACCTCGATGCGCAGCGCAGCAGCTTCCTCAACGAGATCGCCTTCATCGACGGCAGCACCCAGCGGCAGATCGCCCTGGTCGACCTGTTCCGCGCGCTCGGCGGAGGCTGGGACGAGGGACGGAGCCTGGTGGTACATCGAGGCGGCAGGAGTTGA " 705 UPDATE CMY-116 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 706 UPDATE APH(7'')-Ia antibiotic inactivation; APH(7''); hygromycin B; aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGACACAAGAATCCCTGTTACTTCTCGACCGTATTGATTCGGATGATTCCTACGCGAGCCTGCGGAACGACCAGGAATTCTGGGAGCCGCTGGCCCGCCGAGCCCTGGAGGAGCTCGGGCTGCCGGTGCCGCCGGTGCTGCGGGTGCCCGGCGAGAGCACCAACCCCGTACTGGTCGGCGAGCCCGACCCGGTGATCAAGCTGTTCGGCGAGCACTGGTGCGGTCCGGAGAGCCTCGCGTCGGAGTCGGAGGCGTACGCGGTCCTGGCGGACGCCCCGGTGCCGGTGCCCCGCCTCCTCGGCCGCGGCGAGCTGCGGCCCGGCACCGGAGCCTGGCCGTGGCCCTACCTGGTGATGAGCCGGATGACCGGCACCACCTGGCGGTCCGCGATGGACGGCACGACCGACCGGAACGCGCTGCTCGCCCTGGCCCGCGAACTCGGCCGGGTGCTCGGCCGGCTGCACAGGGTGCCGCTGACCGGGAACACCGTGCTCACCCCCCATTCCGAGGTCTTCCCGGAACTGCTGCGGGAACGCCGCGCGGCGACCGTCGAGGACCACCGCGGGTGGGGCTACCTCTCGCCCCGGCTGCTGGACCGCCTGGAGGACTGGCTGCCGGACGTGGACACGCTGCTGGCCGGCCGCGAACCCCGGTTCGTCCACGGCGACCTGCACGGGACCAACATCTTCGTGGACCTGGCCGCGACCGAGGTCACCGGGATCGTCGACTTCACCGACGTCTATGCGGGAGACTCCCGCTACAGCCTGGTGCAACTGCATCTCAACGCCTTCCGGGGCGACCGCGAGATCCTGGCCGCGCTGCTCGACGGGGCGCAGTGGAAGCGGACCGAGGACTTCGCCCGCGAACTGCTCGCCTTCACCTTCCTGCACGACTTCGAGGTGTTCGAGGAGACCCCGCTGGATCTCTCCGGCTTCACCGATCCGGAGGAACTGGCGCAGTTCCTCTGGGGGCCGCCGGACACCGCCCCCGGCGCCTGA " 707 UPDATE AIM-1 penam; AIM beta-lactamase; cephalosporin; antibiotic inactivation; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAACGTCGCTTCACCCTGCTGGGCAGCGTAGTCGCCCTCGCCCTCTCATCCACAGCCCTCGCCTCCGATGCGCCCGCCTCCAGGGGCTGCGCCGACGATGCCGGCTGGAACGATCCGGCAATGCCCCTGAAGGTGTACGGAAACACCTGGTACGTTGGCACCTGCGGCATCAGTGCGCTGCTGGTCACTTCCGACGCGGGCCATATCCTGGTCGATGCCGCCACGCCGCAGGCGGGCCCACAGATCCTGGCCAACATCCGCGCACTCGGTTTCAGGCCGGAGGACGTGCGCGCCATCGTGTTCTCGCACGAGCATTTCGACCATGCCGGCAGCCTCGCCGAACTGCAGAAGGCCACGGGTGCACCGGTGTACGCGCGCGCGCCCGCGATCGACACGCTGAAGCGCGGCCTGCCGGACCGCACCGACCCGCAATTCGAGGTGGCCGAACCCGTTGCGCCGGTCGCCAACATCGTCACCCTGGCCGACGACGGCGTGGTGAGCGTCGGCCCGCTGGCCCTGACGGCGGTCGCCTCGCCTGGCCACACCCCGGGTGGCACCAGTTGGACCTGGCGCTCCTGCGAAGGCGACGACTGTCGCCAGATGGTCTACGCCGACAGCCTGACGGCGATCTCGGACGACGTCTTCCGCTACAGCGACGACGCCGCGCATCCCGGCTACCTGGCGGCATTCCGCAACACCCTCGCACGGGTCGCAGCGCTCGACTGCGACATCCTGGTCACCCCGCACCCCTCGGCCAGCGGCCTGTGGAACCGGATCGGCCCGAGGGCCGCCGCACCGCTGATGGACACCACCGCCTGCCGCCGCTACGCGCAGGGCGCGAGGCAGCGGCTGGAGAAGCGCCTGGCCGAGGAAGCCGCCACCTCCCCCTCCAGCGGCGCGCGGCCTTGA " 700 UPDATE ACT-31 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 701 UPDATE SHV-129 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 702 UPDATE CTX-M-98 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGTCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGGCTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA " 703 UPDATE cmlv antibiotic inactivation; chloramphenicol phosphotransferase; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCCGTCTCCCTCCGCCGAGCCCACGACATCCACCCCGACCCCCGACGCCGGGCCCGCCGCATCCCCCCGGATGCCCCTGGCCGTCTACATCCTCGGACTGTCCGCGTTCGCGCTCGGGACGAGCGAATTCATGCTCTCCGGCCTCGTGCCGCCCATCGCGGAGGACATGAACGTCTCCATCCCCCGCGCCGGACTCCTCATCTCGGCGTTCGCGATCGGCATGGTCGTCGGCGCACCGCTCCTCGCCGTCGCCACCCTCCGGCTCCCCCGCAAGACCACCCTCATCGCCCTCATCACCGTCTTCGGCCTGCGCCAGATGGCCGGCGCCCTCGCCCCCAACTACGCGGTCCTCTTCGCCTCCCGCGTGATCAGCGCCCTGCCCTGCGCGGGCTTCTGGGCGGTCGGCGCGGCGGTGGCCATCGCGATGGTCCCGGTCGGCTCACGGGCCCGGGCGCTGGCGGTCATGATCGGCGGCCTCTCCATCGCCAACGTCCTGCGCGTCCCCGCCGGCGCCTTCCTCGGCGAGCACCTCGGCTGGGCCTCCGCCTTCTGGGCCGTCGGCCTCGCCTCCGCCATCGCGCTCGTCGGCGTCGTCACCCGCATCCCCCGCATCCCGCTCCCCGAGACCAGGCCCCGCCCTCTCAAGAACGAGGTCGCCATCTACCGCGACCGCCAGGTCCTCCTGTCGATCGCGGTCACGGCCCTCGCGGCGGGCGGCGTCTTCTGCGCCTTCTCGTACCTCGCGCCGCTGCTCACCGACGTCTCCGGCCTCGACGAGGCCTGGGTCTCCGGCGTCCTCGGCCTCTTCGGCATCGGCGCCGTCGTCGGTACGACGATCGGCGGCCGGGTCGCCGACGCGCACCTCTTCGGCGTGCTGCTCACCGGCATCTCCGCCTCCACCGTCTTCCTCGTGGCCCTGGCCCTGTTCGCCTCGAACCCGGCCGCCACGATCGTGCTGACCTTCCTCCTCGGCGTCTCGGCCTTCTACACGGCCCCGGCCCTCAACGCCCGCATGTTCAACGTCGCCGGCGCCGCCCCCACCCTCGCGGGCGCCACCACCACCGCCGCCTTCAACCTCGGCAACACGGGCGGCCCCTGGCTCGGCGGCACGGTCATCGACGCGAACCTCGGCTTCGCCTCGACGGCCTGGGCGGGCGCGGCGATGACGGTCCTGGGCCTGGGAACGGCGGCCCTGGCCCTCCGCCTGACCAAGCGCCCGGCCCCCGGCCACGTGGTCGCCCGGAGCAGAGGGGCGGGCGGGACCACCCCGTCCGAACCGGCCAGGGGGAAGGCCACGTCGAGCTGCTGA " 88 UPDATE CMY-55 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 89 UPDATE vanYA glycopeptide resistance gene cluster; teicoplanin; vanY; glycopeptide antibiotic; antibiotic target alteration; vancomycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 82 UPDATE PER-4 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; PER beta-lactamase; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 83 UPDATE IMP-47 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 80 UPDATE ACT-29 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 81 UPDATE FOX-3 antibiotic inactivation; cephamycin; cephalosporin; FOX beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAACAACGACGTGCGTTCGCGCTACTGACGCTGGGTAGCCTGCTGCTAGCCCCTTGTACTTATGCCAGCGGGGAGGCCCCGCTGACCGCCACTGTGGACGGCATTATCCAGCCGATGCTCAAGGAGTATCGGATCCCGGGGATAGCGGTCGCCGTACTGAAAGATGGCAAGGCCCACTATTTCAACTATGGGGTTGCCAACCGCGAGAGTGGCCAGCGCGTCAGCGAGCAGACCCTGTTCGAGATTGGCTCGGTCAGCAAGACCCTGACCGCGACCCTCGGTGCCTATGCTGCGGTCAAGGGGGGCTTTGTGCTGGATGACAAGGTGAGCCAGCACGCCCCCTGGCTCAAAGGTTCCGCCTTGGATGGTGTGACCATGGCCGAGCTTGCCACCTACAGTGCGGGTGGTTTGCCGCTGCAGTTCCCCGATAAGGTGGATTCGAATGACAAGATGCAAACTTACTATCGGAGCTGGTCACCGGTTTATCCGGCAGGGACTCATCGCCAGTATTCCAACCCCAGCATAGGCCTGTTTGGTCACCTGGCCGCAAATAGTCTGGGCCAGCCATTTGAGCAACTGATGAGCCAGACCCTGCTGCCCAAGCTGGGTTTGCACCACACCTATATCCAGGTGCCGGAGTCGGCCATGGCGAACTATGCCTACGGCTATTCGAAGGAAGATAAGCCCATCCGGGTCACTCCGGGCGTGCTGGCGGCCGAGGCTTACGGGATCAAGACCGGCTCGGCGGATCTGCTGAAGTTTGCCGAGGCAAACATGGGGTATCAGGGAGATGCCCTGGTAAAAAGCGCAATCGCGCTGACCCACACCGGTTTCTACTCGGTGGGGGAAATGACCCAGGGGCTGGGCTGGGAGAGTTACGACTATCCCGTCACCGAGCAGGTGCTGCTGGCGGGCAACTCCCCGGCGGTGAGCTTCCAGGCCAATCCGGTTACGCGCTTTGCGGTGCCCAAAGCGATGGGCGAGCAGCGGCTCTATAACAAGACGGGCTCGACTGGCGGCTTTGGCGCCTATGTGGCGTTCGTGCCCGCCAGAGGGATCGCCATCGTCATGCTGGCCAATCGCAACTATCCCATCGAGGCCAGGGTGAAGGCGGCTCACGCCATCCTGAGTCAGTTGGCCGAGTGA " 86 UPDATE TEM-102 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 87 UPDATE TEM-116 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 84 UPDATE GIM-1 penam; GIM beta-lactamase; penem; carbapenem; cephalosporin; antibiotic inactivation; cephamycin; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 85 UPDATE IMP-42 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 762 UPDATE CTX-M-55 antibiotic inactivation; ceftazidime; ceftriaxone; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1658 UPDATE OKP-B-4 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1659 UPDATE OXA-258 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1652 UPDATE IMP-20 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1653 UPDATE AAC(6')-Ip antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1650 UPDATE CMY-15 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1651 UPDATE AAC(6')-If antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGATGAAGCTTCTTTGAGCATGTGGGTTGGGCTTCGAAGTCAGCTATGGCCAGACCATAGCTATGAAGATCATATTCTGGATAGCCAACACATTTTATCTTGTCCCGATAAATATGTTTCATTCCTGGCAATAAATAACCAGAGTCAGGCAATAGCGTTTGCCGATGCCGCGGTTCGCCATGATTATGTGAATGGTTGTGAAAGCAGTCCGGTGGTTTATCTTGAAGGGATTTTTGTTATTCCGGAGCAGAGAGGCCATGGCGTTGCCAAACTACTGGTTGCAGCCGTACAGGATTGGGGAGTGGCGAAAGGTTGCACCGAGATGGCAAGCGATGCGGCTTTAGATAACCATATATCCTATCAAATGCATCAGGCTTTAGGCTTTGAAGAAACCGAACGCGTGGTATTTTTCAGAAAAAGAATAGCTGGTTAA " 1656 UPDATE CTX-M-79 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1657 UPDATE AAC(6')-IIa antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCCGCGAGCACCCCCCCCATAACTCTTCGCCTCATGACCGAGCGCGACCTGCCGATGCTCCATGATTGGCTCAACCGGCCGCACATCGTTGAGTGGTGGGGTGGTGACGAAGAGCGACCGACTCTTGATGAAGTGCTGGAACACTACCTGCCCAGAGCGATGGCGGAAGAGTCCGTAACACCGTACATCGCAATGCTGGGCGAGGAACCGATCGGCTATGCTCAGTCGTACGTCGCGCTCGGAAGCGGTGATGGCTGGTGGGAAGATGAAACTGATCCAGGAGTGCGAGGAATAGACCAGTCTCTGGCTGACCCGACACAGTTGAACAAAGGCCTAGGAACAAGGCTTGTCCGCGCTCTCGTTGAACTACTGTTCTCGGACCCCACCGTGACGAAGATTCAGACCGACCCGACTCCGAACAACCATCGAGCCATACGCTGCTATGAGAAGGCAGGATTCGTGCGGGAGAAGATCATCACCACGCCTGACGGGCCGGCGGTTTACATGGTTCAAACACGACAAGCCTTCGAGAGAAAGCGCGGTGTTGCCTAA " 1654 UPDATE SHV-95 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1655 UPDATE TEM-117 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 586 UPDATE VIM-20 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 587 UPDATE TEM-73 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 584 UPDATE aadA21 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGGGTAGCGGTGACCATCGAAATTTCGAACCAACTATCAGAGGTGCTAAGCGTCATTGAGCGCCATCTGGAATCAACGTTGCTGGCCGTGCATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCATACAGCGATATTGATTTGCTGGTTACGGTGACCGTAAGGCTTGATGAAACAACGCGGCGAGCTTTGATCAACGACCTTTTGGAAACTTCGGCTTCCCCTGGAGAGAGCGAGATTCTCCGCGCTGTAGAAGTCACCATTGTTGTGCACGACGACATCATTCCGTGGCGTTATCCAGCTAAGCGCGAACTGCAATTTGGAGAATGGCAGCGCAATGACATTCTTGCAGGTATCTTCGAGCCAGCCACGATCGACATTGATCTGGCTATCTTGCTGACAAAAGCAAGAGAACATAGCGTTGCCTTGGTAGGTCCAGCGGCGGAGGAACTCTTTGATCCGGTTCCTGAACAGGATCTATTTGAGGCGCTAAATGAAACCTTAACGCTATGGAACTCGCCGCCCGACTGGGCTGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAGTAACCGGCAAAATCGCGCCGAAGGATGTCGCTCGCGACTGGGCAATGGAGCGCCTGCCGGCCCAGTATCAGCCCGTCATACTTGAAGCTAGACAGGCTTATCTTGGACAAGAAGAAGATCGCTTGGCCTCGCGCGCAGATCAGTTGGAAGAATTTGTCCACTACGTGAAAGGCGAGATCACCAAGGTAGTCGGCAAATAA " 585 UPDATE NDM-7 antibiotic inactivation; penam; carbapenem; cephalosporin; cephamycin; NDM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 763 UPDATE catI antibiotic inactivation; thiamphenicol; chloramphenicol acetyltransferase (CAT); azidamfenicol; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAA " 583 UPDATE SHV-100 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 580 UPDATE TEM-110 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 581 UPDATE QnrB19 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACTCTGGCATTAGTTGGCGAAAAAATTGACAGAAATCGCTTCACCGGTGAGAAAGTTGAAAATAGTACATTTTTTAACTGCGATTTTTCAGGTGCCGACCTGAGCGGCACTGAATTTATCGGCTGCCAGTTCTATGATCGCGAAAGTCAGAAAGGGTGCAATTTTAGTCGCGCAATGCTGAAAGATGCCATTTTCAAAAGCTGTGATTTATCAATGGCAGATTTCCGCAACGTCAGTGCCTTGGGCATTGAAATTCGCCACTGCCGCGCACAAGGCGCAGATTTCCGCGGTGCAAGCTTTATGAATATGATCACCACGCGCACCTGGTTTTGCAGCGCATATATCACTAATACTAATCTAAGCTACGCCAATTTTTCGAAAGTCGTGTTGGAAAAGTGTGAGCTGTGGGAAAACCGCTGGATGGGGACTCAGGTACTGGGTGCGACGTTCAGTGGTTCAGATCTCTCCGGCGGCGAGTTTTCGACTTTCGACTGGCGAGCAGCAAACTTCACACATTGCGATCTGACCAATTCGGAGTTAGGTGACTTAGATATTCGGGGTGTTGATTTACAAGGCGTTAAGTTAGACAGCTACCAGGCATCGTTGCTCATGGAGCGGCTTGGCATCGCTGTGATTGGTTAG " 1632 UPDATE CTX-M-53 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGTGGACGTACAGCAAAAACTTGCCGAATTAGAGCAGCAGTCGGGAGGAAGGCTGGGTGTGGCATTGATTAACACGGCGGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGTGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTCGAGATCAAAAAATCTGACCTGGTTAACTATAATCCGATTGCGGAAAAACACGTCAATGGGACGATGTCACTGGCTGAGCTCAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTTACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCTGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACGCTGCGTAATCTGACGCTGGGTAAAGCATTGGGTGACAGCCAACGGGCGCAGCTGGTGACGTGGATGAAAGGCAATACTACCGGTGCAGCGAGTATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGGCTATGGTACCACCAACGATATCGCGGTGATTTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCATTTACTTCACCCAGCCCCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAG " 588 UPDATE OKP-A-7 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 589 UPDATE TEM-145 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1633 UPDATE catQ antibiotic inactivation; thiamphenicol; chloramphenicol acetyltransferase (CAT); azidamfenicol; phenicol antibiotic; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2839 UPDATE GOB-18 carbapenem; penam; GOB beta-lactamase; antibiotic inactivation; cephalosporin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 873 UPDATED strand with + UPDATED accession with DQ004496.1 UPDATED fmin with 0 UPDATED sequence with ATGAGAAATTTTGCTACACTGTTTTTCATGTTCATTTGCTTGGGCTTGAGTGCTCAGGTAGTAAAAGAACCTGAAAATATGCCCAAAGAATGGAATCAGGCTTATGAACCATTCAGAATTGCAGGTAATTTATATTACGTAGGAACCTATGATTTGGCTTCTTACCTTATTGTGACAGACAAAGGCAATATTCTCATTAATACAGGAACGGCAGAATCGTTTCCAATAATAAAAGCAAATATCCAAAAGCTCGGGTTTAATTATAAAGACATTAAGATCTTGCTGCTTACTCAGGCTCACTACGACCATACAGGTGCATTACAGGATTTTAAAACAGAAACCGCTGCAAAATTCTATGTCGATAAAGCAGATGTTGATGTCCTGAGAACAGGGGGGAAGTCCGATTATGAAATGGGAAAATATGGTGTGACATTTAAACCTGTTACTCCGGATAAAACATTGAAAGATCAGGATAAAATAAAACTGGGAAATATAACCCTGACTTTGCTTCATCATCCGGGACATACAAAAGGTTCCTGTAGTTTTATTTTTGAAACAAAAGACGAGAAGAGAAAATATAGAGTTTTGATAGCTAATATGCCCTCCGTTATTGTTGATAAGAAATTTTCTGAAGTTACCGCATATCCAAATATTCAGTCCGATTATGCTTATACCTTTGGTGTTATGAAAAAGCTGGATTTTGATATTTGGGTGGCCTCCCATGCAAGTCAGTTCGATCTCCATGAAAAACGTAAAGAAGGAGATCCGTACAATCCGCAATTGTTTATGGATAAGCAAAGCTATTTCCAAAACCTTAATGATTTGGAAAAAAGCTATCTCAACAAAATAAAAAAAGATTCCCAAGATAAATAA UPDATED NCBI_taxonomy_name with Elizabethkingia meningoseptica UPDATED NCBI_taxonomy_id with 238 UPDATED NCBI_taxonomy_cvterm_id with 36960 UPDATED accession with AAY53478.1 UPDATED sequence with MRNFATLFFMFICLGLSAQVVKEPENMPKEWNQAYEPFRIAGNLYYVGTYDLASYLIVTDKGNILINTGTAESFPIIKANIQKLGFNYKDIKILLLTQAHYDHTGALQDFKTETAAKFYVDKADVDVLRTGGKSDYEMGKYGVTFKPVTPDKTLKDQDKIKLGNITLTLLHHPGHTKGSCSFIFETKDEKRKYRVLIANMPSVIVDKKFSEVTAYPNIQSDYAYTFGVMKKLDFDIWVASHASQFDLHEKRKEGDPYNPQLFMDKQSYFQNLNDLEKSYLNKIKKDSQDK " 2838 UPDATE MCR-1.2 peptide antibiotic; MCR phosphoethanolamine transferase; antibiotic target alteration; colistin B; colistin A; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 4762 UPDATED strand with - UPDATED accession with KX236309.1 UPDATED fmin with 3136 UPDATED sequence with ATGATGCTGCATACTTCTGTGTGGTACCGACGCTCGGTCAGTCCGTTTGTTCTTGTGGCGAGTGTTGCCGTTTTCTTGACCGCGACCGCCAATCTTACCTTTTTTGATAAAATCAGCCAAACCTATCCCATCGCGGACAATCTCGGCTTTGTGCTGACGATCGCTGTCGTGCTCTTTGGCGCGATGCTACTGATCACCACGCTGTTATCATCGTATCGCTATGTGCTAAAGCCTGTGTTGATTTTGCTATTAATCATGGGCGCGGTGACCAGTTATTTTACTGACACTTATGGCACGGTCTATGATACGACCATGCTCCAAAATGCCCTACAGACCGACCAAGCCGAGACCAAGGATCTATTAAACGCAGCGTTTATCATGCGTATCATTGGTTTGGGTGTGCTACCAAGTTTGCTTGTGGCTTTTGTTAAGGTGGATTATCCGACTTGGGGCAAGGGTTTGATGCGCCGATTGGGCTTGATCGTGGCAAGTCTTGCGCTGATTTTACTGCCTGTGGTGGCGTTCAGCAGTCATTATGCCAGTTTCTTTCGCGTGCATAAGCCGCTGCGTAGCTATGTCAATCCGATCATGCCAATCTACTCGGTGGGTAAGCTTGCCAGTATTGAGTATAAAAAAGCCAGTGCGCCAAAAGATACCATTTATCACGCCAAAGACGCGGTACAAGCAACCAAGCCTGATATGCGTAAGCCACGCCTAGTGGTGTTCGTCGTCGGTGAGACGGCACGCGCCGATCATGTCAGCTTCAATGGCTATGAGCGCGATACTTTCCCACAGCTTGCCAAGATCGATGGCGTGACCAATTTTAGCAATGTCACATCGTGCGGCACATCGACGGCGTATTCTGTGCCGTGTATGTTCAGCTATCTGGGCGCGGATGAGTATGATGTCGATACCGCCAAATACCAAGAAAATGTGCTGGATACGCTGGATCGCTTGGGCGTAAGTATCTTGTGGCGTGATAATAATTCGGACTCAAAAGGCGTGATGGATAAGCTGCCAAAAGCGCAATTTGCCGATTATAAATCCGCGACCAACAACGCCATCTGCAACACCAATCCTTATAACGAATGCCGCGATGTCGGTATGCTCGTTGGCTTAGATGACTTTGTCGCTGCCAATAACGGCAAAGATATGCTGATCATGCTGCACCAAATGGGCAATCACGGGCCTGCGTATTTTAAGCGATATGATGAAAAGTTTGCCAAATTCACGCCAGTGTGTGAAGGTAATGAGCTTGCCAAGTGCGAACATCAGTCCTTGATCAATGCTTATGACAATGCCTTGCTTGCCACCGATGATTTCATCGCTCAAAGTATCCAGTGGCTGCAGACGCACAGCAATGCCTATGATGTCTCAATGCTGTATGTCAGCGATCATGGCGAAAGTCTGGGTGAGAACGGTGTCTATCTACATGGTATGCCAAATGCCTTTGCACCAAAAGAACAGCGCAGTGTGCCTGCATTTTTCTGGACGGATAAGCAAACTGGCATCACGCCAATGGCAACCGATACCGTCCTGACCCATGACGCGATCACGCCGACATTATTAAAGCTGTTTGATGTCACCGCGGACAAAGTCAAAGACCGCACCGCATTCATCCGCTGA UPDATED NCBI_taxonomy_name with Klebsiella pneumoniae UPDATED NCBI_taxonomy_id with 573 UPDATED NCBI_taxonomy_cvterm_id with 35915 UPDATED accession with ANR95875.1 UPDATED sequence with MMLHTSVWYRRSVSPFVLVASVAVFLTATANLTFFDKISQTYPIADNLGFVLTIAVVLFGAMLLITTLLSSYRYVLKPVLILLLIMGAVTSYFTDTYGTVYDTTMLQNALQTDQAETKDLLNAAFIMRIIGLGVLPSLLVAFVKVDYPTWGKGLMRRLGLIVASLALILLPVVAFSSHYASFFRVHKPLRSYVNPIMPIYSVGKLASIEYKKASAPKDTIYHAKDAVQATKPDMRKPRLVVFVVGETARADHVSFNGYERDTFPQLAKIDGVTNFSNVTSCGTSTAYSVPCMFSYLGADEYDVDTAKYQENVLDTLDRLGVSILWRDNNSDSKGVMDKLPKAQFADYKSATNNAICNTNPYNECRDVGMLVGLDDFVAANNGKDMLIMLHQMGNHGPAYFKRYDEKFAKFTPVCEGNELAKCEHQSLINAYDNALLATDDFIAQSIQWLQTHSNAYDVSMLYVSDHGESLGENGVYLHGMPNAFAPKEQRSVPAFFWTDKQTGITPMATDTVLTHDAITPTLLKLFDVTADKVKDRTAFIR " 2837 UPDATE APH(2'')-If antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; gentamicin B; isepamicin; sisomicin; arbekacin; APH(2''); netilmicin; gentamicin C; amikacin; dibekacin; gentamicin A; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2836 UPDATE Bla2 carbapenem; penam; cephalosporin; antibiotic inactivation; subclass B1 Bacillus anthracis Bla beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2834 UPDATE Mycobacterium tuberculosis iniB with mutation conferring resistance to ethambutol antibiotic efflux; polyamine antibiotic; Ethambutol resistant iniB; efflux pump complex or subunit conferring antibiotic resistance; ethambutol; antibiotic target alteration; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2833 UPDATE Brachyspira hyodysenteriae 23S rRNA with mutation conferring resistance to tylosin antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; tylosin; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2832 UPDATE AAC(2')-Ie antibiotic inactivation; AAC(2'); arbekacin; gentamicin B; gentamicin C; amikacin; aminoglycoside antibiotic; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2831 UPDATE rpoB2 rifampin; rifapentine; rifabutin; peptide antibiotic; rifamycin-resistant beta-subunit of RNA polymerase (rpoB); antibiotic target replacement; antibiotic target alteration; rifamycin antibiotic; rifaximin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1635 UPDATE vanRG glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanR; vancomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATGAAAAGATTTTAATTGTTGATGATGAAAAAGAGATAGCAGATTTAATTGAGCTTTATCTGAAAAATGACGGTTATAAAGTGTATAAATTTTACAATGGTATAGACGCATTAAAATGTGTGGAATCAGAAAAAATGGATTTGGCAATTTTAGATGTTATGCTTCCTGATGTCGATGGTTTCCATATCTGTCAAAAGATTCGGGAACGATATTTTTATCCAATTATTATGCTGACGGCAAAGGTAGAAGATGCTGATAAGATTATGGGGCTGACGATTGGAGCGGATGATTATATTACAAAGCCATTTAATCCACTAGAGGTTGCTGCAAGGGTCAAGACACAGCTTCGCCGTTATGTATGTTACAATAATGCCGCAGATATAGAAAAAGAAAATGTATTGGTTACGGAATATGATATTAACGGACTTGTCATTAATAAGAATACTCATAAATGCACACTGTATGGAAAGGCAGTCACATTAACCCCGATAGAATTTTCTGTTCTTTGGTATTTGTGTGAAAATAGGGGAAAAGTGATTTCTTCAGAGGAACTTTTTGAAAATGTCTGGGGCGAGAAATTCCTTGATAATAATAATACAGTTATGGCTCATATCGGGAGGTTACGGGAAAAATTGAAAGAACCTGCCAGAAATCCGAAATTTATAAAAACCGTATGGGGAGTGGGATATACCATTGAAGAATGA " 1436 UPDATE TEM-40 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1437 UPDATE AcrF penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; cephamycin; ciprofloxacin; fluoroquinolone antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCAAACTTTTTTATTCGACGACCGATATTTGCATGGGTGCTGGCCATTATTCTGATGATGGCGGGCGCACTGGCGATCCTACAATTGCCCGTCGCTCAGTATCCAACAATTGCACCGCCTGCGGTTTCTGTTTCAGCAAACTATCCGGGCGCTGATGCGCAGACCGTGCAGGATACGGTGACGCAGGTTATCGAACAGAATATGAACGGTATCGATAACCTGATGTATATGTCCTCCACCAGCGATTCCGCCGGTAGCGTGACAATTACCCTTACCTTCCAGTCCGGGACCGATCCTGATATCGCGCAAGTGCAGGTGCAGAACAAACTCCAGCTCGCCACGCCGTTGCTGCCGCAGGAGGTTCAGCAGCAGGGGATCAGTGTTGAAAAGTCCAGTAGCAGCTATTTGATGGTGGCGGGCTTTGTCTCTGATAACCCAGGCACCACACAGGACGATATCTCGGACTATGTGGCCTCTAACGTTAAAGATACGCTTAGCCGTCTGAATGGCGTCGGTGACGTACAGCTTTTCGGCGCACAGTATGCGATGCGTATCTGGCTGGATGCCGATCTGCTAAACAAATATAAACTGACACCGGTTGATGTGATTAACCAGTTGAAGGTACAGAACGATCAGATCGCTGCCGGACAGTTGGGCGGAACGCCAGCGTTACCAGGGCAACAATTGAACGCCTCGATTATTGCTCAGACGCGGTTTAAAAATCCGGAAGAATTCGGCAAAGTGACCCTGCGCGTAAACAGTGACGGCTCGGTGGTACGCCTGAAAGATGTCGCACGGGTTGAACTTGGCGGTGAAAACTATAACGTTATCGCTCGTATCAACGGAAAACCGGCGGCGGGCCTGGGGATTAAGCTGGCAACCGGCGCGAATGCTCTCGATACCGCGAAAGCCATTAAGGCAAAACTGGCGGAATTACAGCCATTCTTCCCGCAGGGAATGAAGGTTCTCTACCCTTATGACACCACGCCATTCGTCCAGCTTTCTATTCACGAAGTGGTAAAAACGCTGTTCGAAGCCATTATGCTGGTGTTCCTGGTGATGTATCTGTTCTTGCAGAATATGCGAGCAACGCTGATCCCCACCATTGCGGTACCCGTGGTGTTGTTAGGGACGTTTGCCATCCTCGCCGCTTTTGGTTACTCCATCAACACACTAACGATGTTCGGGATGGTGCTTGCCATCGGGCTGCTCGTCGATGATGCGATAGTGGTGGTGGAGAACGTCGAGCGCGTGATGATGGAGGATAAGCTCCCGCCAAAAGAAGCGACGGAAAAATCGATGTCGCAAATTCAGGGCGCACTGGTGGGTATCGCGATGGTGCTGTCAGCGGTATTTATTCCGATGGCATTCTTCGGCGGTTCTACTGGGGCAATTTATCGCCAGTTCTCTATCACCATCGTTTCGGCAATGGCGCTTTCTGTTCTGGTGGCATTGATTCTTACCCCTGCGTTATGTGCAACGCTGCTTAAACCCGTCTCTGCTGAGCATCACGAAAATAAGGGCGGTTTCTTCGGTTGGTTTAATACCACCTTCGATCATAGCGTTAACCACTACACCAACAGCGTCGGCAAAATCCTCGGATCCACAGGACGATATTTACTGATCTATGCGCTGATTGTTGCAGGAATGGTGGTGTTGTTTTTACGTCTTCCGTCTTCCTTCTTACCTGAAGAGGATCAGGGTGTCTTTCTGACCATGATTCAGTTACCCGCTGGCGCGACGCAAGAGCGGACGCAAAAAGTGTTGGATCAAGTTACGGATTACTATCTGAAGAACGAGAAAGCGAACGTTGAAAGTGTCTTTACGGTTAACGGCTTTAGCTTCAGCGGCCAGGCACAAAACGCCGGTATGGCCTTCGTCAGTCTGAAACCGTGGGAAGAGCGTAATGGTGACGAAAACAGTGCGGAAGCGGTAATCCATCGTGCCAAAATGGAATTGGGCAAGATCCGCGACGGTTTTGTCATTCCATTCAATATGCCAGCCATTGTTGAACTGGGCACGGCAACGGGTTTCGACTTTGAGTTAATTGATCAGGCTGGGCTGGGTCACGATGCCCTAACCCAGGCCCGTAACCAGTTGCTTGGTATGGCGGCGCAACATCCTGCCAGCTTAGTCAGCGTGCGCCCTAATGGCCTGGAAGACACCGCGCAGTTTAAACTGGAAGTTGACCAGGAAAAGGCGCAGGCATTAGGTGTTTCACTTTCTGACATCAATCAGACCATTTCAACGGCGCTGGGTGGGACTTACGTTAACGACTTCATCGACCGTGGCCGCGTGAAAAAGTTGTATGTTCAGGCGGATGCCAAATTCCGTATGCTGCCAGAAGATGTCGATAAACTTTATGTCCGCAGCGCCAACGGCGAAATGGTGCCATTCTCGGCCTTTACCACTTCACATTGGGTGTATGGCTCTCCGCGACTGGAACGCTACAACGGTCTGCCGTCAATGGAGATTCAGGGGGAAGCCGCGCCAGGAACCAGTTCCGGCGATGCCATGGCGTTGATGGAAAACCTTGCGTCAAAATTACCTGCGGGCATTGGTTATGACTGGACGGGTATGTCGTATCAGGAACGCTTATCGGGAAACCAGGCTCCCGCTCTGGTAGCAATTTCCTTTGTGGTTGTTTTCCTGTGCCTTGCTGCACTCTATGAAAGCTGGTCAATTCCTGTCTCGGTTATGTTGGTAGTGCCGTTAGGGATTGTCGGCGTGCTGCTGGCGGCGACACTCTTTAATCAAAAAAATGACGTCTACTTTATGGTGGGCTTGCTAACGACAATTGGCTTGTCGGCCAAAAACGCTATTTTGATCGTTGAGTTCGCTAAAGATCTCATGGAGAAAGAGGGTAAAGGTGTTGTTGAAGCGACACTGATGGCAGTACGTATGCGTCTGCGTCCTATCCTGATGACCTCTCTCGCCTTTATTCTCGGCGTATTACCGCTAGCTATCAGTAACGGTGCCGGCAGTGGCGCGCAGAACGCTGTGGGTATCGGGGTAATGGGAGGAATGGTCTCTGCAACGTTGCTGGCAATCTTCTTCGTACCGGTGTTCTTTGTGGTGATCCGCCGTTGCTTTAAAGGATAA " 1434 UPDATE Erm(35) antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 1435 UPDATE cmlA6 antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGCGCTCAAAAAACTTTAGTTGGCGGTACTCCCTTGCCGCCACGGTGTTGTTGTTATCACCGTTCGATTTATTGGCATCACTCGGCATGGACATGTACTTGCCAGCAGTGCCGTTTATGCCAAACGCGCTTGGTACGACAGCGAGCACAATTCAGCTTACGCTGACAACGTACTTGGTCATGATTGGTGCCGGTCAGCTCTTGTTTGGACCGCTATCGGACCGACTGGGGCGCCGCCCCGTTCTACTGGGAGGTGGCCTCGCCTACGTTGTGGCGTCAATGGGCCTCGCTCTTACGTCATCGGCTGAAGTCTTTCTGGGGCTTCGGATTCTTCAGGCTTGTGGTGCCTCGGCGTGCCTTGTTTCCACATTTGCAACAGTACGTGACATTTACGCAGGTCGCGAGGAAAGTAATGTCATTTACGGCATACTCGGATCCATGCTGGCCATAGTCCCGGCGGTAGGCCCATTGCTCGGAGCGCTCGTCGACATGTGGCTTGGGTGGCGGGCTATCTTTGCGTTTCTAGGTTTGGGCATGATCGCTGCATCTGCAGCAGCGTGGCGATTCTGGCCTGAAACCCGGGTGCAACGAGTTGCGGGCTTGCAATGGTCGCAGCTGCTACTCCCCGTTAAGTGCCTGAACTTCTGGTTGTACACGTTGTGTTACGCCGCTGGAATGGGTAGCTTCTTCGTCTTTTTCTCCATTGCGCCCGGACTAATGATGGGCAGGCAAGGTGTGTCTCAGCTTGGCTTCAGCCTGCTGTTCGCCACAGTGGCAATTGCCATGGTGTTTACGGCTCGTTTTATGGGGCGTGTGATACCCAAGTGGGGCAGCCCAAGTGTCTTGCGAATGGGAATGGGATGCCTGATAGCTGGAGCAGTATTGCTTGCCATCACCGAAATATGGGCTTTGCAGTCCGTGTTAGGCTTTATTGCTCCAATGTGGCTAGTGGGTATTGGTGTCGCCACAGCGGTATCTGTGGCGCCCAATGGCGCTCTTCGAGGATTCGACCATGTTGCTGGAACGGTCACGGCAGTCTACTTCTGCTTGGGCGGTGTACTGCTAGGAAGCATCGGAACGTTGATCATTTCGCTGTTGCCGCGCAACACGGCTTGGCCGGTTGTCGTGTACTGTTTGACCCTTGCAACAGTCGTGCTCGGTCTGTCTTGTGTTTCCCGAGTGAAGGGCTCTCGCGGCCAGGGGGAGCATGATGTGGTCGCGCTACAAAGTGCGGAAAGTACATCAAATCCCAATCGTTGA " 1432 UPDATE Mycobacterium tuberculosis mutant embC conferring resistance to ethambutol antibiotic target alteration; ethambutol resistant arabinosyltransferase; polyamine antibiotic; ethambutol; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with ATGGCTACCGAAGCCGCCCCACCCCGTATCGCCGTCCGGCTACCATCTACCTCCGTGCGCGACGCGGGAGCAAACTACCGGATCGCCCGGTACGTCGCTGTGGTGGCGGGTCTGCTAGGCGCTGTGCTGGCCATCGCCACCCCACTGCTGCCGGTCAACCAGACCACCGCGCAATTGAACTGGCCCCAAAACGGCACGTTCGCCAGTGTCGAGGCACCGCTGATTGGCTACGTGGCCACCGACTTGAACATCACCGTCCCCTGCCAGGCCGCCGCCGGACTGGCCGGATCGCAGAACACCGGCAAGACGGTGTTGTTGTCAACGGTGCCCAAGCAGGCGCCTAAGGCCGTCGATCGCGGGCTGCTGCTGCAACGGGCCAACGACGACCTGGTGCTTGTGGTGCGTAATGTCCCGTTGGTCACCGCCCCGCTGAGTCAGGTGCTCGGCCCGACCTGTCAGCGGTTGACATTCACCGCGCACGCCGATCGGGTCGCCGCCGAATTCGTCGGACTGGTGCAGGGACCCAATGCTGAGCACCCCGGTGCACCGCTGCGCGGTGAGCGCAGCGGCTACGACTTCCGCCCGCAGATCGTCGGGGTGTTCACCGACCTGGCCGGGCCGGCGCCACCGGGTCTGAGCTTCTCGGCGAGCGTGGATACCCGCTACAGCAGCAGCCCCACGCCGCTGAAGATGGCCGCCATGATCCTCGGGGTAGCGCTCACCGGCGCCGCCCTGGTGGCGCTGCACATCCTGGACACCGCCGACGGCATGCGGCACCGGCGGTTCCTGCCCGCGCGCTGGTGGTCGACCGGCGGTCTGGACACCCTGGTTATCGCCGTGCTGGTGTGGTGGCATTTCGTCGGGGCCAACACCTCCGACGACGGCTACATCCTGACCATGGCCCGGGTGTCCGAGCATGCGGGCTATATGGCCAACTACTACCGCTGGTTCGGCACACCCGAGGCGCCTTTCGGCTGGTACTACGACCTGCTGGCGCTGTGGGCTCATGTCAGCACGGCCAGTATCTGGATGCGCCTACCCACCCTGGCGATGGCGCTCACCTGCTGGTGGGTAATCAGCCGTGAGGTCATTCCCCGGCTGGGGCACGCCGTCAAGACGAGCCGGGCAGCGGCGTGGACGGCGGCGGGCATGTTTCTGGCTGTCTGGCTGCCGCTGGACAACGGCCTTCGGCCCGAGCCGATCATCGCCCTGGGCATCCTGCTGACCTGGTGCTCGGTGGAGCGGGCGGTGGCCACCAGCCGGCTGCTGCCGGTGGCAATCGCCTGCATCATCGGTGCCTTGACCCTGTTCTCCGGGCCGACGGGCATCGCCTCGATCGGTGCGCTGCTGGTCGCGATCGGGCCGCTACGGACCATCCTGCACCGGCGTTCCAGGCGGTTCGGCGTGCTACCACTGGTGGCGCCGATCCTGGCCGCGGCCACCGTCACCGCGATCCCGATCTTTCGTGATCAGACCTTCGCGGGCGAGATCCAGGCCAACCTCCTCAAGCGTGCCGTAGGGCCCAGCCTGAAGTGGTTCGACGAACACATCCGCTACGAGCGGCTGTTCATGGCCAGCCCCGACGGCTCGATCGCCCGCCGCTTCGCCGTGCTGGCCTTGGTGCTGGCGCTCGCGGTATCGGTGGCAATGTCGTTACGTAAGGGCCGCATTCCAGGTACCGCTGCTGGACCGAGCCGCCGCATCATCGGCATCACGATCATTTCCTTCCTCGCGATGATGTTCACCCCGACAAAGTGGACCCATCACTTCGGGGTGTTCGCGGGGTTGGCCGGGTCGCTGGGGGCGCTTGCCGCGGTCGCGGTGACGGGCGCTGCGATGCGCTCGCGGCGGAACCGGACCGTGTTCGCCGCCGTGGTGGTCTTCGTGTTGGCCCTGTCGTTCGCCAGTGTCAACGGCTGGTGGTACGTGTCCAACTTCGGTGTGCCATGGTCGAACTCGTTTCCGAAGTGGCGATGGTCGCTTACCACCGCACTCCTCGAGCTGACGGTGCTGGTGCTGCTGCTAGCGGCATGGTTCCACTTCGTCGCCAACGGTGACGGGCGCCGAACAGCCAGGCCAACCCGGTTTAGGGCACGACTAGCCGGAATTGTCCAGTCCCCGTTGGCAATTGCCACGTGGTTGCTGGTGCTTTTCGAGGTGGTATCGCTGACCCAGGCGATGATTTCCCAGTACCCGGCGTGGTCGGTTGGCCGGTCTAACCTACAGGCTTTGGCCGGCAAGACCTGCGGGCTGGCCGAAGACGTGCTGGTGGAGCTGGATCCCAACGCAGGCATGCTGGCGCCGGTGACCGCGCCGTTGGCCGACGCCCTGGGAGCCGGCCTGTCTGAAGCCTTCACACCCAACGGCATTCCCGCCGACGTCACCGCCGACCCGGTGATGGAACGTCCAGGGGATCGCAGTTTCCTCAACGACGACGGGCTGATCACCGGCAGCGAACCCGGCACCGAAGGGGGCACCACGGCCGCACCGGGAATCAACGGCTCCCGCGCCCGGCTGCCCTACAACCTGGACCCGGCCCGTACACCGGTGCTGGGCAGCTGGCGAGCCGGCGTGCAGGTGCCCGCCATGCTGCGGTCGGGCTGGTACCGGCTGCCCACCAACGAGCAGCGGGACAGGGCGCCGCTGCTGGTGGTGACGGCGGCCGGGCGATTCGACTCCCGCGAGGTCCGGTTGCAGTGGGCCACCGACGAGCAAGCGGCCGCCGGACACCACGGTGGGTCGATGGAATTCGCCGACGTCGGTGCCGCGCCGGCCTGGCGCAACCTGCGCGCACCACTGTCCGCCATCCCGAGCACCGCCACCCAGGTCCGGTTGGTCGCCGACGACCAGGATCTGGCGCCGCAGCACTGGATCGCCCTCACACCACCGCGGATTCCGCGGGTGCGCACGCTGCAGAACGTGGTGGGCGCAGCGGATCCGGTGTTCCTGGACTGGCTGGTGGGGCTGGCATTCCCCTGCCAACGCCCGTTCGGCCACCAATACGGCGTCGACGAGACACCCAAGTGGCGGATCCTGCCGGACCGGTTCGGCGCCGAAGCCAACTCACCGGTGATGGATCACAATGGCGGTGGCCCGCTGGGCATCACCGAGCTGCTGATGCGCGCAACCACGGTGGCCAGCTACCTCAAAGACGACTGGTTTAGGGACTGGGGCGCGTTACAGCGGTTGACGCCTTACTACCCCGACGCCCAGCCCGCTGATCTGAACCTAGGAACGGTGACTCGCAGCGGGCTGTGGAGTCCGGCGCCGTTGCGCCGCGGCTAG " 1433 UPDATE CMY-18 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGTTATGCTGCGCTCTGCTGCTGACAGCCTCTTTCTCCACATTTGCTGCCGCAAAAACAGAACAACAGATTGCCGATATCGTTAATCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCCGTTATCTACCAGGGAAAACCCTATTATTTCACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGATCGGTTAGTAAGACGTTTAACGGCGTGTTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCAGGGTATCCGCCTGCTGCACTTAGCCACCTATACGGCAGGCGGCCTACCGCTGCAGATCCCCGATGACGTTAGGGATAAAGCCGCATTACTGCATTTTTATCAAAACTGGCAGCCGCAATGGACTCCGGGCGCTAAGCGACTTTACGCTAACTCCAGCATTGGTCTGTTTGGCGCGCTGGCGGTGAAACCCTCAGGAATGAGTTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAGAACGAACAAAAAGATTATGCCTGGGGCTATCGCGAAGGGAAGCCCGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATTGATATGGCCCGCTGGGTTCAGGCCAACATGGATGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGCGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCCGCCCCCGCAGTGAAAGCCTCATGGGTGCATAAAACGGGCTCCACTGGTGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGCGGCCTGGCGCATTCTTGAAAAGCTGCAATAA " 1430 UPDATE SHV-125 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1431 UPDATE GES-15 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 418 UPDATE OXA-325 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1637 UPDATE MOX-7 penam; antibiotic inactivation; MOX beta-lactamase; cephamycin; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1438 UPDATE SHV-19 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1439 UPDATE SHV-80 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1260 UPDATE APH(3')-IVa antibiotic inactivation; aminoglycoside antibiotic; paromomycin; kanamycin A; APH(3'); gentamicin B; ribostamycin; G418; neomycin; butirosin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1541 UPDATE ACT-14 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCTCTTTGCTGCGCCCTGCTGCTCGGCATCTCTTGCTCTGCTCTCGCCGCGCCAGTGTCAGAAAAACAGCTGGCGGAGGTGGTCGCGAATACGGTTACCCCGCTGATGAAAGCCCAGTCGATTCCAGGCATGGCGGTGGCCGTTATTTATCAGGGTAAACCGCACTATTACACGTTTGGCAAAGCAGATATCGCGGCTAATAAACCCGTTACGCCTCAGACTCTGTTCGAGCTGGGCTCTATAAGTAAAACCTTCACCGGGGTTTTAGGTGGGGATGCCATTGCTCGCGGTGAAATTTCGCTGGACGATCCGGTGACCAGATACTGGCCACAGCTAACGGGCAAGCAGTGGCAGGGGATTCGTATGCTGGATCTCGCAACCTACACCGCTGGCGGCCTGCCGCTACAGGTACCGGATGAGGTCACGGATAATGCCGCCCTGCTGCGCTTTTATCAAAACTGGCAGCCGCAGTGGAAGCCTGGCACAACGCGTCTTTACGCCAACGCCAGTATCGGTCTTTTTGGCGCGCTGGCGGTCAAACCTTCCGGCATGGGCTATGAGCAGGCCATGACGACGCGGGTCCTTAAGCCGCTCAAGCTGGACCATACCTGGATTAACGTTCCGAAAGCGGAAGAGGCGCATTACGCCTGGGGCTATCGTGACGGTAAAGCGGTGCGCGTTTCGCCGGGAATGCTGGATGCACAAGCCTATGGCGTGAAAACCAACGTGCAGGATATGGCGAACTGGGTCATGGCAAACATGGCGCCGGAGAAGGTTGCTGATGCCTCACTTAAGCAGGGCATCGCGCTGGCGCAGTCGCGCTACTGGCGTATCGGGTCAATGTATCAGGGTCTGGGCTGGGAGATGCTCAACTGGCCCGTGGAGGCCAACACGGTGATCGAGGGCAGCGACAGTAAGGTGGCGCTGGCACCGCTGCCCGTGGCAGAAGTGAATCCACCGGCTCCCCCGGTCAAAGCGTCCTGGGTCCATAAAACGGGCTCTACTGGCGGGTTTGGCAGCTACTTGGCCTTTATTCCTGAAAAGCAGATCGGTATTGTGATGCTCGCGAATAAAAGCTATCCGAACCCGGCACGCGTTGAGGCGGCATACCATATCCTCGACGCGCTACAGTAA " 458 UPDATE tet(B) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1349 UPDATE IND-2a carbapenem; antibiotic inactivation; IND beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 450 UPDATE OXA-51 penam; antibiotic inactivation; BAL30072; cephalosporin; monobactam; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 451 UPDATE LRA-5 class A LRA beta-lactamase; penam; cephalosporin; antibiotic inactivation; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 28439 UPDATED strand with - UPDATED accession with EU408358 UPDATED fmin with 27458 UPDATED sequence with ATGAAAACTATCTTTGGTAAGCGTAGGCAATCAGCCGTAGTGCTCATCACTTTAATTGCAATTCTCCTTGCTTCGGGCCAGCCCTACCAAAGCTCTCAGGTGAGGGGGGCCGCGTGCCTTCCAGACATCATTTTTGACGAGCCATCTCAAGGCCCGGAAAAGAACGAAGCCATCTCCATGCTGACTGAACGGCTGAGTTCAATCATCAATGCGGCAGGCGGTGATATCGGAATAGCCGTCATCCACGTCGAGACGGGCCATACCACCGCAATTCAAGGAACAACGCAGTTACCTCTCTACAGTGTCTTCAAACTGCCACTTGCGATTGCGGTGCTCAAGGAGATCGAAGAAAACCGACTTCAGCTCGACAGGAAAGTCCGTGTCACGCCCGCGGATGTTGCGCCGGGCTGGACAGCGAATGCTGCTATGTGGCGCCGGCCCATCGACCGAACTGTCGCTCAACTAATAGAAGTGTCAATCATACGAAGCGACAACACATCGAGCGATAAGCTGCTTCAACTAGTCGGTGGGCCGGCTGCAGTGACGCACCGCATGCGCGCTCTGGGTTTTCCCAACATCGAGATCGTGTCGACGGTACGCGAGTTCTCCGAGAATCGGACCAGACCAAATACTGGGTCGGCGGAGGACCTTGCGCGCTTGCTGGTTCAGCTGCAAAAAGGCGAACTGCTACAGCCACAACATTCCGCTTTGCTTTTGGGTTTTATGCACCGAGCGACGACGGGAACAGAGCGCTTGCGAGGCAGTCTGCCGGTCGGCACTCCTGTAGCTGACAAGACGGGCACCGGCGATGCGGGAGTCGTTACAAACGATGTGGGAATCATCACACTACCAAAAGGACAAGGGCATCTGGCTATCGCGGTGCTTATAAGTGGATCAAAACTGTCACCCGCGGCACAAGAAAAGCTCATTGCCGAAATTGCACGAGCCGCTTATGACGCTCACGTTTCTCGTGCGGAGTGA UPDATED NCBI_taxonomy_name with uncultured bacterium BLR5 UPDATED NCBI_taxonomy_id with 506522 UPDATED NCBI_taxonomy_cvterm_id with 39088 UPDATED accession with ACH59002.1 UPDATED sequence with MKTIFGKRRQSAVVLITLIAILLASGQPYQSSQVRGAACLPDIIFDEPSQGPEKNEAISMLTERLSSIINAAGGDIGIAVIHVETGHTTAIQGTTQLPLYSVFKLPLAIAVLKEIEENRLQLDRKVRVTPADVAPGWTANAAMWRRPIDRTVAQLIEVSIIRSDNTSSDKLLQLVGGPAAVTHRMRALGFPNIEIVSTVREFSENRTRPNTGSAEDLARLLVQLQKGELLQPQHSALLLGFMHRATTGTERLRGSLPVGTPVADKTGTGDAGVVTNDVGIITLPKGQGHLAIAVLISGSKLSPAAQEKLIAEIARAAYDAHVSRAE " 1342 UPDATE plasmid-encoded cat (pp-cat) antibiotic inactivation; thiamphenicol; chloramphenicol acetyltransferase (CAT); azidamfenicol; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCTTTCTTAAAAACCGTAAAGAAAAATAAGCACAAATTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTATTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATATAGCGTGTTACGGTGAAAACCTGGCCTATTTCCCCAAAGGGTTCATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTTTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAA " 453 UPDATE mtrE penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; penicillin; azithromycin; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATACTACATTGAAAACTACCTTGACCTCTGTTGCAGCAGCCTTTGCATTGTCTGCCTGCACCATGATTCCTCAATACGAGCAGCCCAAAGTCGAAGTTGCGGAAACCTTCCAAAACGACACATCGGTTTCTTCCATCCGCGCGGTTGATTTGGGTTGGCATGACTATTTTGCCGACCCGCGCCTGCAAAAGCTGATCGACATCGCACTCGAGCGCAATACCAGTTTGCGTACAGCCGTATTGAACAGCGAAATCTACCGCAAACAATACATGATCGAGCGCAACAACCTCCTGCCCACGCTTGCCGCCAATGCGAACGGCTCGCGCCAAGGCAGCTTGAGCGGCGGCAATGTCAGCAGCAGCTACAATGTCGGACTGGGTGCGGCATCTTACGAACTCGATCTGTTCGGGCGCGTGCGCAGCAGCAGCGAAGCAGCACTGCAAGGCTATTTTGCCAGCGTTGCCAACCGCGATGCGGCACATTTGAGTCTGATTGCCACCGTTGCCAAAGCCTATTTCAACGAGCGTTATGCCGAAGAAGCGATGTCTTTGGCGCAGCGTGTCTTGAAAACGCGCGAGGAAACCTACAATGCTGTCCGAATTGCGGTACAAGGCAGGCGTGATTTCCGCCGTCGCCCTGCGCCAGCAGAAGCCTTGATTGAATCTGCCAAAGCCGATTATGCCCATGCCGCGCGCAGCCGCGAACAGGCGCGCAATGCCTTGGCAACCTTGATTAACCGTCCGATACCCGAAGACCTGCCCGCCGGTTTGCCGTTGGACAAGCAGTTTTTTGTTGAAAAACTGCCTGCCGGTTTGAGTTCCGAAGTATTGCTCGACCGTCCCGACATCCGCGCCGCCGAACACGCGCTCAAACAGGCAAACGCCAATATCGGTGCGGCGCGCGCCGCCTTTTTCCCGTCCATCCGCCTGACCGGAAGCGTCGGTACGGGTTCTGTCGAATTGGGCGGGCTGTTCAAAAGCGGCACGGGCGTTTGGGCGTTCGCGCCGTCTATTACCCTGCCGATTTTTACTTGGGGAACGAACAAGGCGAACCTTGATGTGGCAAAACTGCGCCAACAGGCACAAATTGTTGCCTATGAATCCGCCGTCCAATCCGCCTTTCAAGACGTGGCAAACGCATTGGCGGCGCGCGAGCAGCTGGATAAAGCCTATGACGCTTTAAGCAAACAAAGCCGCGCCTCTAAAGAAGCGTTGCGCTTGGTCGGACTGCGTTACAAACACGGCGTATCCGGCGCGCTCGATTTGCTCGATGCGGAACGCAGCAGCTATTCGGCGGAAGGTGCGGCTTTGTCGGCACAACTGACCCGCGCCGAAAACCTTGCCGATTTGTACAAGGCGCTCGGCGGCGGATTGAAACGGGATACCCAAACCGGCAAATAA " 454 UPDATE KPC-4 antibiotic inactivation; penam; carbapenem; cephalosporin; monobactam; KPC beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TGTCACTGTATCGCCGTCTAGTTCTGCTGTCTTGTCTCTCATGGCCGCTGGCTGGCTTTTCTGCCACCGCGCTGACCAACCTCGTCGCGGAACCATTCGCTAAACTCGAACAGGACTTTGGCGGCTCCATCGGTGTGTACGCGATGGATACCGGCTCAGGCGCAACTGTAAGTTACCGCGCTGAGGAGCGCTTCCCACTGTGCAGCTCATTCAAGGGCTTTCTTGCTGCCGCTGTGCTGGCTCGCAGCCAGCAGCAGGCCGGCTTGCTGGACACACCCATCCGTTACGGCAAAAATGCGCTGGTTCGGTGGTCACCCATCTCGGAAAAATATCTGACAACAGGCATGACGGTGGCGGAGCTGTCCGCGGCCGCCGTGCAATACAGTGATAACGCCGCCGCCAATTTGTTGCTGAAGGAGTTGGGCGGCCCGGCCGGGCTGACGGCCTTCATGCGCTCTATCGGCGATACCACGTTCCGTCTGGACCGCTGGGAGCTGGAGCTGAACTCCGCCATCCCAGGCGATGCGCGCGATACCTCATCGCCGCGCGCCGTGACGGAAAGCTTACAAAAACTGACACTGGGCTCTGCACTGGCTGCGCCGCAGCGGCAGCAGTTTGTTGATTGGCTAAAGGGAAACACGACCGGCAACCACCGCATCCGCGCGGCGGTGCCGGCAGACTGGGCAGTCGGAGACAAAACCGGAACCTGCGGAGGGTATGGCACGGCAAATGACTATGCCGTCGTCTGGCCCACTGGGCGCGCACCTATTGTGTTGGCCGTCTACACCCGGGCGCCTAACAAGGATGACAAGCACAGCGAGGCCGTCATCGCCGCTGCGGCTAGACTCGCGCTCGAGGGATTGGGCGTCAACGGGCAGT " 1345 UPDATE tet(K) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TTGTTTAGTTTATATAAAAAATTTAAAGGTTTGTTTTATAGCGTTTTATTTTGGCTTTGTATTCTTTCATTTTTTAGTGTATTAAATGAAATGGTTTTAAATGTTTCTTTACCTGATATTGCAAATCATTTTAATACTACTCCTGGAATTACAAACTGGGTAAACACTGCATATATGTTAACTTTTTCGATAGGAACAGCAGTATATGGAAAATTATCTGATTATATAAATATAAAAAAATTGTTAATTATTGGTATTAGTTTGAGCTGTCTTGGTTCATTGATTGCTTTTATTGGTCACAATCACTTTTTTATTTTGATTTTTGGTAGGTTAGTACAAGGAGTAGGATCTGCTGCATTCCCTTCACTGATTATGGTGGTTGTAGCTAGAAATATTACAAGAAAAAAACAAGGCAAAGCCTTTGGTTTTATAGGATCAATTGTAGCTTTAGGTGAAGGGTTAGGTCCTTCAATAGGGGGAATAATAGCACATTATATTCATTGGTCTTACCTACTTATACTTCCTATGATTACAATAGTAACTATACCTTTTCTTATTAAAGTAATGGTACCTGGTAAATCAACAAAAAATACATTAGATATCGTAGGTATTGTTTTAATGTCTATAAGTATTATATGTTTTATGTTATTTACGACAAATTATAATTGGACTTTTTTAATACTCTTCACAATCTTTTTTGTGATTTTTATTAAACATATTTCAAGAGTTTCTAACCCTTTTATTAATCCTAAACTAGGGAAAAACATTCCGTTTATGCTTGGTTTGTTTTCTGGTGGGCTAATATTTTCTATAGTAGCTGGTTTTATATCAATGGTGCCTTATATGATGAAAACTATTTATCATGTAAATGTAGCGACAATAGGTAATAGTGTTATTTTTCCTGGAACCATGAGTGTTATTGTTTTTGGTTATTTTGGTGGTTTTTTAGTGGATAGAAAAGGATCATTATTTGTTTTTATTTTAGGATCATTGTCTATCTCTATAAGTTTTTTAACTATTGCATTTTTTGTTGAGTTTAGTATGTGGTTGACTACTTTTATGTTTATATTTGTTATGGGCGGATTATCTTTTACTAAAACAGTTATATCAAAAATAGTATCAAGTAGTCTTTCTGAAGAAGAAGTTGCTTCTGGAATGAGTTTGCTAAATTTCACAAGTTTTTTATCAGAGGGAACAGGTATAGCAATTGTAGGAGGTTTATTGTCACTACAATTGATTAATCGTAAACTAGTTCTGGAATTTATAAATTATTCTTCTGGAGTGTATAGTAATATTCTTGTAGCCATGGCTATCCTTATTATTTTATGTTGTCTTTTGACGATTATTGTATTTAAACGTTCTGAAAAGCAGTTTGAATAG " 1346 UPDATE SHV-94 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1347 UPDATE OXA-425 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1082 UPDATE CTX-M-7 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGACTCAGAGCATTCGCCGCTCAATGTTAACGGTGATGGCGACGCTACCCCTGCTATTTAGCAGCGCAACGCTGCATGCGCAGGCGAACAGCGTGCAACAGCAGCTGGAAGCCCTGGAGAAAAGTTCGGGAGGTCGGCTTGGCGTTGCGCTGATTAACACCGCCGATAATTCGCAGATTCTCTACGTGGCCGATGAGCGTTTTGCGATGTGCAGTACCAGTAAGGTGATGGCGGCCGCGGCGGTGCTTAAACAGAGCGAGAGCGATAAGCACCTGCTAAATCAGCGCGTTGAAATCAGAGCAAGCGACCTGGTTAACTACAATCCGATTGCGGAGAAACACGTTAACGGCACGATGACGCTGGCTCAGCTTGGCGCCGGCGCCCTGCAGTATAGCGACAATACTGCCATGAATAAGCTGATTGCCCATCTGGGTGGGCCCGATAAAGTGACGGCGTTTGCTCGCTCATTGGGTGATGAGACCTTCCGTCTGGACAGAACCGAGCCCACGCTCAATAGCGCCATTCCAGGCGACCCGCGTGATACCACCACGCCGCTCGCGATGGCGCAGACCCTGAAAAATCTGACGCTGGGCAAAGCGCTGGCGGAAACTCAGCGGGCACAGTTGGTGACGTGGCTTAAGGGCAATACTACCGGTAGCGCGAGCATTCGGGCGGGTCTGCCGAAATCATGGGGAGTGGGCGATAAAACCGGCAGCGGAGATTATGGCACCACCAACGATATCGCGGTTATCTGGCCGGAAAACCACGCACCGCTGGTTCTGGTGACCTACTTTACCCAACCGGAGCAGAAGGCGGAAAGCCGTCGGGATGTTCTGGCTGCGGCGGCGAAAATCGTAACCCACGGTTTCTGA " 517 UPDATE QnrD2 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAAAAGCACTTTATCAATGAAAAGTTTTCACGAGATCAATTTACGGGGAATAGAGTTAAAAATATTGCCTTTTCAAATTGTGATTTTTCAGGGGTTGATTTAACTGATACTGAATTTGTTGATTGTAGTTTTTACGACAGGAATAGCTTGGAAGGGTGTGATTTTAATAGAGCCAAACTAAAAAACGCTAGCTTTAAAAGCTGCGATTTATCAATGAGTAATTTTAAAAACATTAGCGCCTTAGGTCTTGAGATTAGTGAGTGTTTAGCTCAAGGAGCTGATTTTCGAGGGGCTAATTTTATGAATATGATAACTACAAGGTCATGGTTTTGTAGTGCTTATATAACCAAGACAAATCTTAGTTACGCTAATTTTTCTAGAGTCATATTAGAAAAGTGCGAACTGTGGGAAAATCGCTGGAATGGCACTGTGATAACTGGCGCCGTGTTTCGTGGCTCCGATCTTTCTTGTGGGGAGTTTTCATCGTTTGATTGGTCTTTGGCTGATTTTACTGGTTGTGATTTAACGGGTGGGGCGCTTGGCGAGCTTGATGCAAGACGAACTAATTTAGATGGCGTGAAGTTGGATGGAGAACAGGCGTTTCAGCTTGTTGAGAGTTTAGGTGTTATTGTTCACCGATAA " 1266 UPDATE ANT(4')-IIa antibiotic inactivation; aminoglycoside antibiotic; ribostamycin; paromomycin; kanamycin A; gentamicin B; ANT(4'); isepamicin; G418; neomycin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1502 UPDATE OXA-209 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 6232 UPDATED strand with - UPDATED accession with JF268688.1 UPDATED fmin with 5407 UPDATED sequence with ATGAAAAAAACATTTATACTTCTGAATCTAATTTTATTAGTAAATCTTAATGGATATTGTCAAACTAAAAGTTTAAAATCAAATGAAATTGTAAAACCTGAATTTAGAAATATATTAGATAGTTTAAAGGTAAAAGGAGCAATTTTAATTTATGATGTAAAAAACAAAACTTATTATTCAAATGATTTTTCTTGGACAAAAACTGGAATAATTCCTGCATCGACTTTCAAAATACCAAATTCAATTATTGCGTTAGAAACAGGAATAATCAAAAATGACTCTACAATTTTTAAATGGAATGGTGAAAAACGCAAATTTAAAAATTGGGAAGAAGATTTGACTTTTAAAAAAGCATTTCAAGTTTCTTGTGTTCCTTGTTATCAAGAAATTGCCAGAAAAATTGGTGTGAAAAGGATGAAAAGATATTTGAAAAAATTAAATTACAGAGGAATGGTTTTCGATACTTTGACGATTGATCAATTTTGGTTAGAAGGAGAATCTAAAATTACTCAAATGCAACAAATAGATTTTTTAGAACGATTATACTTTTCAAAATTTCCAATTTCTGATAGGACAATAAAGATTGTCAAAAATATTATGGAAATTGAGCGAACTGAAAATTACATTTTAAGCGGTAAGACTGGATTAAGTTCGATAGAAGAAAAATATAATGGTTGGTTTGTTGGTTATGTTGAAACAAAATCTAATGTTTATTTTTTTGCAACAAATGTAATTCCGACAGACGGATTGAATGTTGATGATTTTATTTCATCGAGAATTAATGTAACAAAAAATGCGTTAAAGCAAATGAATATAATGAAATGA UPDATED NCBI_taxonomy_name with Riemerella anatipestifer UPDATED NCBI_taxonomy_id with 34085 UPDATED NCBI_taxonomy_cvterm_id with 36951 UPDATED accession with AEM66528.1 UPDATED sequence with MKKTFILLNLILLVNLNGYCQTKSLKSNEIVKPEFRNILDSLKVKGAILIYDVKNKTYYSNDFSWTKTGIIPASTFKIPNSIIALETGIIKNDSTIFKWNGEKRKFKNWEEDLTFKKAFQVSCVPCYQEIARKIGVKRMKRYLKKLNYRGMVFDTLTIDQFWLEGESKITQMQQIDFLERLYFSKFPISDRTIKIVKNIMEIERTENYILSGKTGLSSIEEKYNGWFVGYVETKSNVYFFATNVIPTDGLNVDDFISSRINVTKNALKQMNIMK " 1503 UPDATE LEN-4 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TGTTATCTCCCTGTTAGCCACCCTGCCACTGGCGGTAGACGCCGGTCCACAGCCGCTTGAGCAGATTAAACAAAGCGAAAGCCAGCTGTCGGGCCGCGTGGGGATGGTGGAAATGGATCTGGCCAGCGGCCGCACGCTGGCCGCCTGGCGCGCCGATGAACGCTTTCCCATGGTGAGCACCTTTAAAGTGCTGCTGTGCGGCGCGGTGCTGGCGCGGGTGGATGCCGGGCTCGAACAACTGGATCGGCGGATCCACTACCGCCAGCAGGATCTGGTGGACTACTCCCCGGTCAGCGAAAAACACCTTACCGACGGGATGACGATCGGCGAACTCTGCGCCGCCGCCATCACCCTGAGCGATAACAGCGCTGGCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCGGGATTAACTGCCTTTCTGCGCCAGATCGGTGACAACGTCACCCGTCTTGACCGCTGGGAAACGGCACTGAATGAGGCGCTTCCCGGCGACGCGCGCGACACCACCACCCCGGCCAGCATGGCCGCCACGCTGCGCAAACTACTGACCGCGCAGCATCTGAGCGCCCGTTCGCAACAGCAACTCCTGCAGTGGATGGTGGACGATCGGGTTGCCGGCCCGCTGATCCGCGCCGTGCTGCCGCCGGGCTGGTTTATCGCCGACAAAACCGGGGCTGGCGAACGGGGTGCGCGCGGCATTGTCGCCCTGCTCGGCCCGGACGGCAAACCGGAGCGCATTGTGGTGATCTATCTGCGGGATACCCCGGCGAGTATGGCCGAGCGTAATCAACAAATCGCCGGGATCGGCGCGGCGCTGAT " 1500 UPDATE APH(6)-Ia antibiotic inactivation; APH(6); streptomycin; aminoglycoside antibiotic; plazomicin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTTCGTCGGACCACATCCACGTCCCGGACGGCCTGGCCGAGTCGTACAGCAGAAGCGGTGGCGAGGAAGGGCGCGCCTGGATCGCCGGACTTCCCGCTCTCGTCGCGCGATGCGTCGACCGCTGGGAGCTGAAGAGGGACGGCGGCGTCCGCTCCGGTGAGGCCTCCCTCGTGGTGCCGGTGCTGCGTGCTGACGGCACCCGGGCGGCGCTCAAACTCCAGATGCCCCGGGAAGAGACGACGGCCGCGCTGATCGGCCTGCGAGCCTGGGGCGGGGACGGCATGGTGCGGCTGCTCGACCACGACGAGGAGAGCAGCACGATGCTGCTGGAACGCCTGGACGGTTCGCGGACGCTGGCGTCGGTCGAGGACGACGACGAGGCCATGGGCGTCCTCGCCGGGCTGCTGAACCGGCTGCACTCCGTTCCGGCACCTCCGGGGCTGCGGGGTCTGGGAGAGATCGCCGGCGCCATGGTGGAGGAAGTTCCCTCCGCTGTCGACTCGTTGGCGGATCCGGAGGACCGTAGCCGGTTGCGCGGCTGGGCGTCGGCCGTGGCCGAGCTGGTGGGCGAGCCCGGTGACCGCGTCCTGCACTGGGACCTGCACTACGAGAACGTGCTGGCCGCCGAGCGCGAACCGTGGCTGGCCATCGACCCCGAGCCGCTGGTCGGCGACCCGGGGTTCGACCTGTGGCCGGCCCTGGACACCGGTTGGGAGCGGATCGAGGCCACCGGTGACGCGCGGCGGGTGGTCCGGCGGCGCTTCGACCTGCTGACGGAATCGCTGGAGCTGGACCGCGGGAGGGCGGCCGGGTGGACCCTGGCCCGGCTCCTGCAGAACACCCTGTGGGACATCGAGGACGGGCTGACGGCGATCGCCCCCTCCCAGATCGCCGTGGCCGAAGCGCTGGCGAAGCCCTGA UPDATED category_aro_name with plazomicin UPDATED category_aro_cvterm_id with 40307 UPDATED category_aro_accession with 3003675 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Plazomicin is a neoglycoside, or next-generation, aminoglycoside, that has been identified as a potentially useful agent to combat drug-resistant bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa. " 1501 UPDATE CMY-49 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1506 UPDATE ACT-12 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCCCTGTGCTGCGCCCTGCTGCTCAGCACCTCCTGCGCTGCATTAGCCGCACCTCTGTCAGAAACACAGCTGGCGAAGGTCGTGGAACGTACCGTTACGCCCCTGATGAAAGCGCAGTCTATTCCGGGTATGGCGGTCGCCGTGATCTATCAGGGCCAGCCGCACTACTTCACCTTCGGCAAGGCCGATGTCGCCGCGAACACACCCGTCACTGCACAAACGCTGTTTGAGCTGGGCTCAATCAGCAAAACCTTCACCGGCGTTCTGGGTGGCGATGCTATTGCTCGCGGTGAAATTTCGCTGGGCGATCCGGTGACCAAATACTGGCCTGAACTGACCGGCAAACAGTGGCAGGGCGTTCGCATGCTGGACCTGGCAACCTATACTGCCGGTGGCCTGCCGTTACAGGTGCCCGATGAGGTTACCGATAATGCCTCGCTGCTGCGTTTTTACCAGTCCTGGCAACCACAGTGGGCGCCAGGCACCACGCGTCTTTATGCGAATGCCAGCATCGGTCTGTTTGGGGCTCTGGCAGTGAAACCTTCTGGCATGCGCTTTGAGCAGGCGATGACGGAGCGGGTCCTGAAGCCGCTTAACCTGAACCATACGTGGATTAACGTTCCGAAGGCAGAAGAACAGCATTACGCCTGGGGTTATCGTGACGGTAAAGCGGTTCACGTTTCGCCGGGCATGCTCGATGCCGAAGCATATGGCGTGAAAACCAACGTGAAGGATATGGCGAGCTGGGTGGTGGCTAACATGGCCCCCGATGGGGTACAGGATGCCTCACTGAAGCAGGGCATGGTGCTTGCACAGTCTCGCTACTGGCGCACAGGCTCGATGTACCAGGGCCTGGGCTGGGAGATGCTCAACTGGCCGGTAGAAGCCAAAACCGTGGTGGAGGGCAGCGACAACAAGGTAGCGCTTGCACCGTTGCCCGTGGCAGAAGTGAACCCTCCGGCTCCACCGGTAAAAGCGTCATGGGTACATAAAACAGGCTCGACGGGCGGATTTGGCAGCTACGTGGCATTTATCCCTGAGAAGGAACTCGGCATCGTTATGCTGGCGAACAAGAGCTACCCGAACCCGGCACGCGTGGAAGCGGCATACCGTATTCTGAGCGCTCTGCAGTAA " 1507 UPDATE smeA penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; cephamycin; aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCTCTCCTGCGCCCGCTGTCCCGTTCCCCGCGTCCCCTGCTGTTGCCCCTGCTGCTGGCCCTGGCGGCCTGTTCGGCGGACAGGACCGACGCCCCGGCCATGCCCGAAGTGGGCGTCATCATCGCCAGCGCGCAGCCGCTGGCACTCCAGCAGACCTTGCCCGGCCGTGCCGTGCCGTTCGAGATCTCCGAGGTGCGGCCGCAGATCGGCGGCCTGATCCGCCAGCGGTTGTTCACCGAAGGCCAGCAGGTCAAGGCAGGGCAGCTGCTGTACCAGGTCGACCCGGCACCGTACCAGGCGGCCTTCGATACCGCCCGCGGGCAGCTGGCGCAGGCCGAGGCCACCGTGTTGTCGGCACAGCCGAAGGCCGAGCGTACCCGCGCGCTGGTGAGCATGGATGCAGCCAGCAAGCAGGACGCCGACGATGCCACCTCGGCGTTGAAGCAGGCGCAGGCCAACGTGATTGCCGCGCGCGCTGCATTGCAGGCTGCCCGCATCAACCTCGACTACACCCGGGTGACCGCCCCCATCGACGGTCGCATCGGCACCTCCAGCGTCACCGCCGGCGCGCTGGTCGCGGCCGGCCAGGATACGGCGTTGACCACCATCCAGCGGCTGGACCCGGTGTACCTGGATGTCACCCAGTCCAGCACGCAGATGCTGGCGCTGCGCAAGCGGCTCGATGCGGGCCTAGTGAAGGCCATCGATGGCAAGGCACAGGTTAAGGTGCTGCTGGAGGACGGCAGCACCTACGCGCATGAAGGCACGTTGGAGTTCGTCGGCAGCGCAGTGGATCCGGGCACCGGAAACGTGAAGCTGCGCGCGGTCATTCCGAACCCGGACGGCCTGCTGTTGCCGGGCATGTACCTGAAGGCGGTGCTGCCGATGGCCACCGACGCGCGTGCCCTGCTGGTGCCGCAGAAGGCAGTGGTGCGCAACGAACGCGGCGAACCGCTGCTGCGCCTGCTCGACGCCAAGGATCATGTGGTCGAGCGCCGCGTCAGCACCGGCCAGGTGGTCGGTAACCAGTGGCAGATCACCAGCGGCCTCAAGGCTGGCGAACGGGTGATCGTCAGCAACGGCAGCGCGGTATCGCTCGGTCAGCAGGTGAAAGCGGTGGCGCCCACGACGGCGCAGTTGGCGGCGATGCCGGCGGTCGATCCGAACGGCAACACCGACGAAAAGTCGCACTGA " 1504 UPDATE CMY-108 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 651 UPDATE Staphylococcus aureus mprF peptide antibiotic; antibiotic target alteration; defensin resistant mprF; defensin; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 1508 UPDATE QnrA2 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1509 UPDATE vanXF glycopeptide antibiotic; glycopeptide resistance gene cluster; vanX; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAAAAAGATTTTGTTTTTTTAGATGAAATATTGCATGGAGTTCGTTGGGACTCCAAATATGCCACATGGGACAATTTCACTGGAAAACCGGTAGACGGATATGAAGTCAATCGCATAGCGGGGACATATGCTTTGGCTGTTGCGCTGCTGGAGGTAAAGAAGCAGGCGGCTGCTCTAGGGTACGGCTTGCTCCTGTGGGATGGCTATCGTCCTCAACGTGCGGTAAACTGTTTCTTGCATTGGTCTGCGCAGCCGGAAGACGGCCGCACAAAAGAAAGATATTATCCCAATATTGATCGGATCGAGATGGTTACAAAGGGATATGTGGCTTCAAAATCAAGCCACAGTCGCGGAAGCGCGATTGACCTTACGCTTTATCGATTGGACACGGGTGCGCTTGTCCCTATGGGGAGCGGCTTCGATTTTATGGATGAACGTTCACATCATACCTCAAAAGGAATTTCAAGTAACGAAGCGCAAAATCGCCAGTTATTATGTTCTATTATGGAATACAGCGGATTTGAATCATATGTATATGAATGGTGGCACTACGTATTAAGAAACGAACCATACCCCAGCAGCTATTTTGATTTTCCCATTGGCGGGAACCATCTAGACCCATTTTCCAACTTTTGTGGGACAGTGCCACTTGATGCGTTGTCGCCCTAA " 658 UPDATE CMY-104 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 659 UPDATE AAC(6')-29b antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1992 UPDATE dfrA1 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 568 UPDATE CTX-M-20 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 945 UPDATE tet(40) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTTGCTAAAAATTCAAAGGCATATTCTGTCTACCTGCTGTTCCGATTTGTCTGTTCCCTGGCGGTTTCTATGTCCACAGTGCTTTCCATCGTGTACCACCTGGAGGTGGTGCAGCTGGATGCTTTCCAGCTTGTCCTGGTAGGGACGGTTCTGGAGACCTCCTGCTTTCTGTTCGAGATACCCACCGGTGTGGTGGCGGATTTGTATAGCCGTCGGCGCTCGGTGCTGATTGGAATGTTCCTCTACGGCCTGGGCTTTCTGATGGAGGGTGCGCTACCGTGGTTCGCGCCGGTTCTGCTGGCCCAGGTTGTCTGGGGTTGCGGTGATACCTTCATCACCGGCGCTCTGGAGGCGTGGATTGCCTCGGAGGAAGAGGACAAACCCATAGACAAGGTGTTCCTGCGGGGCAGTCAAATGGGGCAAATCGGCGGCGTTCTGGGCGTGGTGCTGGGCACACTGCTGGGAAACATAAACCTGCAAATGCCTGTCATCTTGGGGGGCAGTTTGTGCTTGTTGTTGGGGCTGGTGTTGGTTCGCATCATGCCAGAAACCAACTTCTCCCCTGCTATTGAGGAACGGCAGGGCTTGCTTAAAGACTTTGTCTGCCTGTTCAAGCTCAACCTGGGCTTTGTGAAAGGCGCACCTGTGTTGCTGGCGCTCTTAGCAATCACACTATGCGGGGGACTTGCCAGTGAAGGCTTTGACCGGCTCTCCACCGCTCATTTTCTGGATGACACGGTAATACCCGTTATCGGGCCGCTGAACAGCGTCACTTGGTTCGGTGTTATCAGTCTTATCGGCAGCGGCTTAGGTATTCTGGCTTCTCAGTTGCTCATCGCCCGCATGGAGAAAAAAGGGACTGTCAGCCGAACCAGTGTGGTCATGTCCACCAGCGCCGGGTATATCCTGTGCCTGGTTCTCTTCGCGGTGGGGCGGAGCTTTTGGTTCATGTTGTTGGTGTTCCTGCTGGCGGGGCTTATGCGCACCATCAAGGAGCCTGTGCTGGCCGCCTGGATGAACGACCATGTGGATGAGAAAATGCGCGCCACAGTCTTTTCCACCAGCGGACAGCTGGACTCTTTCGGGCAGATCATCGGCGGGCCTATTGTGGGGCTGGTAGCCCAGCAGGTGTCCATACCCTGGGGGCTGGTCTGTACCGCTTTCCTGCTGTTGCCCGCGCTGTTCTTAGTGCCGGTGGCGGGAAAGAAGCGGGATTGA " 569 UPDATE OXA-228 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGTTTAAAATGAAAGGTTTATTTTGTGTCATCCTCAGTAGTTTGGCATTTTCAGGTTGTGTTTATGATTCAAAATTACAACGCCCAGTCATATCAGAGCGAGTAACTGAGATTCCTTTATTATTTAATCAAGCACAGACTCAAGCTGTGTTTGTTACTTATGATGGGATTCATCTAAAAAGTTATGGTAATGATCTAAGCCGAGCAAAGACTGAATATATTCCTGCATCTACATTTAAGATGTTGAATGCTTTAATTGGCTTGCAAAATGCAAAAGCAACCAATACTGAAGTATTTCATTGGAATGGTGAAAAGCGCGCTTTTTCAGCATGGGAAAAAGATATGACTTTGGCAGAAGCGATGCAGGCTTCAGCTGTTCCTGTATATCAAGAGCTTGCTCGACGTATTGGCTTGGAATTGATGCGTGAAGAAGTGAAGCGTGTAGGTTTTGGCAATGCGGAGATTGGTCAGCAAGTCGATAATTTTTGGTTGGTGGGTCCTTTAAAAATCTCCCCTGAACAAGAAGTTCAATTTGCCTATCAACTGGCAATGAAGCAATTGCCTTTTGATTCAAATGTACAGCAACAAGTCAAAGATATGCTTTATATCGAGAGACGTGGTGACAGTAAACTGTATGCTAAAAGTGGTTGGGGAATGGATGTTGAACCTCAAGTGGGTTGGTATACGGGATGGGTTGAACAACCCAATGGCAAGGTGACTGCATTTGCGTTAAATATGAACATGCAAGCAGGTAATGATCCAGCTGAACGTAAACAATTAACCTTAAGTATTTTGGACAAATTGGGTCTATTTTTTTATTTAAGATAA " 1292 UPDATE CTX-M-109 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 865 UPDATED strand with - UPDATED accession with JF274248.1 UPDATED fmin with 0 UPDATED sequence with GGTTAAAAAATCACTGCGTCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCGAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAGCGGTGGCTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCAA UPDATED NCBI_taxonomy_name with Shigella sp. SH361 UPDATED NCBI_taxonomy_id with 1074437 UPDATED NCBI_taxonomy_cvterm_id with 39658 UPDATED accession with AEM44654.1 UPDATED sequence with VKKSLRQFTLMATATVTLLLGSVPLYAQTADVQQKLAELERQSGGRLGVALINTADNSRILYRADERFAMCSTSKVMAAAAVLKKSESEPNLLNQRVEIKKSDLVNYNPIAEKHVNGTMSLAELSAAALQYSDNVAMNKLIAHVGGPASVTAFARQLGDETFRLDRTEPTLNTAIPGDPRDTTSPRAMAQTLRNLTLGKALGDSQRAQLVTWMKGNTTGAASIQAGLPASWVVGDKTGSGGYGTTNDIAVIWPKDRAPLILVTYFTQPQPKAESRRDVLASAAKIVTK " 1376 UPDATE MOX-6 penam; antibiotic inactivation; MOX beta-lactamase; cephamycin; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1081 UPDATE IMP-30 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGCAAGTTATCTGTATTCTTTATATTTTTGTTTTGCAGCATTGCTACCGCAGCAGAGTCTTTGCCAGATTTAAAAATTGAAAAGCTTGATGAAGGCGTTTATGTTCATACTTCGTTTAAAGAAGTTAACGGGTGGGGCGTTGTTCCTAAACATGGTTTGGTGGTTCTTGTAAATGCTGAGGCTTACCTAATTGACACTCCATTTACGGCTAAAGATACTGAAAAGTTAGTCACTTGGTTTGTGGAGCGTGGCTATAAAATAAAAGGCAGCATTTCCTCTCATTTTCATAGCGACAGCACGGGCGGAATAGAGTGGCTTAATTCTCGATCTATCCCCACGTATGCATCTGAATTAACAAATGAACTGCTTAAAAAAGACGGTAAGGTTCAAGCCACAAATTCATTTAGCGGAGTTAACTATTGGCTAGTTAAAAATAAAATTGAAGTTTTTTATCCAGGCCCGGGACACACTCCAGATAACGTAGTGGTTTGGTTGCCTGAAAGGAAAATATTATTCGGTGGTTGTTTTATTAAACCGTACGGTTTAGGCAATTTGGGTGACGCAAATATAGAAGCTTGGCCAAAGTCCGCCAAATTATTAAAGTCCAAATATGGTAAGGCAAAACTGGTTGTTCCAAGTCACAGTGAAGTTGGAGACGCATCACTCTTGAAACTTACATTAGAGCAGGCGGTTAAAGGGTTAAACGAAAGTAAAAAACCATCAAAACCAAGCAACTAA " 322 UPDATE FEZ-1 carbapenem; FEZ beta-lactamase; cephalosporin; antibiotic inactivation; penam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 323 UPDATE aadA9 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 3995 UPDATED strand with - UPDATED accession with DQ390458 UPDATED fmin with 3095 UPDATED sequence with ATGTTATGGAGCAGCAACGATGTTACGCAGCAGGGCAGTCGCCCTAAAACAAAGTTAGACATGATGAGCAACTCTATACACACCGGAATCTCAAGACAGCTTTCACAGGCACGCGATGTAATTAAACGCCATTTGGCATCAACGCTGAAAGCCATACACTTGTATGGTTCTGCAATTGATGGTGGCCTCAAACCATATAGCGACATTGATCTGCTGGTTACCGTGGATGCACGCTTGGATGAAGCTACCAGACGCTCCCTGATGCTCGATTTCTTGAATATCTCGGCACCACCATGCGAAAGCTCAATACTCCGGCCGCTAGAGGTAACTGTTGTTGCATGCAACGAAGTAGTGCCTTGGCGTTATCCGGCACGACGAGAACTGCAGTTCGGGGAGTGGCTGCGGGAGGATATTCTTGAAGGTGTCTTCGAGCCAGCCGCCTTGGACGCCGACCTTGCAATTCTAATAACGAAAGCTAGGCAACACAGCATCGCTTTAGTAGGTCCAGTGGCTCAAAAAGTCTTCATGCCGGTGCCAGAGCATGACTTTCTCCAGGTGCTTTCCGATACCCTTAAGCTGTGGAATACTCATGAGGATTGGGAAAATGAGGAGCGGAACATCGTACTCACGTTAGCTCGGATCTGGTATAGCACTGAAACTGGAGGAATCGTCCCCAAGGATGTGGCCGCCGAATGGGTTTTAGAGCGCTTGCCAGCTGAGCATAAGCCAATACTGGTTGAGGCGCGGCAAGCCTATCTTGGGCTTTGCAAGGATAGTCTTGCTTTGCGTGCAGATGAGACTTCGGCGTTCATTGGCTATGCAAAGTCTGCGGTCGCTGATTTGCTCGAAAAGCGAAAATCTCAAACTTCGCATATTTGCGATGGCGCCAAGAACGTCTAA UPDATED NCBI_taxonomy_name with Corynebacterium sp. L2-79-05 UPDATED NCBI_taxonomy_id with 373068 UPDATED NCBI_taxonomy_cvterm_id with 39645 UPDATED accession with ABG49324.1 UPDATED sequence with MLWSSNDVTQQGSRPKTKLDMMSNSIHTGISRQLSQARDVIKRHLASTLKAIHLYGSAIDGGLKPYSDIDLLVTVDARLDEATRRSLMLDFLNISAPPCESSILRPLEVTVVACNEVVPWRYPARRELQFGEWLREDILEGVFEPAALDADLAILITKARQHSIALVGPVAQKVFMPVPEHDFLQVLSDTLKLWNTHEDWENEERNIVLTLARIWYSTETGGIVPKDVAAEWVLERLPAEHKPILVEARQAYLGLCKDSLALRADETSAFIGYAKSAVADLLEKRKSQTSHICDGAKNV " 320 UPDATE Streptococcus pneumoniae PBP2x conferring resistance to amoxicillin ceftaroline; ampicillin; flucloxacillin; ceftibuten; cefditoren; piperacillin; cefpodoxime; cefixime; cefdinir; meropenem; carbapenem; imipenem; aztreonam; cefradine; isopenicillin N; cefazolin; penicillin N; ceftazidime; cefepime; penicillin; antibiotic target alteration; oxacillin; cefmetazole; moxalactam; cloxacillin; cefadroxil; ceftriaxone; methicillin; loracarbef; ceftizoxime; cephalosporin; cefotaxime; cefaclor; Penicillin-binding protein mutations conferring resistance to beta-lactam antibiotics; cefonicid; monobactam; cefuroxime; amoxicillin; mezlocillin; azlocillin; cefalexin; doripenem; cefotiam; ertapenem; penam; cefprozil; cephapirin; ceftobiprole; benzylpenicillin; phenoxymethylpenicillin; cephamycin; carbenicillin; cefalotin; ceftiofur; mecillinam; propicillin; cefoxitin; dicloxacillin; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 321 UPDATE CTX-M-35 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 326 UPDATE OXA-225 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 327 UPDATE GES-17 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 324 UPDATE QnrB54 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCACTGGCACTCGTTAGCGAAAAAATTGACAGAAACCGCTTCACCGGTGAGAAAATTGAAAATAGTACATTTTTTAACTGTGATTTTTCAGGTGCCGACCTGAGCGGCACTGAATTTATCGGCTGTCAGTTCTATGATCGTGAAAGCCAGAAAGGGTGCAATTTTAGTCGTGCGATGCTGAAAGATGCCATTTTTAAAAGCTGTGATTTATCCATGGCGGATTTTCGCAATGCCAGTGCGCTTGGCATTGAAATTCGCCACTGTCGTGCGCAAGGCGCAGATTTCCGCGGCGCAAGCTTTATGAATATGATCACTACTCGCACCTGGTTTTGTAGTGCATATATCACTAACACAAATCTAAGCTACGCCAATTTTTCGAAAGTCGTGCTGGAAAAGTGTGAGCTGTGGGAAAACCGTTGGATGGGTACCCAGGTACTGGGCGCGACGTTCAGTGGTTCAGATCTCTCCGGCGGCGAGTTTTCGACTTTCGACTGGCGAGCAGCAAACTTCACACATTGCGATCTGACCAATTCGGAGTTGGGTGACTTAGATATTCGGGGCGTTGATTTACAAGGCGTTAAGTTGGACAACTACCAGGCATCGTTGCTCATGGAACGTCTTGGCATCGCGATTATTGGCTAG " 325 UPDATE LEN-23 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 328 UPDATE Salmonella enterica cmlA antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGACATGTACTTGCCAGCAGTGCCGTTTATGCCAAACGCGCTTGGTACGACAGCGAGCACAATTCAGCTTACGCTGACAACGTACTTGGTCATGATTGGTGCCGGTCAGCTCTTGTTTGGACCGCTATCGGACCGACTGGGGCGCCGCCCCGTTCTACTGGGAGGTGGCCTCGCAAACGTTGTGGCGTCAATGGGCCTCGCTCTTACGTCATCGGCTGAAGTCTTTCTGGGGCTTCGGATTCTTCAGGCTTGTGGTGCCTCGGCGTGCCTTGTTTCCACATTTGCAACAGTACGTGACATTTACGCAGGTCGCGAGGAAAGTAATGTCATTTACGGCATACTCGGATCCATGCTGGCCATGGTCCCGGCGGTAGGCCCATTGCTCGGAGCGCTCGTCGACATGTGGCTTGGGTGGCGGGCTATCTTTGCGTTTCTAGGTTTGGGCATGATCGCTGCATCTGCAGCAGCGTGGCGATTCTGGCCTGAAACCCGGGTGCAACGAGTTGCGGGCTTGCAATGGTCGCAGCTGCTACTCCCCGTTAAGTGCCTGAACTTCTGGTTGTACACGTTGTGTTACGCCGCTGGAATGGGTAGCTTCTTCGTCTTTTTCTCCATTGCGCCCGGACTAATGATGGGCAGGCAAGGTGTGTCTCAGCTTGGCTTCAGCCTGCTGTTCGCCACAGTGGCAATTGCCATGGTGTTTACGGCTCGTTTTATGGGGCGTGTGATACCCAAGTGGGGCAGCCCAAGTGTCTTGCGAATGGGAATGGGATGCCTGATAGCTGGAGCAGTATTGCTTGCCATCACCGAAATATGGGCTTTGCAGTCCGTGTTAGGCTTTATTGCTCCAATGTGGCTAGTGGGTATTGGTGTCGCCACAGCGGTATCTGTGGCGCCCAATGGCGCTCTTCGAGGATTCGACCATGTTGCTGGAACGGTCACGGCAGTCTACTTCTGCTTGGGCGGTGTACTGCTAGGAAGCATCGGAACGTTGATCATTTCGCTGTTGCCGCGCAACACGGCTTGGCCGGTTGTCGTGTACTGTTTGACCCTTGCAACAGTCGTGCTCGGTCTGTCTTGTGTTTCCCGAGTGAAGGGCTCTCGCGGCCAGGGGGAGCATGATGTGGTCGCGCTACAAAGTGCGGGAAGTACATCAAATCCCAATCGTTGA " 329 UPDATE CTX-M-159 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 564 UPDATE IMP-22 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGAAATTATTTGTTTTATGTGTGTTTTTGTTTTGTAGCATTACTGCCGCAGGAGAGTCTTTGCCCGATTTAAAAATTGAAAAGCTTGAAGAAGGTGTTTATGTTCATACATCGTTTGAAGAAGTTAATGGTTGGGGCGTTGTTTCTAAACACGGTTTGGTTATTCTTGTGAATACTGACGCCTATCTGATTGACACTCCATTCACGGCTAAAGATACTGAAAAGTTAGTCACCTGGTTTGTGGAGCGCGGCTATAAAATCAAAGGTAGCATTTCCTCACATTTCCATAGCGACAGCACGGGTGGAATAGAGTGGCTTAATTCTCAATCAATTCCCACGTATGCATCTGAATTAACAAATGACCTTCTTAAACAAAACGGTAAGGTACAAGCTAAAAACTCATTTAGCGGAGTTAGTTATTGGTTAGTTAAAAATAAAATTGAAGTTTTCTATCCCGGCCCCGGGCACACTCAAGATAACGTAGTGGTTTGGTTGCCTGAAAAGAAAATTTTATTTGGTGGGTGCTTTGTTAAACCGTACGGTCTTGGAAATCTCGATGACGCAAATGTTGTAGCATGGCCACATTCTGCTGAAATATTAATGTCTAGGTATGGTAATGCAAAACTGGTTGTTCCAAGCCATAGTGACATCGGAGATGCGTCGCTCTTGAAGCTTACATGGGAGCAGGCTGTTAAAGGGCTAAAAGAAAGTAAAAAACCATCAGAGCCAAGTAACTAA " 1340 UPDATE mtrC penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; penicillin; azithromycin; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1796420 UPDATED strand with - UPDATED accession with NC_003112.2 UPDATED fmin with 1795181 UPDATED sequence with ATGGCTTTTTATGCTTTTAAGGCGATGCGTGCGGCCGCGTTGGCTGCCGCCGTTGCATTGGTACTGTCGTCTTGCGGTAAAGGCGGAGACGCGGCGCAGGGCGGGCAGCCTGCTGGTCGGGAAGCCCCTGCGCCCGTCGTCGGTGTCGTAACCGTCCATCCGCAAACCGTCGCATTGACCGTCGAGTTGCCGGGGCGTTTGGAATCGCTGCGTACCGCCGATGTCCGCGCCCAAGTCGGCGGCATCATCCAAAAACGCCTGTTCCAAGAAGGCAGTTATGTCCGTGCCGGACAGCCGCTGTATCAGATCGACAGTTCCACTTATGAAGCAGGTCTGGAAAGCGCGCGCGCGCAACTGGCAACGGCTCAGGCAACGCTTGCCAAAGCGGATGCGGATTTGGCGCGATACAAGCCTTTGGTTGCCGCCGAAGCCGTCAGCCGGCAGGAATACGATGCTGCGGTAACGGCGAAACGTTCTGCCGAGGCAGGCGTTAAAGCGGCGCAGGCGGCAATCAAATCCGCCGGCATCAGCCTGAACCGTTCGCGCATTACCGCGCCGATTTCCGGCTTTATCGGTCAGTCCAAAGTTTCCGAAGGTACGTTGCTGAACGCTGGCGATGCGACCGTACTGGCGACCATCCGCCAAACCAATCCGATGTATGTGAACGTTACCCAGTCTGCATCCGAAGTGATGAAATTGCGCCGTCAGATAGCCGAAGGCAAACTGCTGGCGGCGGATGGTGTGATTGCGGTCGGCATCAAATTTGACGACGGCACAGTTTACCCTGAAAAAGGCCGCCTGCTGTTTGCCGATCCGGCCGTCAACGAATCGACCGGTCAGATTACCCTGCGCGCCGCCGTACCGAACGATCAGAATATCTTGATGCCCGGTCTGTATGTGCGCGTGCTGATGGACCAAGTGGCGGTGGATAACGCATTTGTTGTGCCGCAGCAGGCGGTAACGCGCGGTGCGAAAGATACCGTGATGATTGTGAATGCCCAAGGCGGTATGGAACCCCGCGAGGTAACGGTTGCGCAACAGCAGGGTACGAATTGGATTGTTACGTCGGGTCTGAAGGACGGGGACAAGGTGGTTGTGGAAGGCATCAGTATCGCCGGTATAACGGGTGCGAAAAAGGTAACGCCCAAAGAATGGGCGTCGTCTGAAAACCAAGCCGCCGCGCCTCAATCCGGCGTTCAGACGGCATCTGAAGCCAAACCTGCTTCTGAAGCGAAATAA UPDATED NCBI_taxonomy_name with Neisseria meningitidis MC58 UPDATED NCBI_taxonomy_id with 122586 UPDATED NCBI_taxonomy_cvterm_id with 39597 UPDATED accession with NP_274719.1 UPDATED sequence with MAFYAFKAMRAAALAAAVALVLSSCGKGGDAAQGGQPAGREAPAPVVGVVTVHPQTVALTVELPGRLESLRTADVRAQVGGIIQKRLFQEGSYVRAGQPLYQIDSSTYEAGLESARAQLATAQATLAKADADLARYKPLVAAEAVSRQEYDAAVTAKRSAEAGVKAAQAAIKSAGISLNRSRITAPISGFIGQSKVSEGTLLNAGDATVLATIRQTNPMYVNVTQSASEVMKLRRQIAEGKLLAADGVIAVGIKFDDGTVYPEKGRLLFADPAVNESTGQITLRAAVPNDQNILMPGLYVRVLMDQVAVDNAFVVPQQAVTRGAKDTVMIVNAQGGMEPREVTVAQQQGTNWIVTSGLKDGDKVVVEGISIAGITGAKKVTPKEWASSENQAAAPQSGVQTASEAKPASEAK " 565 UPDATE SHV-82 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2331 UPDATE kdpE kanamycin A; kdpDE; aminoglycoside antibiotic; protein(s) and two-component regulatory system modulating antibiotic efflux; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 721733 UPDATED strand with - UPDATED accession with NC_000913.3 UPDATED fmin with 721055 UPDATED sequence with GTGACAAACGTTCTGATTGTTGAAGATGAACAGGCTATTCGTCGCTTTCTGCGCACGGCGCTGGAGGGCGACGGGATGCGCGTCTTTGAGGCCGAAACGCTGCAACGCGGCTTGCTGGAAGCGGCAACCCGTAAGCCAGATTTGATTATTCTCGATCTCGGCCTGCCCGATGGTGATGGGATTGAGTTTATCCGCGACCTGCGCCAGTGGAGCGCGGTGCCGGTGATTGTGCTTTCCGCACGCAGCGAAGAGAGCGACAAAATCGCCGCGCTGGATGCCGGAGCGGATGATTATCTGAGTAAGCCGTTTGGCATTGGCGAATTGCAGGCCCGTCTGCGCGTCGCATTACGCCGCCACTCTGCCACCACCGCGCCCGATCCGCTGGTAAAATTTTCCGATGTTACCGTCGATTTAGCCGCCCGCGTGATTCACCGGGGTGAGGAAGAGGTGCATCTCACACCAATTGAGTTCCGCCTGCTGGCGGTGCTGCTCAACAATGCCGGAAAAGTACTCACCCAGCGCCAGCTCCTTAACCAGGTGTGGGGGCCAAACGCGGTCGAACACAGTCACTATTTGCGTATTTATATGGGACATCTGCGACAAAAACTGGAACAGGATCCCGCCCGCCCACGCCATTTCATTACTGAAACCGGTATTGGCTATCGGTTTATGCTTTGA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. MG1655 UPDATED NCBI_taxonomy_id with 511145 UPDATED NCBI_taxonomy_cvterm_id with 36849 UPDATED accession with NP_415222.1 UPDATED sequence with MTNVLIVEDEQAIRRFLRTALEGDGMRVFEAETLQRGLLEAATRKPDLIILDLGLPDGDGIEFIRDLRQWSAVPVIVLSARSEESDKIAALDAGADDYLSKPFGIGELQARLRVALRRHSATTAPDPLVKFSDVTVDLAARVIHRGEEEVHLTPIEFRLLAVLLNNAGKVLTQRQLLNQVWGPNAVEHSHYLRIYMGHLRQKLEQDPARPRHFITETGIGYRFML " 2333 UPDATE LEN-26 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2334 UPDATE ADC-1 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2335 UPDATE ADC-2 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2336 UPDATE ADC-3 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2337 UPDATE ADC-4 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2338 UPDATE ADC-5 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2339 UPDATE ADC-6 antibiotic inactivation; cephalosporin; ADC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1341 UPDATE OXA-53 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCAATCCAAATCTTCGCAATACTTTTCTCCACTTTTGTTCTTGCCACTTTTGCACATGCGCAAGATGGCACGCTGGAACGTTCTGACTGGGGGAAATTTTTCAGCGATTTTCAGGCCAAAGGTACGATAGTTGTGGCAGACGAACGCCAAGCGGATCATGCGATATTGGTTTTTGATCAAGCACGGTCAATGAAACGCTACTCGCCTGCGTCGACATTCAAGATTCCACATACACTTTTTGCACTTGATGCAGGCGCCGTTCGCGATGAGTTTCAGATTTTCCGCTGGGACGGCGTCAAAAGGAGCTTTGCAGGTCACAATAAAGACCAAGATTTGCGATCAGCAATGCGAAATTCTACTGTCTGGGTTTATGAGCTATTTGCAAAGGAAATCGGTGATGGCAAGGCTCGACGCTATTTGAAGCAAATCGGCTATGGCAACGCCGATCCTTCGACAAGTCATGGCGATTACTGGATAGAAGGCAGCCTTGCAATCTCAGCACAGGAACAGATCGCGTTTCTCAGAAAGCTCTATCAAAACGATCTGCCCTTTAGGGTGGAACATCAGCGCTTGGTCAAGGATCTGATGATTGTGGAAGCGGGACGCAACTGGATTCTGCGCGCGAAGACGGGCTGGGAAGGCAGCATGGGTTGGTGGGTGGGGTGGGTTGAATGGCCAACCGGTCCCGTATTCTTTGCCTTGAATATCGATACGCCAAACAGAATGGACGATCTTTTCAAGAGGGAAGCAATAGCGCGAGCGATACTTCTCTCTATCGAAGCGTTGCCGCCCAACCCGGCAGTCCACTCGGACGCTGCGCGATGA " 1995 UPDATE AAC(6')-Iz antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGATCGCCAGCGCGCCCACGATCCGCCAGGCCACGCCGGCCGATGCGGCTGCATGGGCGCAGTTGCGTCTCGGCCTGTGGCCTGATGCCGATGATCCGCTGGAGGAGCTGACGCAGTCGCTGGCAGATGCCGAAGGTGCTGTGTTCTTGGCCTGTGCCGCGGATGGCGAGACGGTTGGTTTCGCTGAAGTGCGCCTGCGCCATGACTACGTGAACGGTACCGAGTCTTCGCCGGTGGGGTTCCTGGAGGGCTGGTACGTGCAGCCGCAGTGGCAAGGCAGCGGCGTCGGCCGCGCCCTGCTGGCGGCGGTGCAGGCGTGGACGCGCGATGCGGGCTGCCGCGAACTGGCTTCGGACAGTCGCGTGGAAGACGTGCAGGCTCACGCCGCGCATCGGGCCTGCGGCTTCGAAGAGACCGAACGGGTCGTCTATTTCCGCATGCCGCTGGAGCCATCGGCGTGA " 1598 UPDATE OXA-101 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAACATTTGCCGCATATGTAATTACTGCGTGTCTTTCAAGTACGGCATTAGCTAGTTCAATTACAGAAAATACGTTTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTTTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATAACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAACGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAACAATGGGAAAGAGACTTGAGCTTAAGAGGGGCAATACAAGTTTCAGCGGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATATCTTAAAAAATTTTCATATGGTAACCAGAATATCAGTGGTGGCATTGACAAATTCTGGTTGGAGGGTCAGCTTAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATTTTTAAATAAATTGTCAGCATCAAAAGAAAATCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCTGCGCCTGAATATCTTGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGTTGGGTTGAGAAGGGAACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAATAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGCAAGTGAGGGCATCATTGGTGGCTAA " 2248 UPDATE fusD antibiotic inactivation; fusidic acid; fusidic acid inactivation enzyme; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2249 UPDATE LpxA peptide antibiotic; antibiotic target alteration; Acinetobacter mutant Lpx gene conferring resistance to colistin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2256463 UPDATED strand with - UPDATED accession with CP010781.1 UPDATED fmin with 2255674 UPDATED sequence with ATGAGCAATCACGATTTAATCCATTCTACCGCCATTATTGATCCATCTGCAGTGATTGCTTCAGATGTTCAAATAGGACCTTATTGTATTATCGGTCCTCAAGTGACTATTGGTGCTGGTACTAAATTACATTCTCATGTGGTTGTAGGTGGTTTTACCAGAATTGGCCAAAATAACGAAATCTTTCAATTTGCAAGTGTTGGCGAAGTTTGCCAAGACCTCAAATATAAAGGTGAAGAAACGTGGCTTGAAATTGGTAACAATAATCTAATTCGCGAACATTGCAGCTTACATAGAGGTACGGTGCAAGATAATGCATTAACCAAGATAGGTAGTCATAACCTATTAATGGTAAATACACATATTGCACATGATTGTATCGTAGGTGACCATAATATCTTTGCTAATAATGTAGGTGTCGCTGGACATGTACATATTGGTGATCACGTTATTGTGGGTGGTAATTCTGGAATTCATCAATTCTGTAAGATCGATTCTTATAGCATGATTGGTGGGGCTTCTTTGATCCTTAAAGATGTTCCAGCCTATGTGATGGCTTCTGGTAACCCTGCACATGCGTTTGGTATAAATATTGAAGGTATGCGAAGAAAAGGTTGGTCTAAAAATACAATTCAAGGCTTAAGAGAAGCTTATAAATTGATATTTAAATCTGGATTAACTTCTGTTCAAGCTATTGACCAAATTAAAAGTGAAATTTTACCTTCAGTTCCAGAAGCTCAACTCTTGATTGATTCTCTTGAACAATCAGAGCGTGGAATTGTGCGCTAA UPDATED NCBI_taxonomy_name with Acinetobacter baumannii UPDATED NCBI_taxonomy_id with 470 UPDATED NCBI_taxonomy_cvterm_id with 35507 UPDATED accession with AJF82049.1 UPDATED sequence with MSNHDLIHSTAIIDPSAVIASDVQIGPYCIIGPQVTIGAGTKLHSHVVVGGFTRIGQNNEIFQFASVGEVCQDLKYKGEETWLEIGNNNLIREHCSLHRGTVQDNALTKIGSHNLLMVNTHIAHDCIVGDHNIFANNVGVAGHVHIGDHVIVGGNSGIHQFCKIDSYSMIGGASLILKDVPAYVMASGNPAHAFGINIEGMRRKGWSKNTIQGLREAYKLIFKSGLTSVQAIDQIKSEILPSVPEAQLLIDSLEQSERGIVR " 2245 UPDATE vanKI glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanK; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 4206077 UPDATED strand with - UPDATED accession with NC_007907.1 UPDATED fmin with 4204949 UPDATED sequence with ATGTTAAACGTTGACAAGATAAGTGAAGAAACCTATTATGCGTTCATTTCTCAAGCGGATCTAGGCAATTTTATGCAGTATCCTTCCTGGGCCAAGGTCAAAACTGAGTGGACCAGCGATTTATTGGGGTGGTTCACCCCGGACAATAAATTGGCAGGGTGTGGTTTGATCTTATACCGGAAAATGCCCTGCCTTAACCGGTACCTGGCGTATTGTCCCCGCGGTCCCCTTATTGACTGGCAGAGCCCCAACCTCAGGGAATGGTTCGAACCTCTTGTGGCTTATTTGAGAAGCAAGCAGGTTTTCAGTATCAAGATCGATCCTCCGGTGGTCCAGGCAAAATGGTCTGCCCCCACCATTAAAACGTTTTTAGGGCAAGCCCGTGAACAGGGCAGCAAAGGGAAAGTTTTGCGCGATTTGCCGCCGGACGAAGACTACACAACGGTCCAACAAGTGCAGCAGCAATTACGGCAAATGGGTTGGCGGAAGCAGCGGGGGGATACGGGTTTCGCTGCGACCCAGCCCCAATATGTTTACCGCCTGCCCTTAGAGGGGCGCAGCCTGGAGGAGGTCTTCGCCGGTTTTCATACCAACTGGAGGCGCAATGTTAAAAAGGCCGAGCGTTTGGGCGTCAAGGTCCGGGTCGGGACCGAACAGGATTTACCGGCTTTTTATGAGCTGCTGAAGGTAACTTCAGAACGGGATCACTTCAAGGTGCGCAGTTTCTCCTACTTTTCCAATCTGTACCGGTCCTTAAAGGCTGAAGCGGCAGACCGTATTGCTCTTTATCTGGCGGAAGATGAAGAGGAATTATTGGCTGCTACCTTAGCCGTCCATTCCAACGCCCACTCATGGTATCTTTACGGGGCCAGCAGCAATGTAAAACGGGAGAAGGCCCCGAATCATGCTATCCAGTGGCGGATGATTCAAGATGCTTATCAGCTTAAGGCCTACACCTATGATTTTAGAGGCATCAGCCCTACCCTGGATGAATCTGACCCCCTGTTTGGGTTGTTGAGATTTAAATTGGGCTTTGGAGGCGAGGCTTGTGAAATGATCAGTGCTTGGGACTACCCCCTGCAGCCTTTATTATACCGGGCTTTCCAGCTGTACTTAAAACGGCGGTAG UPDATED NCBI_taxonomy_name with Desulfitobacterium hafniense UPDATED NCBI_taxonomy_id with 49338 UPDATED NCBI_taxonomy_cvterm_id with 40382 UPDATED accession with WP_011461306.1 UPDATED sequence with MLNVDKISEETYYAFISQADLGNFMQYPSWAKVKTEWTSDLLGWFTPDNKLAGCGLILYRKMPCLNRYLAYCPRGPLIDWQSPNLREWFEPLVAYLRSKQVFSIKIDPPVVQAKWSAPTIKTFLGQAREQGSKGKVLRDLPPDEDYTTVQQVQQQLRQMGWRKQRGDTGFAATQPQYVYRLPLEGRSLEEVFAGFHTNWRRNVKKAERLGVKVRVGTEQDLPAFYELLKVTSERDHFKVRSFSYFSNLYRSLKAEAADRIALYLAEDEEELLAATLAVHSNAHSWYLYGASSNVKREKAPNHAIQWRMIQDAYQLKAYTYDFRGISPTLDESDPLFGLLRFKLGFGGEACEMISAWDYPLQPLLYRAFQLYLKRR " 2246 UPDATE vanRI glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanR; vancomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 4202691 UPDATED strand with - UPDATED accession with NC_007907.1 UPDATED fmin with 4201992 UPDATED sequence with TTGGCTGCTAATATTTTGATTGTTGATGATGAACAAGCTATTGCCGATTTGGTGGAAGTTTATCTGAAAAATGAGAACTATAATCTCTTTAAATTTTATAACGGCAAGGATGCCCTTGACTGTATTGAAAAGGAAAAACTGGATCTCGCCATTTTGGATGTCATGCTCCCTGATGTAGACGGTTTTTCAATCTGCCGGCAAATCCGGGAAAAGCATAATTTTCCGGTGATCATGCTGACAGCCAAGGAAGAAGAAATCGATAAGATTACCGGGCTGACCTTAGGCGCGGACGACTATATCACCAAGCCGTTCCGTCCCTTGGAGCTGATTGCCCGCGTCAAGGCGCAGCTGCGGAGATTTACCAAGTATAATTCTGCAGAGCCAAACCAAGAGGAACACGTGATTGCCTTTTCCGGCTTGGTCTTAGACATGGATACCCATGAATGTACCTTGAATGAAAAAAAACTATCCCTCACGCCTACGGAGTTCTCCATTCTTTGGGTCCTTTGCTCCAACCGCGGCCGGGTAGTCAGTTCGGAAGAATTGTTCAGTGAGGTATGGGGAGACAAGTATTTCACCAACAGCAATAATACGGTCATGGTGCATATCCGGCATTTAAGGGAAAAAATGCAAGACAGCGCGGAACATCCTAAATATATCAAAACGGTATGGGGGGTTGGCTATAAAATTGAAAAGTGA UPDATED NCBI_taxonomy_name with Desulfitobacterium hafniense UPDATED NCBI_taxonomy_id with 49338 UPDATED NCBI_taxonomy_cvterm_id with 40382 UPDATED accession with WP_011461303.1 UPDATED sequence with MAANILIVDDEQAIADLVEVYLKNENYNLFKFYNGKDALDCIEKEKLDLAILDVMLPDVDGFSICRQIREKHNFPVIMLTAKEEEIDKITGLTLGADDYITKPFRPLELIARVKAQLRRFTKYNSAEPNQEEHVIAFSGLVLDMDTHECTLNEKKLSLTPTEFSILWVLCSNRGRVVSSEELFSEVWGDKYFTNSNNTVMVHIRHLREKMQDSAEHPKYIKTVWGVGYKIEK " 2240 UPDATE vanJ glycopeptide antibiotic; teicoplanin; antibiotic target alteration; vanJ membrane protein; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2241 UPDATE vanI glycopeptide antibiotic; glycopeptide resistance gene cluster; van ligase; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 167390 UPDATED strand with - UPDATED accession with LOCK01000072.1 UPDATED fmin with 166343 UPDATED sequence with ATGACTAAGTTGAAAATTGCAATTATCTTCGGAGGCTGTTCCGAAGAACATCCCGTCTCCGTTAAATCTGCTGGGGAGGTCGCCAAAAACCTGGATCCCGAAAAGTATGAACCCTTCTATATCGGGATTACGAAAGATGGGGTTTGGCAGCTTTGCCACTACCCTGAGGTCAATTGGGAAAAGGGCAGCTGCCGTCCGGCTATCCTGTCACCGGACAGAAGCGTCCAGGGATTGCTTGTTCTGGAGCAGGGACAATACCAAAGGATACCTTTGGATCTGGTGTTTCCCGTTCTGCATGGCAAATTTGGCGAGGATGGGGCGATGCAAGGCTTGCTGGAGCTTTCCGGCATCCCCTATGTGGGCTGTGATATCCCGAGTTCGGCTCTGTGCATGGACAAATCCCTGGCTTATATCGTCGCTGGAAAGGCAGGAATTGCCACGCCAAAGTTCCGGACGGTCACGGTGAAGGAAACCATTGACGCTGAACGGCTTACTTATCCCGTTTATGTCAAGCCGGCCCGTTCGGGTTCATCCTTCGGCGTCACTAAGGTATGCCGCCAAGAAGAATTGCTGAATGCGGTGGAAATCGCCAGCCAGTATGACTCGAAGGTGCTGATTGAAGAGACTGTCATCGGCACTGAGATAGGGTGTGCGATATTTGGGAACGATCTGGATTTGATCGCCGGCGAGGTCGATCAGATTCGTCTGTCTCATGGCTTTTTCAGAATCCATCAGGAGAATGAGCCGGAAAAGGGTTCCGAAAACTCAACACTAATCGTTCCCGCCGGCATTTCGGCAGAGGCGCGCTCGCGTGTTCAGGAGACGGCAAAAGCCATCTATCGCGCTTTGGGCTGCAGGGGACTGGCGCGGGTGGATATGTTTCTGAAAGAAGATGGAACAGTAATCCTCAACGAGGTGAATACCTTGCCCGGCATGACCTCATACAGCCGTTTTCCGAGAATGATGGCGGCCGCAGGCTTGCCCTTTGCCGAAGTGATCGACCGGCTTGTCTCGTTGGCCTTGAAAGGAAAAACAGGAACCAATTGA UPDATED NCBI_taxonomy_name with Desulfitobacterium hafniense UPDATED NCBI_taxonomy_id with 49338 UPDATED NCBI_taxonomy_cvterm_id with 40382 UPDATED accession with KTE89608.1 UPDATED sequence with MTKLKIAIIFGGCSEEHPVSVKSAGEVAKNLDPEKYEPFYIGITKDGVWQLCHYPEVNWEKGSCRPAILSPDRSVQGLLVLEQGQYQRIPLDLVFPVLHGKFGEDGAMQGLLELSGIPYVGCDIPSSALCMDKSLAYIVAGKAGIATPKFRTVTVKETIDAERLTYPVYVKPARSGSSFGVTKVCRQEELLNAVEIASQYDSKVLIEETVIGTEIGCAIFGNDLDLIAGEVDQIRLSHGFFRIHQENEPEKGSENSTLIVPAGISAEARSRVQETAKAIYRALGCRGLARVDMFLKEDGTVILNEVNTLPGMTSYSRFPRMMAAAGLPFAEVIDRLVSLALKGKTGTN " 2242 UPDATE vanWI glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanW; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2196522 UPDATED strand with - UPDATED accession with NC_007907.1 UPDATED fmin with 2195400 UPDATED sequence with ATGTTAAGAAGGAAACCATGGGTCTTTCTTTTGGTAATTTTATTTAGTCAGCTTAGCTTATCTATACTTTTGGGGGCTACGGTAACCTACGGTGCGGGTTATGCGAAGGCACCCGAGGGGTTGACGGTTTGGGAAAAAGATCTGGGTGGGATGACCAAGGATGAGGCCTATGCAGTCCTTGCCGAAGTAATCCCCAAGGCAGTCGTCTATGACCGGACGGTTTATTTCTTGGAGCTAAACCAAACCGATCAAGATCTAAAGGACTATCTGGCAAGTCAATACATCATTTCCACCGGAAATGTTATTACGGATGCCTTTGAGTACCTGCACAGAATGTCAAGGACTATCCCGTCTCCTGAGTTACTCAATCAGGAGGAAGTTCTTGCTCAGCTCCGCAAGTTCGCCCTGGATATCGATCAGCCGGGTAAGGCGGCTGAAGCCTATTATGAGAATGGCGAGATCGTCATCGAAGAGGGCAGTTTGGGAGTCAGACTTGATGTGGACAAATCATGGGAACAACTGCAGCAAAGCATAGGCATGGAGACGGTGCCGCTTGTTACGGAGGTCATAGTGGTTCACCCTACTACGGCCGAATTAGAGAAGGTCAAAGATCCCTTGGGGGATTACACCACCTATTTTAACCCTTCCTTTCATGAACGGGTTACCAATGTACGGCTTGCGGCTGAAGCGATCAATGGACTTATTCTTCCGCCGGGTGGTGAATTCTCCTTTAATGATACGGTGGGAAAACGTGAGCCTGAAAGAGGGTATTTGCCGGCTTTAATGTATATGGGCAATAGAGTTGTCACAGATGATGGCGGAGGGATTTGCCAGGATTCGACCACTCTTTATCAAGCGACCAAACAGGCCAGGCTGGAAGTGCTGGAAAGATACAGCCATTCTCTGCCGGTTTCCTATGTTCCGTTGGGGCAGGATGCTACGGTTGCTTATGGAGCGCTGGATTTCCGCTTTCGGAACACGACTCAGGGTTATTTGCTGCTTAATGCAGCTACAGGCGGCAATTGGATTCGGGTAAGAATTTTCGGTGTGGCCGATTCTGAACACCCTGCCCTTGACGAACCGGACGGTTATCCTGTAAAACCCAGAGAATGGTCAAAGTAA UPDATED NCBI_taxonomy_name with Desulfitobacterium hafniense UPDATED NCBI_taxonomy_id with 49338 UPDATED NCBI_taxonomy_cvterm_id with 40382 UPDATED accession with WP_005813024.1 UPDATED sequence with MLRRKPWVFLLVILFSQLSLSILLGATVTYGAGYAKAPEGLTVWEKDLGGMTKDEAYAVLAEVIPKAVVYDRTVYFLELNQTDQDLKDYLASQYIISTGNVITDAFEYLHRMSRTIPSPELLNQEEVLAQLRKFALDIDQPGKAAEAYYENGEIVIEEGSLGVRLDVDKSWEQLQQSIGMETVPLVTEVIVVHPTTAELEKVKDPLGDYTTYFNPSFHERVTNVRLAAEAINGLILPPGGEFSFNDTVGKREPERGYLPALMYMGNRVVTDDGGGICQDSTTLYQATKQARLEVLERYSHSLPVSYVPLGQDATVAYGALDFRFRNTTQGYLLLNAATGGNWIRVRIFGVADSEHPALDEPDGYPVKPREWSK " 2243 UPDATE vanXI glycopeptide antibiotic; glycopeptide resistance gene cluster; vanX; antibiotic target alteration; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 995 UPDATE MexG antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; norfloxacin; acridine dye; acriflavin; tetracycline antibiotic; fluoroquinolone antibiotic; tetracycline; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAGCGCTTCATCGATAACTCGCTCGAAAGCAACTGGCTCTGGCTGACCGCCCGGATCTGCCTGGCCCTGATGTTCGTCGCCTCGGGACTGGCGAAGCTGTTCGACTATCAGGCCAGCCTGGAGGAAATGCGCGCCGCCGGCCTGGAGCCGGCCTGGCTGTTCAACATCGCCACCGCCGTGACCCTGCTGGCCGGCTCCGCGCTGGTCCTGCTGGACCGCAAGCTATGGCTCGGCGCCGGGGCGCTGGCGGTGTTCCTGCTGCTGACCATCCTCATCGTCCACACCTTCTGGAGCAAGACCGGCGTCGAAGCCAAGCTGGCGATGTTCTTCGCCCTCGAACACATCGCGGTGATCGGCGGCCTGATCGCCACGGCCATCGCCAGCGCGCAACGCCAGCGGCTGCGCCAGGACGTCTCCGTGGCCGCCACCTACCAGAAGGCCTGA " 994 UPDATE SHV-77 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 997 UPDATE VIM-31 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTCAAACTTTTGAGTAAGTTATTGGTCTATTTGACCGCGTCTATCATGGCTATTGCGAGTCCGCTCGCTTTTTCCGTAGATTCTAGCGGTGAGTATCCGACAGTCAGCGAAATTCCGGTCGGGGAGGTCCGGCTTTACCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTTTGATGGCGCAGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAGAAGCAAATTGGACTTCCTGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCCGAGGTAGAGGGGAACGAGATTCCCACGCACTCTCTAGAAGGACTCTCATCGAGCGGGGACGCAGTGCGCTTCGGTCCAGTAGAACTCTTCTATCCTGGTGCTGCGCATTCGACCGACAACTTAGTTGTGTACGTCCCGTCTGCGAGTGTGCTCTATGGTGGTTGTGCGATTCATGAGTTGTCACGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCATTGAGCGGATTCAACAACGCTACCCGGAAGCACAGTTCGTCATTCCGGGGCACGGCCTGCCGGGCGGTCTAGACTTGCTCAAGCACACAACGAATGTTGTAAAAGCGCACACAAATCGCTCAGTCGTTGAGTAG " 996 UPDATE CMY-77 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGTTATGCTGCGCTCTGCTGCTGACAGCCCCTTTATCCACGTTTGCCGCCGCCAAAACAGAACAACAGATTGCCGATATCGTTAATCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCTGTTGCCGTTATCTACCAGGGAAAACCCTATTATTTCACCTGGGGTAAAGCCGATATCACCAATAACCACCCAGTCACGCAGCAAACTCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCAGGGTATCAGCCTGCTGCACTTAGCCACCTACACGGCAGGCGGCCTGCCGCTGCAGATCCCCGATGACGTTACGGATAAAGCCGCATTACTGCGTTTTTATCAAAACTGGCAGCCGCAATGGGCCCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGCGCGCTGGCGGTGAAACCCTCAGGAATGAGTTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACAGTTCCGCAGAACGAACAAAAAGATTATGCCTGGGGCTATCGCGAAGGGAAGGCTGTACACGTTTCTCCGGGACAACTTGATGCCGAAGCCTATGGCGTGAAATCCAGTGTTATTGATATGGCCCGCTGGGTTCAGGTCAACATGGACGCCAGCCGCGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCAATCATCAACGGTAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCTGCCCCCGCAGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACTGGAGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGCGGCCTGGCGCATTCTTGAAAAGCTGCAATAA " 991 UPDATE EreA antibiotic inactivation; macrolide esterase; macrolide antibiotic; roxithromycin; clarithromycin; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACGTGGAGAACGACCAGAACACTTTTACAGCCTCAAAATCTGGACTTCAATGAGTTTGAGATTCTTACTTCCGTAATTGAGGGCGCCCGAATTGTCGGCATTGGCGAGGGCGCTCATTTTGTCGCGGAGTTTTCACTGGCTAGAGCAAGTCTTATCCGCTATTTGGTCGAAAGGCATGATTTTAATGCGATTGGTTTGGAATGTGGGGCGATTCAGGCATCCCGGTTATCTGAATGGCTCAACTCAACAGCCGGTGCTCATGAACTTGAGCGATTTTCGGATACCCTGACCTTTTCTGTGTATGGCTCAGTGCTGATCTGGCTGAAATCATATCTCCGCGAATCAGGAAGAAAACTGCAGTTAGTCGGAATCGACTTACCCAACACCCTGAACCCAAGGGACGACCTAGCGCAATTGGCCGAAATTATCCAGCTCATCGATCACCTCATGAAACCGCACGTTGATATGCTGACTCACTTGTTGGCGTCCATTGATGGCCAGTCGGCGGTTATTTCATCGGCAAAATGGGGGGAGCTAGAAACGGCTCGGCAGGAGAAAGCTATCTCAGGGGTAACCAGATTGAAGCTCCGCTTGGCGTCGCTTGCCCCTGTACTGAAAAAACACGTCAACAGCGATTTGTTCCGAAAAGCCTCTGATCGAATAGAGTCGATAGAGTATACGTTGGAAACCTTGCGTATGATGAAAACTTTCTTCGATGGTACCTCTCTTGAGGGAGATACTTCCGTACGTGACTCGTATATGGCGGGCGTAGTAGATGGAATGGTTCGAGCGAATCCGGATGTGAAGATAATTCTGCTGGCGCACAACAATCATTTACAAAAAACCCCAGTCTCCTTTTCAGGCGAGCTTACGGCTGTTCCCATGGGGCAGCACCTCGCAGAGAGGGTGAATTACCGTGCGATTGCATTCACCCATCTTGGACCCACCGTGCCGGAAATGCATTTCCCATCGCCCGACAGTCCTCTTGGATTCTCTGTTGTGACCACGCCTGCCGATGCAATCCGTGAGGATAGTATGGAACAGTATGTCATCGACGCCTGTGGTACGGAGAATTCATGTCTGACATTGACAGATGCCCCCATGGAAGCAAAGCGAATGCGGTCTCAAAGCGCCTCTGTAAAAACGAAATTGAGCGAGGCATTTGATGCCATCGTCTGTGTTCCAAGCGCCGGCAAGGACAGCCTAGTTGCCCTATAG " 990 UPDATE FOX-9 antibiotic inactivation; cephamycin; cephalosporin; FOX beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAACAACGACGTGCGTTCGCGCTACTGACGCTGGGTAGCCTGCTGTTAGCCCCTTGTACCTATGCCAGCGGGGAGGCCCCGCTGACCGTCACTGTGGACGGCATTATCCAGCCGATGCTCAAGGCGTATCGGATCCCGGGGATGGCGGTCGCCGTACTGAAAGATGGCAAGGCCCACTATTTCAACTATGGGGTTGCCAACCGCGAGAGTGGTCAGCGCGTCAGCGAGCAGACCCTGTTCGAGATTGGCTCGGTCAGCAAAACCCTGACCGCGACCCTTGGCGCTTATGCAGCGGTCAAGGGAGGCTTTGAGCTGGATGACAAGGTGAGCCAGCACGCCCCCTGGCTGAAAGGTTCCGCCTTTGATGGGGTGACCATGGCCGAGCTTGCCACCTACAGTGCGGGTGGTTTGCCGCTGCAGTTCCCCGAAGAGGTGGATTCGAATGACAAGATGCGCACTTACTATCGGAGTTGGTCACCGGTTTATCCGGCGGGGACCCACCGTCAGTACGCCAATACCAGTATCGGTCTGTTCGGCTATCTGGCTGCCAACTCCCTGGGCCAGTCATTTGAGCAACTGATGAGCCAGACCCTGCTGCCCAAGCTGGGTTTGCACCACACCTATATCCAGGTGCCGGAGTCGGCCATGGCGAACTATGCCTACGGCTATTCGAAGGAAGAGAAGCCCATCCGGGTCACTCCGGGCATGCTGGCGGCCGAGGCTTACGGGATCAAGACCGGTTCGGCGGATCTGCTGAAGTTTGCCGAGGCAAACATGGGGTATCAGGGAGATGCCGCGGTAAAAAGCGCGATCGCGCTGACCCACACCGGTTTCTACTCGGTGGGAGACATGACTCAGGGGCTGGGCTGGGAGAGTTACGACTATCCCGTCACCGAGCAGGTGCTGCTGGCGGACAACTCACCAGCGGTGAGCTTCCAGGCCAATCCGGTTACGCGTTTTGCTGTGCCCAAAGCGATGGGCGAGCAGCGGCTCTATAACAAGACGGGCTCGACCGGCGGCTTTGGCGCCTATGTGGCGTTCGTGCCCGCCAGAGGGATAGCCATCGTCATGCTGGCCAATCGCAACTATCCCATCGAGGCCAGGGTGAAGGCGGCTCACGCCATCCTGAGTCAGTTGGCCGAGTGA " 2462 UPDATE Propionibacterium acnes gyrA conferring resistance to fluoroquinolones antibiotic target alteration; fluoroquinolone antibiotic; nybomycin; fluoroquinolone resistant gyrA; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 1007265 UPDATED strand with + UPDATED accession with CP003084.1 UPDATED fmin with 1004589 UPDATED sequence with ATGGCTGACGACGAGAAGCCCGACGAGCAGAACCAGGCCGACCGTCAAGGATTGGTGACCGGCCGTCACGTCGGAATCCAGCCGGTCGAGATTCGTGACGAGATCCAGAACGCGTACCTCGACTACGCGATGAGCGTCATCGTCGGGCGTGCCCTGCCCGATGTGCGCGACGGCCTCAAACCGGTACACCGTCGGGTCATCTACGCGATGTACGACGGCGGTTACCGCCCCGACCGTGGCTGGAATAAGTGTTCCCGCGTCGTCGGTGACGTCATGGGTAAGTACCACCCTCACGGCGACTCGGCCATTTACGACACCTTGGTGCGTCTGGCTCAGCCATGGGCTATGCGATACAAGCTTGTCCAGGGTCAGGGTAACTTCGGGTCCCAGGGCAACGATGGTGCGGCTGCCATGCGATATACCGAGTGCAAGATGGCGCCGCTGGCCATGGAGATGGTGCGCGACATCGACCAGGACACTGTCGATTTCCAGCCCAATTATGACAACAAGGAGACCGAACCGGTCGTCTTGCCGTCGAGGTTCCCCAACCTGCTTGTCAATGGTTCTTCAGGTATCGCGGTGGGCATGGCCACCAACATCCCGACCCATAATCTGCGCGAGGTCAACGAGGCCGTGCAGTGGTCTTTGGCTCATCCCAATGCTTCCCACGAGGAACTGCTCGAGGCGTGCATGGAGCGCATTAAGGGTCCGGATTTCCCCGGCGGCGCCCTCATCGTGGGTCGGCAGGGCATCGAGGACGCCTACCGCACCGGCCGCGGTTCGGTGACGATGCGTGCCGTCATCGACATGGAAGAGGACAAGAAGGGACGCCAGTGCCTGGTCGTCACCGAGTTGCCTTATATGTGCAACCCGGACAACCTCGCCACCAAGATCGCCGACCTGGTGAACTCCGGTCGCATCAACGGTATCGCCGACATCCGTGACGACTCCTCAGCCCGTACTGGTCAGCGTTTAGTCATCGTCCTCAAGCGTGACGCTCAGCCGCGTGTCGTCATGAACAACCTGTACAAGCACACGGCTTTGCAGGACACCTTCGGCTGCAACATGCTGGCTCTGGTGGACAACGTGCCGCGCACTTTGCGTCTGGACCAATTCATCAGCTACTGGATTGACCACCAGATGGAGGTCATCCGCAGGCGTACCGAGTACCGCCTGGCTCAGGCCGAAAAAGACGCCCATATCCAGCGGGCTCTCGTTAAAGCCCTCGATATGCTCGACGAGGTCATCGCGCTCATCCGTCGCTCCCCGAACACTGAGGCCGCCAGCACCGGCCTACAGGAACTGCTCGATATCGACGAGATTCAGGCTCGCGCCATCCTCGATATGCAGTTGCGTCGTCTGGCTGCCCTGGAGCGTCAAAAGATCATCGACCGACTTGAGGAACTCGAGCGCCTCATCGCTGATTACAAAGCAATTCTGGCTAGCGAGGACCGCCAGCGCGAGATCATCTCTACCGAGCTTGCCGAGATCGTCGATAAGTACGGTGACGAGCGTCGCACCCGCATTATCGCCGCCGATGGGGACTTTTCTGAGGAAGACTTCATCCCCGACGATGACGTCGTCGTCACCATTACCCGGGGCGGCTACGCCAAGCGCACCCGCACTGACCTGTACCGGGTCCAGAAACGCGGTGGCAAGGGTGTTCGCGGCGCCAGCCTGCGCACTGACGATGAGGTGGCACAGCTATTCACTACCACGAACCACCAGTGGATCCTCTTCTTCACGAATATGGGTCGGGTCTATCGCACCAAGGTATGGCAGCTGCCGGAGGCTGGTCGTGACGCCAGGGGGGGTCACGTCGCTGGGTTGCTGAGCTTCCTGCCTGACGAGAAGATCGCCCAAGTCATGACCCTACGGTCCTACGACGACGCCGAGTACCTCCTCCTGGCCACTCGCAAGGGTATGGTCAAGAAGACGGCGCTCAAGGCTTATGACTCGTCTCGTCAGGCCGGCGTTATTGCCGTTAATTTCCGTACCGAGGACGATGAGCTTATCGGCGCCGAGCAGTGCTCCGCCGCTGACGACGTGCTGCTTATCAGCCGTAAGGGGCAGGCGATCCGGTTCTCTGCCGGCGACGACCAGTTGCGCCCGATGGGGCGTGCGACTTCGGGCGTTACCGGCATGAAGTTCCGTGGTGATGACGAGTTGCTGTCAATGTCGATTATTCACTCCGACATGCCTGAGGATGATCGGTTCGTTTTCACAGCAACCGGTGGCGGCTACGCCAAGCGCACTGCTGTGTCGGAGTACCGTCAGCAGAGGCGTGGGGGAGTCGGCATCAAAGCGATGGCCCTCAGTGAGGAGCGCGGCTCCCTGGTTGGTGGCCTGGTGGTCAGCGAGGCTGACGAAATCATCGCGATTAAGACGTCAGGTCAGATCACCCGATCGGCCGTGTCTGAGGTGCCCGCCAAGGGACGCTCCACGATGGGGGTGAAGTTCGTCTCCGTACGCGGTGACGACGCTGTCTCAATCATCGCTGTCAACCCCGAACATACCGTCGAGGAGGAAGTCGCTGACGAATCGGTGGAAACTGTTGAAGGCGATGCCACGAAGGCCCAATCGGGAGATGTGGTTCGGCGAAGCGATACTGTGGATGACGACCGTGCCGTCGATACGGCGGGAAACGACATGAAGCCGGAGGACAACGGTGAGTGA UPDATED NCBI_taxonomy_name with Cutibacterium acnes subsp. defendens ATCC 11828 UPDATED NCBI_taxonomy_id with 1091045 UPDATED NCBI_taxonomy_cvterm_id with 41684 UPDATED accession with AER05434.1 UPDATED sequence with MADDEKPDEQNQADRQGLVTGRHVGIQPVEIRDEIQNAYLDYAMSVIVGRALPDVRDGLKPVHRRVIYAMYDGGYRPDRGWNKCSRVVGDVMGKYHPHGDSAIYDTLVRLAQPWAMRYKLVQGQGNFGSQGNDGAAAMRYTECKMAPLAMEMVRDIDQDTVDFQPNYDNKETEPVVLPSRFPNLLVNGSSGIAVGMATNIPTHNLREVNEAVQWSLAHPNASHEELLEACMERIKGPDFPGGALIVGRQGIEDAYRTGRGSVTMRAVIDMEEDKKGRQCLVVTELPYMCNPDNLATKIADLVNSGRINGIADIRDDSSARTGQRLVIVLKRDAQPRVVMNNLYKHTALQDTFGCNMLALVDNVPRTLRLDQFISYWIDHQMEVIRRRTEYRLAQAEKDAHIQRALVKALDMLDEVIALIRRSPNTEAASTGLQELLDIDEIQARAILDMQLRRLAALERQKIIDRLEELERLIADYKAILASEDRQREIISTELAEIVDKYGDERRTRIIAADGDFSEEDFIPDDDVVVTITRGGYAKRTRTDLYRVQKRGGKGVRGASLRTDDEVAQLFTTTNHQWILFFTNMGRVYRTKVWQLPEAGRDARGGHVAGLLSFLPDEKIAQVMTLRSYDDAEYLLLATRKGMVKKTALKAYDSSRQAGVIAVNFRTEDDELIGAEQCSAADDVLLISRKGQAIRFSAGDDQLRPMGRATSGVTGMKFRGDDELLSMSIIHSDMPEDDRFVFTATGGGYAKRTAVSEYRQQRRGGVGIKAMALSEERGSLVGGLVVSEADEIIAIKTSGQITRSAVSEVPAKGRSTMGVKFVSVRGDDAVSIIAVNPEHTVEEEVADESVETVEGDATKAQSGDVVRRSDTVDDDRAVDTAGNDMKPEDNGE " 992 UPDATE SHV-66 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 999 UPDATE LEN-2 penam; LEN beta-lactamase; antibiotic inactivation; penem; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATGTTCGCCTGTGTGTTATCTCCCTGTTAGCCACCCTGCCACTGGCGGTAGACGCCGGTCCACAGCCGCTTGAGCAGATTAAACAAAGCGAAAGCCAGCTGTCGGGCCGCGTGGGGATGGTGGAAATGGATCTGGCCAGCGGCCGCACGCTGGCCGCCTGGCGCGCCGATGAACGCTTTCCCATGGTGAGCACCTTTAAAGTGCTGCTGTGCGGCGCGGTGCTGGCGCGGGTGGATGCAGGGGTCGAACAACTGGATCGGCGGATCCACTACCGCCAGCAGGATCTGGTGGACTACTCCCCGGTCAGCGAAAAACACCTTGTCGACGGGATGACGATCGGCGAACTCTGCGCCGCCGCCATCACCCTGAGCGATAACAGCGCTGGCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCGGGATTAACTGCCTTTTTGCGCCAGATCGGTGACAACGTCACCCGTCTTGACCGCTGGGAAACGGCACTGAATGAGGCGCTTCCCGGCGACGCGCGCGACACCACCACCCCGGCCAGCATGGCCGCCACGCTGCGCAAACTACTGACCGCGCAGCATCTGAGCGCCCGTTCGCAACAGCAACTCCTGCAGTGGATGGTGGACGATCGGGTTGCCGGCCCGCTGATCCGCGCCGTGCTGCCGCCGGGCTGGTTTATCGCCGACAAAACCGGGGCTGGCGAACGGGGTGCGCGCGGCATTGTCGCCCTGCTCGGCCCGGACGGCAAACCGGAGCGCATTGTGGTGATCTATCTGCGGGATACCCCGGCGAGTATGGCCGAGCGTAATCAACATATCGCCGGGATCGGCGCAGCGCTGATCGAGCACTGGCAACGCTAA " 998 UPDATE SHV-134 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 120 UPDATE aadA4 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGGTGAATTCTTTCCTGCACAAATTTCCGAGCAGCTATCCCACGCTCGCGGGGTGATCGAGCGCCATCTAGCTGCAACGCTGGACACAATCCACCTGTTCGGATCTGCGCTCGATGGAGGGTTGAAGCCGGACAGCAACATCGACTTGCTCGTGACCGTCAGCGCCGCACCTAACGATTCGCTCCGGCAGGCACTAATGCTCGACCTGCTAAAAGTCTCATCACCGCCAGGCAATGGCGGACCATGGCGACCGCTGGAGGTGACTGTTGTCGCTCGAAGCGAAGTAGTGCCCTGGCGCTATCCGGCGCGACGTGGGCTTCAGTTCGGTGAGTGGCTCCGCCACGACATCCTCTCCGGAACGTTCGAGCCTGCCGTTCTGGATCACGATCTTGCGATTTTGCTGACCAAGGCGAGGCAACACAGCCTTGCACTGCTAGGTCCATCCGCAGTCACGTTCTTCGAGCCGGTGCCGAACGAGCATTTTTCCAAGGCGCTTTTCGACACGATTGCCCAGTGGAATTCAGAGTCGGATTGGAAGGGTGACGAGCGGAACGTCGTTCTTGCTCTTGCTCGCATTTGGTACAGTGCTTCAACGGGTCTCATTGCTCCTAAGGACGTTGCTGCCGCATGGGTATCGGAGCGTTTGCCTGCCGAGCATCGGCCCATCATTTGCAAGGCACGCGCGGCGTACCTGGGTAGCGAGGACGACGACCTAGCAATGCGCGTCGAAGAGACGGCTGCGTTCGTTCGATATGCCAAAGCAACGATTGAGAGAATCTTGCGTTGA " 121 UPDATE mdtF penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; norfloxacin; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; oxacillin; cloxacillin; fluoroquinolone antibiotic; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCTAACTATTTTATTGATCGCCCGGTTTTTGCCTGGGTACTTGCCATTATTATGATGCTTGCAGGTGGTCTGGCGATCATGAACTTACCGGTTGCGCAGTATCCGCAGATTGCGCCACCGACCATTACCGTCAGCGCTACCTATCCAGGTGCCGATGCGCAAACGGTAGAAGACTCGGTCACTCAGGTGATTGAGCAAAATATGAATGGGCTTGATGGCCTGATGTACATGTCTTCAACCAGTGATGCGGCGGGCAATGCCTCTATCACTCTGACCTTCGAGACTGGGACATCTCCTGATATCGCACAGGTTCAAGTGCAAAATAAACTGCAACTCGCTATGCCTTCATTACCTGAAGCAGTGCAGCAGCAGGGGATTAGCGTCGATAAGTCGAGCAGTAATATCCTGATGGTAGCGGCGTTTATTTCTGATAACGGCAGCCTCAACCAGTACGATATCGCGGACTATGTAGCGTCTAATATCAAAGACCCGCTAAGCCGTACCGCGGGCGTTGGTAGCGTACAACTCTTTGGTTCCGAGTATGCCATGCGTATCTGGCTGGACCCGCAAAAACTCAATAAATATAACCTGGTACCTTCCGATGTTATTTCCCAGATTAAGGTGCAAAACAACCAGATTTCCGGTGGTCAACTGGGTGGCATGCCACAGGCGGCAGACCAGCAGCTAAACGCCTCGATCATTGTGCAGACGCGTCTGCAAACGCCGGAAGAATTTGGCAAAATCCTGTTGAAAGTTCAGCAAGATGGTTCGCAAGTGCTGCTGCGTGATGTCGCTCGCGTCGAACTTGGGGCGGAAGATTATTCCACCGTGGCACGCTATAACGGCAAACCTGCTGCCGGGATCGCCATCAAACTGGCTGCCGGAGCAAACGCCCTGGATACCTCGCGGGCAGTCAAAGAGGAACTGAACCGCTTATCAGCCTATTTCCCGGCAAGTCTGAAGACGGTTTATCCTTACGACACCACGCCGTTTATCGAAATTTCTATTCAGGAAGTTTTCAAAACACTGGTTGAGGCTATCATCCTAGTCTTCCTGGTCATGTATCTGTTTTTGCAGAATTTCCGTGCCACAATCATCCCGACGATTGCCGTACCGGTGGTTATTCTCGGGACGTTTGCGATCTTGTCGGCGGTCGGTTTCACCATCAACACGTTGACTATGTTCGGGATGGTGCTGGCGATAGGGTTACTGGTGGATGACGCCATCGTGGTGGTGGAGAACGTCGAGCGTGTCATTGCGGAAGATAAGCTACCGCCGAAGGAAGCGACGCATAAATCGATGGGGCAGATCCAACGTGCGCTGGTCGGTATTGCCGTTGTTCTTTCCGCAGTGTTTATGCCGATGGCCTTTATGAGCGGTGCAACCGGGGAGATCTACCGCCAGTTCTCCATCACGCTGATCTCCTCCATGCTGCTTTCAGTATTTGTGGCAATGAGCCTGACCCCTGCCCTGTGCGCCACCATTCTGAAAGCCGCGCCGGAAGGCGGTCACAAACCTAACGCCCTGTTCGCACGCTTCAACACGCTGTTTGAAAAATCAACTCAACACTATACCGATAGCACCCGCTCGCTGTTGCGTTGTACCGGTCGCTACATGGTGGTCTACCTGCTGATTTGCGCCGGGATGGCGGTGCTGTTCCTGCGCACGCCGACCTCTTTCTTACCAGAAGAGGATCAGGGGGTATTTATGACCACCGCGCAGTTACCTTCCGGTGCCACCATGGTTAACACCACGAAAGTGCTGCAACAGGTGACGGATTATTATCTGACTAAAGAGAAAGATAATGTCCAGTCGGTGTTTACCGTTGGCGGCTTTGGCTTCAGCGGTCAGGGGCAAAACAACGGCCTGGCGTTTATCAGTCTCAAGCCGTGGTCTGAACGTGTCGGTGAGGAAAACTCGGTTACCGCGATCATTCAGCGGGCAATGATTGCGTTAAGCAGTATCAATAAAGCCGTCGTCTTCCCGTTCAACTTACCCGCGGTGGCTGAACTGGGTACCGCGTCAGGTTTTGATATGGAACTGCTGGACAACGGTAACCTGGGGCACGAAAAACTAACCCAGGCGCGAAACGAGCTGTTATCACTGGCAGCGCAATCACCGAATCAGGTCACCGGGGTACGCCCGAACGGCCTGGAAGATACGCCGATGTTCAAAGTGAACGTCAACGCTGCGAAAGCTGAAGCGATGGGCGTGGCGCTGTCTGATATCAACCAGACAATTTCCACCGCCTTCGGCAGCAGCTACGTGAACGACTTCCTCAACCAGGGGCGGGTGAAAAAAGTGTATGTCCAGGCAGGCACGCCGTTCCGTATGTTGCCGGATAACATCAACCAATGGTATGTACGCAACGCCTCTGGCACGATGGCACCGCTTTCTGCCTACTCGTCTACCGAATGGACCTATGGTTCACCGCGACTGGAACGCTACAACGGCATCCCGTCAATGGAGATTTTAGGTGAAGCGGCGGCCGGGAAAAGTACCGGTGACGCCATGAAATTTATGGCAGACCTGGTCGCTAAACTTCCGGCAGGCGTCGGCTACTCATGGACCGGACTATCGTATCAGGAAGCGTTATCCTCAAATCAGGCTCCTGCGCTGTATGCGATTTCACTGGTCGTGGTGTTCCTCGCCCTCGCCGCACTCTATGAGAGCTGGTCAATTCCGTTCTCGGTGATGTTGGTTGTTCCGTTAGGCGTCGTTGGCGCATTACTGGCCACCGATCTGCGCGGCTTAAGTAATGACGTCTACTTCCAGGTTGGTTTGCTGACCACCATCGGGCTTTCCGCCAAAAACGCCATCCTGATTGTCGAATTTGCCGTTGAGATGATGCAGAAAGAAGGGAAAACGCCGATAGAGGCAATCATCGAAGCGGCGCGGATGCGTTTACGCCCAATCCTGATGACCTCTCTGGCCTTTATTCTCGGCGTGCTGCCGCTGGTTATCAGTCATGGTGCCGGTTCTGGCGCGCAAAACGCGGTAGGTACCGGCGTGATGGGCGGGATGTTTGCCGCAACAGTGCTGGCAATTTACTTCGTTCCGGTCTTTTTCGTTGTAGTGGAACATCTCTTTGCCCGCTTTAAAAAAGCGTAA " 122 UPDATE VIM-34 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 123 UPDATE SHV-64 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 124 UPDATE IND-7 carbapenem; antibiotic inactivation; IND beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 125 UPDATE SHV-182 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 126 UPDATE TEM-183 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGCTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 127 UPDATE clbB dalfopristin; thiamphenicol; oxazolidinone antibiotic; pristinamycin IIA; pleuromutilin antibiotic; tiamulin; madumycin II; griseoviridin; linezolid; lincomycin; macrolide antibiotic; streptogramin antibiotic; antibiotic target alteration; lincosamide antibiotic; azidamfenicol; clindamycin; phenicol antibiotic; Cfr 23S ribosomal RNA methyltransferase; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 4759207 UPDATED strand with - UPDATED accession with NC_012491.1 UPDATED fmin with 4758175 UPDATED sequence with ATGAAACTAACCTCGAAATATGAAACGATTCGGCGAATCTTGTCCGAATGCAAGCAGCCTGAGTATCGGTATGCTCAGATTATGGACGCCATTTTCAAGCAAAACATCGGCGAATACGAACGGATGACCATCCTACCCAAATTTTTGCGCGACGAGTTGAATCGGATACTTGGACCGAACGTTTGCAGTATCGCTCCGGTAAAGGAGCTCACGTCGAAACAGGTTAGCAAGGTGCTGTTTGCGATTCCGGGCGACGAACAGGTCGAGGCCGTACGACTTACTTATGAACGGGGGTGGAAATCGTATTGTATTTCCACACAGTGCGGCTGCGGATTCAGGTGCAAGTTTTGTGCTACCGGTACCATTGGTCTGAAACGAAATCTGACCGCCGACGAAATTACCGACCAATTGCTGTACTTTCGTTTGAACGGCCACTCTTTGGACAGCATCTCATTCATGGGCATGGGAGAGGCGCTCGCCAACCCGCATATTTTTGAGGCCATGACGATATTGACCGACCCGTATCTCTTCGGTTTAGGACATCGACGAATTACGATTTCCACGATCGGCCTGTTGCCGGGGATTGACAAGCTGACTCGGGAGTTCCCCCAGGTCAATCTAACCTTCTCGCTGCATTCACCGTTCGACGATCAGCGAAGCGAGCTGATGCCGATCAACGACCGATTTCCAGTCCGTGACGTACTGATAGCATTGGATCGTCACATCAGGGAAACAGGGAGAAAGGTATATATTGCGTATATTCTTCTTCGTGGAGTAAACGACTCGACAGCGCATGCGGAAGCAGTTGCCGAGTTGCTAAGGGGAAGGGGAGCTTGGGAACATCTCTACCACGTTAACCTGATTCCATTCAATTCGACCGAAGTTACGCCAGACAGCTATCGGCAATCCGATCCTTCGCGGATTAAAGCGTTTGTTCGGATCTTGAAGTCAAGGGGGATAAGCGTCACGGTCCGAACTCAATTCGGATCGGACATAAACGCGGCATGCGGCCAGTTATACCGCTCTGAATAA UPDATED NCBI_taxonomy_name with Brevibacillus brevis UPDATED NCBI_taxonomy_id with 1393 UPDATED NCBI_taxonomy_cvterm_id with 41133 UPDATED accession with WP_015892743.1 UPDATED sequence with MKLTSKYETIRRILSECKQPEYRYAQIMDAIFKQNIGEYERMTILPKFLRDELNRILGPNVCSIAPVKELTSKQVSKVLFAIPGDEQVEAVRLTYERGWKSYCISTQCGCGFRCKFCATGTIGLKRNLTADEITDQLLYFRLNGHSLDSISFMGMGEALANPHIFEAMTILTDPYLFGLGHRRITISTIGLLPGIDKLTREFPQVNLTFSLHSPFDDQRSELMPINDRFPVRDVLIALDRHIRETGRKVYIAYILLRGVNDSTAHAEAVAELLRGRGAWEHLYHVNLIPFNSTEVTPDSYRQSDPSRIKAFVRILKSRGISVTVRTQFGSDINAACGQLYRSE " 128 UPDATE srmB ABC-F ATP-binding cassette ribosomal protection protein; antibiotic target protection; macrolide antibiotic; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 36298 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. " 129 UPDATE FosX fosfomycin; fosfomycin thiol transferase; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1295 UPDATE catII antibiotic inactivation; thiamphenicol; chloramphenicol acetyltransferase (CAT); azidamfenicol; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATTTTACCAGAATTGATCTGAACACCTGGAACCGCAGAGAACATTTTGCTCTTTATCGTCAGCAGATAAAATGCGGATTCAGCCTGACCACAAAACTCGATATTACAGCTTTTCGTACCGCACTGGCGGAAACGGATTATAAATTTTATCCGGTGATGATTTATCTGATCTCCCGGGTTGTTAATCAGTTTCCGGAGTTCCGGATGGCAATGAAAGATAATGCACTGATTTACTGGGATCAGACCGATCCTGTATTTACTGTTTTTCATAAAGAGACTGAAACATTTTCTGCGCTCTTCTGCCGTTATTGTCCGGATATCAGTGAATTTATGGCGGGCTATAATGCGGTGATGGCAGAATATCAGCATAATACTGCATTGTTCCCGCAGGGAGCGTTACCAGAGAACCACCTGAATATATCATCATTACCCTGGGTGAGTTTTGACGGATTTAACCTGAATATCACCGGTAATGATGATTATTTTGCTCCGGTGTTTACTATGGCGAAATTTCAGCAGGAAGATAACCGCGTATTATTACCTGTTTCTGTACAGGTACATCATGCCGTTTGTGATGGCTTTCATGCAGCCAGGTTTATTAATACACTTCAGATGATGTGTGATAACATACTGAAATAA " 2798 UPDATE AxyZ antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; cefepime; antibiotic target alteration; fluoroquinolone antibiotic; aminoglycoside antibiotic; erythromycin; model_description; ARO_category "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. DELETED 36189 " 2799 UPDATE AxyY antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; cefepime; fluoroquinolone antibiotic; aminoglycoside antibiotic; erythromycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 27124 UPDATED strand with - UPDATED accession with AFRQ01000061.1 UPDATED fmin with 23986 UPDATED sequence with ATGGCGCGTTTCTTTATCGATCGCCCCGTTTTCGCGTGGGTGATCTCGCTGCTCATCGCGCTGGTCGGCCTGTTGTCGATCCGCGCGCTGCCGGTGGCGCAGTATCCGGACATCGCTCCGCCCGTCGTCAACATCGGCGCCAGCTATCCCGGCGCCTCGGCCAAGGTGGTCGAGGAAGCCGTCACCGCCATCATCGAACGCGAGATGAACGGCGCCCCGGGCCTGATGTACACCTCGTCCAGCAGCGATTCGACCGGCTGGGCCAGCATCAACCTGACCTTCAAGCAGGGCACCAACCCCGACATCGCGGCGGTGGAAGTGCAGAACCGCCTGAAGGCGGTCGAGCCTCGCCTGCCCGAATCGGTGCGGCGCGATGGCGTGCGCGTGGAAAAGGCGGCCGACAACATCCAGCTGGTGGTGTCGTTGAAGTCGGACGGCAGCCTGGACGACATGCAACTGGGCGAGCTGGCCGCCTCCAATGTGCTGCAGGCGCTGCGGCGGGTCGAAGGCGTGGGCAAGGTGCAGTCGTTCGGCGCGGAAGCGGCGATGCGCATCTGGCCGGACCCGGCCAAGCTCACCGCCCTGTCGCTGACGCCGGGCGACATCGTCTCGGCGCTGCGCAGCCACAACGCGCGCGTCACCATCGGCGAACTGGGCAACCAGGCCGTGCCCAAGGACGCGCCGCTGAACGCCAGCATCGTGGCGGGCGAATCGCTGCACACGCCGGAACAGTTCGCCAACATCCCGCTGCGGGCGCTGCCGGACGGCGCCACGCTGCGCCTGAAGGACGTGGCGCGGGTGGAGCTGGGCGGCACCGACTACATGTACCTGTCGCGCGTCAACGGCCTGACCGGCACCGGCCTGGGCATCAAGCTGGCGCCCGGCTCCAACGCCGTCGAAACCACCCGCCGCATCCGCGAGACCATGCGCGAGCTGGCGCAATACTTCCCGCCGGGCGTGACCTGGGACATTCCGTACGAGACCTCCACCTTCGTCGAGATCTCGATCAAGAAGGTCCTGATGACGCTGCTGGAGGCGGTGGCGCTGGTGTTCTGCGTGATGTACCTGTTCATGCAGAACCTGCGCGCCACGCTGATCCCGACCCTGGTGGTGCCGGTGGCGCTGCTGGGCACGCTGGGGGTGATGCTGGGGCTGGGCTATTCGATCAACGTGCTGACGATGTTCGGCATGGTGCTGGCCATCGGCATCCTGGTGGACGACGCCATCGTGGTGGTCGAGAACGTCGAGCGCATCATGGCCGAGGAAGGCCTGTCGCCGCATGACGCCACGGTCAAGGCCATGGGCCAGATCAGCGGCGCCATCGTCGGCATCACCGTGGTGCTGGTGTCGGTGTTCGTGCCGATGGCGTTCTTCGACGGCGCGGTGGGCAACATCTACCGCCAGTTCGCCGTGACGCTGGCGGTGTCGATCGCCTTCTCGGCCTTCCTGGCGCTGTCGCTGACGCCGGCGCTGTGCGCCAGCCTGCTCAAACCCGTCCCGGCCGGCCACCACGAGAAGCGCGGCTTCTTCGGCTGGTTCAACCGCGCCTTCGCGCGCCTGACCACGCGCTATACGGCGCGGGTGGCCGGCGTGCTGGCGCGGCCGGTACGCTTCGGCCTGGCCTATGCGCTGGTGATCGGCGTGGCGGCGTTGCTGTTCGCGCGGCTGCCATCGTCGTTCCTGCCGGACGAGGACCAGGGCAGCTTCATGGCCATGGTGATCCTGCCGCAGGGCTCGCCGCAGGCCGAGACCATGGCGGTGGTCAAGGACGTCGAACGCTACATGATGGAGCACGAGCCGGTGCAGTACGTGTATTCGGTCAACGGCTTCAGCCAGTACGGCAGCGGCCCGAACTCCGCCATGTTCTTCGTCACGCTGAAGGACTGGAAGGAACGCCGCGATGCCTCGCAACACGTGGACGCGGTGGTCAAGCGCATCAACAAGGCGTTCGCGGATCGCAAGAACCTGATGGTGTTCGCGCTGAACTCGCCGCCGCTGCCTGACCTGGGCTCGACCTCGGGCTTCGACTTCCGGCTGCAGGATCGCGGCGGCCTCGGCTACGAAGCCCTGACGCAGGCGCGCCAGAAGCTGCTGGCCAAGGCGGCCGAGCATCCCGCGCTGACGGACGTGGTGTTCGCCGGCCAGGAAGAGGCGCCGCAGCTGCAACTGCGCGTCGACCGCGACAAGGCGCAGGCCATGGGCGTGCCGATCGACGAGATCAACACCGCGCTGGCTGTGATGTACGGCTCGGACTACATCGGCGACTTCATGCTCAACGGCCAGGTTCGGCGCGTGATGGTGCAGGCCGACGGCAAGCGCCGCGTGGACGTGGACGACATCTCGCGCCTGCACGTGCGCAACCTGCAGGGCCAGATGGTGCCGCTGTCGGCGTTCGCCACGCTGACGTGGTCGATGGGGCCGCCGCAGCTGAACCGCTACAACGGCTTCCCGTCGTTCACCATCAACGGCTCGGCGGCGCGCGGCCACAGCAGCGGCGAGGCCATGCGCGCCATGGAGACGCTGGCGGCCGAGCTGCCGCGCGGCATCGGCTTCGACTGGTCGGGCCAATCGTACGAAGAGCGGCTGTCCGGCAACCAGGCGCCGGTGCTGTTCGCGCTGTCGGTGCTGATCGTGTTCCTGGCGCTGGCGGCGCTGTATGAAAGCTGGTCGATTCCGCTGGCGGTGATCCTGGTGGTGCCGCTGGGCGTGATCGGCGCGCTGCTGGGGGTGACCGTGCGCGGCATGCCCAACGACATCTACTTCAAGGTCGGCCTGATCGCCACCATCGGCCTGTCCGCCAAGAACGCGATCCTGATCGTGGAAGTGGCCAAGGACCTGGTGCGCGACGGCCAGGGCATCCTGTCCGCCACGCTGGAAGCGGCGCGGCTGCGGCTGCGGCCGATCGTGATGACCTCGCTGGCCTTTGGCGTGGGCGTGCTGCCGCTGGCGCTGGCCACTGGCGCCGCCTCGGGCGCGCAGGCCGCCATCGGCACCGGCGTGCTGGGCGGGATCATCACGGCGACCGTGCTGGCGGTGTTCCTGGTGCCGCTGTTCTTTCTCATCGTGGGACGCATGGTCGGCATGCGCGCCCGCCCCGCGCGCCCCGACGGCCGCGAACCGCTGGAGACGACGCCATGA UPDATED NCBI_taxonomy_name with Achromobacter insuavis AXX-A UPDATED NCBI_taxonomy_id with 1003200 UPDATED NCBI_taxonomy_cvterm_id with 41271 UPDATED accession with EGP45231.1 UPDATED sequence with MARFFIDRPVFAWVISLLIALVGLLSIRALPVAQYPDIAPPVVNIGASYPGASAKVVEEAVTAIIEREMNGAPGLMYTSSSSDSTGWASINLTFKQGTNPDIAAVEVQNRLKAVEPRLPESVRRDGVRVEKAADNIQLVVSLKSDGSLDDMQLGELAASNVLQALRRVEGVGKVQSFGAEAAMRIWPDPAKLTALSLTPGDIVSALRSHNARVTIGELGNQAVPKDAPLNASIVAGESLHTPEQFANIPLRALPDGATLRLKDVARVELGGTDYMYLSRVNGLTGTGLGIKLAPGSNAVETTRRIRETMRELAQYFPPGVTWDIPYETSTFVEISIKKVLMTLLEAVALVFCVMYLFMQNLRATLIPTLVVPVALLGTLGVMLGLGYSINVLTMFGMVLAIGILVDDAIVVVENVERIMAEEGLSPHDATVKAMGQISGAIVGITVVLVSVFVPMAFFDGAVGNIYRQFAVTLAVSIAFSAFLALSLTPALCASLLKPVPAGHHEKRGFFGWFNRAFARLTTRYTARVAGVLARPVRFGLAYALVIGVAALLFARLPSSFLPDEDQGSFMAMVILPQGSPQAETMAVVKDVERYMMEHEPVQYVYSVNGFSQYGSGPNSAMFFVTLKDWKERRDASQHVDAVVKRINKAFADRKNLMVFALNSPPLPDLGSTSGFDFRLQDRGGLGYEALTQARQKLLAKAAEHPALTDVVFAGQEEAPQLQLRVDRDKAQAMGVPIDEINTALAVMYGSDYIGDFMLNGQVRRVMVQADGKRRVDVDDISRLHVRNLQGQMVPLSAFATLTWSMGPPQLNRYNGFPSFTINGSAARGHSSGEAMRAMETLAAELPRGIGFDWSGQSYEERLSGNQAPVLFALSVLIVFLALAALYESWSIPLAVILVVPLGVIGALLGVTVRGMPNDIYFKVGLIATIGLSAKNAILIVEVAKDLVRDGQGILSATLEAARLRLRPIVMTSLAFGVGVLPLALATGAASGAQAAIGTGVLGGIITATVLAVFLVPLFFLIVGRMVGMRARPARPDGREPLETTP DELETED 36189 " 2792 UPDATE Moraxella catarrhalis 23S rRNA with mutation conferring resistance to macrolide antibiotics antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2793 UPDATE Chlamydomonas reinhardtii 23S rRNA with mutation conferring resistance to erythromycin antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; chloramphenicol; phenicol antibiotic; erythromycin; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2062 UPDATE mphC antibiotic inactivation; macrolide phosphotransferase (MPH); oleandomycin; dirithromycin; macrolide antibiotic; telithromycin; azithromycin; roxithromycin; spiramycin; clarithromycin; tylosin; erythromycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2791 UPDATE Streptococcus mitis CdsA with mutation conferring daptomycin resistance peptide antibiotic; antibiotic target alteration; daptomycin resistant CdsA; daptomycin; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2796 UPDATE OprZ antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; cefepime; fluoroquinolone antibiotic; aminoglycoside antibiotic; erythromycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 23990 UPDATED strand with - UPDATED accession with AFRQ01000061.1 UPDATED fmin with 22598 UPDATED sequence with ATGAAACCCGTGGCAATGACCCTGCTGGCGCTGGCATTGTCCGGCTGCTCGCTGGCGCCCACCCATGAGCGCCCCGCGGCGCCGGTGCCGGCGCAGTACGACACGCCGGCGCAGCCCGGCCAGGCCGCCGCGCCGCAGGACTGGCGCGCCTATTTCAACGATCCGGCGCTGCAGGCCTGGATCGCGGCCGCGCTGGCCAACAACCGCGACCTGCGCGTGGCGGCGCTGCGCATCGAGGAAGCGCGCGCGCTGTACGGCGTGCAGCAATCCGAACGCCTGCCGGCCATCGACGCCAGCGGCGAATTCAGCCGCGGCCGCGCGACCGAGCCGGGCCAGCCGCGCACGCCGGTGTCCAACCGCTACCGCGCGGCCGTCGGCATCACCGCGTTCGAGCTGGACTTCTTCGGCCGGGTGCGGAGCCTGTCGGACGCCGCGCTGGCGCGCTACCTGGCCAGCGAGGAAGCGCACCGCGCCGCCACGCTGGCGCTGGTGGCGGAGACGGCGACGGCCTACTTCAACCAGCGTTCGCTGGCCGAGCAACTGCGCCTGACCGACGACACGCTGGCGCTGCGCGAGACCACGCTCAAGCTGACCCAGCGCCGCTACGACGCCGGGCTGGAAACCGCCATCGGCCTGCGCACCGCGCAGATGCTGGTGGAAAGCTCGCGCGCCACGCGCGCCGAGCTGACCCGCGAGGCCAGCCTGGCGCGGCACGCGCTGGGCCTGCTGGCCGGCGATTTCGCGCTGCCGCTCGGCGTCGACCCTACGCCGCTGGAAAGCCAGAGCCTGACGCCGCTGGCGGCGGGGCTGCCGTCCGAACTGCTGACGCGCCGCCCCGACCTGCGCCAGGCAGAGCAGGCGCTGCGCGCGGCCAACGCCGACATCGGCGCGGCGCGCGCGGCGTTCTTCCCGTCGGTGCAGCTGACCACGGACATCGGCACCACCGCCGACCGCTTCTCGGATCTGTTCAGCGGCGGCACCGGCGGCTGGAGCTTCGCGCCGCGCCTGACGCTGCCGATCTTCAACGCCGGCCGCAACCGCGCCAACCTGTCGCTGGCCGAGACCCGCAAGCACATCGCGGTGGCCCAGTACGAAGGCAGCATCCAGGCCGCGTTCCGCGACGTGGCCGACGCGCTGTCGGCGCGCGACGCGCTGCGCGACCAGATCGAGGCCCAGCGCAAGGTGCGCGACGCCGACCGCGAACGCCAGCGGCTGGCCGAGCGGCGTTATGCGCGCGGGGTGGCGAACTACCTGGAGATGCTGGAGGCCCAGCGCAGCCTGTTCGAGTCGGAACAGGAATTCATCCGGCTGCAGCAGCGCCGGCTGGTCAACGCGGTGGATCTGTACAAGGCGCTGGGCGGCTGGGACGACGGCTCATCGCCGGCGTCCTGA UPDATED NCBI_taxonomy_name with Achromobacter insuavis AXX-A UPDATED NCBI_taxonomy_id with 1003200 UPDATED NCBI_taxonomy_cvterm_id with 41271 UPDATED accession with EGP45230 UPDATED sequence with MKPVAMTLLALALSGCSLAPTHERPAAPVPAQYDTPAQPGQAAAPQDWRAYFNDPALQAWIAAALANNRDLRVAALRIEEARALYGVQQSERLPAIDASGEFSRGRATEPGQPRTPVSNRYRAAVGITAFELDFFGRVRSLSDAALARYLASEEAHRAATLALVAETATAYFNQRSLAEQLRLTDDTLALRETTLKLTQRRYDAGLETAIGLRTAQMLVESSRATRAELTREASLARHALGLLAGDFALPLGVDPTPLESQSLTPLAAGLPSELLTRRPDLRQAEQALRAANADIGAARAAFFPSVQLTTDIGTTADRFSDLFSGGTGGWSFAPRLTLPIFNAGRNRANLSLAETRKHIAVAQYEGSIQAAFRDVADALSARDALRDQIEAQRKVRDADRERQRLAERRYARGVANYLEMLEAQRSLFESEQEFIRLQQRRLVNAVDLYKALGGWDDGSSPAS DELETED 36189 " 2797 UPDATE AxyX antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; cefepime; fluoroquinolone antibiotic; aminoglycoside antibiotic; erythromycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 28306 UPDATED strand with - UPDATED accession with AFRQ01000061.1 UPDATED fmin with 27130 UPDATED sequence with ATGACGCACCGAGTTCCCTTCAGAACGCTCGCATTCGCATCCGTACTGGTTCTCGTTTCCGCATGCTCGAAGCAGGAAGCCCCCGAAGCCGCCAAGGCCCCCGCCGAAGTCGGCGTCATCGTGGCCAGGGCCACGCCCACCGCCGTCGCCAGCGAGCTGCCCGGCCGGCTGGAGCCCTATCGCGAGGCCGAGGTCCGCGCCCGCGTGGCCGGCATCGTCACCCGCCGCCTGTATGAAGAAGGCCAGGAAGTGACGCGCGGCACGCCGCTGTTCCAGATCGATCCGGCGCCGCTGCAGGCGGCCTACGATTCCGAGGCGGCCGCGTTGGCGCGTGCCCAGGCCAACCTGTCGGCCGCCGCCGACAAGCTGCGCCGCTACGCCGACCTGGTGTCGGACCGCGCCATCAGCGAACGCGACCACGCCGAGAGCGTGGCCCAGGAACGCCAGGCCCGCGCCGAAGTGGCGTTGGCCAAGGCCAACCTGCAGAGCGCCAGGCTGCGGCTGGAATACGCCCGCGTCACCTCGCCGATCGACGGCCGCGCGCGCCGCGCGCTGGTCACCGAGGGCGCGCTGGTGGGCGAAGGCCAGGCCACGCCGCTGACGGTGGTGCAGCAACTCGACCCGATCTACGTCAACTTCTCGCAACCCGCGGCCGAGGTCATGCAGTTGCAGAAGCAGATCCGCGCCGGCGCCCTGCAAGGCGTCGCGCCCGACAAGATGCGGGTGCGCCTGCTGCTGCCGGACGGCTCCGAGTATGGCCAGGGCGGCACGCTGTCGTTCGCCGACCTGGCGGTCGACCCCGGCACCGACAACGTGACCATGCGCGCGCTGTTCGCCAACCCGGGCCGCGAACTGTTGCCGGGCATGTACGTGCGGGTGCGGCTGGAGCAGGCGGTCAACCGCGACACCTTCCTGGTGCCGCGCAACGCCCTGCTGCGCAACGCCGACGGCGCGCACGTGCTGGTGGCCGGCGACGACGGCGAGCTGCGCAGCGTGGCGGTGACCGCGCACCGGCTGCTGGGCCCGAACTGGGTCGTCACCGAGGGCCTGGCGGGCGGCGAACGCGTGGTGGTGGAAAACGCCGCGCAGCTGGCCCCCGGCCAGAAAATCAAACCGGTCGAGCGGACCGCGCCGAGCGCGCCCGTGGCGACCGCGGGAAATAACGAAAAAAGGTAA UPDATED NCBI_taxonomy_name with Achromobacter insuavis AXX-A UPDATED NCBI_taxonomy_id with 1003200 UPDATED NCBI_taxonomy_cvterm_id with 41271 UPDATED accession with EGP45232.2 UPDATED sequence with MTHRVPFRTLAFASVLVLVSACSKQEAPEAAKAPAEVGVIVARATPTAVASELPGRLEPYREAEVRARVAGIVTRRLYEEGQEVTRGTPLFQIDPAPLQAAYDSEAAALARAQANLSAAADKLRRYADLVSDRAISERDHAESVAQERQARAEVALAKANLQSARLRLEYARVTSPIDGRARRALVTEGALVGEGQATPLTVVQQLDPIYVNFSQPAAEVMQLQKQIRAGALQGVAPDKMRVRLLLPDGSEYGQGGTLSFADLAVDPGTDNVTMRALFANPGRELLPGMYVRVRLEQAVNRDTFLVPRNALLRNADGAHVLVAGDDGELRSVAVTAHRLLGPNWVVTEGLAGGERVVVENAAQLAPGQKIKPVERTAPSAPVATAGNNEKR DELETED 36189 " 2794 UPDATE Helicobacter pylori 23S rRNA with mutation conferring resistance to clarithromycin antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2795 UPDATE MCR-3 peptide antibiotic; MCR phosphoethanolamine transferase; antibiotic target alteration; colistin B; colistin A; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2666 UPDATE Escherichia coli fabI mutations conferring resistance to isoniazid and triclosan isoniazid; antibiotic target alteration; triclosan; antibiotic resistant fabI; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 1351039 UPDATED strand with - UPDATED accession with NC_000913.3 UPDATED fmin with 1350250 UPDATED sequence with ATGGGTTTTCTTTCCGGTAAGCGCATTCTGGTAACCGGTGTTGCCAGCAAACTATCCATCGCCTACGGTATCGCTCAGGCGATGCACCGCGAAGGAGCTGAACTGGCATTCACCTACCAGAACGACAAACTGAAAGGCCGCGTAGAAGAATTTGCCGCTCAATTGGGTTCTGACATCGTTCTGCAGTGCGATGTTGCAGAAGATGCCAGCATCGACACCATGTTCGCTGAACTGGGGAAAGTTTGGCCGAAATTTGACGGTTTCGTACACTCTATTGGTTTTGCACCTGGCGATCAGCTGGATGGTGACTATGTTAACGCCGTTACCCGTGAAGGCTTCAAAATTGCCCACGACATCAGCTCCTACAGCTTCGTTGCAATGGCAAAAGCTTGCCGCTCCATGCTGAATCCGGGTTCTGCCCTGCTGACCCTTTCCTACCTTGGCGCTGAGCGCGCTATCCCGAACTACAACGTTATGGGTCTGGCAAAAGCGTCTCTGGAAGCGAACGTGCGCTATATGGCGAACGCGATGGGTCCGGAAGGTGTGCGTGTTAACGCCATCTCTGCTGGTCCGATCCGTACTCTGGCGGCCTCCGGTATCAAAGACTTCCGCAAAATGCTGGCTCATTGCGAAGCCGTTACCCCGATTCGCCGTACCGTTACTATTGAAGATGTGGGTAACTCTGCGGCATTCCTGTGCTCCGATCTCTCTGCCGGTATCTCCGGTGAAGTGGTCCACGTTGACGGCGGTTTCAGCATTGCTGCAATGAACGAACTCGAACTGAAATAA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. MG1655 UPDATED NCBI_taxonomy_id with 511145 UPDATED NCBI_taxonomy_cvterm_id with 36849 UPDATED accession with NP_415804.1 UPDATED sequence with MGFLSGKRILVTGVASKLSIAYGIAQAMHREGAELAFTYQNDKLKGRVEEFAAQLGSDIVLQCDVAEDASIDTMFAELGKVWPKFDGFVHSIGFAPGDQLDGDYVNAVTREGFKIAHDISSYSFVAMAKACRSMLNPGSALLTLSYLGAERAIPNYNVMGLAKASLEANVRYMANAMGPEGVRVNAISAGPIRTLAASGIKDFRKMLAHCEAVTPIRRTVTIEDVGNSAAFLCSDLSAGISGEVVHVDGGFSIAAMNELELK " 2660 UPDATE Enterobacter cloacae acrA penam; antibiotic efflux; triclosan; rifampin; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; cephalosporin; cefalotin; tigecycline; glycylcycline; ampicillin; fluoroquinolone antibiotic; rifamycin antibiotic; phenicol antibiotic; tetracycline; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2661 UPDATE Escherichia coli acrA penam; antibiotic efflux; triclosan; rifampin; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; cephalosporin; cefalotin; tigecycline; glycylcycline; ampicillin; fluoroquinolone antibiotic; rifamycin antibiotic; phenicol antibiotic; tetracycline; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 485619 UPDATED strand with - UPDATED accession with NC_000913.3 UPDATED fmin with 484425 UPDATED sequence with ATGAACAAAAACAGAGGGTTTACGCCTCTGGCGGTCGTTCTGATGCTCTCAGGCAGCTTAGCCCTAACAGGATGTGACGACAAACAGGCCCAACAAGGTGGCCAGCAGATGCCCGCCGTTGGCGTAGTAACAGTCAAAACTGAACCTCTGCAGATCACAACCGAGCTTCCGGGTCGCACCAGTGCCTACCGGATCGCAGAAGTTCGTCCTCAAGTTAGCGGGATTATCCTGAAGCGTAATTTCAAAGAAGGTAGCGACATCGAAGCAGGTGTCTCTCTCTATCAGATTGATCCTGCGACCTATCAGGCGACATACGACAGTGCGAAAGGTGATCTGGCGAAAGCCCAGGCTGCAGCCAATATCGCGCAATTGACGGTGAATCGTTATCAGAAACTGCTCGGTACTCAGTACATCAGTAAGCAAGAGTACGATCAGGCTCTGGCTGATGCGCAACAGGCGAATGCTGCGGTAACTGCGGCGAAAGCTGCCGTTGAAACTGCGCGGATCAATCTGGCTTACACCAAAGTCACCTCTCCGATTAGCGGTCGCATTGGTAAGTCGAACGTGACGGAAGGCGCATTGGTACAGAACGGTCAGGCGACTGCGCTGGCAACCGTGCAGCAACTTGATCCGATCTACGTTGATGTGACCCAGTCCAGCAACGACTTCCTGCGCCTGAAACAGGAACTGGCGAATGGCACGCTGAAACAAGAGAACGGCAAAGCCAAAGTGTCACTGATCACCAGTGACGGCATTAAGTTCCCGCAGGACGGTACGCTGGAATTCTCTGACGTTACCGTTGATCAGACCACTGGGTCTATCACCCTACGCGCTATCTTCCCGAACCCGGATCACACTCTGCTGCCGGGTATGTTCGTGCGCGCACGTCTGGAAGAAGGGCTTAATCCAAACGCTATTTTAGTCCCGCAACAGGGCGTAACCCGTACGCCGCGTGGCGATGCCACCGTACTGGTAGTTGGCGCGGATGACAAAGTGGAAACCCGTCCGATCGTTGCAAGCCAGGCTATTGGCGATAAGTGGCTGGTGACAGAAGGTCTGAAAGCAGGCGATCGCGTAGTAATAAGTGGGCTGCAGAAAGTGCGTCCTGGTGTCCAGGTAAAAGCACAAGAAGTTACCGCTGATAATAACCAGCAAGCCGCAAGCGGTGCTCAGCCTGAACAGTCCAAGTCTTAA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. MG1655 UPDATED NCBI_taxonomy_id with 511145 UPDATED NCBI_taxonomy_cvterm_id with 36849 UPDATED accession with NP_414996.1 UPDATED sequence with MNKNRGFTPLAVVLMLSGSLALTGCDDKQAQQGGQQMPAVGVVTVKTEPLQITTELPGRTSAYRIAEVRPQVSGIILKRNFKEGSDIEAGVSLYQIDPATYQATYDSAKGDLAKAQAAANIAQLTVNRYQKLLGTQYISKQEYDQALADAQQANAAVTAAKAAVETARINLAYTKVTSPISGRIGKSNVTEGALVQNGQATALATVQQLDPIYVDVTQSSNDFLRLKQELANGTLKQENGKAKVSLITSDGIKFPQDGTLEFSDVTVDQTTGSITLRAIFPNPDHTLLPGMFVRARLEEGLNPNAILVPQQGVTRTPRGDATVLVVGADDKVETRPIVASQAIGDKWLVTEGLKAGDRVVISGLQKVRPGVQVKAQEVTADNNQQAASGAQPEQSKS " 722 UPDATE vanRA vanR; glycopeptide resistance gene cluster; teicoplanin; glycopeptide antibiotic; antibiotic target alteration; vancomycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 723 UPDATE SHV-72 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1645 UPDATE ACT-23 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1644 UPDATE SHV-70 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1647 UPDATE MexI antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; norfloxacin; acridine dye; acriflavin; tetracycline antibiotic; fluoroquinolone antibiotic; tetracycline; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACCTTTACCGACCTGTTCGTCCGCCGGCCGGTGCTGGCGCTGGTGGTCAGCACGCTGATCCTGCTGCTCGGCCTGTTCTCCCTGGGCAAGCTGCCGATCCGCCAGTACCCGCTGCTGGAAAGCTCGACCATCACCGTCACCACCGAGTACCCCGGCGCCTCCGCCGATCTCATGCAAGGCTTCGTCACCCAGCCGATCGCCCAGGCGGTGTCGTCGGTGGAGGGCATCGACTACCTTTCCTCGACCTCGGTGCAGGGGCGTAGCGTGGTGACCATCCGCATGCTGCTCAACCGCGATTCGACCCAGGCGATGACCGAGACCATGGCCAAGGTCAACTCGGTGCGCTACAAGCTGCCCGAGCGTGCCTACGACTCGGTGATCGAACGCTCTTCCGGCGAGACCACCGCGGTAGCCTACGTCGGCTTTTCCAGCAAGACCCTGCCGATCCCGGCGTTGACCGACTACCTGTCGCGGGTGGTCGAGCCGATGTTCTCTTCCATCGACGGCGTGGCCAAGGTCCAGACCTTTGGCGGCCAGCGCCTGGCCATGCGCCTCTGGCTCGACGCCGACCGCCTCGCCGGGCGCGGCCTGACCGCCTCCGACGTGGCCGAGGCGATCCGCCGCAACAACTACCAGGCGGCGCCGGGGATGGTGAAGGGGCAGTACGTGCTGTCCAACGTGCGGGTCAACACCGACCTGACCAACGTCGACGACTTCCGCGAGATGGTCATCCGCAACGATGGCAACGGCCTGGTGCGCCTGCGCGACGTCGGTACCGTCGAACTGGGCGCCGCGGCCACCGAGACCAGCGCACTGATGGACGGCGACCCGGCGGTGCACCTGGGGTTGTTCCCGACGCCCACCGGCAACCCGCTGGTGATCGTCGACGGCATCCGCAAGCTGCTGCCGGAGATCCAGAAGACCCTGCCGCCGGATGTCCGCGTCGACCTCGCCTACGAGACTTCGCGCTTCATCCAGGCCTCCATCGACGAGGTGGTGCGGACCCTGGTGGAAGCGCTGCTGATCGTGGTGCTGGTGATCTACCTCTGCCTCGGCTCGCTGCGCAGCGTGCTGATCCCGGTGGCGACCATTCCCCTGTCGATGCTCGGCGCCGCCGCGCTGATGCTGGCCTTCGGCTTCAGCGTCAACCTGCTGACCCTGCTGGCGATGGTGCTGGCCATCGGGCTGGTGGTGGACGACGCCATCGTGGTGGTGGAGAACGTCCACCGCCACATCGAGGAAGGCAAGTCGCCGGTGGCGGCGGCGCTGATCGGCGCCCGCGAAGTGGCCGGCCCGGTGATCGCCATGACCATCACCCTGGCCGCCGTGTACACCCCCATCGGCCTGATGGGCGGCCTCACCGGCGCGCTGTTCCGCGAGTTCGCCCTGACCCTGGCGGGCGCGGTGATCGTGTCCGGGGTGGTGGCGCTGACCCTGTCGCCGGTGATGAGTTCGCTGCTGCTCCAGGCGCACCAGAACGAGGGGCGCATGGGCCGCGCCGCCGAGTGGTTCTTCGGCGGCCTGACGCGGCGCTACGGGCAGGTCCTGGAGTTCTCCCTGGGCCACCGCTGGCTGACCGGCGGCCTGGCATTGCTGGTGTGCATCAGCCTGCCGCTGCTGTATTCGATGCCCAAGCGCGAACTGGCGCCGACCGAGGACCAGGCCGCGGTGCTCACCGCGATCAAGGCGCCGCAGCACGCCAACCTCGACTATGTCGAACTGTTCGCGCGCAAGCTCGACCAGGTCTACACCAGCATCCCGGAAACCGTGAGCACCTGGATCATCAACGGCACCGACGGACCGGCGGCGAGCTTCGGCGGGATCAACCTGGCGGCCTGGGAAAAACGCGAGCGCGACGCCTCGGCGATCCAGTCCGAGCTGCAAGGCAAGGTCGGCGATGTCGAGGGCAGCAGCATCTTCGCCTTCCAGTTGGCCGCCCTGCCCGGCTCCACCGGCGGCCTGCCGGTGCAGATGGTGCTGCGCAGCCCGCAGGACTATCCAGTGCTCTACCGGACCATGGAAGAGATCAAGCAGAAGGCCCGACAGAGCGGGCTGTTCGTGGTGGTCGACAGCGACCTCGACTACAACAACCCGGTGGTCCAGGTCCGCATCGACCGCGCCAAGGCCAACAGCCTGGGCATCCGCATGCAGGACATCGGCGAGTCGCTGGCGGTGCTGGTGGGCGAGAACTACGTCAACCGCTTCGGCATGGAGGGCCGCTCCTACGACGTGATCCCACAGAGCCTGCGCGACCAGCGTTTCACTCCGCAAGCGCTGGCACGACAGTTCGTGCGCACCCAGGACGGCAACCTGGTGCCGCTGTCGACGGTGGTCCGGGTGGCGCTTCAGGTCGAACCGAACAAGCTGATCCAGTTCGACCAGCAGAACGCCGCGACCCTCCAGGCGATCCCCGCGCCCGGCGTCTCCATGGGCCAGGCGGTGGCCTTCCTCGACGACGTGGCGCGCGGCCTGCCGGCCGGCTTCAGCCACGACTGGCAATCCGACTCGCGGCAATACACCCAGGAAGGCAACACCCTGGTGTTCGCCTTCCTCGCCGCCCTGGTGGTGATCTACCTGGTGCTCGCCGCGCAGTACGAGAGCCTGGCCGACCCGCTGATCATCCTGATCACCGTGCCGCTGTCGATCTGCGGCGCGCTGCTGCCGCTGGCGCTGGGCTACGCGACGATGAACATCTATACGCAGATCGGCCTGGTCACCCTGATCGGCCTGATCAGCAAGCACGGCATCCTCATGGTCGAGTTCGCCAACGAACTGCAACTCCACGAGCGCCTCGACCGCCGCGCGGCGATCCTGCGCGCCGCGCAGATCCGCCTGCGGCCGGTGCTGATGACCACCGCGGCAATGGTCTTCGGCCTGGTGCCGCTGCTCTTCGCCAGCGGCGCCGGCGCCGCCAGCCGCTTCGGCCTGGGCGTGGTGATCGTCTCCGGGATGCTGGTCGGCACCCTCTTCACCCTGTTCGTGCTGCCCACCGTCTATACCCTGCTGGCGCGCAACCACGCGGAAGTCGACAAGAGCCCGCGCAGCCGGCAACTGGCCGAGGCCGATCTGCTGGTGAACAAGGCATGA " 1646 UPDATE TEM-139 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1641 UPDATE OXA-203 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1640 UPDATE MIR-14 antibiotic inactivation; monobactam; cephalosporin; MIR beta-lactamase; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 35962 " 1643 UPDATE arnA pmr phosphoethanolamine transferase; peptide antibiotic; antibiotic target alteration; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1642 UPDATE clbC dalfopristin; thiamphenicol; oxazolidinone antibiotic; pristinamycin IIA; pleuromutilin antibiotic; tiamulin; madumycin II; griseoviridin; linezolid; lincomycin; macrolide antibiotic; streptogramin antibiotic; antibiotic target alteration; lincosamide antibiotic; azidamfenicol; clindamycin; phenicol antibiotic; Cfr 23S ribosomal RNA methyltransferase; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1396 UPDATE OXA-11 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAACATTTGCCGCATATGTAATTATCGCGTGTCTTTCGAGTACGGCATTAGCTGGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTCTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATGACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAACGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAGCAATGGGAAAGAGACTTGACCTTAAGAGGGGCAATACAAGTTTCAGCTGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATACCTTAAAAAATTTTCCTATGGCAGCCAGAATATCAGTGGTGGCATTGACAAATTCTGGTTGGAAGACCAGCTTAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATATTTAAATAAATTGTCAGCATCTAAAGAAAACCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCGGCACCTGAATATCTAGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGGTGGGTTGAGAAGGAGACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAGTAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGAAAGTGAGGGCATCATTGGTGGCTAA " 1649 UPDATE DHA-21 antibiotic inactivation; cephalosporin; cephamycin; DHA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1648 UPDATE CTX-M-2 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 728 UPDATE TEM-192 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATAATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG " 729 UPDATE CTX-M-8 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAGACATCGCGTTAAGCGGATGATGCTAATGACAACGGCCTGTATTTCGCTGTTGCTGGGGAGTGCGCCGCTGTATGCGCAGGCGAACGACGTTCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGGGGGCGGTTGGGAGTGGCGCTGATTGACACCGCCGATAACGCACAGACGCTCTACCGCGCCGATGAGCGCTTTGCCATGTGCAGCACCAGTAAGGTGATGGCGGCAGCGGCTGTGCTCAAGCAAAGTGAAACGCAAAAGAAGGTGTTGAGTCAGAAGGTTGAGATTAAATCTTCAGACCTGATTAACTACAATCCCATTACTGAAAAACACGTCAACGGCACGATGACGCTGGCGGAATTGAGCGCCGCGGCGTTGCAGTACAGCGACAATACGGCCATGAACAAGCTGATTGCCCATCTTGGGGGGCCGGATAAAGTGACGGCGTTTGCCCGTGCGATTGGGGATAACACCTTCCGGCTCGATCGTACTGAGCCGACGCTCAACACCGCGATCCCCGGCGACCCGCGCGATACCACCACGCCATTAGCGATGGCGCAGACGCTTCGCAATCTGACGTTGGGCAGTGCCTTAGGTGAAACTCAGCGTGCGCAACTGGTAACGTGGCTGAAAGGCAATACCACCGGCGCTGCCAGCATTCAGGCTGGGCTACCCACATCGTGGGTTGTCGGGGATAAAACCGGCAGCGGTGATTATGGTACGACGAATGACATCGCCGTTATCTGGCCGGAAGGGCGTGCGCCGCTTATTCTGGTCACTTACTTCACCCAGCCAGAGCAGAAGGCAGAAAGTCGTCGTGACGTACTCGCGGCTGCCGCGAAAATCGTCACCGACGGTTATTAA " 1252 UPDATE ceoB efflux pump complex or subunit conferring antibiotic resistance; fluoroquinolone antibiotic; aminoglycoside antibiotic; resistance-nodulation-cell division (RND) antibiotic efflux pump; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATTTCCAAATTCTTTATCGACCGGCCGATCTTTGCAGGAGTCCTATCGGTGATCATCCTGCTCGGCGGGGTGATCGCGATGTTCCTGCTGCCGATTTCGGAATATCCGGAAGTCGTGCCGCCTTCGGTGATCGTGAAGGCGCAGTACCCGGGCGCGAACCCGAAAGTGATCGCCGAGACGGTCGCGTCGCCACTTGAAGAGCAGATCAACGGCGTCGAGAACATGCTCTACATGCAGTCGCAGGCGAACAGCGACGGCAACATGACGATCACCGTCACGTTCAAGCTGGGCACCGATCCGGACAAGGCCACGCAGCTCGTGCAGAACCGCGTGAACCAGGCGCTGCCGCGCTTGCCGGAAGACGTGCAGCGGCTCGGCATCACCACGGTGAAGAGCTCGCCGACGCTGACGATGGTGGTCCACCTGATCTCGCCGGACAACCGCTACGACATGACCTACCTGCGCAACTACGCGCTGATCAACGTGAAGGATCGCCTGTCGCGGATCCAGGGCGTCGGCCAGGTGCAGCTGTGGGGTTCGGGCGACTACGCGATGCGCGTGTGGCTCGATCCGCAGAAGGTCGCGCAGCGCGGGCTGTCGGCCGAGGACGTCGTGCAGGCGATCCGCGAGCAGAACGTGCAGGTCGCGGCCGGCGTGATCGGCGCATCGCCGTCGCTGCCCGGCACGCCGCTGCAGCTGTCGGTGAACGCGCGCGGCCGTCTGCAGACGGAAGACGAATTCGGCGACATCGTCGTGAAGACGACGCCGGATGGCGGCGTCACGCACCTGCGCGACATCGCGCGGATCCAGCTCGACGCGTCCGAGTACGGGCTGCGCTCGCTGCTCGACAACAAGCCGGCCGTCGCGATGGCGATCAACCAGTCGCCGGGCGCGAACTCGCTGCAGATCTCGGACGAAGTGCGCAAGACGATGGCCGAACTGAAGCAGGACATGCCGGCGGGCGTCGACTACAAGATCGTCTATGACCCGACGCAGTTCGTGCGCTCGTCGATCAAGGCCGTCGTGCACACGCTGCTCGAAGCGATCGCGCTGGTCGTGATCGTCGTGATCGTGTTCCTGCAGACCTGGCGCGCGTCGCTGATTCCGCTGATCGCGGTGCCGGTGTCGATCATCGGCACGTTCTCGCTGCTGCTCGCGTTCGGGTATTCGATCAACGCGTTGTCGCTGTTCGGGATGGTGCTCGCGATCGGGATCGTGGTCGACGATGCGATCGTCGTCGTCGAGAACGTCGAGCGCAACATCGAGAACGGGATGAACGCGCGGCAGGCGACCTACAAGGCGATGCAGGAAGTGAGCGGGCCGATCATCGCGATCGCGCTGACGCTGGTCGCCGTGTTCGTGCCGCTCGCGTTCATGTCGGGCCTGACCGGCCAGTTCTACAAGCAGTTCGCGATGACCATCGCGATCTCGACGGTGATCTCGGCGTTCAACTCGCTGACGCTGTCGCCGGCGCTGTCCGCGATCCTGCTGAAGGGGCACGGCGACAAGGAAGACTGGCTCACGCGTGTGATGAACCGCGTGCTCGGCGGCTTCTTCCGCGGCTTCAACAAGGTGTTCCATCGCGGGGCGGAGAACTACGGCCGCGGCGTGCGCGGCGTGCTGTCGCGCAAGACGCTGATGCTCGGCGTGTATCTCGTGCTGGTGGGCGCGACGGTGCTCGTGTCGAAGGTCGTGCCGGGCGGCTTCGTGCCCGCGCAGGACAAGGAATACCTGATCGCGTTCGCGCAGCTGCCGAACGGTGCGTCGCTCGACCGCACCGAGAAGGTGATCCGCGACATGGGTTCGATCGCGCTGAAGCAGCCGGGCGTCGAGAGCGCGGTCGCGTTCCCGGGGCTGTCGGTGAACGGCTTCACCAACAGCTCGAGCGCGGGCATCGTGTTCGTCACGCTCAAGCCGTTCGCGGAACGGCACGGCAAGGCGCTGTCGGCCGGCGCCATCGCGGGTGCGCTGAACCAGAAGTACGGCGCGATGAAGGATTCGTTCGTCGCGGTGTTCCCGCCGCCGCCGGTGCTCGGCCTCGGTACGCTCGGCGGGTTCAAGATGCAGATCGAGGATCGCGGCGCGGTCGGCTACGCGAAGCTGTCGGATGCGACCAACGACTTCATCAAGCGCGCGCAGCAGGCGCCTGAACTCGGCCCGCTGTTCACGAGCTACCAGATCAACGTGCCGCAGCTCAACGTCGATCTCGACCGCGTGAAGGCGAAGCAGCTCGGCGTGCCGGTGACCGACGTGTTCAACACGATGCAGGTGTATCTGGGTTCGCTGTACGTGAACGACTTCAACCGCTTCGGACGCGTGTACCAGGTGCGCGTGCAGGCCGATGCGCCGTTCCGCCAGCGCGCGGACGACATCCTGCAACTGAAGACGCGCAACGACAAGGGCGAGATGGTGCCGCTGTCGTCGCTGGTCACCGTGACGCCGACGTTCGGCCCGGAAATGGTCGTGCGCTACAACGGCTACACGGCGGCCGACATCAACGGCGGCCCGGCGCCCGGCTTCTCGTCGGGGCAGGCGCAGGCCGCGGTCGAGCGCATCGCCGACGAGACGCTGCCGCGCGGCGTGCGCTTCGAGTGGACCGACCTCACGTACCAGCAGATCCTCGCGGGCGATTCGGCGATGTGGGTGTTCCCGATCAGCGTGCTGCTCGTGTTCCTCGTGCTCGCCGCGCTGTATGAAAGCCTGACGCTGCCGCTCGCGGTGATCCTGATCGTGCCGATGAGCATTCTGTCGGCGCTGACGGGCGTGTGGCTCACGCAGGGCGACAACAACATCTTCACGCAGATCGGCCTGATGGTGCTGGTGGGGCTGTCGGCGAAGAACGCGATCCTGATCGTCGAATTCGCGCGCGAGCTCGAACACGACGGCAGGACGCCGCTCGAGGCCGCGATCGAGGCGAGCCGGCTGCGGCTGCGCCCGATCCTGATGACGTCGATCGCTTTCATCATGGGCGTGGTGCCGCTCGTCACGTCGACCGGCGCGGGTTCGGAAATGCGTCATGCGATGGGGGTCGCGGTGTTCTTCGGGATGCTCGGCGTGACGCTGTTCGGGCTGATCTGA " 579 UPDATE vgaA dalfopristin; pleuromutilin; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; ABC-F ATP-binding cassette ribosomal protection protein; antibiotic target protection; streptogramin antibiotic; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAATAATGTTAGAGGGACTTCATATAAAACATTATGTTCAAGATCGTTTATTGTTGAACATAAATCGCCTAAAGATTTATCAGAATGATCGTATTGGTTTAGTTGGTAAAAATGGAAATGGAAAAACAACGTTACTTCACATATTATATAAAAAAATTGTGCCTGAAGAAGGTATTGTAAAACAATTTTCACATTGTGAACTTATTCCTCAATTGAAGCTCATAGAATCAACTAAAAGTGGTGGTGAAGTAACACGAAACTATATTCGGCAAGCGCTTGATAAAAATCCAGAACTGCTATTAGCAGATGAACCAACAACTAACTTAGATAATGACTATATAGAAAAATTAGAACAGGATTTAAAAAATTGGCATGGAGCATTTATTATAGTTTCACATGATCGCGCTTTTTTAGATAACTTGTGTACTACTATATGGGAAATTGAAGAAGGAAGAATAACTGAATATAAGGGGAATTATAGTAACTATGTTGAACAAAAAGAATTAGAAAGACATCGAGAAGAATTAGAATATGAAAAATATGAAAAAGAAAAGAAGCGATTGGAAAAAGCTATAAATATAAAAGAACAGAAAGCTCAACGAGCAACTAAAAAACCGAAAAACTTAAGTTCATCTGAAAGCAGAATAAAAGGAACAAAGCCATACTTTGCAGGTAAGCAGAAGAAGTTACGAAAAACTATAAAATCTCTAGAAACCAGACTAGAAAAACTTGAAAGCGTCGAAAAGAGAAACGAACTTCCTCCACTTAAAATGGATTTAGTGAATTTAGAAAGTGTAAAAAATAGAACTATAATACGTGGTGAAGATGTCTCGGGCACAATTGAAGGACGGGTATTGTGGAAAGCAAAAAGTTTTAGTATTCGTGGAGGAGACAAGATGGCAATTATCGGATCTAATGGTACAGGAAAGACAACGTTTATTAAAAAAATTGTTCATGGGAATCATGGTATTTCATTATCGCCATCTGTCAAAATCGGTTATTTTAGCCAAAAAATAGATACATTAGAATTAGATAAGAGTATTTTAGAAAATGTTCAATCTTCTTCACAACAAAATGAAACTCTTATTCGAACTATTCTAGCTAGAATGCATTTTTTTAGAGATGATGTTTATAAACCAATAAATGTCTTAAGTGGTGGAGAGCGAGTTAAAGTAGCACTAACTAAAGTATTCTTAAGTGAAGTTAACACGTTAGTACTAGATGAACCAACAAACTTTCTTGATATGGAAGCTATAGAGGCGTTTGAATCTTTGTTAAAGGAATATAATGGCAGTATAATCTTTGTATCTCACGATCGTAAATTTATCGAAAAAGTAGCCACTCGAATAATGACAATTGATAATAAAGAAATAAAAATATTTGATGGTACATATGAACAATTTAAACAAGCTGAAAAGCCAACAAGGAATATTAAAGAAGATAAAAAACTTTTACTTGAGACAAAAATTACAGAAGTACTCAGTCGATTGAGTATTGAACCTTCGGAAGAATTAGAACAAGAGTTTCAAAACTTAATAAATGAAAAAAGAAATTTAGATAAATAA DELETED 36001 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. " 578 UPDATE SHV-11 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACAAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACATCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAGCGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 573 UPDATE OXA-136 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCTAAAAAAAATTTTATATTAATATTTATTTTTGTTATTTTAATATCTTGTAAAAATACAGAAAAAATATCAAATGAAACTACATTAATAGATAATATATTTACTAATAGCAATGCTGAAGGAACATTAGTTATATATAATTTAAATGATGATAAATATATAATTCATAATAAAGAAAGAGCTGAACAAAGATTTTATCCAGCATCAACATTTAAAATATATAATAGTTTAATAGGCTTAAATGAAAAAGCAGTTAAAGATGTAGATGAAGTATTTTATAAATATAATGGCGAAAAAGTTTTTCTTGAATCTTGGGCTAAGGACTCTAATTTAAGATATGCAATTAAAAATTCGCAAGTACCGGCATATAAAGAATTAGCAAGAAGAATAGGTCTTAAAAAGATGAAAGAGAATATAGAAAAACTAGATTTTGGTAATAAAAGTATAGGTGATAGTGTAGATACTTTTTGGCTTGAAGGACCTTTGGAAATAAGTGCGATGGAGCAAGTTAAATTATTAACTAAATTAGCTCAAAATGAATTACCGTATCCTATAGAAATACAAAAAGCTGTTTCTGATATTACTATACTAGAGCAAACTTACAATTATACGCTTCATGGAAAAACTGGATTAGCTGATTCTAAAAACATGACAACTGAGCCTATTGGTTGGTTCGTAGGCTGGCTTGAAGAAAATGATAATATATATGTCTTTGCTTTAAATATTGATAATATCAATTCAGATGACCTTGCAAAAAGGATAAATATAGTAAAAGAAAGTTTAAAAGCATTAAATTTATTAAAATAA " 572 UPDATE OXA-137 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCTAAAAAAAATTTTATATTAATATTTATTTTTGTTATTTTAACATCTTGTAAAAATACAGAAAAAATATCAAATGAAACTACATTAATAGATAATATATTTACTAATAGCAATGCTGAAGGAACATTAGTTATATATAATTTAAATGATGATAAATATATAATTCATAATAAAGAAAGAGCTGAACAAAGATTTTATCCAGCATCAACATTTAAAATATATAATAGTTTAATAGGCTTAAATGAAAAAGCAGTTAAAGATGTAGATGAAGTATTTTATAAATATAATGGCGAAAAAGTTTTTCTTGAATCTTGGGCTAAGGACTCTAATTTAAGATATGCAATTAAAAATTCGCAAGTACCGGCATATAAAGAATTAGCAAGAAGAATAGGTCTTAAAAAGATGAAAGAGAATATAGAAAAACTAGATTTTGGTAATAAAAGTATAGGTGATAGTGTAGATACTTTTTGGCTTGAAGGACCTTTGGAAATAAGTGCGATGGAGCAAATTAAATTATTAACTAAATTAGCTCAAAATGAATTACCGTATCCTATAGAAATACAAAAAGCTGTTTCTGATATTACTATACTAGAGCAAACTTACAATTATACGCTTCATGGAAAAACTGGATTAGCTGATTCTAAAAACATGACAACTGAGCCTATTGGTTGGTTCGTAGGCTGGCTTGAAGAAAATGATAATATATATGTCTTTGCTTTAAATATTGATAATATAAATTCAGATGACCTTGCAAAAAGGATAAATATAGTAAAAGAAAGTTTAAAAGCATTAAATTTATTAAAATAA " 571 UPDATE clbA dalfopristin; thiamphenicol; oxazolidinone antibiotic; pristinamycin IIA; pleuromutilin antibiotic; tiamulin; madumycin II; griseoviridin; linezolid; lincomycin; macrolide antibiotic; streptogramin antibiotic; antibiotic target alteration; lincosamide antibiotic; azidamfenicol; clindamycin; phenicol antibiotic; Cfr 23S ribosomal RNA methyltransferase; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 570 UPDATE Streptococcus pyogenes folP with mutation conferring resistance to sulfonamides sulfadiazine; sulfadoxine; sulfacetamide; sulfadimidine; mafenide; sulfonamide resistant dihydropteroate synthase folP; sulfisoxazole; antibiotic target alteration; sulfone antibiotic; sulfamethizole; sulfasalazine; sulfonamide antibiotic; sulfamethoxazole; dapsone; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with ATGAAAATTGGAAGGTTTGTGATTGAGGGCAATGCGGCTATCATGGGGATTTTAAATGTGACTCCAGATTCTTTTTCAGATGGGGGGTCTTACACTACTGTGCAAAAAGCATTAGATCACGTTGAGCAAATGATTGCTGATGGTGCTAAAATCATCGACGTTGGTGGAGAATCAACACGTCCAGGTTGCCAATTTGTAAGCGCTACCGATGAAATTGACAGGGTGGTTCCTGTGATCAAGGCCATCAAAGAAAACTATGATATTCTAATCAGCATTGATACCTATAAAACCGAAACAGCTAGAGCAGCTTTAGAGGCGGGTGCCGATATTCTCAATGATGTTTGGGCAGGTTTGTACGACGGTCAAATGTTTGCCTTAGCAGCCGAGTACGATGCGCCTATCATCTTGATGCATAACCAAGACGAAGAAGTTTATCAAGAGGTAACACAAGACGTTTGTGATTTTCTAGGCAATAGAGCACAAGCAGCTCTTGATGCTGGCGTGCCAAAAAACAATATTTGGATTGATCCAGGATTTGGATTTGCCAAATCTGTTCAACAGAATACGGAGTTATTAAAAGGATTGGACCGCGTCTGTCAGTTGGGCTATCCTGTCTTGTTTGGTATTTCGAGAAAGCGTGTCGTAGATGCCTTGTTAGGCGGCAATACCAAAGCTAAAGAGCGAGACGGAGCGACAGCAGCCTTGTCTGCTTATGCCCTTGGAAAAGGCTGTCAGATTGTACGCGTACACGATGTCAAGGCTAATCAAGACATTGTGGCTGTGTTGAGCCAGTTGATGTGA " 577 UPDATE QnrB65 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 576 UPDATE MIR-5 antibiotic inactivation; monobactam; cephalosporin; MIR beta-lactamase; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 35962 " 575 UPDATE AAC(3)-Ib antibiotic inactivation; AAC(3); aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTATGGAGCAGCAACGATGTTACGCAGCAGGGCAGTCGCCCTAAAACAAAGTTAGGTGGCTCAATGAGCATCATTGCAACCGTCAAGATCGGCCCTGACGAAATTTCAGCCATGAGGGCTGTGCTCGATCTCTTCGGCAAAGAGTTTGAGGACATTCCAACCTACTCTGATCGCCAGCCGACCAATGAGTATCTTGCCAATCTTCTGCACAGCGAGACGTTCATCGCGCTCGCTGCTTTTGACCGCGGAACAGCAATAGGTGGGCTCGCCGCCTACGTTCTACCCAAGTTCGAGCAAGCGCGAAGCGAGATCTACATTTATGACTTGGCAGTCGCTTCCAGCCATCGAAGGCTAGGAGTCGCAACTGCCCTGATTAGCCACCTGAAGCGTGTGGCGGTTGAACTTGGCGCGTATGTAATCTATGTGCAAGCAGACTACGGTGACGATCCGGCAGTCGCTCTCTACACAAAGCTTGGAGTTCGGGAAGACGTCATGCACTTCGACATTGATCCAAGAACCGCCACCTAA " 574 UPDATE AAC(6')-Ia antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATTATCAAATTGTGAATATTGCGGAATGCAGCAATTATCAGTTAGAAGCAGCAAATATACTAACAGAAGCGTTCAATGATCTTGGTAACAATTCATGGCCAGATATGACGAGTGCAACAAAAGAAGTAAAAGAATGTATTGAGAGTCCAAACCTTTGTTTCGGTCTGCTAATAAATAACTCCTTAGTTGGCTGGATAGGCTTAAGGCCAATGTACAAGGAAACCTGGGAATTGCATCCATTGGTTGTCAGACCAGATTATCAAAATAAAGGTATTGGCAAGATCCTGCTTAAGGAATTAGAAAACAGAGCTAGAGAGCAAGGTATTATTGGAATCGCTTTAGGAACAGATGATGAATACTATAGAACAAGTCTCTCTTTAATAACTATAACAGAAGATAATATATTTGATTCAATAAAAAATATTAAAAATATTAATAAACATCCATATGAGTTTTATCAGAAGAATGGTTATTATATTGTTGGAATAATTCCAAATGCCAATGGTAAAAACAAACCAGATATTTGGATGTGGAAAAGTTTAATCAAAGAGTAA " 2808 UPDATE Propionibacteria 23S rRNA with mutation conferring resistance to macrolide antibiotics antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2802 UPDATE Escherichia coli 23S rRNA with mutation conferring resistance to erythromycin and telithromycin antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; telithromycin; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; erythromycin; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2803 UPDATE Mycobacterium tuberculosis thyA with mutation conferring resistance to para-aminosalicylic acid antibiotic target alteration; para-aminosalicylic acid; aminosalicylate resistant thymidylate synthase; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 3074471 UPDATED strand with - UPDATED accession with NC_000962.3 UPDATED fmin with 3073679 UPDATED sequence with GTGACGCCATACGAGGACCTGCTGCGCTTCGTGCTCGAAACGGGTACGCCCAAATCCGACCGCACCGGCACCGGAACCCGCAGCCTGTTCGGCCAGCAGATGCGCTATGATTTGTCGGCCGGTTTCCCGCTGCTCACTACCAAGAAAGTCCATTTCAAATCGGTAGCCTACGAGCTGCTGTGGTTTTTGCGCGGCGATTCCAATATCGGTTGGCTGCACGAGCACGGAGTCACCATCTGGGACGAATGGGCAAGTGATACAGGCGAACTCGGGCCGATCTACGGTGTACAATGGCGATCGTGGCCGGCTCCATCCGGTGAGCACATCGACCAGATCAGCGCGGCGCTGGATTTGCTGCGCACCGATCCCGATTCCCGGCGCATCATCGTGTCGGCCTGGAACGTCGGCGAAATCGAGCGGATGGCGCTGCCGCCCTGTCATGCGTTCTTCCAGTTCTACGTCGCCGATGGCCGGCTGAGCTGTCAGCTCTACCAACGCAGCGCCGACCTGTTTCTGGGTGTGCCGTTCAACATCGCCAGCTATGCGTTGCTCACCCACATGATGGCCGCCCAGGCCGGCTTGTCGGTCGGCGAGTTCATCTGGACCGGTGGCGACTGCCACATCTACGACAATCACGTCGAGCAAGTACGGCTGCAGCTCAGCCGCGAGCCGCGGCCATATCCGAAACTACTTCTAGCCGACCGGGATTCAATCTTCGAGTACACCTATGAAGACATCGTTGTGAAGAACTACGATCCGCATCCGGCGATCAAAGCTCCAGTCGCGGTATGA UPDATED NCBI_taxonomy_name with Mycobacterium tuberculosis H37Rv UPDATED NCBI_taxonomy_id with 83332 UPDATED NCBI_taxonomy_cvterm_id with 39507 UPDATED accession with NP_217280.1 UPDATED sequence with MTPYEDLLRFVLETGTPKSDRTGTGTRSLFGQQMRYDLSAGFPLLTTKKVHFKSVAYELLWFLRGDSNIGWLHEHGVTIWDEWASDTGELGPIYGVQWRSWPAPSGEHIDQISAALDLLRTDPDSRRIIVSAWNVGEIERMALPPCHAFFQFYVADGRLSCQLYQRSADLFLGVPFNIASYALLTHMMAAQAGLSVGEFIWTGGDCHIYDNHVEQVRLQLSREPRPYPKLLLADRDSIFEYTYEDIVVKNYDPHPAIKAPVAV " 2800 UPDATE cfrC macrolide antibiotic; linezolid; florfenicol; oxazolidinone antibiotic; antibiotic target alteration; streptogramin antibiotic; chloramphenicol; phenicol antibiotic; Cfr 23S ribosomal RNA methyltransferase; lincosamide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 3036527 UPDATED strand with - UPDATED accession with NC_009495.1 UPDATED fmin with 3035492 UPDATED sequence with ATGAAACAGACAAAAACGAAATATGGAAAAATGAAACAAATAGCATCGAATTTAAAATTACCTGATTATAGATACGAACAGCTTACAAAAGCTATTTTTCATCAAAGAATAGATAATTTTCATGATATGCATATACTACCAAAAGCGTTAAGGATAGCTTTAGTAAATGAGTTTGGAAAGAATGTATCTAGTGTAACACCTATTTTTTCACAAGATTCTAAACAAGCTCAAAAGTTGTTATTTGAATTGACTGATGGAGAAAGAATAGAAGCCGTTGGACTAAAGTATAAACAGGGGTGGGAATCGTTTTGTATTTCTTCCCAATGTGGTTGTAGTTTTGGATGTCGTTTTTGTGCAACGGGAAGTGCTGGATTTAAACGCAATCTTACTGCTGATGAGATAACTGACCAATTACTTTATTTCTATTTTAATGACCATAGATTGAATAGTATTTCATTTATGGGAATGGGTGAGGCTTTTGCAAATCCAGAGTTATTTGATGCAGTAAAAATTTTAACTGATCAAAATTTATTTGGGTTAAGTCAACGAAGAATTACTATTTCAACAATTGGCATTATACCAGGAATTCAAAGACTGACTAAAGAATTTCCACAAGTGAATCTGGCTTTTTCACTTCATTCACCATTTGAAAGTCAACGAAGCGATTTAATGCCTATAAATAAAAGATTTCCATTGAATGAGGTAATGAAGACATTAGATGAACATATCATTCATACGGGACGACGAGTGTTTATTGCTTATATTATGCTTGAAGGAATTAATGATTCGAAAGAACATGCAGAGGCAATTATAGGTTTATTGAGAAATCGTGGTTCATGGGAGCATTTATATCACATTGATTTGATACCTTATAATTCTACGGACAAAACAACTTTTAAATTTCAATCTTCAAGTGCTATCAAGCAATTTTGCAGTACACTAAAGAAAGCTAGTATTAGTGCAACTGTTAGAACACAATTTGGTTCTGAAATTAGTGCTGCTTGCGGACAATTGTGTTATGAAAATGAATTATGA UPDATED NCBI_taxonomy_name with Clostridium botulinum A str. ATCC 3502 UPDATED NCBI_taxonomy_id with 413999 UPDATED NCBI_taxonomy_cvterm_id with 41276 UPDATED accession with YP_001255356.1 UPDATED sequence with MKQTKTKYGKMKQIASNLKLPDYRYEQLTKAIFHQRIDNFHDMHILPKALRIALVNEFGKNVSSVTPIFSQDSKQAQKLLFELTDGERIEAVGLKYKQGWESFCISSQCGCSFGCRFCATGSAGFKRNLTADEITDQLLYFYFNDHRLNSISFMGMGEAFANPELFDAVKILTDQNLFGLSQRRITISTIGIIPGIQRLTKEFPQVNLAFSLHSPFESQRSDLMPINKRFPLNEVMKTLDEHIIHTGRRVFIAYIMLEGINDSKEHAEAIIGLLRNRGSWEHLYHIDLIPYNSTDKTTFKFQSSSAIKQFCSTLKKASISATVRTQFGSEISAACGQLCYENEL " 2806 UPDATE Escherichia coli 23S rRNA with mutation conferring resistance to clindamycin 23S rRNA with mutation conferring resistance to lincosamide antibiotics; antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2807 UPDATE Escherichia coli 23S rRNA with mutation conferring resistance to clarithromycin antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2804 UPDATE Mycobacterium tuberculosis folC with mutation conferring resistance to para-aminosalicylic acid antibiotic target alteration; aminosalicylate resistant dihydrofolate synthase; para-aminosalicylic acid; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2747598 UPDATED strand with - UPDATED accession with NC_000962.3 UPDATED fmin with 2746134 UPDATED sequence with ATGAATTCGACGAATTCCGGCCCGCCTGACTCGGGATCGGCCACCGGCGTCGTGCCCACTCCGGACGAGATCGCGTCCCTGCTGCAGGTTGAGCATCTACTCGACCAACGCTGGCCGGAGACCCGCATCGATCCGAGCCTGACCCGGATCAGCGCGTTGATGGACCTGCTGGGCTCGCCCCAACGCAGCTATCCGTCGATCCATATCGCGGGCACCAACGGCAAGACCTCGGTGGCGCGCATGGTCGACGCGCTGGTCACCGCGCTGCACCGGCGCACCGGCCGAACCACCAGCCCACACCTGCAGTCACCGGTGGAACGCATTTCGATCGACGGCAAGCCGATCAGCCCGGCGCAGTATGTGGCGACCTACCGGGAGATCGAGCCGTTGGTGGCGCTGATCGACCAGCAGTCGCAGGCTTCTGCGGGTAAGGGTGGCCCGGCGATGAGCAAGTTCGAGGTGCTCACCGCGATGGCGTTCGCGGCCTTTGCGGACGCGCCCGTCGACGTGGCAGTGGTCGAGGTGGGCATGGGCGGACGTTGGGACGCCACCAACGTGATCAACGCACCGGTCGCCGTCATCACCCCGATCAGCATTGATCACGTCGACTATCTCGGTGCCGATATCGCCGGGATCGCCGGGGAGAAGGCGGGCATCATCACTCGGGCCCCCGACGGTTCGCCGGACACCGTCGCGGTCATCGGGCGTCAGGTCCCGAAGGTCATGGAGGTGCTGCTGGCCGAATCGGTGCGCGCCGACGCGTCGGTGGCCCGGGAGGATTCCGAATTCGCGGTGCTACGGCGACAGATCGCGGTCGGCGGTCAGGTACTGCAACTGCAGGGCCTCGGCGGGGTTTACTCCGACATCTACTTGCCGCTGCACGGTGAACACCAGGCGCACAACGCGGTGCTCGCCCTCGCTTCCGTCGAGGCCTTTTTCGGTGCCGGTGCGCAGCGTCAGCTCGACGGCGACGCCGTCCGGGCCGGCTTTGCCGCCGTCACCAGTCCCGGCCGGTTGGAGCGCATGCGCAGCGCACCCACGGTGTTCATCGACGCCGCGCACAATCCGGCCGGGGCGAGTGCTCTGGCACAAACGCTGGCGCATGAGTTCGACTTCCGATTTCTGGTCGGGGTGCTCAGCGTGCTGGGCGACAAGGACGTGGACGGCATCCTGGCCGCACTGGAGCCGGTGTTCGATTCCGTCGTCGTGACCCACAACGGGTCGCCGCGGGCGCTGGATGTCGAGGCCCTGGCGCTGGCGGCCGGCGAGCGGTTCGGACCCGACCGGGTGCGCACCGCCGAGAACCTGCGCGATGCTATCGACGTTGCCACCTCACTGGTCGACGACGCCGCCGCCGACCCGGATGTGGCCGGGGACGCATTCTCGAGAACCGGGATCGTCATCACCGGCTCGGTTGTCACCGCAGGGGCGGCTCGGACCTTGTTCGGTCGTGATCCGCAATGA UPDATED NCBI_taxonomy_name with Mycobacterium tuberculosis H37Rv UPDATED NCBI_taxonomy_id with 83332 UPDATED NCBI_taxonomy_cvterm_id with 39507 UPDATED accession with NP_216963.1 UPDATED sequence with MNSTNSGPPDSGSATGVVPTPDEIASLLQVEHLLDQRWPETRIDPSLTRISALMDLLGSPQRSYPSIHIAGTNGKTSVARMVDALVTALHRRTGRTTSPHLQSPVERISIDGKPISPAQYVATYREIEPLVALIDQQSQASAGKGGPAMSKFEVLTAMAFAAFADAPVDVAVVEVGMGGRWDATNVINAPVAVITPISIDHVDYLGADIAGIAGEKAGIITRAPDGSPDTVAVIGRQVPKVMEVLLAESVRADASVAREDSEFAVLRRQIAVGGQVLQLQGLGGVYSDIYLPLHGEHQAHNAVLALASVEAFFGAGAQRQLDGDAVRAGFAAVTSPGRLERMRSAPTVFIDAAHNPAGASALAQTLAHEFDFRFLVGVLSVLGDKDVDGILAALEPVFDSVVVTHNGSPRALDVEALALAAGERFGPDRVRTAENLRDAIDVATSLVDDAAADPDVAGDAFSRTGIVITGSVVTAGAARTLFGRDPQ " 2805 UPDATE Mycoplasma gallisepticum 23S rRNA mutation conferring resistance to pleuromutilin antibiotics antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; pleuromutilin; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; 23S rRNA with mutation conferring resistance to pleuromutilin antibiotics; lincosamide antibiotic; thiamphenicol; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 1421 UPDATE TEM-85 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1420 UPDATE aadA5 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGGTGAATTTTTCCCTGCACAAGTTTTCAAGCAGCTGTCCCACGCTCGCGCGGTGATCGAGCGCCATCTGGCTGCGACACTGGACACAATCCACCTGTTCGGATCTGCGATCGATGGAGGGCTGAAGCCGGACAGCGACATAGACTTGCTCGTGACCGTCAGCGCCGCACCTAACGATTCGCTCCGGCAGGCGCTAATGCTCGATTTGCTGAAAGTCTCATCACCGCCAGGCGATGGCGGAACATGGCGACCGCTGGAGCTAACTGTTGTCGCTCGAAGCGAAGTAGTGCCTTGGCGCTATCCGGCGCGGCGTGAGCTTCAGTTCGGTGAGTGGCTCCGCCACGACATCCTTTCCGGAACGTTCGAGCCTGCCGTTCTGGATCACGATCTTGCGATTTTGCTGACCAAGGCGAGGCAACACAGCCTTGCGCTTCTAGGCCCATCCGCAGCCACGTTTTTCGAGCCGGTGCCGAAGGAGCATTTCTCCAAGGCGCTTTTCGACACTATTGCCCAGTGGAATGCAGAGTCGGATTGGAAGGGTGACGAGCGGAACGTCGTTCTTGCTCTTGCTCGCATTTGGTACAGCGCTTCAACTGGTCTCATTGCTCCTAAGGACGTTGCTGCCGCATGGGTATCGGAGCGTTTGCCTGCCGAGCATCGGCCCCTCATCTGCAAGGCACGCGCGGCGTACCTGGGTAGCGAGGACGACGACCTAGCAATGCGCGTCGAAGAGACGGCCGCGTTCGTTCGATATGCCAAAGCAACGATTGAGAGAATCTTGCGTTGA " 1997 UPDATE tlrC ABC-F ATP-binding cassette ribosomal protection protein; antibiotic target protection; macrolide antibiotic; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 36298 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. " 1422 UPDATE ACC-3 penam; monobactam; cephalosporin; ACC beta-lactamase; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1425 UPDATE RbpA rifampin; rifapentine; RbpA bacterial RNA polymerase-binding protein; antibiotic target protection; rifabutin; rifaximin; rifamycin antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1424 UPDATE OXY-2-4 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATAAAAAGTTCGTGGCGTAAAATTGCAATGCTAGCCGCCGTTCCGCTGCTGCTGGCGAGCGGCGCACTGTGGGCCAGTACCGATGCTATCCATCAGAAGCTGACAGATCTCGAGAAGCGTTCAGGCGGCAGGTTGGGCGTGGCGCTAATCAACACGGCAGATAATTCTCAAATCTTATATCGCGGCGACGAGCGTTTTGCCATGTGCAGCACCAGTAAAGTGATGGCCGCCGCCGCGGTATTAAAACAGAGCGAAAGCAATAAAGAGGTGGTAAATAAAAGGCTGGAGATTAACGCAGCCGATTTGGTGGTCTGGAGTCCGATTACCGAAAAACATCTCCAGAGCGGAATGACGCTGGCTGAGCTAAGCGCGGCGACGCTGCAATATAGCGACAATACGGCGATGAATCTGATCATCGGCTACCTTGGCGGGCCGGAAAAAGTCACCGCCTTCGCCCGCAGTATCGGCGATGCCACCTTTCGTCTCGATCGTACGGAGCCCACGCTGAATACCGCCATCCCGGGCGATGAGCGTGATACCAGCACGCCGCTGGCGATGGCTGAAAGCCTACGCAAGCTGACGCTTGGCGATGCGCTGGGCGAACAGCAACGCGCCCAGTTAGTCACCTGGCTGAAAGGCAATACCACCGGCGGGCAAAGCATTCGCGCGGGCCTGCCTGAAAGCTGGGTGGTCGGCGATAAAACCGGCGCCGGAGATTACGGCACCACCAATGATATTGCGGTTATCTGGCCGGAAGATCACGCTCCGCTGGTATTAGTCACCTACTTTACCCAGCCGCAGCAGGATGCGAAAAACCGCAAAGAAGTGTTAGCCGCAGCGGCAAAAATCGTGACCGAAGGGCTTTAA " 1427 UPDATE acrD efflux pump complex or subunit conferring antibiotic resistance; aminoglycoside antibiotic; resistance-nodulation-cell division (RND) antibiotic efflux pump; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCGAATTTCTTTATTGATCGCCCCATTTTTGCCTGGGTGCTGGCAATCCTGTTGTGTCTGACAGGTACCCTGGCGATTTTTTCATTGCCCGTTGAACAATACCCCGATCTCGCGCCACCGAATGTGCGAGTGACCGCTAACTATCCCGGCGCATCGGCCCAGACGCTGGAAAACACCGTGACCCAGGTTATCGAGCAAAATATGACCGGCCTCGATAATCTCATGTATATGTCATCTCAGAGCAGTGGCACCGGTCAGGCATCTGTCACTTTAAGTTTTAAAGCAGGCACCGATCCGGACGAAGCCGTGCAGCAAGTACAAAACCAGCTGCAATCAGCCATGCGAAAGTTACCGCAGGCGGTGCAAAATCAGGGCGTGACGGTGCGTAAAACCGGCGATACCAACATTCTGACCATTGCCTTCGTCTCTACCGATGGTTCGATGGATAAACAGGATATTGCTGATTATGTTGCCAGTAATATTCAGGACCCGTTAAGCCGCGTGAATGGCGTCGGGGATATCGATGCCTATGGTTCGCAATATTCCATGCGTATCTGGCTGGACCCGGCGAAACTCAACAGTTTCCAGATGACGGCTAAAGATGTCACTGATGCCATTGAGTCACAGAACGCGCAGATTGCGGTTGGGCAACTTGGTGGTACACCTTCCGTCGATAAGCAGGCGCTCAACGCCACCATTAACGCCCAGTCACTGCTGCAAACACCAGAACAGTTCCGCGATATCACCTTGCGGGTCAATCAGGACGGCTCAGAGGTAAGGCTGGGCGATGTCGCCACCGTCGAAATGGGGGCGGAGAAATACGATTATCTTAGCCGCTTCAATGGTAAGCCAGCCTCCGGGCTGGGGGTAAAACTGGCCTCCGGCGCTAACGAAATGGCGACAGCGGAGCTGGTGCTCAATCGTCTCGACGAGCTGGCGCAGTATTTCCCGCATGGACTGGAATACAAGGTGGCGTATGAAACCACCTCGTTTGTTAAAGCCTCCATTGAAGACGTGGTGAAAACGCTGCTGGAAGCTATCGCTCTGGTTTTCCTCGTTATGTATCTGTTCCTGCAAAACTTCCGCGCCACGCTGATACCCACTATCGCCGTGCCGGTGGTGTTGATGGGAACCTTCTCCGTACTTTACGCCTTCGGTTACAGCGTCAACACCTTAACCATGTTCGCGATGGTGCTGGCGATCGGTCTGCTGGTGGATGACGCCATCGTGGTGGTGGAAAACGTCGAACGTATTATGAGTGAGGAAGGACTCACTCCTCGCGAAGCCACACGTAAATCGATGGGGCAGATCCAGGGGGCACTGGTCGGGATTGCGATGGTTCTTTCGGCGGTATTTGTACCAATGGCCTTCTTCGGCGGCACCACCGGTGCCATCTATCGCCAGTTCTCTATTACCATTGTTGCGGCGATGGTGCTGTCAGTACTGGTAGCGATGATCCTCACTCCGGCTCTGTGTGCCACACTACTTAAGCCACTGAAAAAAGGTGAGCATCATGGGCAAAAAGGCTTTTTTGCCTGGTTTAACCAGATGTTTAACCGCAACGCCGAACGCTACGAAAAAGGGGTGGCGAAAATTCTCCACCGTAGCCTGCGCTGGATTGTGATTTATGTCCTGCTGCTTGGCGGCATGGTGTTCCTGTTCCTGCGTTTGCCGACGTCGTTCTTACCGCTGGAAGACCGTGGCATGTTTACTACCTCGGTACAGTTGCCCAGCGGTTCAACGCAACAACAGACCCTGAAAGTCGTTGAGCAAATCGAGAAATACTACTTCACCCATGAAAAAGACAACATCATGTCGGTGTTTGCCACCGTTGGTTCTGGCCCTGGGGGTAACGGGCAAAACGTGGCGCGAATGTTTATCCGCCTGAAAGACTGGAGCGAACGCGACAGTAAGACCGGCACCTCGTTTGCCATTATCGAGCGTGCAACGAAGGCGTTTAACCAAATTAAAGAAGCTCGCGTTATCGCCAGCAGCCCGCCAGCAATTAGCGGTCTTGGTAGTTCTGCAGGTTTTGATATGGAGTTGCAGGACCACGCTGGAGCGGGTCACGATGCGCTGATGGCAGCACGTAATCAGTTGCTGGCGCTGGCGGCGGAAAACCCGGAGCTAACCCGTGTGCGCCATAACGGCCTCGACGACAGTCCGCAGTTGCAGATTGATATCGACCAGCGTAAAGCTCAGGCGCTGGGCGTTGCTATCGACGATATTAACGACACACTGCAAACCGCCTGGGGTTCGAGCTATGTGAATGACTTTATGGATCGCGGTCGCGTGAAGAAAGTCTATGTGCAGGCAGCTGCGCCGTATCGCATGCTGCCAGATGACATCAATCTCTGGTATGTCCGAAATAAAGATGGCGGCATGGTGCCCTTCTCTGCTTTCGCGACCTCACGCTGGGAAACAGGCTCGCCGCGTCTGGAACGCTATAACGGTTATTCTGCGGTTGAGATTGTTGGGGAAGCCGCACCGGGGGTCAGTACCGGTACGGCGATGGATATTATGGAATCGTTAGTGAAGCAGCTGCCAAACGGCTTTGGTCTGGAGTGGACGGCGATGTCGTATCAGGAGCGGCTTTCCGGCGCGCAGGCTCCGGCGCTGTACGCCATTTCCTTGCTGGTGGTATTCCTGTGTCTGGCTGCGTTGTATGAAAGCTGGTCGGTGCCGTTCTCGGTAATGCTGGTCGTGCCGCTGGGGGTAATCGGCGCGCTGCTGGCAACCTGGATGCGCGGGCTGGAAAACGACGTTTACTTCCAGGTGGGCCTGTTAACGGTCATTGGTTTATCGGCGAAAAACGCCATCCTGATCGTCGAGTTTGCTAACGAGATGAACCAAAAAGGCCACGACCTGTTTGAAGCGACGCTCCACGCCTGCCGTCAGCGTTTACGCCCGATTCTGATGACCTCGCTGGCATTTATCTTCGGCGTATTGCCAATGGCAACCAGCACGGGTGCCGGTTCCGGTGGTCAGCATGCGGTGGGTACTGGCGTAATGGGCGGGATGATTTCGGCCACTATTCTGGCTATTTACTTCGTGCCGCTGTTCTTTGTGCTGGTGCGCCGCCGCTTCCCGCTGAAGCCGCGCCCGGAATAA " 1426 UPDATE IMP-7 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAGTTATCAGTATTCTTTATGTTTTTGTTTTGTAGCATTGCTGCCTCAGGAGAGGCTTTGCCAGATTTAAAAATTGAGAAGCTTGACGAAGGCGTTTATGTTCATACTTCGTTTGAGGAAGTTAACGGCTGGGGCGTGGTTCCTAAACACGGCTTGGTGGTTCTTGTAAATACTGACGCTTATTTGATTGACACTCCATTTACAGCTAAAGATACTGAAAAGTTAGTTACTTGGTTTGTAGAGCGCGGCTATAAAATAAAAGGCAGTATCTCCTCTCATTTTCATAGCGACAGCACGGGCGGAATAGAGTGGCTTAATTCTCAATCTATTCCAACATATGCATCTGAATTAACAAATGAACTTCTTAAAAAAGACGGTAAGGTACAAGCTAAAAATTCATTTAGCGGAGCCAGCTATTGGTTAGTTAAGAAAAAGATTGAAATTTTTTATCCTGGCCCAGGGCACACTCCAGATAACGTAGTGGTTTGGCTACCTGAACATAGAGTTTTGTTTGGTGGTTGTTTTGTTAAACCGTATGGTCTAGGTAATTTGGGTGACGCAAATTTAGAAGCTTGGCCAAAGTCTGCCAAATTATTAGTGTCCAAATATGGTAAGGCAAAACTGGTTGTTCCAAGTCACAGTGAAGTTGGAGATGCATCACTCTTGAAACGTACATTAGAACAGGCTGTTAAAGGATTAAACGAAAGTAAAAAGCTATCAAAACCAAGTAACTAA " 1429 UPDATE SHV-60 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACAAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGACCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAGCGGGGTGCGCGCGGCATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATACGCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 1428 UPDATE cphA2 carbapenem; CphA beta-lactamase; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 939 UPDATE CTX-M-113 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 731 UPDATE IMP-11 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAACTATTTGTTTTATGTATATTTTTGTTTTGTAGCATTACTGCCGCAGGAGCGTCTTTGCCTGATTTAAAAATTGAGAAGCTTGAAGAGGGTGTTTATGTTCATACATCGTTTGAAGAAGTTAACGGCTGGGGTGTTGTTTCTAAACACGGTTTGGTGGTTCTTGTAAATACTGACGCCTATCTGATTGACACTCCATTTACTGCTAAAGATACTGAAAAGTTAGTCAATTGGTTTGTGGAGCGCGGCTATAAAATCAAAGGCAGTATTTCCTCACATTTCCATAGCGACAGCACGGGTGGAATAGAGTGGCTTAATTCTCAATCTATTCCCACGTATGCATCTGTATTAACAAATGAACTTCTCAAAAAAGACGGTAAGGTGCAAGCTAAAAACTCATTTAGCGGAGTTAGCTATTGGCTAGTTAAAAATAAAATTGAAGTTTTTTATCCAGGCCCAGGGCACACTCAAGATAACGTAGTGGTTTGGCTACCTAAAAATAAAATCTTATTTGGTGGTTGTTTTGTTAAACCATATGGTCTTGGTAATCTAGATGACGCAAATGTTGAAGCATGGCCACATTCGGCTGAAAAATTAATATCTAAGTATGGTAATGCAAAACTGGTTGTTCCAAGCCATAGTGACATAGGAGATGCGTCGCTCTTGAAGCTTACGTGGGAACAGGCGGTAAAAGGGCTTAATGAAAGCAAAAAAAGTAACACTGTTCATTAA " 730 UPDATE AAC(6')-IIc antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCCGCCAACAATGCCGCAATAGTTCTACGAGTCATGGCCGAGAACGATCTGCCAATGCTCCATGCTTGGCTGAACCGCCCCCACATAGTCGAGTGGTGGGGCGGCGAGGATGAACGCCCAACTCTTGACGAAGTCTTAGAACACTATTCGCCCGAAGTTCTGGCAAAGCAAGCTGTAGTGCCTTACATCGCAATGCTAGATGACGAACCCATCGGCTACGCCCAATCCTACATCGCACTTGGAAGTGGCGATGGATGGTGGGAAGACGAAACTGATCCAGGGGTCCGCGGGATTGACCAGTCTTTGGCTAATCCATCACAGTTAAACAAGGGGTTGGGTACAAAGCTCGTACGCTCGCTCGTTGAACTCCTGTTTAGCGACCCGGCCGTAACGAAAATCCAAACCGATCCATCTCCTAGCAACCATCGCGCCATTCGCTGCTACGAGAAGGCCGGGTTCGTTCAAGAAAAAAACATCCTCACACCTGACGGCCCTGCGGTGTACATGGTCCAAACACGCCAGGCGTTCGAAAGCCTGCGCACTGTTCAAAGCTTCAAAATCAAGGGGAAGTGGTCATGA " 732 UPDATE OXA-237 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 735 UPDATE TEM-30 penam; antibiotic inactivation; monobactam; penem; cephalosporin; amoxicillin; clavulanate; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTAGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 734 UPDATE vanTC glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanT; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAATAAAGGAATCGATCAATTTCGTGTGATTGCAGCCATGATGGTGGTTGCGATCCATTGTCTTCCCCTTCACTATTTATGGCCAGAAGGCGATATCCTAATCACATTGACGATTTTTCGAGTAGCTGTTCCTTTCTTTTTTATGATCAGTGGTTACTATGTGTTTGCAGAACTTGCTGTGGCCAATAGTTATCCTTCGCGACAACGAGTATTCAACTTTATCAAAAAACAGCTAAAAGTCTATCTATTAGCCACACTAATGTTTTTACCATTAGCACTCTATAGTCAAACGATCGGCTTCGATCTACCAGTTGGAACATTAGTACAAGTACTTTTGGTCAATGGCATTCTTTATCATCTTTGGTACTTTCCGGCTTTGATTACTGGGAGCCTGCTCCTAACAAGTTTGCTGATACATGTCTCCTTCAAAAAAGTGTTCTGGCTTGCGGCTGGATTGTACCTGATTGGATTAGGTGGTGATAGTTGGTTTGGACTGATCCAACAGACACCAATCGAACCATTCTATACTGCTGTGTTCCACCTATTAGATGGTACCCGCAACGGTATTTTCTTTACACCATTGTTTTTGTGCTTAGGTGTGCTGGTCAGAAAACAATCAGAGAAAAGAAGTTTATCCAAAACAGCTCTCTTCTTTTTGATCAGTCTTATCGGATTGCTTATTGAGAGTGCGTACTTGCATGGGTTTTCTATACCTAAACATGACAGTATGTATCTCTTCTTGCCTGTTGTACTCTTTTTCTTATTTCCGCTGATCTTGCGCTGGCATCCCCACAGGACTTGGAAGCATCCAGGACAGCTATCTTTGTGGCTTTACCTTTTACATCCTTATACAATTGCCGGCACACACTTTTTGAGCCAAAAAATCAGCATTCTGCAAAACAATCTAATCAACTATTTGGTTGTTTTGATCTTGACGATTGGATTCATTTGCCTCTTTTTAAGACAAAAACACTCATGGTTTAGACACAAACAAACAACGCCCGTTAAAAGGGCCGTAAAAGAATTCTCAAAGACAGCCCTTTTGCATAATCTACAGGAGATCCAGCGGATCATCTCACCGAAAACAAAAGTGATGGCAGTCGTTAAAGCCGATGCCTACGGCTGTGGTGCCAAGGAAGTTGCTCCTGTTTTAGAACAAGCCGGAATTGATTTTTTTGCGGTGGCTACGATTGATGAAGGTATTCGATTGCGGAAAAATGCTGTCAAAAGCCCCATCTTGGTCTTGGGATATACCTCTCCAAAACGCATAAAAGAACTTCGTCGCTACTCATTGACCCAATCGATCATCAGCGAAGGTCATGCTGTAGCATTGTCACAAAGAAAAGTAGCGATTGACTGTCATTTAGCCATCGATACTGGGATGCATCGGTTAGGTGTAACACCGACTATCGATTCGATTCTTTCGATTTTCGATTTGCCCTTCTTGACGATCAGTGGTGTTTATTCTCATCTTGGTTCGGCAGATCGCTTAAATCCTGATAGTATGATTCGCACTCAGAAGCAGATTGCCTGCTTCGATCAGATTCTCCTAGAGTTGGATCAGAGACAGATTTCTTATGGTATCACACACTTACAAAGCAGTTATGGTATTTTGAATTATCCAGACTTAAACTATGATTATGTGCGTCCGGGGATTTTATTGACAGGATCCCTCAGTGATACGAACGAGCCTACAAAACAACGAGTAAGCTTACAGCCTATTCTGACCCTCAAAGCACAGTTGATCACTAAGCGAGTCGTTGCCAAAGGGGAAGCGATCGGTTATGGGCAAACCGCCGTCGCGAATCAAGAAACAACTGTTGGTGTTGTGAGCATCGGCTATTGTGACGGACTGCCCCGTTCTCTATCAAATCAAGAGTTTTGTCTTTCCTATCGCGGTCAGTCCTTGCCGCAGATCGGCTTGATCTGCATGGACATGCTTTTGATAGACTTGAGCCATTGTCCTACGATCCCAATTGAAAGTGAAATTGAAATTCTGACAGATTGGAGCGATACTGCCGAGCAAGTACAAACTATAACCAATGAGTTGATTTGTCGGATCGGTCCACGAGTCAGTGCTAGGATCAAATAG " 737 UPDATE MIR-8 antibiotic inactivation; monobactam; cephalosporin; MIR beta-lactamase; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 35962 " 736 UPDATE arr-7 antibiotic inactivation; rifampin; rifapentine; rifabutin; rifampin ADP-ribosyltransferase (Arr); rifaximin; rifamycin antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCCGAATGACTGGATTCCCACCTCGCACGAAAACTGCTCGCTCGTGCCGGGGCCGTTCTACCACGGCACCAAAGCAAAACTCGCAATAGGTGACTTGCTTTCGCCTGGACACCCGTCTCACTTTGAGCAAGGCCGTAGGCTCAAACACATCTATTTTGCCGCACTGATGGAGCCAGCCATCTGGGGTGCTGAGCTTGCAATGTCATTGTCACGCCAAGAGGGGCGCGGTTACATTTACATTGTTGAACCGCTCGGGCCGTTTGAGGACGACCCAAACCTTACAAACAAAAAATTTCCGGGCAATCCAACCAAGTCCTACCGCACCAGTGAGTCGCTACGGATTGTGGAGGTAGTAGAGGACTGGCAAGGCCACTCACCGGATGTGCTGCAGGGCATGTTGGCATCACTGGAGGATCTTCAGCGTCGCGGCCTCGCAATCATTGAGGACTAG " 739 UPDATE LRA-18 penam; antibiotic inactivation; cephalosporin; class C LRA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTGAAACGTATCCGCTTGCCCCAACTGGCGCTGGCCCTTGCGGCGCTGTTCCCCTTGGCCGCCTACGCGGCGCCGGACGCCGCCGCGCTGCGCCAGGCCGTCGACGCGGCAGTCGGCCCCGTCATGGCGCAGTTCGATGTGCCGGGCATGGCGGTCGCCGTCACGGTCGATGGCCAGCCGCACTTTTTCAATTACGGCGTCGCCGCGCGCGACAGCAAGCAACCCGTGACGGAAGCGACCATCTTTGAGTTGGGTTCGAACAGCAAGACTTTTACGGCCACCCTGGCGGCCTATGCCCAGGCGCAAGGCAAACTGGCGCTGGACGATCACCCCGGCAAGTATGTGCCGCAATTGCAGGGCAGTGCGCTCGATGGCGCCACCTTGCTGCACCTCGGCACCTACACGGCGGGCGGCTTTCCGTTGCAAATTCCGGACAACCTGAAAACCCGGGAGCAGTTGTTCAGTTACTTTCAGCACTGGAAACCGGACGCGGCGCCGGGCAAGCAGCGTAACTATTCCAATCCCAGCATCGGCCTATTCGGCCATATTGCCGGCCTGGCGCTCGGTGGCGGCTTTGCCGACGCGGCGGAGCGCGACTTGTTCCCGCAACTGGGTTTGCAACACACTTACATCCGCGTGCCGCAGTCAGCCATGGCCCATTACGCGTGGGGCTATTCGAAAGACCAGGCGGTCCGTGTCCAGCCTGATTTGTTCGATAGTGAAGCCTATGGCGTGAAATCCACGGCGGCCGACATGATCCGCTACGTGCAACTGCAAATCGACCCGTCGCGCCTGGCCGCACCGATGCGGCGCGCGGTGCAAGCGACCCATACCGGCTACTTCAAGGCCGGCCCGATGACGCAGGGACTGGGATGGGAATCGTACCCGTATCCCGTCAGCCTGGAGCAACTGTTGCAGGGCAATTCCACCGACATGGCGTGGAAGCCGCAGCCAGTCCAGGCAATACAACCAGTGCAGACCGCGGCCCCGGCCCTGTACAACAAGACCGGTTCCACGCGGGGCTTCGGCAGCTATGTCGCCTTTGTCCCGTCGCAAAAAATTGGTATCGTGCTGCTGGCCAACCGGGCTTATCCGAACGATGCGCGGATCAAGCTGGCGTATGCGATCTTGAATCAGCTGGCCCCGGCGGCAAATTGA " 738 UPDATE AAC(6')-Iae antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAATACAACATTGTTAATATTAAAGATTCTGAAAAGTATATAACGCAAGCTGCAGAAATTCTATTTGATGTATTTTCACACATAAATTTCGATTCTTGGCCGTCACTCCAAAAGGCTACAGAAACTGTAATAGAATGTATTAGCGCCGAAAACATTTGTATTGGCATTTTAATAAACGATGAATTGTGTGGTTGGGTTGGATTAAGAGAAATGTATAAAAAAACTTGGGAACTACATCCAATGGTTATTAAGAAAAAACATCAAAATAAGGGATTTGGTAAAATACTAATTTTTGAAACAGAAAAGAAAGCGAAAGAAAGAAATTTAGAAGGAATTGTACTTGGAACAGACGATGAAACATTTAGAACTACATTATCAATGTCAGAATTAAATAATGAAAATATATTCCATGAAATTAAAAATATAAAAAATCTAAAAAATCATCCATTTGAATTTTATGAAAAATGTGGTTACAGTATTATTGGTGTGATTCCTAATGCAAATGGGAAAAATAAACCTGATATATTAATGTGGAAAAATATAATGTAA " 1359 UPDATE OXA-233 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1358 UPDATE VIM-24 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 469 UPDATE SHV-49 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATAAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTACTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTGGCGAGCGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATACCCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 468 UPDATE Erm(37) antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGTCCGCCCTCGGACGGTCGCGACGGGCATGGGGCTGGCACCGGCTCCATGACGAATGGGCAGCGCGGGTAGTCAGCGCGGCCGCAGTGCGGCCCGGTGAGCTCGTGTTTGACATCGGCGCCGGCGAAGGGGCACTGACGGCGCATCTAGTGCGAGCGGGGGCGCGGGTGGTCGCCGTGGAGTTGCACCCGCGACGAGTCGGTGTCCTCCGCGAGCGATTCCCTGGCATTACCGTGGTGCACGCGGACGCCGCCTCGATCCGGTTGCCCGGCCGGCCGTTCCGGGTTGTGGCGAACCCGCCGTACGGGATTTCGTCCCGCCTGCTGCGGACGCTGCTGGCACCCAACAGCGGGCTTGTCGCGGCCGATCTCGTGCTGCAGCGAGCCCTCGTATGTAAATTCGCTTCTCGCAACGCGCGAAGGTTCACCCTGACCGTCGGCCTCATGCTGCCACGGCGCGCGTTCCTGCCACCGCCGCATGTGGATTCCGCGGTGCTCGTCGTCCGCCGCCGGAAGTGCGGTGACTGGCAGGGGCGGTAA UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 465 UPDATE vanSO glycopeptide antibiotic; vanS; antibiotic target alteration; vancomycin; glycopeptide resistance gene cluster; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 5947 UPDATED strand with - UPDATED accession with KF478993 UPDATED fmin with 4909 UPDATED sequence with ATGCTCGCTGGTGTCTTGCTCCTTGCGGCGGTTTGGGTTTTCCTGCTGAGAGGGCGGTCCACGAATTTCCAATTCCCTGCTCTGGCCGACTTTGCCCGGGTCTTCGACCCGAGCAACTTCGGTCCCGTGGTGTTTGTCCCGGCAGCGATCTTGGCGCTCGGGTTCTTGCTGGTGTTCGGCCTTGTGGGTGGTTGGATTCTCGCGGGCCGAATGCTTGCCCCGTTGGCGCGCATTACGCGCGCCGCGCGGGAGGCGGGGAGTGGCTCGCTGTCGTACCGGATCGAACTGGAGGGACGCAACGACGAGTTCCGTGAACTTGCCGATGCCTTCGACGCCATGCTCGCACGGCTCGAAGCACGAGACGCCGCGCAGCAGCGATTCGCCGCCAACGCCTCCCACGAGTTGCGCACCCCGCTGGCGATCACACAAACCCTTCTCGATGTCGCCCGCAACGATCCGAACCGCGACGGCGGCGAGCTCGACGAACGCCTCCGCGCTGTCAACGCACGGGCGATCGAGCTCACCGAGGCATTGCTCCTGCTCAGCCGTACCGACCAACGGTCCTTCAGCCGAGAAGACGTCGATCTGTCGCTCATCGCGGAAGAAGCCGCCGAGACACTCCTCCCGTTCGCGGAGAAGCACGGCGTCAGCATCGAGACCTCCGGGGACATCGCGCCGGTCATCGGCTCACACGCACTCTTGCTGCAGTTGACTACGAACCTTCTGCACAATGCGATCGTCCACAATGTCCCCGAGCACGGCAGCGTGCAGATCAGCACCGCCATCGGCTCCGAGTCCGTCATGCTCACGGTCGAGAACACCGGCGACAAGCTCAGTCCACAGTTGGTCTCGACACTCACCGAGCCGTTTCAGCGCGGCACTGCTCGCACCCGCGGGGACGATGCGAGGGTGGGCCTTGGCCTGGCGATCGTCAAGAGCATCACGCAGGCACACGACGGATCCCTCACGCTCAGCCCCCGAGCTGCCGGCGGGCTCTCCGTAGCAGTGCGACTGCCCGCCGCTCAGCGACGACCGTAA UPDATED NCBI_taxonomy_name with Rhodococcus equi UPDATED NCBI_taxonomy_id with 43767 UPDATED NCBI_taxonomy_cvterm_id with 36897 UPDATED accession with AHA41504.1 UPDATED sequence with MLAGVLLLAAVWVFLLRGRSTNFQFPALADFARVFDPSNFGPVVFVPAAILALGFLLVFGLVGGWILAGRMLAPLARITRAAREAGSGSLSYRIELEGRNDEFRELADAFDAMLARLEARDAAQQRFAANASHELRTPLAITQTLLDVARNDPNRDGGELDERLRAVNARAIELTEALLLLSRTDQRSFSREDVDLSLIAEEAAETLLPFAEKHGVSIETSGDIAPVIGSHALLLQLTTNLLHNAIVHNVPEHGSVQISTAIGSESVMLTVENTGDKLSPQLVSTLTEPFQRGTARTRGDDARVGLGLAIVKSITQAHDGSLTLSPRAAGGLSVAVRLPAAQRRP " 464 UPDATE NDM-13 antibiotic inactivation; penam; carbapenem; cephalosporin; cephamycin; NDM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAATTGCCCAATATTATGCACCCGGTCGCGAAGCTGAGCACCGCATTAGCCGCTGCATTGATGCTGAGCGGGTGCATGCCCGGTGAAATCCGCCCGACGATTGGCCAGCAAATGGAAACTGGCGACCAACGGTTTGGCGATCTGGTTTTCCGCCAGCTCGCACCGAATGTCTGGCAGCACACTTCCTATCTCGACATGCCGGGTTTCGGGGCAGTCGCTTCCAACGGTTTGATCGTCAGGGATGGCGGCCGCGTGCTGGTGGTCGATACCGCCTGGACCAATGACCAGACCGCCCAGATCCTCAACTGGATCAAGCAGGAGATCAACCTGCCGGTCGCGCTGGCGGTGGTGACTCACGCGCATCAGGACAAGATGGGCGGTATGGACGCGCTGCATGCGGCGGGGATTGCGACTTATGCCAATGCGTTGTCGAACCAGCTTGCCCCGCAAGAGGGGCTGGTTGCGGCGCAACACAGCCTGACTTTCGCCGCCAATGGCTGGGTCGAACCAGCAACCGCGCCCAACTTTGGCCCGCTCAAGGTATTTTACCCCGGCCCCGGCCACACCAGTGACAATATCACCGTTGGGATCGACGGCACCGACATCGCTTTTGGTGGCTGCCTGATCAAGGACAGCAAGGCCAAGTCGCTCGGCAATCTCGGTGATGCCGACACTGAGCACTACGCCGCGTCAGCGCGCGCGTTTGGTGCGGCGTTCCCCAAGGCCAGCATGATCGTGATGAGCCATTCCGCCCCCGATAGCCGCGCCGCAATCACTCATACGGCCCGCATGGCCGACAAGCTGCGCTGA " 467 UPDATE CARB-3 penam; antibiotic inactivation; CARB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCTTTTATATAAAATGTGTGACAATCAAAATTATGGGGTTACTTACATGAAGTTTTTATTGGCATTTTCGCTTTTAATACCATCCGTGGTTTTTGCAAGTAGTTCAAAGTTTCAGCAAGTTGAACAAGACGTTAAGGCAATTGAAGTTTCTCTTTCTGCTCGTATAGGTGTTTCCGTTCTTGATACTCAAAATGGAGAATATTGGGATTACAATGGCAATCAGCGCTTCCCGTTAACAAGTACTTTTAAAACAATAGCTTGCGCTAAATTACTATATGATGCTGAGCAAGGAAAAGTTAATCCCAATAGTACAGTCGAGATTAAGAAAGCAGATCTTGTGACCTATTCCCCTGTAATAGAAAAGCAAGTAGGGCAGGCAATCACACTCGATGATGCGTGCTTCGCAACTATGACTACAAGTGATAATACTGCGGCAAATATCATCCTAAGTGCTGTAGGTGGCCCCAAAGGCGTTACTGATTTTTTAAGACAAATTGGGGACAAAGAGACTCGTCTAGACCGTATTGAGCCTGATTTAAATGAAGGTAAGCTCGGTGATTTGAGGGATACGACAACTCCTAAGGCAATAGCCAGTACTTTGAATAAACTTTTATTTGGTTCCGCGCTATCTGAAATGAACCAGAAAAAATTAGAGTCTTGGATGGTGAACAATCAAGTCACTGGTAATTTACTACGTTCAGTATTGCCGGCGGGATGGAACATTGCGGATCGCTCAGGTGCTGGCGGATTTGGTGCTCGGAGTATTACAGCAGTTGTGTGGAGTGAGCATCAAGCCCCAATTATTGTGAGCATCTATCTAGCTCAAACACAGGCTTCAATGGCAGAGCGAAATGATGCGATTGTTAAAATTGGTCATTCAATTTTTGACGTTTATACATCACAGTCGCGCTGA " 466 UPDATE CTX-M-76 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGACTCAGAGCATTCGCCGCTCAATGTTAACGGTGATGGCGACGCTACCCCTGCTATTTAGCAGCGCAACGCTGCACGCGCAGACGAACAGCGTGCAACAGCAGCTGGAAGCCCTGGAGAAAAGTTCGGGAGGTCGGCTTGGCGTTGCGCTGATTAACACCGCCGATAATTCGCAGATTCTCTACCGTGCCGATGAACGTTTTGCGATGTGCAGTACCAGTAAGGTGATGGCGGCCGCGGCGGTGCTTAAACAGAGCGAGAGCGATAAGCACCTGTTAAATCAGCGCGTTGAAATCAAGAAGAGCGACCTGGTTAACTACAATCCCATTGCGGAGAAACACGTTAACGGCACGATGACGCTGGCTGAGCTTGGCGCAGCGGCGCTGCAGTATAGCGACAATACTGCCATGAATAAGCTGATTGCCCATCTGGGTGGGCCCGATAAAGTGACGGCGTTTGCTCGCTCGTTGGGTGATGAGACCTTCCGTCTGGACAGAACCGAGCCCACGCTCAATACCGCCATTCCAGGCGACCCGCGTGATACCACCACGCCGCTCGCGATGGCGCAGACCCTGAAAAATCTGACGCTGGGTAAAGCGCTGGCGGAAACTCAGCGGGCACAGTTGGTGACGTGGCTTAAGGGCAATACTACCGGTAGCGCGAGCATTCGGGCGGGTCTGCCGAAATCATGGGGAGTGGGCGATAAAACCGGCAGCGGAGATTATGGCACCACCAACGATATCGCGGTTATCTGGCCGGAAAACCACGCACCGCTGGTTCTGGTGACCTACTTTACCCAACCGGAGCAGAAGGCGGAAAGCCGTCGGGATGTTCTGGCTGCGGCGGCGAAAATCGTAACCCACGGTTTCTGA " 1357 UPDATE CTX-M-132 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 460 UPDATE CMY-29 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1355 UPDATE TEM-149 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 462 UPDATE Staphylococcus aureus pgsA mutations conferring resistance to daptomycin peptide antibiotic; antibiotic target alteration; daptomycin resistant pgsA; daptomycin; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 1273 UPDATE otr(A) tetracycline antibiotic; tetracycline-resistant ribosomal protection protein; antibiotic target protection; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2158 UPDATE Escherichia coli EF-Tu mutants conferring resistance to Pulvomycin pulvomycin; elfamycin resistant EF-Tu; GE2270A; LFF571; elfamycin antibiotic; enacyloxin IIa; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 3902762 UPDATED strand with - UPDATED accession with AE014075.1 UPDATED fmin with 3901532 UPDATED sequence with GTGCTCTCTCCTGAAGGGGAGAGCACTATAGTAAGGAATATAGCCGTGTCTAAAGAAAAATTTGAACGTACAAAACCGCACGTTAACGTTGGTACTATCGGCCACGTTGACCACGGTAAAACTACTCTGACCGCTGCAATCACCACCGTACTGGCTAAAACCTACGGCGGTGCTGCTCGTGCATTCGACCAGATCGATAACGCGCCGGAAGAAAAAGCTCGTGGTATCACCATCAACACTTCTCACGTTGAATACGACACCCCGACCCGTCACTACGCGCACGTAGACTGCCCGGGGCACGCCGACTATGTTAAAAACATGATCACCGGTGCTGCTCAGATGGACGGCGCGATCCTGGTAGTTGCTGCGACTGACGGCCCGATGCCGCAGACTCGTGAGCACATCCTGCTGGGTCGTCAGGTAGGCGTTCCGTACATCATCGTGTTCCTGAACAAATGCGACATGGTTGATGACGAAGAGCTGCTGGAACTGGTTGAAATGGAAGTTCGTGAACTTCTGTCTCAGTACGACTTCCCGGGCGACGACACTCCGATCGTTCGTGGTTCTGCTCTGAAAGCGCTGGAAGGCGACGCAGAGTGGGAAGCGAAAATCCTGGAACTGGCTGGCTTCCTGGATTCTTACATTCCGGAACCAGAGCGTGCGATTGACAAGCCGTTCCTGCTGCCGATCGAAGACGTATTCTCCATCTCCGGTCGTGGTACCGTTGTTACCGGTCGTGTAGAACGCGGTATCATCAAAGTTGGTGAAGAAGTTGAAATCGTTGGTATCAAAGAGACTCAGAAGTCTACCTGTACTGGCGTTGAAATGTTCCGCAAACTGCTGGACGAAGGCCGTGCTGGTGAGAACGTAGGTGTTCTGCTGCGTGGTATCAAACGTGAAGAAATCGAACGTGGTCAGGTACTGGCTAAGCCGGGCACCATCAAGCCGCACACCAAGTTCGAATCTGAAGTGTACATTCTGTCCAAAGATGAAGGCGGTCGTCATACTCCGTTCTTCAAAGGCTACCGTCCGCAGTTCTACTTCCGTACTACTGACGTGACTGGTACCATCGAACTGCCGGAAGGCGTAGAGATGGTAATGCCGGGCGACAACATCAAAATGGTTGTTACCCTGATCCACCCGATCGCGATGGACGACGGTCTGCGTTTCGCAATCCGTGAAGGCGGCCGTACCGTTGGCGCGGGCGTTGTTGCTAAAGTTCTGGGCTAA UPDATED NCBI_taxonomy_name with Escherichia coli CFT073 UPDATED NCBI_taxonomy_id with 199310 UPDATED NCBI_taxonomy_cvterm_id with 36763 UPDATED accession with AAN82549.1 UPDATED sequence with MLSPEGESTIVRNIAVSKEKFERTKPHVNVGTIGHVDHGKTTLTAAITTVLAKTYGGAARAFDQIDNAPEEKARGITINTSHVEYDTPTRHYAHVDCPGHADYVKNMITGAAQMDGAILVVAATDGPMPQTREHILLGRQVGVPYIIVFLNKCDMVDDEELLELVEMEVRELLSQYDFPGDDTPIVRGSALKALEGDAEWEAKILELAGFLDSYIPEPERAIDKPFLLPIEDVFSISGRGTVVTGRVERGIIKVGEEVEIVGIKETQKSTCTGVEMFRKLLDEGRAGENVGVLLRGIKREEIERGQVLAKPGTIKPHTKFESEVYILSKDEGGRHTPFFKGYRPQFYFRTTDVTGTIELPEGVEMVMPGDNIKMVVTLIHPIAMDDGLRFAIREGGRTVGAGVVAKVLG " 1519 UPDATE vatE dalfopristin; antibiotic inactivation; streptogramin vat acetyltransferase; pristinamycin IIA; madumycin II; griseoviridin; streptogramin antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACTATACCTGACGCAAATGCAATCTATCCTAACTCAGCCATCAAAGAGGTTGTCTTTATCAAGAACGTGATCAAAAGTCCCAATATTGAAATTGGGGACTACACCTATTATGATGACCCAGTAAATCCCACCGATTTTGAGAAACACGTTACCCATCACTATGAATTTCTAGGCGACAAATTAATCATCGGTAAATTTTGTTCTATCGCCAGTGGCATTGAATTTATCATGAACGGTGCCAACCACGTAATGAAAGGTATTTCGACTTATCCATTTAATATTTTAGGTGGCGATTGGCAACAATACACTCCTGAACTGACTGATTTGCCGTTGAAAGGTGATACTGTAGTCGGAAATGACGTGTGGTTTGGGCAAAATGTGACCGTCCTACCAGGCGTAAAAATAGGTGACGGTGCCATTATCGGAGCAAATAGTGTTGTAACAAAAGACGTCGCTCCATATACAATTGTCGGTGGCAATCCAATTCAACTCATCGGACCAAGATTTGAACCGGAAGTTATTCAAGCATTAGAAAATCTGGCATGGTGGAATAAAGATATTGAATGGATAACTGCTAATGTTCCTAAACTAATGCAAACAACACCCACACTTGAATTGATAAACAGTTTAATGGAAAAATAA " 1518 UPDATE EreA2 antibiotic inactivation; macrolide antibiotic; macrolide esterase; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACATGGAGAACGACCAGAACACTTTTACAGCCTCAAAAGCTGGAGTTCAATGAGTTTGAGATTCTTAATCCCGTAGTTGAGGGCGCCCGAATTGTCGGCATTGGCGAGGGTGCTCACTTTGTCGCGGAGTTCTCACTGGCTAGAGCTAGTCTTATTCGCTATTTTGTCGAGAGGCATGATTTTAATGCGATTGGTTTGGAATGTGGGGCGATTCAGGCATCCCGGCTATCTGAATGGCTCAACTCAACAGCCGGTGCTCATGAACTTGAGCGATTTTCGGATACCCTGACCTTTTCTTTGTATGGCTCAGTGCTGATTTGGGTTAAATCATATCTACGCGAATCAGGAAGAAAACTGCAGTTAGTCGGAATCGATTTACCCAACACCTTGAATCCAAGGGACGACCTAGCGCAATTGGCCGAAATTATCCAGGTCATCGACCACCTCATGAAACCCCACGTTGATGCGCTGACTCAGTTGTTGACGTCCATTGATGGCCAGTCGGCGGTTATTTCATCGGCAAAATGGGGGGAGTTGGAAACGGCTCAGCAGGAGAAAGCTATCTCAGGGGTAACCAGATTGAAGCTCCGTTTGGCGTCGCTTGCCCCTGTCCTGAAAAATCACGTCAACAGCGATTTTTTCCGAAAAGCCTCTGATCGAATAGAGTCGATAGAGTATACGTTGGAAACCTTGCGTGTAATGAAAGCTTTCTTCGATGGTACCTCTCTTGAGGGAGATACTTCCGTACGTGACTCGTATATGGCGGGCGTGGTGGATGGAATGGTTCGAGCGAATCCGGATGTAAGGATAATTCTGCTGGCGCACAACAATCATTTACAAAAAACTCCAGTTTCCTTTTCAGGCGAGCTTACGGCTGTTCCCATGGGACAGCATCTCGCAGAGAGGGAGGAGGGGGATTACCGTGCGATTGCATTCACCCATCTTGGACTCACCGTGCCGGAAATGCATTTCCCATCGCCCGACAGTCCTCTTGGATTCTCTGTTGTGACCACGCCTGCCGATGCAATCCGTGAGGATAGTGTGGAACAGTATGTCATCGATGCCTGTGGTAAGGAGGATTCATGCCTGACATTGACAGATGACCCCATGGAAGCAAAGCGAATGCGGTCCCAAAGCGCCTCTGTAGAAACGAATTTGAGCGAGGCATTTGATGCCATCGTCTGCGTTCCCAGCGCCGGCAAGGACAGCCTGGTTGCCCTATAG " 1515 UPDATE NDM-3 antibiotic inactivation; penam; carbapenem; cephalosporin; cephamycin; NDM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1514 UPDATE IMP-28 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGCAAGTTATTTGTATTCTTTATGTTTTTGTTTTGTAGCATTACTGCCGCAGCAGAGTCTTTGCCAGATTTAAAAATTGAGAGGCTTGATGAAGGCGTTTATGTTCATACTTCGTTTGAAGAAGTTAACGGTTGGGGTGTTGTTCCTAAACACGGCTTGGTGGTTCTTGTAAATACTGAGGCCTATCTGATTGACACTCCATTTACGGCTAAAGATACTGAAAAGTTAGTCACTTGGTTTGTGGGACGCGGCTATAAAATAAAAGGCAGTATTTCCTCTCATTTTCATAGCGACAGCACGGGCGGAATAGAGTGGCTTAATTCTCAATCTATCCCCACGTATGCATCTGAATTAACAAATGAACTTCTTAAAAAAGACGGTAAGGTACAAGCTAAAAATTCATTTGGCGGAGTTAGCTATTGGCTAGTTAAGAATAAGATTGAAGTTTTTTATCCTGGTCCAGGGCACACTCCAGATAACGTAGTGGTTTGGCTACCTGAAAATAGAGTTTTGTTCGGTGGTTGTTTTGTTAAACCGTACGGTCTTGGTAATTTGGGTGACGCAAATTTAGAAGCTTGGCCAAAGTCCGCCAAATTATTAATGTCCAAATATGGTAAGGCAAAACTGGTTGTTCCAAGTCACAGTGAAGTTGGAGACGCATCACTCTTGAAGCGAACATTAGAACATGCGGTTAAAGGGTTAAATGAAAGTAAAAAACCATCAAAACCAAGTAACTAA " 1517 UPDATE OXA-33 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GCAAATATTATCTACAGCAGCGCCAGTGCATCAACAGATATCTCTACTGTTGCATCTCCATTATTTGAAGGAACTGAAGGTTGTTTTTTACTTTACGATGTATCCACAAACGCTGAAATTGCTCAATTCAATAAAGCAAAGTGTGCAACGCAAATGGCACCAGATTCAACTTTCAAGATCGCATTATCACTTATGGCATTTGATGCGGAAATAATAGATCAGAAAACCATATTCAAATGGGATAAAACCCCCAAAGGAATGGAGATCTGGAACAGCAATCATACACCAAAGACGTGGATGCAATTTTCTGTTGTTTGGGTTTCGCAAGAAATAACCCAAAAAATTGGATTAAATAAAATCAAGAATTATCTCAAAGATTTTGATTATGGAAATCAAGACTTCTCTGGAGATAAAGAAAGAAACAACGGATTAACAGAAGCATGGCTCGAAAGTAGCTTAAAAATTTCACCAGAAGAACAAATTCAATTCCTGCGTAAAATTATTAATCACAATCTCCCAGTTAAAAACTCAGCCATAGAAAACACCATAGAGAACATGTATCTACAAGATCTGGAGAATAGTACAAAACTGTATGGGAAAACTGGTGCAGGATTCACAGCAAATAGAACCTTACAAAACGGATGGTTTGAAGGGTTTATTATAAGCAAATCAGGACATAAATATGTTTTTGTGTCCGCACTTACAGGAAACTTGGGGTCGAATTTAACATCAAGCATAAAAGCCAAGAAAAATGCGATCACCATTCTA " 934 UPDATE IMP-8 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGAAATTATTTGTTTTATGTGTATGCTTCCTTTGTAGCATTACTGCCGCAGGAGCGGCTTTGCCTGATTTAAAAATCGAGAAGCTTGAAGAAGGTGTTTATGTTCATACATCGTTCGAAGAAGTTAACGGTTGGGGTGTTGTTTCTAAACACGGTTTGGTGGTTCTTGTAAACACTGACGCCTATCTGATTGACACTCCATTTACTGCTACAGATACTGAAAAGTTAGTCAATTGGTTTGTGGAGCGCGGCTATAAAATCAAAGGCACTATTTCCTCACATTTCCATAGCGACAGCACAGGGGGAATAGAGTGGCTTAATTCTCAATCTATTCCCACGTATGCATCTGAATTAACAAATGAACTTCTTAAAAAAGACGGTAAGGTGCAAGCTAAAAACTCATTTAGCGGAGTTAGTTATTGGCTAGTTAAAAATAAAATTGAAGTTTTTTATCCCGGCCCGGGGCACACTCAAGATAACGTAGTGGTTTGGTTACCTGAAAAGAAAATTTTATTCGGTGGTTGTTTTGTTAAACCGGACGGTCTTGGTAATTTGGGTGACGCAAATTTAGAAGCTTGGCCAAAGTCCGCCAAAATATTAATGTCTAAATATGGTAAAGCAAAACTGGTTGTTTCAAGTCATAGTGAAATTGGGGACGCATCACTCTTGAAACGTACATGGGAACAGGCTGTTAAAGGGCTAAATGAAAGTAAAAAACCATCACAGCCAAGTAACTAA " 1511 UPDATE OXA-423 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1510 UPDATE vanTrL glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanT; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTAGAAAACAAAATGAGAGCCTACAAAGAATTCTATGTAGAATCATTGTTGCATAATGTACAAGTTATCAAAAAAAACATACCCAAGTCTACTAAAATAATGGCAGTAGTGAAAGCAAATGCCTATGGAATAAATGCAGTGAATGTAGCTATTATCTTAGAATATATAGGAATTGACTTTTTTGCAGTTGCTACTATAGATGAAGCTATTGCTTTAAGAAAAAATGGCATTACAAGTAATATTTTAATTTTAGGATACACTACACCAACCAAGGTAGATGATCTTATCCATTACGAACTTACCCAAACAATAGTAAGCAAAGAACACGCGTATTTTCTTAATAAAACAGGAAAGAAGATAATGTGTCATTTAAAAGTCGACACAGGGATGCATCGGTTAGGTGTTGAACCTACGTTAGAAGAAATCTGTCCTATTTTTAACTACCCTTTTTTAAAGATAAAGGGTGTTTATTCTCACTTGGGCTCAGCAGACGATTTATCTGAGGAAGGCAAACAACGAACTATAAAACAAATTAGCCGATACAATACCATTATTGCAGAATTAAAACGAAAACGTGTTGACGTAGGGCTAACCCATCTCCAAAGTAGTTATGGTATACTTAATTATTCTGAGTTAGCGTATGACTATGTTCGTCCTGGAATTATTTTATATGGGCTTTTAAGTAATAATGACCACAACGTCAAATTGCATTTGGATCTCCAGCCTGTAGTAGCGGTTAAAGCTCAGTTAATTTCAAAAAAAAAGATAGCTCCTGGTGAATATATTGGCTACGGTACAGATACACAATTAACTTCTTCCAAAACTATAGGGGTATTAAGCATTGGGTATGCTGACGGAATCCCTAGAAATTTATCAAATGGAGAATATTGTGTCGTGTTTGAAGATAAGCAAATCCCTCAAATTGGACGTATTTGTATGGACATGATGTTAGTAGATTTGTCAAATTGTTCAGATATCCCTTTAGGTGTAATGGTTGATGTATTACCTAATATTGAAGAAATATCTCAAATCCAAAGCACCATAACGAATGAAATAATAAGTTGTTTGGGTAGTCGCTTGGGGATGGAAGTAAAGTAA " 1513 UPDATE QnrB64 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1512 UPDATE SME-3 carbapenem; antibiotic inactivation; SME beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCAAACAAAGTAAATTTTAAAACGGCTTCATTTTTGTTTAGTGTTTGTTTAGCTTTGTCGGCATTTAATGCTCATGCTAACAAAAGTGATGCTGCGGCAAAACAAATAAAAAAATTAGAGGAAGACTTTGATGGGAGGATTGGCGTCTTTGCAATAGATACAGGATCGGGTAATACATTTGGGTATAGATCAGATGAGCGGTTCCCTTTATGCAGTTCATTTAAAGGTTTTTTGGCGGCTGCTGTTTTAGAGAGGGTGCAACAAAAAAAACTAGATATCAACCAAAAGGTTAAATATGAGAGTAGGGATCTAGAATATTATTCACCTATTACAACAAAATATAAAGGCTCAGGTATGACATTAGGTGATATGGCTTCTGCTGCATTGCAATATAGCGACAATGGGGCAACAAATATAATTATGGAACGATTTCTTGGCGGTCCTGAGGGGATGACTAAATTTATGCGTTCTATTGGAGATAATGAGTTTAGGTTAGATCGCTGGGAACTGGAACTTAACACTGCAATCCCAGGAGATAAACGTGACACTTCAACGCCAAAAGCTGTTGCAAATAGTTTGAATAAACTAGCTTTGGGGAATGTTCTCAATGCTAAAGTGAAAGCGATTTATCAAAATTGGTTAAAAGGTAATACAACTGGTGATGCTCGAATTCGTGCTAGTGTTCCTGCTGATTGGGTTGTAGGTGACAAAACTGGGAGCTGTGGGGCATATGGTACTGCGAATGATTATGCCGTCATTTGGCCTAAAAATAGAGCACCATTAATTGTCTCTATATATACAACACGAAAATCGAAAGATGATAAGCACAGTGATAAAACTATTGCGGAAGCATCACGTATTGCAATTCAGGCAATTGATTAA " 281 UPDATE CMY-110 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 280 UPDATE CTX-M-11 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 582 UPDATE FOX-7 antibiotic inactivation; cephamycin; cephalosporin; FOX beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 357 UPDATE VIM-38 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 356 UPDATE ErmU antibiotic target alteration; streptogramin antibiotic; Erm 23S ribosomal RNA methyltransferase; macrolide antibiotic; lincosamide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGCCCAGCCGGTACGGCAGCCGGCAGGACCTCGGTCAGAACTTCCTCGTCGACCCCGACATCATCAAGCTGATCCGCCGAGCGCCGAACGAGCGGAAGGTCCCATCGTTGATCTGGCGCCGGAGAGGGCACGTGACGCTGCCCTTGAGTCGCTTGGGCCGCCCGGTCACCGCGGTTGAGCTCGACCCCCGCCGGGTCAAACGGCTCTCGGCGCGTGCCCCGGAAAACGTCAAGGTCGTCGGCGAGGACATCCTGCGCTTCCGGCTCCCGACCGTTCCGCACACCGTCGTGGGGAACATCCCCTTCCATGTCACGACGGCCACGATGCGCCGGATCCTCGTGGCTCCCGCATGGGTGTCGGCCGTCCTCGTGGTGCAGTGGGAAGTGGCGCGCCGCCGGGCCGGCATCGGCGGCTGCTCGCTGGTCACGGCGGAGTCCTGGCCGTGGTTCGACTTCTCGGTGCTCAAGCGGGTGCCGAGGTTCGCCTTCCGGCCCGCGCCCTCCGTGGACGGCGGGATCCTCGTCATCGAGCGGCGGCCCGAGCCACTGGTGCGGGAGCGCAGGGAGTACCAGGCATTCGTCAGACAGGTCTTCACCGGGCGCGGTCACGGGCTGCGGGAGATCCTCCAACGCATCGGGCGGGTCCAGGACAGCGACCTGTCCGCGTGGTTCAGGGCACATGGAGTCTCGCCGCAGGCGCTGCCGAAGGACCTCACCGCCGAGCAGTGGGCGTCGCTCTGGGGCATGGCGCGTGGCGGCCGGTCCGTGCCGCGGACGCGGCGACCCCGGGGCCTGCCGCCCCGCACGTCCCGCGGGCCGCGGCGCAACAGCGGCTGA " 355 UPDATE TEM-1 penam; antibiotic inactivation; amoxicillin; penem; cephalosporin; cefalotin; monobactam; ampicillin; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 354 UPDATE QnrB24 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 353 UPDATE QnrB2 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 352 UPDATE PDC-5 antibiotic inactivation; cephalosporin; carbapenem; ceftazidime; PDC beta-lactamase; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 351 UPDATE SHV-6 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 350 UPDATE ykkD antibiotic efflux; small multidrug resistance (SMR) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; streptomycin; aminoglycoside antibiotic; phenicol antibiotic; tetracycline; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCTGCACTGGATCAGTTTATTGTGCGCGGGCTGTTTAGAAATGGCCGGCGTGGCCCTTATGAATCAATATGCGAAAGAAAAAAGCGTGAAATGGGTGCTGTTGATCATTGTTGGTTTTGCCGCTTCATTTTCCTTGCTGTCGTACGCAATGGAAACCACTCCGATGGGAACGGCTTACGCGGTCTGGACAGGAATTGGCACCGCCGGCGGGGCGCTTATCGGCATCCTCTTTTACAAGGAGCAGAAAGACGCCAAACGGATCTTCTTTATCGCGTTGATTTTATGCTCAGCAGTTGGTTTAAAAATTCTGTCATAA " 359 UPDATE TEM-112 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 358 UPDATE QnrB42 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1033 UPDATE vanSN glycopeptide antibiotic; vanS; antibiotic target alteration; vancomycin; glycopeptide resistance gene cluster; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TTGAAAAATAAGTTGAACGATCCTTTGATCAAAAGAATCTTACTAAGATATGTATCAACCGTTCTTCTTGCGATTGGCATTTATGGTGGAGTTTTATTGCTCCTTTTGTTTTTATTCCGTTTACGAACCTGGTATGGCGATGAACCCTTTTATTTATTTTTACGAACTTTGTATATCCGCTTCAATTTGATTGGCCTCGTCTCAAGTGGTGCGTTTCTTCTTTTGCTGATGATTACTCTCGTTTATATTTTCAAACTTATTGGCTACTTGAATGAAACTATTACGGCAACTAAACAATTATTGGAAGCACCTGAACAACGTATCCAACTATCGACCGAGCTATTCACAGTTCAAGAAGAAATGAATCAAATTAGAGAAAATAATAATCAAGCAAACCGTGCAGCGAAAGTAGCAGAACAACGAAAAAATGATCTGATTGTTTACTTAGCACATGATCTGCGTACATCATTAACTAGCGTGATCGGTTATTTGACGTTGTTAAAAGAAGAACCGCAGATCTCCACAGAATTACGAGCAAAATATACGGATATCGCCTTAGACAAAGCGTTACGTTTAGAAGAATTGATTGGTGAGTTTTTTGAAGTCACCCAATTCAATTTGACAAAGCTTACAATAAATAAAGAAATTGTGGATCTAAGTATTATGCTAGAGCAAATCAGCTATGAATTTTTACCAATTCTAAATGAAAAAGGACTTAAATGGCAATTAGCGATTGATAAAGGGATCAAAGCAGAAGTTGATCCAAACAAAATGGGACGAGTTTTTGACAATTTAATCCGTAATGCAATCAATTACAGTTTCTCAAACTCAACGATCCACCTAAGTCTAGAAAAAAATGGACAAAATTTAGAACTCAAAATCACAAACGAAACGCATACCTTACCAGAAGAAAAGCTTACGCAAATTTTCGAACCTTTTTATCGTGTCGATACTTCAAGGAGTAGCAGCACTGGTGGTACAGGACTTGGATTATCGATTGTAAAAGATATCGTGGAAGCATCCGGCGGAAGGATTCATGCTCAAAGTAGCAATAATCAAATGACATTTACGCTTACCTTGCCTATCAGTGAATAA " 2323 UPDATE qacH efflux pump complex or subunit conferring antibiotic resistance; fluoroquinolone antibiotic; small multidrug resistance (SMR) antibiotic efflux pump; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1111 UPDATE AAC(6')-Ig antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATATTAAACCTGCATCAGAAGCTTCACTCAAAGATTGGTTAGAATTAAGAAATAAATTGTGGAGTGATTCGGAAGCTTCTCATTTACAAGAGATGCATCAATTATTAGCCGAAAAATATGCCCTACAATTATTGGCCTATTCCGATCACCAAGCTATTGCGATGTTAGAAGCCTCAATTCGGTTTGAATATGTGAATGGGACTGAGACTTCTCCTGTGGGTTTTTTGGAAGGTATTTACGTACTTCCGGCACATCGTCGCTCGGGCGTTGCAACGATGCTTATTCGACAGGCCGAAGTGTGGGCAAAACAATTTTCTTGCACTGAATTTGCATCTGATGCTGCATTGGACAATGTAATTAGTCATGCTATGCATCGTTCATTAGGTTTTCAAGAAACTGAAAAAGTCGTTTATTTTAGTAAAAAAATAGATTAA " 2321 UPDATE cdeA antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; multidrug and toxic compound extrusion (MATE) transporter; acridine dye; acriflavin; fluoroquinolone antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1696 UPDATED strand with - UPDATED accession with AJ574887.1 UPDATED fmin with 370 UPDATED sequence with ATGGAAAATTTATTTACAAGAAAATTCACTACTTTTGAATTTCTAAAATTTGTTTCTCCTGCAATTATATCCATGATATTTATATCTTTGTACACAATAATAGATGGCATCTTTGTATCGACATTAGTTGGTTCTGATGCTCTTGCTAGTATAAATATTGTACTACCTATAATTAACCTTGTTTGTGGATTTGGAATAATGATGGCAACTGGTGGAGGTGCTATCGTTTCTATACGTATGGGTGAAAATAGACAGGATGAAGCCAACTCTACATTTTCTTTTATAGTTTTGTTTTCATTGATTGTTGGGATTTTATTCACAGTAATCTCATATTTCTTTATCAAAGAAATATCTATTTTGCTTGGTGCAACAGATAAGTTATTACCATATTGTATAACTTATGGTAAAGTTATGATTTTATGTACACCATTTTATATTTTAAAATTTATATTTGAGTACTTTGCAAGAACTGATGGAAATTCTAAATTTAGTTTATTTCTATCAGTCATTGGTGGTGTAACAAATATAATATTGGATTATGTATTTATTAAATATTTTGGAATGGGTCTTTTAGGAGCTGCAGTTGCAACTGCTATAGGTATTATTTTAACTTGTGTTTTAGGTATTATTTACTTCTTATCTAATAAATCTACACTAAAATTAAGAAAACCAAAAACCGATTTTAGACTTATAAGAGATACTATGATAAACGGTTCTTCTGAAATGGTTACAGAATTATCTACAGGAATTACAACATTCTTATTTAATGTAGTAGCTTTAAAATTAGCAGGAGAAAATGGACTTGCTGCTCTTACTATAGTATTGTATGCTCATTTTTTAATGACATCAGTCTATCTAGGATTCGCTGCTGGAGTGTCTCCATTAATAAGCTATAATTTTGGTGCTGAAAACAGTGATAAATTAAAAGAAACATTTAAACATTCTCTAAAATTTATATTTATTTCTTCTCTTTTAGTGTTTATTATTGCTTTAGTATTTGCACCATTTATTGTTAGGGTCTTTGTAAATCCAGATAACACAGTATTTAAACTAGCCTTACAAGGATTAAAAATATTTGCATTTGCTTTTTTGTTTGTTGGTATAAATATATTTGCATCAGGATTTTTTACAGCATTTCACAATGGAAAAATTTCAGCTATTATATCTTTTAGTCGTGCCTTTGTTTTTATAATCATAGGAATCATAATTCTTCCTCCTATGTTAAACATGACTGGATTATGGCTTACAGTTCCATTTGCTGAGGTTATAACCATATTTATATCTATTCTATTTATAAAAAAATATAAAGGTAGATATAAGTATTAA UPDATED NCBI_taxonomy_name with Clostridium difficile UPDATED NCBI_taxonomy_id with 1496 UPDATED NCBI_taxonomy_cvterm_id with 36807 UPDATED accession with CAE00499.1 UPDATED sequence with MENLFTRKFTTFEFLKFVSPAIISMIFISLYTIIDGIFVSTLVGSDALASINIVLPIINLVCGFGIMMATGGGAIVSIRMGENRQDEANSTFSFIVLFSLIVGILFTVISYFFIKEISILLGATDKLLPYCITYGKVMILCTPFYILKFIFEYFARTDGNSKFSLFLSVIGGVTNIILDYVFIKYFGMGLLGAAVATAIGIILTCVLGIIYFLSNKSTLKLRKPKTDFRLIRDTMINGSSEMVTELSTGITTFLFNVVALKLAGENGLAALTIVLYAHFLMTSVYLGFAAGVSPLISYNFGAENSDKLKETFKHSLKFIFISSLLVFIIALVFAPFIVRVFVNPDNTVFKLALQGLKIFAFAFLFVGINIFASGFFTAFHNGKISAIISFSRAFVFIIIGIIILPPMLNMTGLWLTVPFAEVITIFISILFIKKYKGRYKY " 2326 UPDATE TLA-3 antibiotic inactivation; monobactam; fluoroquinolone antibiotic; cephalosporin; TLA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2325 UPDATE Mrx antibiotic inactivation; macrolide phosphotransferase (MPH); macrolide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 8983 UPDATED strand with - UPDATED accession with AY522923.1 UPDATED fmin with 7744 UPDATED sequence with ATGAGCGAACGTCGATATAGCCCGCTCGCGACGCTGTTCGCGGCGACCTTTCTCTTCCGGATCGGCAACGCGGTGGCGGCCCTCGCGCTTCCATGGTTCGTCCTGTCTCATACAAAGAGCGCGGCCTGGGCGGGCGCCACGGCCGCTAGCAGCGTCATCGCGACCATCATCGGCGCGTGGGTTGGTGGTGGCCTCGTCGATCGGTTCGGGCGCGCGCCCGTCGCATTGATCTCGGGTGTGGTGGGCGGCGTGGCCATGGCGAGCATCCCACTGCTCGATGCCGTTGGCGCCCTCTCGAACACTGGGCTGATCGCTTGCGTGGTGCTCGGTGCCGCGTTCGACGCACCCGGTATGGCCGCGCAGGACAGTGAGCTGCCCAAACTCGGCCACGTCGCCGGGCTCTCCGTTGAGCGCGTCTCGTCACTGAAAGCGGTGATCGGGAACGTCGCGATTCTAGGTGGCCCGGCCCTTGGGGGGGCCGCAATCGGCCTGCTTGGCGCTGCGCCAACGCTCGGGCTGACGGCGTTCTGCTCCGTCCTTGCAGGTCTGCTCGGCGCGTGGGTGCTTCCCGCGCGTGCCGCTCGGACGATGACCACGACGGCGACTCTCTCCATGCGCGCCGGCGTCGCTTTTCTCTGGAGCGAACCCCTGCTGCGCCCTCTCTTTGGTATAGTGATGATCTTCGTGGGCATCGTTGGCGCCAACGGCAGCGTCATCATGCCTGCGCTGTTTGTAGATGCAGGACGCCAAGTAGCAGAGCTCGGGCTGTTCTCCTCAATGATGGGGGCTGGTGGTCTCCTTGGCATTGCCATTCATGCGTCGGTCGGCGCCCGGATATCAGCGCAGAACTGGCTGGCGGTGGCATTTTGTGGCTCTGCGGTGGGCTCGCTTCTGCTTTCACAGTTGCCAGGCGTGCCGGTGCTGATGTTGTTGGGCGCGCTCGTGGGACTGCTGACCGGCTCAGTCTCTCCCATTCTCAACGCTGCCATCTACAACCGCACGCCGCCAGAACTTCTCGGCCGGGTACTCGGCACGGTCTCGGCGGTGATGCTGTCAGCCTCGCCCATGGTTATGCTTGCGGCCGGCGCGTTTGTCGACCTTGCTGGTCCGCTCCCTGGCCTCGTTGTATCGGCCGTGTTTGCGGGGCTCGTGGCTCTACTCTCGCTCCGTCTTCAATTTGCTACAATGGCGGCGGCAGCCACAGCCTCCGCCCCAACCCATACAGAAGGTGAACACTGA UPDATED NCBI_taxonomy_name with Aeromonas hydrophila UPDATED NCBI_taxonomy_id with 644 UPDATED NCBI_taxonomy_cvterm_id with 36810 UPDATED accession with AAS13767.1 UPDATED sequence with MSERRYSPLATLFAATFLFRIGNAVAALALPWFVLSHTKSAAWAGATAASSVIATIIGAWVGGGLVDRFGRAPVALISGVVGGVAMASIPLLDAVGALSNTGLIACVVLGAAFDAPGMAAQDSELPKLGHVAGLSVERVSSLKAVIGNVAILGGPALGGAAIGLLGAAPTLGLTAFCSVLAGLLGAWVLPARAARTMTTTATLSMRAGVAFLWSEPLLRPLFGIVMIFVGIVGANGSVIMPALFVDAGRQVAELGLFSSMMGAGGLLGIAIHASVGARISAQNWLAVAFCGSAVGSLLLSQLPGVPVLMLLGALVGLLTGSVSPILNAAIYNRTPPELLGRVLGTVSAVMLSASPMVMLAAGAFVDLAGPLPGLVVSAVFAGLVALLSLRLQFATMAAAATASAPTHTEGEH " 2324 UPDATE gadW penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; norfloxacin; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; oxacillin; cloxacillin; fluoroquinolone antibiotic; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2552440 UPDATED strand with - UPDATED accession with CP015085.1 UPDATED fmin with 2551711 UPDATED sequence with ATGGCTCATGTCTGCTCGGTGATCCTCGTTCGTCGTTCATTCGATATTCATCATGAACAGCAAAAAATATCGTTGCATAACGAGAGTATCCTGCTGCTGGATAAAAATTTGGCAGACGATTTTGCGTTTTGTTCACTGGATACGCGACGGCTGGATATCGAAGAGCTGACAGTTTGCCATTACTTACAAAATATTCGTCAGTTGCCACGCAATTTAGGATTGCATAGCAAAGACCGTTTGTTAATTAACCAGTCACCCCCCATACAGCTGGTGACGGCGATTTTTGATAGTTTCAATGACCCCCGGGTCAATTCGCCGATACTGAGCAAAATGCTCTATCTTTCCTGTTTATCAATGTTTTCTCATAAGAAAGAACTGATCCCCTTACTTTTCAATAGTATCAGTACTGTTTCAGGAAAAGTTGAACGCCTTATTAGCTTTGATATCGCTAAACGTTGGTATCTACGCGATATCGCAGAAAGAATGTACACCAGCGAGAGTCTCATCAAAAAAAAGTTGCAGGATGAAAATACCTGTTTCAGTAAAATATTACTCGCCTCCAGGATGTCGATGGCCAGACGATTACTCGAGTTACGTCAAATACCTCTGCATACTATTGCGGAAAAATGTGGCTATAGCAGTACGTCATACTTTATAAATACATTTAGACAATATTATGGTGTAACGCCACATCAGTTTTCGCAACATTCGCCGGGTACCTTTTCCTGA UPDATED NCBI_taxonomy_name with Escherichia coli O25b:H4 UPDATED NCBI_taxonomy_id with 941280 UPDATED NCBI_taxonomy_cvterm_id with 40530 UPDATED accession with ANK04027.1 UPDATED sequence with MAHVCSVILVRRSFDIHHEQQKISLHNESILLLDKNLADDFAFCSLDTRRLDIEELTVCHYLQNIRQLPRNLGLHSKDRLLINQSPPIQLVTAIFDSFNDPRVNSPILSKMLYLSCLSMFSHKKELIPLLFNSISTVSGKVERLISFDIAKRWYLRDIAERMYTSESLIKKKLQDENTCFSKILLASRMSMARRLLELRQIPLHTIAEKCGYSSTSYFINTFRQYYGVTPHQFSQHSPGTFS " 2329 UPDATE MOX-9 penam; antibiotic inactivation; MOX beta-lactamase; cephamycin; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2328 UPDATE MUS-2 carbapenem; antibiotic inactivation; MUS beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1113 UPDATE ANT(6)-Ib antibiotic inactivation; streptomycin; aminoglycoside antibiotic; ANT(6); model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAATGAGAACAGAGAAACAAATATATGATACTATACTTAATTTTGCTAAAGCAGATGATAGAATTAGGGTGGTTACTTTAGAAGGTTCAAGAACAAATATTAATATTATACCAGATGATTTTCAAGATTATGATATTACTTTTTTTGTCACAGACATGCAGAGTTTTATTAATAGTGATGAGTGGCTTAATGTTTTTGGAGAGAGACTTATTATGCAAAAACCCGAGGATATGGAATTGTTTCCAAAAGAAGAAAAAGGGTATTCATATCTTATGTTATTTTGGGACGGAGTTAAAATAGATTTGACATTATTGCCATTAGAAGTTTTAGATGAATATTTTACTTGGGATAAATTAGTAAAATTATTATTAGATAAGGATAATCGTGTTACTAATATACCAGTACCTACAGATGAAGATTATTATATAGAACATCCGACAGCACGTTCTTTTGATGATTGCTGTAATGAATTTTGGAATACTGTAACATATGTAGTGAAAGGATTATGTCGAAAGGAAATTTTATTTGCAATCGACCATTTAAATAATATTGTGCGTATGGAATTACTGCGAATGATTTCATGGAAGGTTGGAATAGAGCAAGGTTATAGTTTTAGTCTAGGAAAAAACTATAAATTTTTAGAACGATATATTTCACCTGAATTATGGAAGAAAATTCTTGCTACATATAATATGGGGTCATATACAGAAATGTGGAAATCTTTAGAATTATGTATGGGAATTTTTAGAATGGTATCAAAAGAAGTGGCACAATGTTTAAATTATTTATATCCAGATTATGATAAAAATATTAGTAATTATGTTATAAGACAAAAAGAAAAATATCAAAGATAA " 289 UPDATE OXA-85 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 288 UPDATE CMY-60 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1112 UPDATE OXA-58 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAATTATTAAAAATATTGAGTTTAGTTTGCTTAAGCATAAGTATTGGGGCTTGTGCTGAGCATAGTATGAGTCGAGCAAAAACAAGTACAATTCCACAAGTGAATAACTCAATCATCGATCAGAATGTTCAAGCGCTTTTTAATGAAATCTCAGCTGATGCTGTGTTTGTCACATATGATGGTCAAAATATTAAAAAATATGGCACGCATTTAGACCGAGCAAAAACAGCTTATATTCCTGCATCTACATTTAAAATTGCCAATGCACTAATTGGTTTAGAAAATCATAAAGCAACATCTACAGAAATATTTAAGTGGGATGGAAAGCCACGTTTTTTTAAAGCATGGGACAAAGATTTTACTTTGGGCGAAGCCATGCAAGCATCTACAGTGCCTGTATATCAAGAATTGGCACGTCGTATTGGTCCAAGCTTAATGCAAAGTGAATTGCAACGTATTGGTTATGGCAATATGCAAATAGGCACGGAAGTTGATCAATTTTGGTTGAAAGGGCCTTTGACAATTACACCTATACAAGAAGTAAAGTTTGTGTATGATTTAGCCCAAGGGCAATTGCCTTTTAAACCTGAAGTTCAGCAACAAGTGAAAGAGATGTTGTATGTAGAGCGCAGAGGGGAGAATCGTCTATATGCTAAAAGTGGCTGGGGAATGGCTGTAGACCCGCAAGTGGGTTGGTATGTGGGTTTTGTTGAAAAGGCAGATGGGCAAGTGGTGGCATTTGCTTTAAATATGCAAATGAAAGCTGGTGATGATATTGCTCTACGTAAACAATTGTCTTTAGATGTGCTAGATAAGTTGGGTGTTTTTCATTATTTATAA " 1793 UPDATE DHA-14 antibiotic inactivation; cephalosporin; cephamycin; DHA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 5 UPDATE dfrF iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATAGGTTTGATTGTTGCGAGGTCAAAGAATAATGTTATAGGCAAGAATGGTAATATACCATGGAAAATAAAGGGAGAACAAAAGCAATTTAGAGAGTTAACAACGGGTAATGTGGTTATTATGGGGCGAAAGTCTTATGAAGAAATCGGTCATCCGTTGCCTAATAGAATGAATATTGTTGTTTCCACCACAACAGAGTATCAAGGAGATAATTTAGTTTCAGTTAAATCATTAGAAGATGCATTATTATTGGCTAAAGGACGAGATGTATACATATCTGGTGGATATGGACTATTTAAGGAAGCTTTGCAAATAGTAGATAAAATGTATATCACAGAAGTAGATTTAAATATTGAAGATGGAGATACATTCTTTCCAGAATTTGATATCAATGATTTTGAAGTTTTGATAGGGGAAACACTTGGTGAGGAAGTGAAATATACGAGAACATTTTATGTAAGGAAAAATGAATTGAGTAGATTTTGGATTTAG " 283 UPDATE CMY-85 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCGCTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTGGCGATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATGACGTTACGGATAAAGCCGCATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGCGGTGAAATCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAACTATGCCTGGGGCTATCTCGAAGGGAAGCCTTTGCACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGAGAAAACGCTCCAGCTGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACGGGATCCACAGGTGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATAGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGCGTCGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA " 282 UPDATE CTX-M-125 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGACTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGCACCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA " 285 UPDATE TEM-11 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATAAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATCATTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGATCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 284 UPDATE smeD antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; macrolide antibiotic; efflux pump complex or subunit conferring antibiotic resistance; tetracycline antibiotic; fluoroquinolone antibiotic; phenicol antibiotic; tetracycline; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTGCTGAGCCGAATCCGACCCTTTGCACTGTCGCTGGCAATCGCCGCGACCGTGGCTGCCTGCGGCGGCCAACCCCAGGCCCCCGAGCAGGGCCCGGGTGACGTCACCGTGGTCACGCTGAAGTCCGAGACCGTGGGCCTGACCCGCGAACTGCCGGGCCGTACCAATGCCTTCCTGGTCGCCGAAGTGCGCCCGCAGGTCAATGGCATCGTGGCCAAGCGCCTGTTTACCGAGGGCGGCATGGTCAAGGCCGGCGAGCCGCTGTACCAGCTCGACGATGCCAGCTACCGGGCCCAGGCCAACAACGCCCGCGCCCAGCTGGCCCGCGCCGAAGCCACCGCCAATGCCGCGCGCCTGAGTGCCAAGCGCATCACCGAGCTGGCCAAGGTCGATGCGGTCAGCCAGCAGGACCTGGAGAACGCCGTCGCCGCGCAGAAGCAGGCCGAGGCCGACGTCGGTGCCGCCAAGGCCTCGCTGGATGCGGCCAACGTCACCCTGGGCTACGCCCGCATCACCGCGCCGATCAGCGGCCGCATCGGCAAGTCCAGCGTCACCCAGGGTGCGCTGGTCAGCGCCGGCCAGGCCAACGCACTGGCCACCGTGCAGCAGCTGGACCCGATCTATGTCGACCTGACCCAGTCCTCGGCCGAGCTGCTGCAGCTGCGCCGCGAACTGGCCGCCGGCCGCCTGCAGGACAACCAGACCCTGCCGGTCAGCATCCTGATGGAAGACGGCAGCACCTTCGAGCACAAGGGCACTCTGGAGTTCTCCGAAGTCAGCGTTGATCCGACCACCGGCAGCTTCGGCCTGCGCGTGAAGGTGGACAACCCGGACGGCCTGCTGATGCCGGGCATGTACGTGCGTGCGGTGATCGGCGGCGGCGTGCGCAGCGACGCGGTGCTGGTGCCGATGCAGGGCATCGCGCGCGATCCGAAGGGCGACACCACCGCGATGGTGGTCGGCAAGGACAACAAGGTCGAAGTGCGCCCGGTCAAGGTCAGCCGCACGGTCGGCGACAAGTGGCTGGTCGAGGACGGCCTGAAGGCCGGTGACAAGGTCATCGTCGAAGGCCTGCAGAAGATCGGCCCCGGCATGCCGGTCAAGGCCACCGAGAAGGGCGACGCACCGGCCAAGCCGGCGGCAGCCGCCCAGCCTGCCGCCCCGGCCGGCGACGCGAAGTAA " 287 UPDATE TEM-67 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCATTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATAAGTTGGGTGCACGAGTGGGTTACATCGAGCTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACCCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGATCTTGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 1114 UPDATE ACT-17 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCCCTTTGCTGCGCCCTGCTGCTCGGCATCTCTTGCTCTGCTCTCGCCACGCCAGTGTCAGAAAAACAGCTGGCGGAGGTGGTCGCGAATACGGTTACCCCGCTGATGAAAGCCCAGTCTGTTCCAGGCATGGCGGTGGCCGTTATTTATCAGGGAAAACCGCACTATTACACGTTTGGCAAGGCCGATATCGCGGCGAATAAACCCGTTACGCCTCAGACCCTGTTCGAGCTGGGTTCTATAAGTAAAACCTTCACCGGCGTTTTAGGTGGGGATGCCATTGCTCGCGGTGAAATTTCGCTGGACGATCCGGTGACCAGATACTGGCCACAGCTGACGGGCAAGCAGTGGCAGGGTATTCGTATGCTGGATCTCGCCACCTACACCGCTGGCGGCCTGCCGCTACAGGTACCGGATGAGGTCACGGATAACGCCTCCCTGCTGCGCTTTTATCAAAACTGGCAGCCGCAGTGGAAGCCTGGCACAACGCGTCTTTACGCCAACGCCAGCATCGGTCTTTTTGGTGCGCTGGCGGTCAAACCTTCTGGCATGCCCTATGAGCAGGCCATGACGACGCGGGTCCTTAAGCCGCTCAAGCTGGACCATACCTGGATTAACGTGCCGAAAGCGGAAGAGGCGCATTACGCCTGGGGCTATCGTGATGGTAAAGCGGTGCGTGTTTCGCCGGGTATGCTAGATGCACAAGCCTATGGCGTGAAAACCAACGTGCAGGATATGGCGAACTGGGTCATGGCAAACATGGCGCCGGAGAACGTTGCTGATGCCTCACTTAAGCAGGGCATCGCGCTGGCGCAGTCGCGCTACTGGCGTATCGGGTCAATGTATCAGGGTCTGGGCTGGGAGATGCTCAACTGGCCCGTGGAGGCCAACACGGTGGTCGAGGGCAGCGACAGTAAGGTAGCGCTGGCGCCGTTGCCCGTGGCAGAAGTGAATCCACCGGCTCCCCCGGTCAAAGCGTCCTGGGTCCATAAAACGGGCTCTACTGGCGGGTTTGGCAGCTACGTGGCCTTTATTCCTGAAAAGCAGATCGGTATTGTGATGCTCGCGAATACAAGCTATCCGAACCCGGCACGCGTTGAGGCGGCATACCATATCCTCGAGGCGCTACAGTAA " 1441 UPDATE Enterobacter aerogenes Omp36 penam; reduced permeability to antibiotic; penem; carbapenem; cephalosporin; cephamycin; General Bacterial Porin with reduced permeability to beta-lactams; monobactam; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 1440 UPDATE CTX-M-103 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGTCACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTACAGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTGGCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGAGCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGCTGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCGATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGCGTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCGTACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCACTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAAGCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAATACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTGTGGGGGATAAAACCGGCAACGGTGGCTATGGCACCACCAACGATATCGCGGTGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACCCAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGCTAAAATCGTCACCGACGGTTTGTAA " 263 UPDATE dfrA24 iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACCTATCAGTTGGACGTGAGCAAAATTCTGTCGTTTGACCTGGAGGCCATCGTTGCTGCTACTGAGAACGGCGGCATCGGTTACAAAGGTGACCTCCCATGGCGTCTACAAGGCGATCTGAAGCGTTTTCGCGAAATCACCCAAGGCGGTATAGTCATCATGGGTGCAGGCACGTATAAGAGCCTCCCAAGTCCTCTGAAAGACCGCATCAATATCGTCATCACCAAGAAGTCAGAGATTTCTTGGACGGCTTGCTATGACGTGCGTGTGGTCAACAGTCCAGAAGACGCTTTGCGCATGGTTGGTCGCATTATCGACGAGAAAGAAGAGCAAGGTCGTGATCGACCTCGTGTATTCGTTATCGGCGGGGCTTCGATCTATCAGGCACTGATGCCTTTCGTTTCTACGCTCCACTGGACTGAGGTGCATGTTGAACAACTGCCAGAGGAAATCGGTCTCGATACGTATATCGAAGACTTCCTTTCTCTGCGTGGGACTTCTACACCGAAGAGAAAGTCGAATCTGGTTTTACCACCCACACCTACCACACCCTGA " 262 UPDATE VIM-8 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 261 UPDATE CMY-65 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGATATGCTGCGCACTGCTGCTGACAGCCTCTTTCTCCACGTTTGCTGCCGCAAAAACAGAACAACAAATTGCCGATATCGTTAACCGCACCATCACACCACTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTGGCGATTATCTACGAGGGGAAACCTTATTACTTTACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGGTCGGTCAGTAAGACGTTTAACGGCGTGTTGGGCGGCGACGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCGGGGTATCAGCCTGCTGCACTTAGCCACCTATACAGCGGGTGGCCTGCCGCTGCAGATCCCCGATGACGTTACGGATAAAGCCGAATTACTGCGCTTTTATCAAAACTGGCAACCACAATGGACTCCGGGCGCTAAGCGTCTTTACGCTAACTCCAGCATTGGTCTGTTTGGTGCGCTGGTGGTAAAACCTTCAGGTATGAGCTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAAAGCGAACAAAAAAATTATGCCTGGGGCTATCGCGAAGGGAAGCCTGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATCGATATGGCCCGCTGGGTTCAGGCCAACATGGACGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGAGCTTGCGCAGTCTCGCTACTGGCGTATTGGTGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATTGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCAGCACCTGCCGTGAAAGCCTCATGGGTGCATAAAACAGGATCCACAGGCGGATTTGGCAGCTACGTTGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTAATGTTGGCAAACAAAAGCTACCCCAACCCGGCTCGCGTCGAGGCGGCCTGGCGCATTCTTGAAAAACTGCAATAA " 260 UPDATE ErmN antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 267 UPDATE OXA-43 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 266 UPDATE QnrB13 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 265 UPDATE SHV-128 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 264 UPDATE lsaE pleuromutilin; ABC-F ATP-binding cassette ribosomal protection protein; pleuromutilin antibiotic; antibiotic target protection; lincosamide antibiotic; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 36001 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. " 269 UPDATE CMY-8 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCAACAACGACAATCCATCCTGTGGGGGGCCGTGGCCACCCTGATGTGGGCCGGTCTGGCCCATGCAGGTGAGGCTTCACCGGTCGATCCCCTGCGCCCCGTGGTGGATGCCAGCATCCAGCCGCTGCTCAAGGAGCACAGGATCCCGGGCATGGCGGTGGCCGTGCTCAAGGATGGCAAGGCCCACTATTTCAATTACGGGGTGGCCAACCGGGAGAGCGGGGCCAGCGTCAGCGAGCAGACCCTGTTCGAGATAGGATCCGTGAGCAAGACCCTGACTGCGACCCTGGGGGCCTATGCGGTGGTCAAGGGAGCGATGCAGCTGGATGACAAGGCGAGCCGGCACGCGCCCTGGCTCAAGGGATCCGTCTTTGACAGCATCACCATGGGGGAGCTTGCCACCTACAGCGCCGGAGGCCTGCCACTGCAATTCCCCGAGGAGGTGGATTCATCCGAGAAGATGCGCGCCTACTACCGCCAGTGGGCCCCTGTCTATTCGCCGGGCTCCCATCGCCAGTACTCCAACCCCAGCATAGGGCTGTTCGGCCACCTGGCGGCGAGCAGCCTGAAGCAGCCATTTGCCCAGTTGATGGAGCAGACCCTGCTGCCCGGGCTCGGCATGCACCACACCTATGTCAATGTGCCGAAGCAGGCCATGGCGAGTTATGCCTATGGCTATTCGAAAGAGGACAAGCCCATCCGGGTCAACCCTGGCATGCTGGCGGACGAGGCCTACGGCATCAAGACCAGCTCGGCGGATCTGCTCGCCTTCGTGAAGGCCAACATCGGCGGGGTTGATGACAAGGCGTTGCAGCAGGCCATCTCCCTGACCCACAAAGGGCATTACTCGGTAGGCGGGATGACCCAGGGGCTGGGTTGGGAGAGTTACGCCTATCCCGTCACCGAGCAGACATTGCTGGCGGGCAATTCGGCCAAGGTGATCCTCGAAGCCAATCCGACGGCGGCTCCCCGGGAGTCGGGGAGCCAGGTGCTCTTCAACAAGACCGGCTCGACCAATGGCTTTGGCGCCTATGTGGCCTTCGTGCCGGCCAGGGGGATCGGCATCGTCATGCTGGCCAATCGCAACTATCCCATCCCGGCCAGGGTGAAGGCGGCCCACGCCATCCTGGCGCAGTTGGCCGGTTGA " 268 UPDATE CfxA6 antibiotic inactivation; cephamycin; CfxA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCAAACTATAGTGTTGCGGAATTAAGAAACATGAAAAAAAACAGAAAAAAGCAAATCGTAGTTTTGTGTATAGCTTTAGTTTGCATCTTCATCTTGGTGTTCTCATTGTCCCATAAATCAGCTACAAAAGGTAGCGCGAATCCTCCATTAACAGATGTTTTGACTGATAGCATTTCTCAGATTGTCTCGGCTTGTCCTGGTGAAATTGGTGTGGCGGTTATTATTAATAACACAGATACGGTTAGTGTTAATAATAAAAGCATTTATCCTATGATGAGTGTATTTAAGGTTCATCAGGCATTAGCTCTTTGCAATGATTTTGACAAAAAAGGCCTTTCCCTTGATACCTTGGTAAAGATAAATAGGGAAAAACTTGATCCAAAGACATGGAGCCCTATGATGAAAGATTATTCAGCACCAGTTATATCGTTGACAGTAAGAGATCTGTTGCGCTATACTCTTTCCCAGAGCGACAATAATGCAAGCAATATCATGTTTAAGAATATGCTCAATACTGCACAAACAGACAGTTTTATAGCGAAACTCATACCACGTTCGAGTTTTCAGATAGCTTATACAGAAGAGGAAATGTCCGCTGACCATGACAAAGCTTACTCTAATTACACATCTCCTCTTGGTGCTGCAATGTTGATGAATCGTTTGTTTACAGAAAGTCTTATCAGTAATGAGAAACAAGATTTCATTAAGAATGCATTGAAAGAATGTAAAACAGGTATAGATAGGATAGTAGCTCCACTTCTTGATAAAGAAGGGGTTGTAATAGCACATAAGACAGGTTCTGGTAATGTCAATGAAAATGGTATTCTTGCAGCTCAGAATGATGTAGCCTATATATGTCTGCCTAATAAGGTCTGCTATACCTTAGCTGTATTTGTTAAGGATTTCAAGGGAAATGAATCACAAGCGTCACAATTTGTTGCGCATATATCAGCGGTAGTATATTCTTTATTAATCAATACTGCGTTAAATTAA " 1290 UPDATE TEM-141 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAGAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA " 1291 UPDATE TEM-177 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1296 UPDATE OKP-B-12 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2192 UPDATE TriA efflux pump complex or subunit conferring antibiotic resistance; triclosan; resistance-nodulation-cell division (RND) antibiotic efflux pump; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1297 UPDATE CTX-M-80 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1294 UPDATE Sed-1 penam; Sed beta-lactamase; cephalosporin; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2259 UPDATE mphG antibiotic inactivation; macrolide phosphotransferase (MPH); macrolide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 144308 UPDATED strand with - UPDATED accession with AB571865.1 UPDATED fmin with 143423 UPDATED sequence with ATGAAAAATAGAGATATTCAAAAATTAGCGGAAAGAAATGGGTTAATTCTTTCGGATGAAATGAGTTTTAATGAAATGGGAATTGATTTTAAGGTTGGTTTCGCTACAGATAGGGATGGCACAAAGTGGTTGTTGCGTATTCCAAGAAGAACAACCTTAGGCGAACAGATTGCGAATGAGAAACGCATTCTTCAATTGGTGTCGAAATACCTTTCGGTTCAAGTTCCTGATTGGCGTATAGCTAATGAAAAACTGGTAGCCTATCCTTTGCTCGATGGAAAACCTGCACTTACTTATGATGCGGAGACTTATGAAGTAACCTGGAATATGTCTAAAGAAAACGACCTTTATATACCATCATTAGCGAAAGCACTTATAGAACTTCATTCAATTCCTACGGAAGAAGTACTTCGTAATAATCTAAAAATTTTGACACCTGAACAGGTTAGAAATGAGATTTCTGAAAGATTGATTTTGGTGAAATCTGAATTAGGGATAAATGCCGAATTAGAACTTCGGTACCAAAAATGGCTGGATAATGATGCCTTATGGCCGAATTTTACAAAATTCATTCACGGTGATTTGTATGCAGGTCATACACTTACTCATCATAATGGAGAAGTTTGTGGAATTATTGATTGGTCAACTGCACAAGTCAGCGATATAGCACAAGATTTTTCAGGTCACGTTACTGTTTTCGGTGAAGAAAGTCTGAAAAATTTAATTGCGGCATACGAAAAACAAGGTGGAGAAGTATGGGATAAACTGTTTGAACAAGCAGTTGAACGAGCTGCTGCCGCACCTCTAGCTTATGGATATTTTGCTTTAGAAACACAAGATGAAATTCATCTTAGTTCTGCAAAATTACAGTTAGGTGTTGAGTAG UPDATED NCBI_taxonomy_name with Photobacterium damselae subsp. damselae UPDATED NCBI_taxonomy_id with 85581 UPDATED NCBI_taxonomy_cvterm_id with 40398 UPDATED accession with BAL43359.1 UPDATED sequence with MKNRDIQKLAERNGLILSDEMSFNEMGIDFKVGFATDRDGTKWLLRIPRRTTLGEQIANEKRILQLVSKYLSVQVPDWRIANEKLVAYPLLDGKPALTYDAETYEVTWNMSKENDLYIPSLAKALIELHSIPTEEVLRNNLKILTPEQVRNEISERLILVKSELGINAELELRYQKWLDNDALWPNFTKFIHGDLYAGHTLTHHNGEVCGIIDWSTAQVSDIAQDFSGHVTVFGEESLKNLIAAYEKQGGEVWDKLFEQAVERAAAAPLAYGYFALETQDEIHLSSAKLQLGVE " 2257 UPDATE Planobispora rosea EF-Tu mutants conferring resistance to inhibitor GE2270A pulvomycin; elfamycin resistant EF-Tu; GE2270A; LFF571; elfamycin antibiotic; enacyloxin IIa; antibiotic target alteration; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2256 UPDATE Staphylococcus aureus fusE with mutation conferring resistance to fusidic acid antibiotic resistant fusE; antibiotic target alteration; fusidic acid; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 2307531 UPDATED strand with - UPDATED accession with CP002114.2 UPDATED fmin with 2306994 UPDATED sequence with ATGAGTCGTGTTGGTAAGAAAATTATTGACATCCCTAGTGACGTAACAGTAACTTTTGATGGAAATCATGTAACTGTTAAAGGTCCTAAAGGTGAATTATCAAGAACTTTAAATGAAAGAATGACATTCAAACAAGAAGAAAACACAATTGAAGTTGTAAGACCATCTGATTCTAAAGAAGATAGAACAAACCATGGTACAACTCGTGCTTTATTAAACAATATGGTACAAGGTGTTTCTCAAGGATACGTAAAAGTACTTGAACTTGTTGGTGTAGGTTACCGTGCTCAAATGCAAGGTAAAGACTTAATCCTTAACGTTGGTTATTCTCACCCAGTAGAAATTAAAGCTGAAGAAAACATTACTTTCTCAGTTGAGAAAAACACAGTCGTTAAAGTTGAAGGTATTTCAAAAGAACAAGTTGGAGCATTAGCATCTAACATCCGTTCAGTAAGACCTCCAGAGCCTTACAAAGGTAAAGGTATTCGTTACCAAGGTGAATACGTTCGCCGTAAAGAAGGTAAAACTGGTAAATAA UPDATED NCBI_taxonomy_name with Staphylococcus aureus subsp. aureus JKD6159 UPDATED NCBI_taxonomy_id with 869816 UPDATED NCBI_taxonomy_cvterm_id with 40393 UPDATED accession with ADL24064.1 UPDATED sequence with MSRVGKKIIDIPSDVTVTFDGNHVTVKGPKGELSRTLNERMTFKQEENTIEVVRPSDSKEDRTNHGTTRALLNNMVQGVSQGYVKVLELVGVGYRAQMQGKDLILNVGYSHPVEIKAEENITFSVEKNTVVKVEGISKEQVGALASNIRSVRPPEPYKGKGIRYQGEYVRRKEGKTGK " 2254 UPDATE Staphylococcus aureus fusA with mutation conferring resistance to fusidic acid antibiotic target alteration; fusidic acid; antibiotic resistant fusA; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 2251 UPDATE LpxC peptide antibiotic; antibiotic target alteration; Acinetobacter mutant Lpx gene conferring resistance to colistin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 3758934 UPDATED strand with - UPDATED accession with CP010781.1 UPDATED fmin with 3758031 UPDATED sequence with ATGGTGAAACAGCGTACTCTCAATCGTGTGGTAAAAGCGAGTGGAATAGGTCTTCATAGCGGTCAAAAAGTGATGATCAATTTCATTCCACATACCGTGGATGGAGGTATTGTATTTCGCCGTATCGATTTGGATCCACCTGTCGATATTCCTGCTAATGCATTGCTGATTCAAGAAGCATTTATGTGTTCAAATCTTGTTACTGGCGATATTAAAGTCGGGACAATCGAACATGTGATGAGTGCGATTGCCGGTTTAGGAATCGATAACTTAATTGTGGAAGTGTCTGCTTCTGAAGTTCCAATTATGGATGGTAGTGCTGGTCCATTTATTTATTTGCTCATGCAAGGTGGCTTGCGTGAACAAGATGCTCCTAAGAAATTTATAAAAATATTAAAGCCAGTTGAGGCTTTAATTGATGATAAAAAAGCAATATTCAGCCCGCATAATGGCTTTCAGCTTAACTTTACGATTGATTTTGATCATCCTGCATTTGCCAAAGAATATCAGTCTGCAACTATCGATTTTTCTACTGAAACGTTTGTGTATGAGGTCAGTGAGGCACGAACTTTTGGTTTTATGAAAGACTTGGATTACCTTAAAGCAAATAATTTAGCTTTAGGAGCAAGTCTAGATAATGCAATTGGCGTAGATGATACAGGTGTTGTAAACGAAGAAGGTTTACGATTTGCCGATGAGTTTGTTCGTCACAAAATTTTAGATGCAGTTGGTGATTTGTATTTACTTGGTCATCAAATTATTGCCAAGTTTGATGGCTATAAATCAGGACATGCCTTAAATAATCAGCTATTACGCAATGTTCAAAGCGATCCGAGTAATTATGAAATTGTAACATTTGATGACGAGAAAGACTGTCCAATTCCATACGTGAGTGTGACATAA UPDATED NCBI_taxonomy_name with Acinetobacter baumannii UPDATED NCBI_taxonomy_id with 470 UPDATED NCBI_taxonomy_cvterm_id with 35507 UPDATED accession with AJF83452.1 UPDATED sequence with MVKQRTLNRVVKASGIGLHSGQKVMINFIPHTVDGGIVFRRIDLDPPVDIPANALLIQEAFMCSNLVTGDIKVGTIEHVMSAIAGLGIDNLIVEVSASEVPIMDGSAGPFIYLLMQGGLREQDAPKKFIKILKPVEALIDDKKAIFSPHNGFQLNFTIDFDHPAFAKEYQSATIDFSTETFVYEVSEARTFGFMKDLDYLKANNLALGASLDNAIGVDDTGVVNEEGLRFADEFVRHKILDAVGDLYLLGHQIIAKFDGYKSGHALNNQLLRNVQSDPSNYEIVTFDDEKDCPIPYVSVT " 2250 UPDATE fusC antibiotic inactivation; fusidic acid; fusidic acid inactivation enzyme; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 988 UPDATE tet(J) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 989 UPDATE ErmG antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACAAAGTAAATATAAAAGATAGTCAAAATTTTATTACTTCAAAATATCACATAGAAAAAATAATGAATTGCATAAGTTTAGATGAAAAAGATAACATCTTTGAAATAGGTGCAGGGAAAGGTCATTTTACTGCTGAATTGGTAAAGAGATGTAATTTTGTTACGGCGATAGAAATTGATTCTAAATTATGTGAGGTAACTCGTAATAAGCTCTTAAATTATCCTAACTATCAAATAGTAAATGATGATATACTGAAATTTACATTTCCTAGCCACAATCCATATAAAATATTTGGCAGCATACCTTACAACATAAGCACAAATATAATTCGAAAAATTGTTTTTGAAAGTTCAGCCACAATAAGTTATTTAATAGTGGAATATGGTTTTGCTAAAATGTTATTAGATACAAACAGATCACTAGCATTGCTGTTAATGGCAGAGGTAGATATTTCTATATTAGCAAAAATTCCTAGGTATTATTTCCATCCAAAACCTAAAGTGGATAGCACATTAATTGTATTAAAAAGAAAGCCAGCAAAAATGGCATTTAAAGAGAGAAAAAAATATGAAACTTTTGTAATGAAATGGGTTAACAAAGAGTACGAAAAACTGTTTACAAAAAATCAATTTAATAAAGCTTTAAAACATGCGAGAATATATGATATAAACAATATTAGTTTCGAACAATTTGTATCGCTATTTAATAGTTATAAAATATTTAACGGCTAA UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 982 UPDATE TEM-153 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 983 UPDATE GES-20 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGCTTCATTCACGCACTATTACTGGCAGCGATCGCTCACTCTGCATATGCGTCGGAAAAATTAACCTTCAAGACCGATCTTGAGAAGCTAGAGCGCGAAAAAGCAGCTCAGATCGGTGTTGCGATCGTCGATCCCCAAGGAGAGATCGTCGCGGGCCACCGAATGGCGCAGCGTTTTGCAATGTGCTCAACGTTCAAGTTTCCGCTAGCCGCGCTGGTCTTTGAAAGAATTGACTCAGGCACCGAGCGGGGGGATCGAAAACTTTCATATGGGCCGGACATGATCGTCGAATGGTCTCCTGCCACGGAGCGGTTTCTAGCATCGGGACACATGACGGTTCTCGAGGCAGCGCAAGCTGCGGTGCAGCTTAGCGACAATGGGGCTACTAACCTCTTACTGAGAGAAATTGGCGGACCTGCTGCAATGACGCAGTATTTTCGTAAAATTGGCGACTCTGTGAGTCGGCTAGACCGGAAAGAGCCGGAGATGAGCGACAACACACCTGGCGACCTCAGAGATACAACTACGCCTATTGCTATGGCACGTACTGTGGCTAAAGTCCTCTATGGCGGCGCACTGACGTCCACCTCGACCCACACCATTGAGAGGTGGCTGATCGGAAACCAAACGGGAGACGCGACACTACGAGCGGGTTTTCCTAAAGATTGGGTTGTTGGAGAGAAAACTGGTACCTGCGCCAACGGGGGCCGGAACGACATTGGTTTTTTTAAAGCCCAGGAGAGAGATTACGCTGTAGCGGTGTATACAACGGCCCCGAAACTATCGGCCGTAGAACGTGACGAATTAGTTGCCTCTGTCGGTCAAGTTATTACACAACTCATCCTGAGCACGGACAAATAG " 980 UPDATE y56 beta-lactamase penam; antibiotic inactivation; BlaA beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 981 UPDATE OXA-86 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 986 UPDATE baeS antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; aminocoumarin antibiotic; novobiocin; efflux pump complex or subunit conferring antibiotic resistance; aminoglycoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGTTCTGGCGACCCGGTATTACCGGCAAACTGTTTCTGGCGATTTTCGCCACCTGCATTGTCTTGCTGATCAGTATGCACTGGGCGGTGCGTATCAGTTTTGAGCGTGGCTTTATTGATTACATCAAGCATGGTAATGAACAGCGATTACAACTGTTAAGTGATGCGCTTGGCGAGCAGTATGCGCAGCATGGCAACTGGCGCTTCCTGCGCAACAATGATCGCTTTGTCTTTCAGATCCTGCGTTCATTTGAACACGATAATTCGGAAGATAAACCCGGCCCGGGTATGCCACCGCACGGCTGGCGTACCCAGTTCTGGGTGGTTGATCAAAACAACAAAGTGCTGGTTGGTCCGCGAGCGCCGATTCCACCTGACGGTACACGGCGACCCATTCTGGTCAACGGTGCGGAAGTTGGCGCGGTGATCGCCTCCCCCGTTGAGCGGTTAACGCGCAATACTGATATCAATTTCGATAAACAACAGCGGCAAACCAGCTGGTTGATTGTCGCCCTGGCAACGTTACTCGCGGCACTTGCCACTTTTCTGCTGGCGCGCGGTTTACTGGCACCGGTAAAACGACTTGTCGATGGCACGCACAAACTGGCGGCGGGCGATTTCACTACCCGCGTAACGCCCACCAGTGAAGATGAACTGGGCAAACTGGCGCAAGACTTCAACCAGCTTGCCAGCACACTGGAGAAAAACCAGCAAATGCGGCGCGATTTTATGGCCGATATTTCTCACGAACTGCGTACGCCATTAGCGGTGCTGCGCGGTGAACTGGAAGCCATTCAGGATGGCGTGCGTAAATTCACGCCGGAGACGGTGGCGTCTTTACAGGCGGAGGTCGGTACACTGACCAAACTGGTTGACGATCTCCATCAGTTGTCGATGTCTGATGAAGGCGCTCTCGCCTATCAAAAAGCACCGGTAGATTTGATCCCACTGCTGGAAGTGGCGGGCGGCGCATTTCGCGAACGATTCGCCAGTCGTGGCCTGAAACTGCAATTTTCCCTGCCAGACAGTATTACCGTATTTGGCGATCGCGACCGTTTAATGCAGTTATTCAATAACTTACTGGAAAACAGCCTGCGCTACACTGACAGCGGCGGCAGCCTGCAAATCTCTGCCGGGCAGCGCGACAAAACGGTGCGCCTGACCTTTGCCGACAGTGCGCCAGGTGTCAGTGACGATCAGCTACAAAAATTGTTTGAACGTTTTTATCGCACCGAAGGTTCCCGCAACCGTGCCAGCGGCGGTTCCGGGCTGGGGCTGGCGATTTGCCTGAACATTGTTGAAGCACATAATGGTCGCATTATTGCTGCCCATTCGCCTTTTGGCGGGGTAAGCATTACAGTAGAGTTACCGCTGGAACGGGATTTACAGAGAGAAGTATGA " 987 UPDATE CTX-M-4 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGACTCAGAGCATTCGCCGCTCAATGTTAACGGTGATGGCGACGCTACCCCTGCTATTTAGCAGCGCAACGCTGCATGCGCAGGCGAACAGCGTGCAACAGCAGCTGGAAGCCCTGGAGAAAAGTTCGGGAGGTCGGCTTGGCGTTGCGCAGATTAACACCGCCGATAATTCGCAGATTCTCTACGTGGCCGATGAGCGTTTTGCGATGTGCAGTACCAGTAAGGTGATGGCGGCCGCGGCGGTGCTTAAACAGAGCGAGAGCGATAAGCACCTGCTAAATCAGCGCGTTGAAATCAGAGCAAGCGACCTGGTTAACTACAATCCCATTGCGGAGAAACACGTTAACGGCACGATGACGCTGGCTGAGCTTGGCGCAGGCGCCCTGCAGTATAGCGACAATACTGCCATGAATAAGCTGATTGCCCATCTGGGTGGGCCCGATAAAGTGACGGCGTTTGCTCGCTCGTTGGGTGATGAGACCTTCCGTCTGGACAGAACCGAGCCCACGCTCAATAGCGCCATTCCAGGCGACCCGCGTGATACCACCACGCCGCTCGCGATGGCGCAGACCCTGAAAAATCTGACGCTGGGTAAAGCGCTGGCGGAAACTCAGCGGGCACAGTTGGTGACGTGGCTTAAGGGCAATACTACCGGTAGCGCGAGCATTCGGGCGGGTATGCCGAAATCATGGGGAGTGGGCGATAAAACCGGCAGCGGAGATTATGGCACCACCAACGATATCGCGGTTATCTGGCCGGAAAACCACGCACCGCTGGTTCTGGTGACCTACTTTACCCAACCGGAGCAGAAGGCGGAAAGCCGTCGGGATATTCTGGCTGCGGCGGCGAAAATCGTAACCCACGGTTTCTGA " 984 UPDATE Bartonella bacilliformis gyrA conferring resistance to fluoroquinolones nybomycin; grepafloxacin; trovafloxacin; ofloxacin; norfloxacin; nalidixic acid; lomefloxacin; gatifloxacin; fluoroquinolone resistant gyrA; levofloxacin; sparfloxacin; antibiotic target alteration; enoxacin; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with GTGACCGATCTTACTCGACTACCAGAACATGATGTGTCGACCGGTATTGAACCAGTCAGTATCATTGAAGAAATGCAGTGCTCTTATCTAGATTATGCGATGAGCGTAATTGTGTCGCGCGCACTGCCTGATGTCCGTGATGGGCTTAAGCCTGTCCATCGGCGCATTCTTCATGCGATGAATGAAATGGGACTTTTGTTCAATAAGCCTTATCGTAAGTCAGCGGGTGTTGTTGGTGAAGTGATGGGAAAGTTTCATCCTCATGGTGATGCTTCAATTTATGATGCCTTGGTGCGTATGGCACAGGATTTTTCTTTACGAAATCCTCTGATTGATGGACAGGGAAATTTTGGCTCTGTTGACGGTGATCCACCCGCAGCGATGCGTTACACGGAATGTCGTTTAGAAAAAGTTGCAGAAGAACTTTTAGCTGATATTGATAAAGATACTGTTGATTTTCAAGATAATTATGATGGGCGTGAGCATGAACCTATAGTTTTGCCTGCACGTTTCCCTAACCTGTTAGTAAATGGATCGGGTGGTATTGCTGTAGGTATGGCAACCAATATTCCTCCACATAATCTAGGTGAGGTTATTGATGGATGTGTTGCTTTGATCGATAATCCTAACATAACTATAGATGAGATGTTAGCAATTATTCCGGGGCCTGATTTTCCTACAGGTGGTATTATTCTTGGCCATTCTGGTGTCCGTTCTGCTTATGAAACAGGGCGTGGTTCAATTATTATGCGTGCTAAGGTTGAGATCGAGGAAATTCGCAATCAGCGGCAGGCAATTATCGTAAGCGAAATACCTTATCAAGTTAATAAAGCAACAATGGTTGAGAAGATGGCCGAATTGGTGCGTGATAAACGTATCGAAGGAATCTCCGATTTGCGTGATGAATCTGATCGTGATGGGTATCGAGTTGTCATTGAGCTAAAAAGAGAAGCTGTTGCAGACGTTGTTTTGAATCAGCTTTATCGTTATACACCGTTGCAAGCCTCATTTGGTTGCAATATGGTTGCGTTGAATGGAGGAAAGCCTGAACAAATGACGTTGCTTGACATGCTTCGTGCATTTGTTTCCTTCCGCGAAGAAGTGGTAAGCCGGCGCACAAAATATCTTTTGCGTAAAGCACGTGAGCGTGCGCATGTTTTAGTTGGTCTTGCTATCGCTGTTGCTAATATTGATGAGATTATAGAATTAATTCGCAAAGCTCATGATCCACAGACAGCGCGTACACAGTTAATGGAACGGCGTTGGCCGGCTTCTGAGGTAGCAGCTTTGATTAAGCTTATAGATGATCCTCGTCATATTATTCATGAGGATAATACGTACAATTTGTCTGAAGAACAAGCGCGTGCTATTTTAGAATTGCGTTTGCAAAGATTAACAGCGCTTGGTCGTAATGAAATTGCTGATGAACTCAATGCAATTGGAGAAGATATTGCTGACTATCTTGGTATTTTAGCATCACGCTCACGGATCATGGACATTGTTAAAAGTGAGCTCAGCGCTTTGCGTGAAACATTTGCAACACCACGGCGTACTGTATTTGGTTTTGGTAGTGCCGAGATGGACTGCGAAGATCTGATTGTTCCAGAAGATATGGTGGTGACAGTGAGCCATAGTGGCTATATTAAGCGTGTGCCTCTAAATACATACCGTGCGCAGCGTCGTGGTGGTAAGGGACGTTCTGGTATGGCAACAAAGGATCAGGATTTTGTTACTCGCTTATTCGTGGCCAATACACATACACCAGTTCTTTTCTTTTCATCACGTGGGATTGTTTATAAAGAGAAGGTTTGGCGTTTACCTGTTGGTACGCCGCAATCACGCGGTAGAGCTTTAATTAATATGTTGCCTTTGCAACAAGGCGAGCGCATTACAACAATTATGCCATTGCCGGAGGATGAGGCAAGTTGGGGTAAACTGGATATTATGTTTGCAACAACGCGTGGAACTGTGCGCCGTAATAAATTATCAGACTTTATTCAAGTTAATCGCAATGGTAAAATAGCAATGAAACTTGATGAAGAGGGAGATGAGATCCTTTCTGTAGAGACCTGTACAGAACATGATGACGTTGTTCTTATTACAGCAAACGGGCAGTGTATTCGTTTTCCAGTTACTGATATTCGTGTATTTTCTGGTCGTAATTCGATGGGGGTACGCGGTATCAATATGGTTGAGGGTGATAAGGTCATTTCAATGACTATTTTAGAGCATGTTGAAGCGACATCAGTCGAACGTTCTGCTTATATTAAACGTGCAATCAATGAGCGTCGTGTTGCAGGTTCAGATGATGAAGATATTTTAACTGTTGATGAAGATGGAGAGGAAACTGAGGTTGAATTAACAGATGAACGTTATGCAGAACTTAGCGCTCATGAGCAAATGCTTTTAACAGTTAGTGAATTTGGTTATGGAAAACGCTCTTCTTCTTATGATTTCCGTATTTCAGGACGCGGTGGAAAAGGGATACGCGCAACTGATCTATCAAAGGCGGCTGAAATTGGTAAGTTAGTAGCAGCCTTTCCAGTAGGAGAACGAGATCAAATTATGTTAGTTTCGGATGGAGGACAGCTTATTCGTGTTCCCGTCAACTGTATTCGTATAGCGGGTCGTTCAACTAAAGGGGTCACAGTCTTTAATACAGCAAAAGGTGAAAAAGTTGTATCGGTTGAGCGTATTTCTGAATCTGAAAATGATACTAATCAGTTAGATATTGAAAGTGAGGAACATTCCGGAACAGTTAGCATGAGTGAAGAGAAAAAACTCTGA " 985 UPDATE ErmA antibiotic target alteration; virginiamycin S2; vernamycin C; vernamycin B-gamma; oleandomycin; ostreogrycin B3; macrolide antibiotic; telithromycin; tylosin; lincosamide antibiotic; dirithromycin; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; Erm 23S ribosomal RNA methyltransferase; pristinamycin IIA; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; roxithromycin; spiramycin; azithromycin; erythromycin; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACCAGAAAAACCCTAAAGACACGCAAAATTTTATTACTTCTAAAAAGCATGTAAAAGAAATATTGAATCACACGAATATCAGTAAACAAGACAACGTAATAGAAATCGGATCAGGAAAAGGACATTTTACCAAAGAGCTAGTCAAAATGAGTCGATCAGTTACTGCTATAGAAATTGATGGAGGCTTATGTCAAGTGACTAAAGAAGCGGTAAACCCCTCTGAGAATATAAAAGTGATTCAAACGGATATTCTAAAATTTTCCTTCCCAAAACATATAAACTATAAGATATATGGTAATATTCCTTATAACATCAGTACGGATATTGTCAAAAGAATTACCTTTGAAAGTCAGGCTAAATATAGCTATCTTATCGTTGAGAAGGGATTTGCGAAAAGATTGCAAAATCTGCAACGAGCTTTGGGTTTACTATTAATGGTGGAGATGGATATAAAAATGCTCAAAAAAGTACCACCACTATATTTTCATCCTAAGCCAAGTGTAGACTCTGTATTGATTGTTCTTGAACGACATCAACCATTGATTTCAAAGAAGGACTACAAAAAGTATCGATCTTTTGTTTATAAGTGGGTAAACCGTGAATATCGTGTTCTTTTCACTAAAAACCAATTCCGACAGGCTTTGAAGCATGCAAATGTCACTAATATTAATAAACTATCGAAGGAACAATTTCTTTCTATTTTCAATAGTTACAAATTGTTTCACTAA UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 115 UPDATE TEM-87 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 252 UPDATE APH(9)-Ia antibiotic inactivation; aminoglycoside antibiotic; APH(9); spectinomycin; plazomicin; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with plazomicin UPDATED category_aro_cvterm_id with 40307 UPDATED category_aro_accession with 3003675 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Plazomicin is a neoglycoside, or next-generation, aminoglycoside, that has been identified as a potentially useful agent to combat drug-resistant bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa. " 1790 UPDATE vanHF glycopeptide antibiotic; glycopeptide resistance gene cluster; vanH; antibiotic target alteration; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAATATCGGCATTACCATTTATGGATGTGAGAGGGACGAGGCTGAAGTGTTCAATGAACTTTCGCCACGCTTTGGTGTCATACCTGCCATTACAAGCTCTGCCGTATCGGAAACCAACGCAATGTTAGCTCCCGGCAATCAATGTATCAGCGTGGGGCACAAATCTGAGATTTCCGAATCCATTCTTCTTGCTCTGAAGGAATCCGGCGTCAAATATATCTCTACCCGAAGTATTGGCTGCAATCACATAGACGTGAAGGCCGCGGAAAGTATGGGTATCGCTGTTGGAAACGTGGCATATTCACCGGATAGCGTTGCCGATTATACATTGATGCTGATGCTGATGGCGATACGAAACGCAAAATCCATTGTGAGCCGTGCGGAAAAATATGATTTCAGATTGGATACTGTCCCTGGAAAAGAATTGCGTGAGATGACGGTTGGCGTGCTGGGAACCGGTCAAATAGGCAAGGCGGTTATTGAGCGACTGCGGGGATTTGGATGTCATGTGCTGGCGTATGGTCACAGCAAAGAGGCGGCGGCCAATTATGTATCCCTCAATGAATTGCTGCAGAAAAGCGACATTCTCACCATTCATGTGCCGCTCGGCACGGACACATATCATATGATTGGTCACGAACAGATTGAAGCAGTGAAACAGGGCGCGTTTCTTATCAATACAGCGCGCGGCGGGCTTGTGGATACCGGCGCGCTGATCAAAGCGTTGGAAAATGGAAGGTTAGGCGGCGCGGCGTTGGATGTGTTGGAAGGAGAAGAAGGGCTTTTCTATTTTGATTGCACACAGAAACCGATTGACAACCAACTATTGCTTAAGCTCCACAAGATGCCAAATGTGATCATCACGCCGCATACGGCGTACTATACCGGACGGGCACTGTATGATACCGTTGAAAAGACAATATTGAACTGTCTGGAATTTGAGAGGAGAGAGACACTTGAATAG " 116 UPDATE QnrB18 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 111 UPDATE Escherichia coli gyrB conferring resistance to aminocoumarin clorobiocin; aminocoumarin antibiotic; novobiocin; coumermycin A1; antibiotic target alteration; aminocoumarin resistant gyrB; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with ATGTCGAATTCTTATGACTCCTCCAGTATCAAAGTCCTGAAAGGGCTGGATGCGGTGCGTAAGCGCCCGGGTATGTATATCGGCGACACGGATGACGGCACCGGTCTGCACCACATGGTATTCGAGGTGGTAGATAACGCTATCGACGAAGCGCTCGCGGGTCACTGTAAAGAAATTATCGTCACCATTCACGCCGATAACTCTGTCTCTGTACAGGATGACGGGCGCGGCATTCCGACCGGTATTCACCCGGAAGAGGGCGTATCGGCGGCGGAAGTGATCATGACCGTTCTGCACGCAGGCGGTAAATTTGACGATAACTCCTATAAAGTGTCCGGCGGTCTGCACGGCGTTGGTGTTTCGGTAGTAAACGCCCTGTCGCAAAAACTGGAGCTGGTTATCCAGCGCGAGGGTAAAATTCACCGTCAGATCTACGAACACGGTGTACCGCAGGCCCCGCTGGCGGTTACCGGCGAGACTGAAAAAACCGGCACCATGGTGCGTTTCTGGCCCAGCCTCGAAACCTTCACCAATGTGACCGAGTTCGAATATGAAATTCTGGCGAAACGTCTGCGTGAGTTGTCGTTCCTCAACTCCGGCGTTTCCATTCGTCTGCGCGACAAGCGCGACGGCAAAGAAGACCACTTCCACTATGAAGGCGGCATCAAGGCGTTCGTTGAATATCTGAACAAGAACAAAACGCCGATCCACCCGAATATCTTCTACTTCTCCACTGAAAAAGACGGTATTGGCGTCGAAGTGGCGTTGCAGTGGAACGATGGCTTCCAGGAAAACATCTACTGCTTTACCAACAACATTCCGCAGCGTGACGGCGGTACTCACCTGGCAGGCTTCCGTGCGGCGATGACCCGTACCCTGAACGCCTACATGGACAAAGAAGGCTACAGCAAAAAAGCCAAAGTCAGCGCCACCGGTGACGATGCGCGTGAAGGCCTGATTGCGGTCGTTTCCGTGAAAGTGCCGGACCCGAAATTCTCCTCCCAGACCAAAGACAAACTGGTTTCTTCTGAGGTGAAATCGGCGGTTGAACAGCAGATGAACGAACTGCTGGCAGAATACCTGCTGGAAAACCCAACCGACGCGAAAATCGTGGTTGGCAAAATTATCGATGCTGCCCGTGCCCGTGAAGCGGCGCGTCGCGCGCGTGAAATGACCCGCCGTAAAGGTGCGCTCGACTTAGCGGGCCTGCCGGGCAAACTGGCAGACTGCCAGGAACGCGATCCGGCGCTTTCCGAACTGTACCTGGTGGAAGGGGACTCCGCGGGCGGCTCTGCGAAGCAGGGGCGTAACCGCAAGAACCAGGCGATTCTGCCGCTGAAGGGTAAAATCCTCAACGTCGAGAAAGCGCGCTTCGATAAGATGCTCTCTTCTCAGGAAGTGGCGACGCTTATCACCGCGCTTGGCTGTGGTATCGGTCGTGACGAGTACAACCCGGACAAACTGCGTTATCACAGCATCATCATCATGACCGATGCGGACGTCGACGGCTCGCACATTCGTACGCTGCTGTTGACCTTCTTCTATCGTCAGATGCCGGAAATCGTTGAACGCGGTCACGTCTACATCGCTCAGCCGCCGCTGTACAAAGTGAAGAAAGGCAAGCAGGAACAGTACATTAAAGACGACGAAGCGATGGATCAGTACCAGATCTCTATCGCGCTGGACGGCGCAACGCTGCACACCAACGCCAGTGCACCGGCATTGGCTGGCGAAGCGTTAGAGAAACTGGTATCTGAGTACAACGCGACGCAGAAAATGATCAATCGTATGGAGCGTCGTTATCCGAAAGCAATGCTGAAAGAGCTTATCTATCAGCCGACGTTGACGGAAGCTGACCTTTCTGATGAGCAGACCGTTACCCGCTGGGTGAACGCGCTGGTCAGCGAACTGAACGACAAAGAACAGCACGGCAGCCAGTGGAAGTTTGATGTTCACACCAATGCTGAGCAAAACCTGTTCGAGCCGATTGTTCGCGTGCGTACCCACGGTGTGGATACTGACTATCCGCTGGATCACGAGTTTATCACCGGTGGCGAATATCGTCGTATCTGCACGCTGGGTGAGAAACTGCGTGGCTTGCTGGAAGAAGATGCGTTTATCGAACGTGGCGAGCGTCGTCAGCCGGTAGCCAGCTTCGAGCAGGCGCTGGACTGGCTGGTGAAAGAGTCCCGTCGCGGCCTCTCCATCCAGCGTTATAAAGGTCTGGGCGAGATGAACCCGGAACAGCTGTGGGAAACCACTATGGACCCGGAAAGTCGTCGTATGCTGCGCGTTACCGTTAAAGATGCGATTGCTGCCGACCAGTTGTTCACCACGCTGATGGGCGACGCCGTTGAACCGCGCCGTGCGTTTATTGAAGAGAACGCCCTGAAAGCGGCGAATATCGATATTTAA " 110 UPDATE AAC(6')-Iu antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 113 UPDATE VEB-5 antibiotic inactivation; monobactam; cephalosporin; VEB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAATCGTAAAAAGGATATTATTAGTATTGTTAAGTTTATTTTTTACAGTTGAGTATTCAAATGCTCAAACTGACAACTTAACTTTGAAAATTGAGAATGTTTTAAAGGCAAAAAATGCCAGAATAGGAGTAGCAATATTCAACAGCAATGAGAAGGATACTTTGAAGATTAATAACGACTTCCATTTCCCGATGCAAAGCGTTATGAAATTTCCGATTGCTTTAGCCGTTTTGTCTGAGATAGATAAAGGGAATCTTTCTTTTGAACAAAAAATAGAGATTACCCCTCAAGACCTTTTGCCTAAAATGTGGAGTCCGATTAAAGAGGAATTCCCTAATGGAACAACTTTGACGATTGAACAAATACTAAATTATACAGTATCAGAGAGCGACAATATTGGTTGTGATATTTTGCTAAAATTAATCGGAGGAACTGATTCTGTTCAAAAATTCTTGAATGCTAATCATTTCACTGATATTTCAATCAAAGCAAACGAAGAACAAATGCACAAGGATTGGAATACCCAATATCAAAATTGGGCAACCCCAACAGCGATGAACAAACTGTTAATAGATACTTATAATAATAAGAACCAATTACTTTCTAAAAAAAGTTATGATTTTATTTGGAAAATTATGAGAGAAACAACAACAGGAAGTAACCGATTAAAAGGACAATTACCAAAGAATACAATTGTTGCTCATAAAACAGGGACTTCCGGAATAAATAATGGAATTGCAGCAGCCACTAATGATGTTGGGGTAATTACTTTACCGAATGGACAATTAATTTTTATAAGCGTATTTGTTGCAGAGTCCAAAGAAACTTCGGAAATTAATGAAAAGATTATTTCAGACATTGCAAAAATAACGTGGAATTACTATTTGAATAAATAA " 112 UPDATE FosA5 fosfomycin; fosfomycin thiol transferase; antibiotic inactivation; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1619 UPDATED strand with - UPDATED accession with KP143090.1 UPDATED fmin with 1199 UPDATED sequence with ATGCTGAGTGGACTGAATCACCTGACCCTGGCAGTCAGCCAGCTGGCGCCGAGCGTGGCGTTTTATCAGCAGCTGCTGGGCATGATGCTGCATGCCCGCTGGGACAGCGGGGCTTATCTCTCCTGCGGCGATCTGTGGCTGTGCCTGTCGCTGGATCCGCAGCGGCGCGTTACTCCGCCGGAAGAGAGCGACTACACCCATTATGCGTTTAGTATTAGCGAAGCCGATTTTGCTAGCTTCGCCGCCCGCCTTGAGGCTGCCGGCGTAGCGGTCTGGAAGCTGAACCGTAGCGAAGGCGCTTCGCACTATTTCCTCGATCCCGATGGCCATAAGCTGGAGCTGCACGTCGGCAGTCTCGCCCAGCGTCTGGCCGCCTGCCGCGAGCAGCCGTATAAGGGGATGGTGTTTTTTGCTGAGTGA UPDATED NCBI_taxonomy_name with Escherichia coli UPDATED NCBI_taxonomy_id with 562 UPDATED NCBI_taxonomy_cvterm_id with 35914 UPDATED accession with AJE60855.1 UPDATED sequence with MLSGLNHLTLAVSQLAPSVAFYQQLLGMMLHARWDSGAYLSCGDLWLCLSLDPQRRVTPPEESDYTHYAFSISEADFASFAARLEAAGVAVWKLNRSEGASHYFLDPDGHKLELHVGSLAQRLAACREQPYKGMVFFAE " 119 UPDATE VIM-12 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; cephamycin; VIM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTTAAAAGTTATTAGTAGTTTATTGGTCTACATGACCGCGTCTGTCATGGCTGTCGCAAGTCCGTTAGCCCATTCCGGGGAGCCGAGTGGTGAGTATCCGACAGTCAACGAAATTCCGGTCGGAGAGGTCCGACTTTACCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTTTGATGGCGCGGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAAAAGCAAATTGGACTTCCCGTAACGCGTGCAGTCTCCACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGGCTGGGGTGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCCGAGGCAGAGGGGAACGAGATTCCCACGCATTCTCTAGAAGGACTCTCATCGAGCGGGGACGCAGTGCGCTTCGGTCCAGTAGAGCTCTTCTATCCTGGTGCTGCGCATTCGACCGACAATCTGGTTGTATACGTCCCGTCAGCGAACGTGCTATACGGTGGTTGTGCCGTTCATGAGTTGTCAAGCACGTCTGCGGGGAACGTGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCATTGAGCGGATTCAACAACACTACCCGGAAGCACAGTTCGTCATTCCGGGGCACGGCCTGCCGGGCGGTCTAGACTTGCTCAAGCACACAACGAATGTTGTAAAAGCGCACACAAATCGCTCAGTCGTTGAGTAG " 118 UPDATE LRA-9 penam; antibiotic inactivation; subclass B3 LRA beta-lactamase; cephalosporin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 12585 UPDATED strand with - UPDATED accession with EU408350.1 UPDATED fmin with 11679 UPDATED sequence with ATGAAATTGCGATATCTGCTCGCCGCCGCGCTTCTGATGACCACGGCCAGCGCGTTCGGCGCGGACGCGCCCAAGCGCCTGCCGGTCAACATCACCAACAAAGAATGGCTGATGCCGTTCCCCGGCTTCAAGATCGTCGGCAACATGTATTACGTCGGCACCTATGATCTGGGCTGCTATCTGATCGATACGGGCGCCGGCCTGATCCTCGTCAACACCGGGATCATGGGTTCCTATCCGCTGATGAAGGCGAGCATCGAATCCCTCGGCTTCAAGACCAGCGACATCAAGATCATCACCGCAACCCACGGCCATTCGGACCATGTCGGCGATATCGCGCTGTTCAAGAAGGATGCGCCGGGCGCCACCGTGTATATGAGCGAGCGCGATGTGGAGAGCCTCGAATCCGGCGGCAATTTCGATTACCGCCGGCCCGCGCCCGAAGGCCGCGGCGGCCTCGTCTACGATCCCATCCATGTCGACGTGAAGACGAAGCCTGGCGATCACATCAAGCTCGGCAATGTCGACATGACCGTGCTGCAGGCTTATGGCCACACGCCGGGCGCGACGAGCTTCTCGTTCCAGCAGACGGATGCGGGCAAGACCTACAACGTCCTCATCGTCAACATGAACGGCATCAACGCGGGCGTGAAGCTGTTGGGCTCGCCGCATTATCCGACCATCGTCGAGGACTTCAAGAACACGATCGACATGCAGGCGACCTACAAGCCCGATATCTGGGTGTCGTCGCATTCCGGGCAGTTCAACCTGCACCAGGTCTATAAGCCGGGCGATGCGTACAATCCGGCGCGCTTCGGCGACCTCGCGGCCTATCAGAAGAAGATCGCGACCGCGAAGGCGAATTACGAAAAGCAGCTCGCGGAAGAACGCGCCGCGGCGAAGTGA UPDATED NCBI_taxonomy_name with uncultured bacterium BLR9 UPDATED NCBI_taxonomy_id with 506525 UPDATED NCBI_taxonomy_cvterm_id with 39083 UPDATED accession with ACH58989.1 UPDATED sequence with MKLRYLLAAALLMTTASAFGADAPKRLPVNITNKEWLMPFPGFKIVGNMYYVGTYDLGCYLIDTGAGLILVNTGIMGSYPLMKASIESLGFKTSDIKIITATHGHSDHVGDIALFKKDAPGATVYMSERDVESLESGGNFDYRRPAPEGRGGLVYDPIHVDVKTKPGDHIKLGNVDMTVLQAYGHTPGATSFSFQQTDAGKTYNVLIVNMNGINAGVKLLGSPHYPTIVEDFKNTIDMQATYKPDIWVSSHSGQFNLHQVYKPGDAYNPARFGDLAAYQKKIATAKANYEKQLAEERAAAK " 2785 UPDATE Klebsiella pneumoniae OmpK37 penam; carbapenem; penem; reduced permeability to antibiotic; cefotaxime; cephalosporin; cephamycin; General Bacterial Porin with reduced permeability to beta-lactams; monobactam; cefoxitin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2786 UPDATE Burkholderia pseudomallei Omp38 penam; reduced permeability to antibiotic; imipenem; penem; benzylpenicillin; cephalosporin; carbapenem; ceftazidime; cephamycin; General Bacterial Porin with reduced permeability to beta-lactams; monobactam; cefoxitin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2780 UPDATE FosA7 fosfomycin; fosfomycin thiol transferase; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1797 UPDATE ErmY antibiotic target alteration; streptogramin antibiotic; Erm 23S ribosomal RNA methyltransferase; macrolide antibiotic; lincosamide antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2079 UPDATE sgm kanamycin A; aminoglycoside antibiotic; isepamicin; 16S rRNA methyltransferase (G1405); sisomicin; arbekacin; gentamicin B; netilmicin; antibiotic target alteration; gentamicin C; amikacin; dibekacin; G418; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2072 UPDATE NmcR penam; carbapenem; NmcA beta-lactamase; cefazolin; cephalosporin; antibiotic inactivation; cephamycin; amoxicillin; ampicillin; clavulanate; cefoxitin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 1079 UPDATED strand with - UPDATED accession with Z21956.1 UPDATED fmin with 191 UPDATED sequence with ATGCGTGCCAGATTACCTTTAAATGCATTACGAGCTTTTGAAGCCTCAGCAAGATATCTAAATTTTACTAAAGCCGGACTAGAACTTCATGTAAGCCAGGCCGCCGTAAGCCAGCAGGTCAGAACACTTGAACAAATGCTTGGTGTGGCTCTTTTTACAAGAGTACCGCGTGGGTTACAGTTGACAGACGAAGGCATGCATCTTTTGCCTTCGATTACAGAAGCTTTGCAGATGATGAGTTCTGCGATGGATAAATTCCATGAAGGTAAGATTAAAGAGGTGCTTACTATTGCTGTCGTAGGGACTTTTGCAATAGGATGGCTCCTTCCTCGGATTACTGCGTTTCTTAATGAAAATCCATGGATTGATATTAGAATTTTAACGCATAATAACGTTGTCAATCTTGCTGCAGAAGGTATTGATGCATCTATTAGATTTGGAACAGGCGGCTGGATTAATACGGAAAATATTTTACTCTTTCAGGCGCCGCATACAGTATTGTGTTCCCCGGAAACATCCAAGAAATTGTACATTCCATCAGACTTAAAAAAAGTTTGCTTACTGCGTTCCTATCGAAAGGAGGAATGGAATAATTGGTTTAAAGCTGCTGGGATCGACCCTTGGACTATTACAGGGCCTATCTTTGATTCTACCAGACTTATGATAGATGCTGTAAAGTTAGGTGATTATGCAGCACTAGTTCCTTATCATATGTTTCAAAAAGAATTAAATGAGCGATCCGTGGCAAAACCTTTTGAAATTTATGCCACGCTTGGCGGTTATTGGCTTACTTTGCAGAAATCTCGGGTTAATCATAATAGTGAAGCACTTAATGTTTTCAAGGAATGGATTATCGAGCATAGCAGAGAGTTTGTATTAAAATCCTAG UPDATED NCBI_taxonomy_name with Enterobacter cloacae UPDATED NCBI_taxonomy_id with 550 UPDATED NCBI_taxonomy_cvterm_id with 36884 UPDATED accession with CAA79966.1 UPDATED sequence with MRARLPLNALRAFEASARYLNFTKAGLELHVSQAAVSQQVRTLEQMLGVALFTRVPRGLQLTDEGMHLLPSITEALQMMSSAMDKFHEGKIKEVLTIAVVGTFAIGWLLPRITAFLNENPWIDIRILTHNNVVNLAAEGIDASIRFGTGGWINTENILLFQAPHTVLCSPETSKKLYIPSDLKKVCLLRSYRKEEWNNWFKAAGIDPWTITGPIFDSTRLMIDAVKLGDYAALVPYHMFQKELNERSVAKPFEIYATLGGYWLTLQKSRVNHNSEALNVFKEWIIEHSREFVLKS " 2071 UPDATE AAC(6')-Ib8 antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2075 UPDATE Salmonella enterica soxR with mutation conferring antibiotic resistance tetracycline antibiotic; antibiotic target alteration; antibiotic efflux; ATP-binding cassette (ABC) antibiotic efflux pump; major facilitator superfamily (MFS) antibiotic efflux pump; resistance-nodulation-cell division (RND) antibiotic efflux pump; norfloxacin; cephalosporin; cefalotin; ciprofloxacin; protein(s) and two-component regulatory system modulating antibiotic efflux; rifampin; ampicillin; penam; triclosan; efflux pump complex or subunit conferring antibiotic resistance; tigecycline; glycylcycline; fluoroquinolone antibiotic; chloramphenicol; phenicol antibiotic; tetracycline; rifamycin antibiotic; model_description "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. " 1388 UPDATE oleB antibiotic target protection; ABC-F ATP-binding cassette ribosomal protection protein; macrolide antibiotic; oleandomycin; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 36298 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. " 1796 UPDATE CMY-119 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1035 UPDATE Streptococcus pneumoniae PBP2b conferring resistance to amoxicillin ceftaroline; ampicillin; flucloxacillin; ceftibuten; cefditoren; piperacillin; cefpodoxime; cefixime; cefdinir; meropenem; carbapenem; imipenem; aztreonam; cefradine; isopenicillin N; cefazolin; penicillin N; ceftazidime; cefepime; penicillin; antibiotic target alteration; oxacillin; cefmetazole; moxalactam; cloxacillin; cefadroxil; ceftriaxone; methicillin; loracarbef; ceftizoxime; cephalosporin; cefotaxime; cefaclor; Penicillin-binding protein mutations conferring resistance to beta-lactam antibiotics; cefonicid; monobactam; cefuroxime; amoxicillin; mezlocillin; azlocillin; cefalexin; doripenem; cefotiam; ertapenem; penam; cefprozil; cephapirin; ceftobiprole; benzylpenicillin; phenoxymethylpenicillin; cephamycin; carbenicillin; cefalotin; ceftiofur; mecillinam; propicillin; cefoxitin; dicloxacillin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED fmax with 1496273 UPDATED strand with - UPDATED accession with NC_003098.1 UPDATED fmin with 1494215 UPDATED sequence with ATGAGACTGATTTGTATGAGAAAATTTAACAGCCATTCGATTCCGATTCGGCTTAATTTATTGTTTTCAATCGTCATTTTACTCTTTATGACCATTATTGGTCGTTTGTTGTATATGCAGGTTTTGAACAAGGATTTTTACGAAAAAAAGCTAGCCTCAGCTAGTCAGACCAAGATTACAAGCAGTTCAGCCCGTGGGGAAATTTATGATGCTAGTGGAAAACCTTTGGTAGAAAATACGTTAAAGCAGGTTGTTTCCTTTACGCGTAGCAATAAAATGACGGCTACAGACTTAAAAGAAACAGCTAAAAAGTTACTGACTTATGTGAGCATCAGTTCTCCAAATTTGACAGAACGCCAGCTGGCGGATTACTATTTGGCTGATCCTGAAATCTATAAAAAAATAGTGGAAGCTCTCCCAAGCGAGAAACGCTTGGATTCAGATGGCAATCGTCTATCCGAATCAGAACTGTATAACAATGCGGTCGATAGTGTACAAACGAGTCAACTAAACTATACAGAGGATGAAAAGAAAGAAATCTATCTTTTTAGTCAGTTAAATGCTGTTGGAAACTTTGCGACAGGAACCATTGCTACAGATCCTCTAAATGATTCTCAGGTGGCTGTTATTGCCTCTATTTCAAAGGAGATGCCTGGCATTAGTATTTCTACTTCTTGGGATAGAAAGGTTTTGGAAACTTCCCTTTCTTCTATAGTTGGGAGTGTATCCAGTGAAAAAGCTGGTCTCCCAGCGGAAGAAGCAGAAGCCTATCTTAAAAAAGGCTATTCTCTAAATGACCGTGTAGGAACCTCCTATTTGGAAAAGCAATATGAAGAGACCTTACAAGGAAAACGCTCGGTAAAAGAAATCCATCTGGATAAATATGGCAATATGGAAAGCGTGGATACAATTGAGGAAGGTAGTAAGGGAAACAATATCAAACTGACCATTGATTTGGCTTTCCAAGATAGCGTGGATGCTTTACTGAAAAGTTATTTCAATTCTGAGCTAGAAAATGGTGGAGCCAAGTATTCTGAAGGTGTCTATGCAGTCGCCCTTAACCCAAAAACAGGTGCGGTTTTGTCTATGTCAGGGATTAAACATGACTTGAAAACGGGAGAGTTGACGCCTGATTCCTTGGGAACGGTAACCAATGTCTTTGTTCCAGGTTCGGTTGTCAAGGCGGCGACCATCAGCTCAGGTTGGGAAAATGGAGTCTTGTCAGGAAACCAGACCTTGACAGACCAGTCCATTGTCTTCCAAGGTTCAGCTCCCATCAATTCTTGGTATACTCAGGCTTACGGTTCATTCCCTATCACAGCGGTCCAAGCTCTGGAGTATTCATCAAATACCTATATGGTCCAAACAGCCTTAGGTCTTATGGGGCAAACCTATCAACCCAATATGTTTGTCGGCACCAGCAATCTAGAGTCTGCTATGGAGAAACTGCGTTCAACCTTTGGCGAATATGGCTTGGGTACTGCGACAGGAATTGACCTACCAGATGAATCTACTGGATTTGTTCCCAAAGAGTATAGCTTTGCTAATTACATTACTAATGCCTTTGGGCAGTTTGATAACTATACGCCGATGCAGTTGGCTCAGTATGTAGCAACTATTGCAAATAATGGTGTTCGTGTGGCTCCTCGTATTGTTGAAGGCATTTATGGTAATAATGATAAGGGAGGACTGGGTGACTTGATTCAGCAACTGCAACCGACAGAGATGAATAAGGTCAATATATCCGACTCCGATATGAGCATCTTGCACCAAGGTTTTTATCAGGTTGCCCATGGTACTAGTGGATTGACAACTGGACGTGCCTTTTCAAATGGTGCCTTGGTATCCATTAGCGGAAAAACAGGTACAGCCGAAAGCTATGTGGCAGATGGTCAGCAAGCAACCAATACCAATGCGGTGGCCTATGCCCCATCTGATAATCCCCAAATCGCTGTCGCAGTGGTCTTTCCTCATAATACCAATCTAACAAATGGTGTAGGACCTTCCATTGCGCGTGACATTATCAATCTGTATCAAAAATACCATCCAATGAATTAG UPDATED NCBI_taxonomy_name with Streptococcus pneumoniae R6 UPDATED NCBI_taxonomy_id with 171101 UPDATED NCBI_taxonomy_cvterm_id with 39596 UPDATED accession with NP_359110.1 UPDATED sequence with MRLICMRKFNSHSIPIRLNLLFSIVILLFMTIIGRLLYMQVLNKDFYEKKLASASQTKITSSSARGEIYDASGKPLVENTLKQVVSFTRSNKMTATDLKETAKKLLTYVSISSPNLTERQLADYYLADPEIYKKIVEALPSEKRLDSDGNRLSESELYNNAVDSVQTSQLNYTEDEKKEIYLFSQLNAVGNFATGTIATDPLNDSQVAVIASISKEMPGISISTSWDRKVLETSLSSIVGSVSSEKAGLPAEEAEAYLKKGYSLNDRVGTSYLEKQYEETLQGKRSVKEIHLDKYGNMESVDTIEEGSKGNNIKLTIDLAFQDSVDALLKSYFNSELENGGAKYSEGVYAVALNPKTGAVLSMSGIKHDLKTGELTPDSLGTVTNVFVPGSVVKAATISSGWENGVLSGNQTLTDQSIVFQGSAPINSWYTQAYGSFPITAVQALEYSSNTYMVQTALGLMGQTYQPNMFVGTSNLESAMEKLRSTFGEYGLGTATGIDLPDESTGFVPKEYSFANYITNAFGQFDNYTPMQLAQYVATIANNGVRVAPRIVEGIYGNNDKGGLGDLIQQLQPTEMNKVNISDSDMSILHQGFYQVAHGTSGLTTGRAFSNGALVSISGKTGTAESYVADGQQATNTNAVAYAPSDNPQIAVAVVFPHNTNLTNGVGPSIARDIINLYQKYHPMN " 1389 UPDATE KPC-22 antibiotic inactivation; penam; carbapenem; cephalosporin; monobactam; KPC beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1209 UPDATE QnrB45 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1208 UPDATE SHV-173 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1986 UPDATE OXA-309 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1987 UPDATE QnrA1 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGATATTATTGATAAAGTTTTTCAGCAAGAGGATTTCTCACGCCAGGATTTGAGTGACAGCCGTTTTCGCCGCTGCCGCTTTTATCAGTGTGACTTCAGCCACTGTCAGCTGCAGGATGCCAGTTTCGAGGATTGCAGTTTCATTGAAAGCGGCGCCGTTGAAGGGTGTCACTTCAGCTATGCCGATCTGCGCGATGCCAGTTTCAAGGCCTGCCGTCTGTCTTTGGCCAACTTCAGCGGTGCCAACTGCTTTGGCATAGAGTTCAGGGAGTGCGATCTCAAGGGCGCCAACTTTTCCCGGGCCCGCTTCTACAATCAAGTCAGCCATAAGATGTACTTCTGCTCGGCTTATATCTCAGGTTGCAACCTGGCCTATACCAACTTGAGTGGCCAATGCCTGGAAAAATGCGAGCTGTTTGAAAACAACTGGAGCAATGCCAATCTCAGCGGCGCTTCCTTGATGGGCTCAGATCTCAGCCGCGGCACCTTCTCCCGCGACTGTTGGCAACAGGTCAATCTGCGGGGCTGTGACCTAACCTTTGCCGATCTGGATGGGCTCGACCCCAGACGGGTCAACCTCGAAGGAGTCAAGATCTGTGCCTGGCAACAGGAGCAACTGCTGGAACCCTTGGGAGTAATAGTGCTGCCGGATTAG " 1984 UPDATE SHV-144 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1985 UPDATE SHV-7 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATTTTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCAGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGTGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTGCTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAAGACCGGAGCTAGCAAACGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATACCCCGGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGCGCGGCGCTGATCGAGCACTGGCAACGCTAA " 1982 UPDATE IMP-9 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGCAAGTTATTTGTATTCTTTATGTTTTTGTTTTGTAGCATTACTGCCGCAGGAGAGTCTTTGCCAGATTTAAAAATTGAGAAGCTTGACGAAGGCGTTTATGTTCATACTTCGTTTGAAGAAGTTAACGGTTGGGGTGTTATTCCTAAACACGGCTTGGTGGTTCTTGTAAATACTGATGCCTATCTGATAGACACTCCATTTACTGCTAAAGATACTGAAAATTTAGTTAATTGGTTTGTTGAGCGCGGCTATAGAATAAAAGGCAGTATTTCCTCACATTTCCATAGCGACAGCACGGGTGGAATAGAGTGGCTTAATTCTCAATCTATCCCCACGTATGCATCTGAATTAACAAATGAACTTCTTAAAAAAGACGGTAAGGTACAAGCTAAATATTCATTTAGCGGAGTTAGCTATTGGCTAGTTAAGAAAAAGATTGAAGTTTTTTATCCTGGTCCAGGGCACGCTCCAGATAACGTAGTGGTTTGGCTGCCTGAAAATAGAGTTTTGTTCGGTGGTTGTTTTGTTAAACCCTACGGTCTAGGTAATTTGGGTGACGCAAATTTAGAAGCTTGGCCAAAATCCGCCAAATTATTAATGTCAAAATATAGTAAGGCAAAACTGGTTGTACCAAGTCATAGTGACATAGGAGATTCGTCGCTCTTGAAGCTTACATGGGAGCAGACGGTAAAAGGATTCAATGAAAGCAAAAAAAGTACCACTGCACATTAA " 1983 UPDATE vanTN glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanT; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAACGTAAATACCGGGATCAATCAATTTCGATTGATCGCTGCTTTCATGGTCGTTGCGATTCACTGTTTTCCTTTTCAGTCGTTTAGTAAAACTCTTGATATATTGATTACTTTGACACTCTTTCGAACTGCCGTACCTTTTTTCTTAATGGTCACAGGTTTTTATTTAATTGGACCGATTGCCACTAAGAGAGGCTATCCAGCCTATTTAAAGATAAAAAAATTTTTAAAAAAGCAAGTGAAGCTATATGTGCTTGCTACGCTCATTTATCTTCCACTAGCTTTTTATAGTGGTGTGATCACTTTCAAGACGAGTGTCATTCAATTTTTTCAACTCATCTTTTTCGAAGGAGTTCTTTACCACTTGTGGTATTTTCCAGCATTGATTTTAGGTGTTCTCATCGTTTACTGCTTATTACAGCGGTTCACGCTTCGACAAGTTTTATTAGTGACTTTTCTATTCTATTTACTATGTTTGGGCGGCGATAGCTGGTGGGGGTTAGCTAGACAAATTCCTGTGTTAGAAAAAAGTTATCAAGGGATATTTACGCTCATGATCCATACTCGAAATGGACTATTTTTTGCCCCTTTCTTTTTAACACTCGGTGCTTCGTTCCATCAATCAGAGTGGAACATGCGTACATCTAAAGCCAAGTATTTTTTGTTGATTGCTAGTTTAGGCATGCTAGTGGAAAGCTATTTGCTACACTCCTTTAGTTCACCAAAACATGATAGTGCATACCTATTCTTGCCTGTGGTGATGTTTTTTCTTTTTCCACTTATTTTGAACTGGCAGCCTACACGTGTCATTGCCGACGCTTCGACAATCAGTTTAGGTATTTATGTCCTTCATCCTTATGTCATTGCTGTTGTCCATACTTTAGCCAAAAAAATAACGATACTAAACAATAGTTTAATTTATTATCTCTGCGTTTCCCTTTTAACTAGTTTGATTATTCTTTATGTACACTCTAAGAAAAAGAAAACGACAAAAAATCAGGCTACGTTTGTCCCTAGAACAAAAAAAGTACTCTCTAAGCAAGCAGTTATCCATAATTTGGCACAAATCAATCAAGTGATTCCGAAAACAACGAAAATAATGGCTGTCATAAAAGCCAACGCTTATGGAACTGATGATACAGAATTTGCTCGAATCTTAGAACAACAAGGAGTTGATTTTTTTGCTGTCGCTACCATTGATGAAGGCATTCGTTTGCGAGAAAATGGAATTAAAAGCAAAATCTTAATTCTAGGCTATACACCATCGATACGAATAAAAGAATTAGCTCACTACACATTAATACAAACAATCGTTAGCAAAGAACATGCTTATTCATTAAATCAACAAAAGATACCTATTTCGTGCCATCTAAAAATTGATACTGGCATGCATCGTTTAGGTGTTGAGCCTGTGGTTCAGGAGGTTTCATCCTTATATCGATTACCCTACTTAAATATTCAAGGTATTTATTCTCATCTCGGTTCAGCTGATGATCGAAGTGACAAAGGAATGAAACGCACGAGAAAACAAATTTCGATTTTTGATTATTTATTACATGAACTAGAACTTCAAAAAATCGATGTCGGTGTTACGCATCTGCAAAGTAGCTATGGTATTTTGAATTATCCTGAACTGGTCTATGATTATGTTCGTCCTGGTATTCTTTTATACGGTTATTTAAGTGAACATAATGGAGATTCAAAAATCAACTTAAATTTGCAACCAATTTTAGATGTCCAAGCACTGCTCGTATCAAAAAAATGGGTTGCTGCTGGTGAATATCTTGGCTATAGCCTTGATACTAAACTAGTTTCTCCAAAGCTGATTGGTATCGTCAGCATCGGCTATGCAGACGGTGTTCCTAGAGAGTTATCTCACAATGAGTTTTATCTTGCTTATCAGGGACAAAATCTACCACAAATCGGACGAATTTGTATGGATATGCTATTAGTGGATTTGACTGATTCTCCAGAAATCAAAGTAGAGTCACAAATTAGTATCTTCCCAGAACTAGAACAAACTGCTAATCAAACGAATACATTGACTAACGAAATCATCAGTCGCTTAGGTAATCGTTTCTACACCGAATGGTCCTAA " 1980 UPDATE OXA-247 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1981 UPDATE vanA glycopeptide resistance gene cluster; van ligase; teicoplanin; glycopeptide antibiotic; antibiotic target alteration; vancomycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1638 UPDATE CMY-111 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1639 UPDATE SHV-84 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGTTATATTCGCCTGTGTATTATCTCCCTGTTAGCCACCCTGCCGCTGGCGGTACACGCCAGCCCGCAGCCGCTTGAGCAAATTAAACTAAGCGAAAGCCAGCTGTCGGGCCGCGTAGGCATGATAGAAATGGATCTGGCCAGCGGCCGCACGCTGACCGCCTGGCGCGCCGATGAACGCTTTCCCATGATGAGCACCTTTAAAGTAGTGCTCTGCGGCGCAGTGCTGGCGCGGGTGGATGCCGGTGACGAACAGCTGGAGCGAAAGATCCACTATCGCCAGCAGGATCTGGTGGACTACTCGCCGGTCAGCGAAAAACACCTTGCCGACGGCATGACGGTCGGCGAACTCTGCGCCGCCGCCATTACCATGAGCGATAACAGCGCCGCCAATCTGCTACTGGCCACCGTCGGCGGCCCCGCAGGATTGACTGCCTTTTTGCGCCAGATCGGCGACAACGTCACCCGCCTTGACCGCTGGGAAACGGAACTGAATGAGGCGCTTCCCGGCGACGCCCGCGACACCACTACCCCGGCCAGCATGGCCGCGACCCTGCGCAAGCTGCTGACCAGCCAGCGTCTGAGCGCCCGTTCGCAACGGCAGCTGCTGCAGTGGATGGTGGACGATCGGGTCGCCGGACCGTTGATCCGCTCCGTGCTGCCGGCGGGCTGGTTTATCGCCGATAGGACCGGAGCTGGCGAGCGGGGTGCGCGCGGGATTGTCGCCCTGCTTGGCCCGAATAACAAAGCAGAGCGCATTGTGGTGATTTATCTGCGGGATACCCCAGCGAGCATGGCCGAGCGAAATCAGCAAATCGCCGGGATCGGC " 1988 UPDATE CMY-7 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1989 UPDATE Klebsiella pneumoniae acrR with mutation conferring multidrug antibiotic resistance penam; antibiotic efflux; triclosan; rifampin; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; antibiotic target alteration; tetracycline antibiotic; cephalosporin; cefalotin; tigecycline; glycylcycline; ampicillin; fluoroquinolone antibiotic; rifamycin antibiotic; phenicol antibiotic; tetracycline; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with ATGGCACGAAAAACCAAACAACAGGCACGTGAAACCCGGCAACTGATTCTGGATGTTGCTCTGCGTCTGTTTTCGCAGCAAGGCGTATCATCTACCTCGTTGGCAACAATTGCAAAAGCTGCGGGTGTAACGAGGGGGGCTATCTACTGGCATTTCAAGAATAAATCAGATTTATTCAACGAAATTTGGGAGCTGTCAGACGCCAGTATTAGCGATCTCGAAATTGAGTATCGGGCAAAATTCCCCAACGATCCACTCTCAGTTATCAGGGAGATTCTAGTCTATGTTCTTGAAGCGACAGTGACAGAAGAACGTCGACGATTAATGATGGAGATTATCTATCATAAGTGTGAGTTCGTCGGTGAAATGACCGTGGTGCAGCAGGCCCAGCGGCAGCTCTCCCTGGCGAGTTATGAGCGTATCGAGCAGACCTTGAAAGAGTGCATCGCGGCGAAGCTGCTGCCCGCCAATTTACTCACCCGGCGGGCGGCCGTGTTAATGCGCAGCTACCTTTCCGGGCTGATGGAAAACTGGCTGTTTGCCCCCGATTCGTTCGACCTGCATGCGGAAGCGCGGGACTACGTCGCTATTCTGCTGGAGATGTATCAATTCTGCCCGACGCTACGCGGCCCGGAGAGCTTGTCAGCTTAA " 2815 UPDATE Mycobacterium kansasii 23S rRNA with mutation conferring resistance to clarithromycin antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2814 UPDATE Mycobacterium intracellulare 23S rRNA with mutation conferring resistance to azithromycin antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; azithromycin; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2817 UPDATE Streptococcus pneumoniae 23S rRNA with mutation conferring resistance to macrolide antibiotics antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2816 UPDATE Mycobacterium smegmatis 23S rRNA with mutation conferring resistance to clarithromycin antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2811 UPDATE Mycobacterium avium 23S rRNA with mutation conferring resistance to clarithromycin antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2810 UPDATE Mycobacterium abscessus 23S rRNA with mutation conferring resistance to clarithromycin antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2813 UPDATE Mycobacterium intracellulare 23S rRNA with mutation conferring resistance to clarithromycin antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2812 UPDATE Mycobacterium chelonae 23S rRNA with mutation conferring resistance to clarithromycin antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; clarithromycin; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 560 UPDATE OXA-77 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 561 UPDATE OKP-B-8 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 562 UPDATE TEM-187 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 563 UPDATE OKP-B-6 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 2819 UPDATE Escherichia coli 23S rRNA with mutation conferring resistance to oxazolidinone antibiotics antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; oxazolidinone antibiotic; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; 23S rRNA with mutation conferring resistance to oxazolidinone antibiotics; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 2818 UPDATE Streptomyces ambofaciens 23S rRNA with mutation conferring resistance to macrolide antibiotics antibiotic target alteration; glycopeptide antibiotic; virginiamycin S2; vernamycin C; vernamycin B-gamma; ostreogrycin B3; macrolide antibiotic; florfenicol; lincosamide antibiotic; thiamphenicol; 23S rRNA with mutation conferring resistance to macrolide antibiotics; clindamycin; dalfopristin; pristinamycin IB; quinupristin; pristinamycin IA; bleomycin B2; bleomycinic acid; bleomycin A2; pristinamycin IIA; pleuromutilin antibiotic; madumycin II; griseoviridin; lincomycin; streptogramin antibiotic; azidamfenicol; phenicol antibiotic; chloramphenicol; ARO_category "UPDATED category_aro_name with virginiamycin S2 UPDATED category_aro_cvterm_id with 37021 UPDATED category_aro_accession with 3000677 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Virginiamycin S2 is a streptogramin B antibiotic. UPDATED category_aro_name with vernamycin C UPDATED category_aro_cvterm_id with 37023 UPDATED category_aro_accession with 3000679 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Vernamycin C is a streptogramin B antibiotic. UPDATED category_aro_name with ostreogrycin B3 UPDATED category_aro_cvterm_id with 37026 UPDATED category_aro_accession with 3000682 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Ostreogrycin B3 is a derivative of pristinamycin IA, with an additional 3-hydroxy group on its 4-oxopipecolic acid. " 566 UPDATE OXA-32 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCAATCCGAATCTTCGCGATACTTTTCTCCATTTTTTCTCTTGCCACTTTCGCGCATGCGCAAGAAGGCACGCTAGAACGTTCTGACTGGAGGAAGTTTTTCAGCGAATTTCAAGCCAAAGGCACGATAGTTGTGGCAGACGAACGCCAAGCGGATCGTGCCATGTTGGTTTTTGATCCTGTGCGATCGAAGAAACGCTACTCGCCTGCATCGACATTCAAGATACCTCATACACTTTTTGCACTTGATGCAGGCGCTGTTCGTGATGAGTTCCAGATTTTTCGATGGGACGGCGTTAACAGGGGCTTTGCAGGCCACAATCAAGACCAAGATTTGCGATCAGCAATGCGGAATTCTACTGTTTGGGTGTATGAGCTATTTGCAAAGGAAATTGGTGATGACAAAGCTCGGCGCTATTTGAAGAAAATCGACTATGGCAACGCCGATCCTTCGACAAGTAATGGCGATTACTGGATAGAAGGCAGCATTGCAATCTCGGCGCAGGAGCAAATTGCATTTCTCAGGAAGCTCTATCGTAACGAGCTGCCCTTTCGGGTAGAACATCAGCGCTTGGTCAAGGATCTCATGATTGTGGAAGCCGGTCGCAACTGGATACTGCGTGCAAAGACGGGCTGGGAAGGCCGTATGGGTTGGTGGGTAGGATGGGTTGAGTGGCCGACTGGCTCCGTATTCTTCGCACTGAATATTGATACGCCAAACAGAATGGATGATCTTTTCAAGAGGGAGGCAATCGTGCGGGCAATCCTTCGCTCTATTGAAGCGTTACCGCCCAACCCGGCAGTCAACTCGGACGCAGCGCGATAA " 567 UPDATE CTX-M-41 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1188 UPDATE ErmV antibiotic target alteration; streptogramin antibiotic; Erm 23S ribosomal RNA methyltransferase; macrolide antibiotic; lincosamide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGCCCGCCCCAGTCGCGTATCCCGCGCGCTCTCGCAGAACTTCCTCGCCGACCGCGCCGCCGCCGGACAGCTCGCCCGGCTCGCCGCGCCCCACGGCCTCCCCGTCCCGCTGCTGCTCGAAGTCGGCGCGGGCAAAGGCGCGTTGACCGAGCTGCTCGCCCCGCGCTGTCGCAGTCTCCTCGCCTACGAGATCGACCCACGGCTCGTCCCCGTCCTGCGCTCGCGCTTCGCGGACGCCCCGCACGTCCGCGTCCTCGGCGAGGACTTCCTGCGCGCCAGGGCGCCGCGCACCCCGTTCTCCGTCGCCGGGAACGTCCCCTTCTCCCGTACCGCCGCCGTCGTCGCGTGGTGTCTGCGGGCCCCGCACCTCACCGACGCCACCCTGCTCACCCAGCTGGAGTACGCCCGCAGACGCACCGGCGACTACGGCAGCTGGACGCGGCTGACCGTGCTGACTTGGCCCCGCCACGAGTGGCGGCTCGCCGGGCGGGTCGGGCGCCGCAGCTTCCGTCCCGTGCCCCGGGTGGACGCGGGGATCGTCCGTATCGAGCGGCGTCGCACCCCGCTGCTCGCGCCCGGTGCCGACGCCGGCTGGCGGGAGCTGGTCGACCTCGGCTTCTCCGGGGCCGGCGGCTCCCTGCACGCCTCGCTGCGGCGGGCCCGCCCGAGACGGCGGGTGGACGCGGCGTTCCGCGCGGCGGGGCTCGACCGGGACGTCCTGGTGGGGGAGGTGCCGCCGTGGACGTGGCTGAGGCTGCACGAGGTGCTGGGCTCGTGA " 1189 UPDATE vatB dalfopristin; antibiotic inactivation; streptogramin vat acetyltransferase; pristinamycin IIA; madumycin II; griseoviridin; streptogramin antibiotic; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1186 UPDATE OXA-327 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1187 UPDATE OXA-248 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1184 UPDATE OXA-182 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAATTTATACTTCCTATCTTCAGCATTTCTATTCTACTTTCTCTCAGTGCATGCTCATCTATTCAAACTAAATTTGAAGATACTTTTCATATTTCTAATCAGAAACATGAAAAAGCTATTAAAAGCTATTTTGATGAAGCTCAAACACAAGGTGTAATTATTATTAAGGAAGGTAAAAATATTAGCTCCTATGGTAATAACCTTGTACGAGCACATACAGAATATGTCCCTGCATCAACATTTAAGATGCTAAATGCTTTAATCGGACTAGAAAATCATAAAGCGACAACAAATGAGATTTTTAAATGGGATGGTAAAAAAAGATCTTATCCTATGTGGGAGAAAGATATGACTTTGGGTGAGGCCATGGCACTTTCAGCTGTTCCTGTATATCAAGATCTTGCGAGACGGATTGGCTTAAATCTCATGCAAAAAGAAGTTAAACGCGTTGGTTTTGGTAATATGAACATTGGAACACAAGTTGATAATTTCTGGTTGATTGGTCCTCTTAAGATTACACCAATACAAGAAGTGAATTTTGCCGATGATCTTGCGAATAATCGATTACCCTTTAAATTAGAAACTCAAGAAGAAGTAAAAAAGATGCTTCTGATTAAAGAAGTCAATGGTAGTAAAATTTATGCTAAAAGCGGATGGGGAATGGATGTAAGCCCACAAGTAGGTTGGTTAACAGGTTGGGTAGAAAAATCTAATGGAGAAAAAGTTTCCTTTTCTTTAAATATAGAAATGAAGCAAGGAATGTCTGGTTCTATTCGTAATGAGATTACTTATAAGTCGTTAGAAAATTTAGGGATCATCTAA " 1185 UPDATE OXA-176 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1182 UPDATE CTX-M-105 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACGAGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAGGTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGTCGCGGCGGTGCTTAAGCAGAGTGAAACGCAAAAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATGACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGCGTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCGAGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGAGCAGTTGGTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGCGGCGGCTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAACAGAACGCAGAGAGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA " 1183 UPDATE tetQ chlortetracycline; demeclocycline; oxytetracycline; tetracycline antibiotic; tetracycline; antibiotic target protection; minocycline; tetracycline-resistant ribosomal protection protein; doxycycline; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1180 UPDATE mdsC penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; penem; carbapenem; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; cephamycin; monobactam; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 393931 UPDATED strand with - UPDATED accession with NC_003197.2 UPDATED fmin with 392419 UPDATED sequence with GTGAGAACCGCGTTGATTCGCATGATCAGCAAGCATAATGATGGGAATGGCATAATGAAGATCACTTTTACAGGCTATCGGCAGACCGCCACGCTGGCGACGCTTGCTTTCGTCACCACGCTTGCTGGCTGTACGATGGCGCCGAAGCACGAACGCCCCGCATCGCCGACTGCGATGGTCTATCCCTACGCAACGTCAACCGTTTCTGGCGCGCCGGATGCCGCTGACATTGGCTGGCGTGATTTCTTCCACGATCCGCTTCTACAGGAACTGATTGCGATCGCGTTACGCAATAATCGGGATTTACGCAAGGCAGGGCTCAATGTTGAAGCCGCCCGGGCGTTATACCGCATTCAGCGCGCGGAGATGCTGCCGACGCTCGGCATCGCCACCGCCATGGACGCCAGTCGCACTCCCGCCGATCTCAGCGTCATGGACGAGTCTGAGATTAACCGACGCTACGAGGCGGCTGGGGCGACGACGGCCTGGGAACTGGATCTCTGGGGGCGAGTGCGAAGCCTTAGCGACCAGGCATTAGCCGCCTATATGGCGCTTGATGAGACGTACATTGCGGCGCGAATGAGCCTGGTTTCCGAAGTCGCCAGCGCCTGGCTGACGCTACGGGCTGACCGGGAGCTGCTGCGCTTAACCGAGGATACGCTGGCCGCGCAAAAAAGTTCATACACATTGACGACCCAGCTTGCCCGGACAGGTAACGCCACACAGCTCGATCTGCGTATGGCGGAGATCGCGCTGCGTTCTGCCGAAATCAATCGCGCGGCGTATACGCGACAGTTGGCGCGGGATCGTAACGCGCTGGAATTGCTGTTGGGCCAGCCGCTCACGCCTGAACTGTCGCGTCGACTAAACGAAGCGGTCACGCTTACAGAAGGCGCGATCCCGACCACACTGCCAGGCGGATTACCGTCAGATCTGCTGGTACGCCGCCCGGATATTCGCGCCGCCGAGTACAGGCTGCGCGGCGCAAACGCCCGGATAGGCGCAGCGCGCGCCGCCTTCTTCCCGACCATCAGCCTGACAGGCTCGGCGGGAACGGCCAGCGCGTCTCTTAGCGGACTCTTTGAACCGGGATCGGGAAGCTGGCGTTTTCTACCGCAAATCACCTTGCCTCTCTTTCACGGCGGCGCATTACGCGCTGACCTGGATAGGGCGCATGTCCAAAAACAGATTGAAATCGCCAGGTATGAAAACGTTATTCAGCAAGCCTTTCGCGACGTGGCGGATGGTCTGGCGGGACAGCGTACGCTGAATGACCAGGTGCAATCAGAACAACGCGCGGTTGAAGCCAGTCAAATCGCCTATGAGCTGGCCGGACTCCGTTTTCAGGAAGGCGTCGATGACTACCTTACGCTGCTTGATACCCATCGTATGCTTTATGGCGCACAACAGCGCCTGGTACGCACACGTCTCATGCAACAGTTAAATATCATTAACCTGTATAAAGCATTAGGCGGCGGTTGGCGGGAATACAGTGAGAAAAAGCAAGGTTAG UPDATED NCBI_taxonomy_name with Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 UPDATED NCBI_taxonomy_id with 99287 UPDATED NCBI_taxonomy_cvterm_id with 35734 UPDATED accession with NP_459345.3 UPDATED sequence with MRTALIRMISKHNDGNGIMKITFTGYRQTATLATLAFVTTLAGCTMAPKHERPASPTAMVYPYATSTVSGAPDAADIGWRDFFHDPLLQELIAIALRNNRDLRKAGLNVEAARALYRIQRAEMLPTLGIATAMDASRTPADLSVMDESEINRRYEAAGATTAWELDLWGRVRSLSDQALAAYMALDETYIAARMSLVSEVASAWLTLRADRELLRLTEDTLAAQKSSYTLTTQLARTGNATQLDLRMAEIALRSAEINRAAYTRQLARDRNALELLLGQPLTPELSRRLNEAVTLTEGAIPTTLPGGLPSDLLVRRPDIRAAEYRLRGANARIGAARAAFFPTISLTGSAGTASASLSGLFEPGSGSWRFLPQITLPLFHGGALRADLDRAHVQKQIEIARYENVIQQAFRDVADGLAGQRTLNDQVQSEQRAVEASQIAYELAGLRFQEGVDDYLTLLDTHRMLYGAQQRLVRTRLMQQLNIINLYKALGGGWREYSEKKQG " 1181 UPDATE cmeA antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; macrolide antibiotic; cefotaxime; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; fluoroquinolone antibiotic; fusidic acid; erythromycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAATTATTTCAAAAAAATACTATTTTAGTTTTAGGTGTTGTGTTTTTACTCACTGCTTGCAGCAAAGAAGAAGCGCCAAAAATACAAATGCCGCCTCAACCTGTAACAACCATGAGTGCTAAATCTGAAGATTTACCACTTAATTTTACCTATCCTGCCAAACTTGTCAGTGATTATGATGTTATTATAAAACCTCAAGTTAGCGGTGTGATAGTAAATAAACTTTTTAAGGCTGGAGATAAGGTAAAAAGAGGACAAACATTATTTATTATAGAACAAGCCAAATTTAAAGCTAGCGTTGATTCAGCCTACGGACAAGCGTTAATGGCTAAAGCAACTTTCGAAAATGCAAGTAAAGATTTTAATCGCTCTGAGGCTCTTTTTAGCAAAAACGCAATCTCTCAAAAAGAATACGACTCTTCTCTTGCTACATTTAATAATGCAAAAGCTAGTCTAGCAAGTGCTAGAGCACAGCTTGCAAATGCAAGAATTGATCTAGATCATACCGAAATAAAAGCTCCTTTTGATGGTACTATAGGAGATGCTTTAGTTAATATAGGAGATTATGTAAGCACTTCAACAACTGAACTAGTTAGAGTTACAAATTTAAATCCTATTTACGCAGATTTCTTTATTTCAGATACAGATAAACTAAATTTAGTCCGCAATACTCAAAGTGGAAAATGGGATTTAGACAGCATTCATGCAAATTTAAATCTTAACGGAGAAACTGTTCAAGGCAAACTTTATTTTATTGATTCTGTTATAGATGCCAATAGTGGAACAGTAAAAGCCAAAGCTGTATTTGATAACAACAACTCGACACTTTTACCAGGTGCTTTTGCAACGATTACCTCAGAAGGTTTTATACAAAAAAATGGCTTTAAGGTACCTCAAATAGCTATTAAACAAGATCAAAATGATGTTTATGTTCTTCTTGTTAAAAATGGAAAAGTAGAAAAATCTTCTGTACATATAAGCTACCAAAACAATGAATACGCTATTATTGACAAAGGATTGCAAAATGGCGATAAAATCATTTTGGATAATTTTAAAAAAATTCAAGTTGGTAGCGAAGTTAAAGAAATTGGAGCACAATAA " 726 UPDATE PC1 beta-lactamase (blaZ) penam; antibiotic inactivation; blaZ beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 10528 UPDATED strand with - UPDATED accession with CP000732.1 UPDATED fmin with 9682 UPDATED sequence with TTGAAAAAGTTAATATTTTTAATTGTAATTGCTTTAGTTTTAAGTGCATGTAATTCAAACAGTTCACATGCCAAAGAGTTAAATGATTTAGAAAAAAAATATAATGCTCATATTGGTGTTTATGCTTTAGATACTAAAAGTGGTAAGGAAGTAAAATTTAATTCAGATAAGAGATTTGCCTATGCTTCGACTTCAAAAGCGATAAATAGTGCTATTTTGTTAGAACAAGTACCTTATAATAAGTTAAATAAAAAAGTACATATTAACAAAGATGATATAGTTGCTTATTCTCCTATTTTAGAAAAATATGTAGGAAAAGATATCGCTTTAAAAGAACTTATTGAGGCTTCAATGAAGTACAGTGATAATACAGCAAACAATAAAATTATAAACGAAATCGGTGGAATCAAAAAAATTAAAAAACGTTTAAAAAAATTGGGAGATAAAGTAACAAATCCAGTTAGATATGAAATAGAATTAAATTACTATTCACCAAAGAGCAAAAAAGATACTTCAACGCCTGCTGCTTTCGGCAAGACTTTAAATAAACTTATCGCAAATGGAAAATTAAGCAAAAAAAATAAAAATTTCTTACTTGATTTAATGTTAAATAATAAAAACGGAGACACTTTAATTAAAGATGGTATTCCAAAAGACTATAAAGTTGCTGATAAAAGTGGTCAAGCAATAACATATGCTTCTAGAAATGATGTTGCTTTTGTTTATCCTAAGGGCCAATCTGAACCTATTGTTTTAGTCATTTTTACGAATAAAGACAATAAAAGTGATAAGCCAAATGATAAGTTGATAAGTGAAACCGCCAAGAGTGTAATGAAGGAATTTTAA UPDATED NCBI_taxonomy_name with Staphylococcus aureus subsp. aureus USA300_TCH959 UPDATED NCBI_taxonomy_id with 450394 UPDATED NCBI_taxonomy_cvterm_id with 35526 UPDATED accession with ABX30738.1 UPDATED sequence with MKKLIFLIVIALVLSACNSNSSHAKELNDLEKKYNAHIGVYALDTKSGKEVKFNSDKRFAYASTSKAINSAILLEQVPYNKLNKKVHINKDDIVAYSPILEKYVGKDIALKELIEASMKYSDNTANNKIINEIGGIKKIKKRLKKLGDKVTNPVRYEIELNYYSPKSKKDTSTPAAFGKTLNKLIANGKLSKKNKNFLLDLMLNNKNGDTLIKDGIPKDYKVADKSGQAITYASRNDVAFVYPKGQSEPIVLVIFTNKDNKSDKPNDKLISETAKSVMKEF " 727 UPDATE ErmS antibiotic target alteration; streptogramin antibiotic; Erm 23S ribosomal RNA methyltransferase; macrolide antibiotic; lincosamide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGGCCCGTGCACCCCGATCGCCCCACCCTGCCCGCTCGCGGGAGACCTCCCGCGCCCACCCGCCGTACGGCACCCGTGCGGATCGCGCCCCCGGCCGTGGCCGTGACCGTGACCGCAGCCCCGACAGCCCCGGCAACACCAGCAGCCGCGACGGCGGCCGCAGCCCCGACCGCGCGCGGCGCGAGCTCTCGCAGAACTTCCTCGCCCGCCGGGCCGTCGCCGAGCGCGTCGCGCGCCTGGTCCGGCCGGCCCCCGGCGGTCTGTTGCTGGAGGTCGGCGCCGGGCGCGGCGTCCTGACCGAGGCGCTGGCCCCGTACTGCGGGCGGCTGGTCGCCCACGAGATCGACCCCCGTCTGCTGCCGGCGCTGCGCGACCGGTTCGGCGGCCCGCACCATGCCCATGTGCGGATCAGCGGCGGCGACTTCCTGGCAGCCCCCGTCCCCCGTGAGCCGTTCGCCCTCGCGGGGAACATCCCCTACTCCCGGACCGCGGGAATCGTGGACTGGGCGCTGCGGGCGCGCACGCTCACCTCGGCGACCTTCGTCACCCAGCTCGAGTACGCCCGCAAGCGGACCGGCGACTATGGACGCTGGAGCCTGCTGACGGTGCGGACCTGGCCCCGCCACGAGTGGCGGCTGCTCGGCAGGGTCTCCCGCCGGGAGTTCCGGCCGGTGCCCCGCGTGGACTCGGGCATCCTCCGGATCGAGCGGCGCGAGCGGCCCCTGCTGCCGTCCGCCGCCCTCGGCGACTACCACCGCATGGTGGAGCTGGGTTTCTCCGGCGTGGGCGGATCGCTGTACGCATCGCTGCGCCGGGCCCACCGGGCGGGGCCGCTCGACGCCGCGTTCCGTGCCGCGCGGCTGGACCGCTCCGTCGTCGTCGCGTATGTCACACCGGAGCAGTGGCTCACGGTCTTCCGCACGTTGCGGCCCGTCCGCAGCCGACCGGCCGGACGGTGA " 724 UPDATE AAC(6')-Ij antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATATTATGCCTGTATCTGAATCCCTGATGGCAGATTGGTTAGGATTGAGAAAACTGCTCTGGCCTGATCATGACGAGGCACATTTACAGGAAATGCAGCGGCTACTTCAACAGACACAAAGCTTACAGCTACTCGCATATTCAGATACTCAACAAGCGATTGCCATGCTAGAAGCATCGATTCGATATGAATATGTAAATGGCACGCAAACTTCACCAGTTGCATTTCTTGAAGGGATTTATGTCCTTCCTGATTATCGGCGTTCAGGCATCGCAACACATCTGGTTCAACAAGTAGAAGCGTGGGCAAAACCGTTTGGATGTATTGAATTTGCCTCGGATGCAGCCCTCGATAATCGTATTAGCCATGCGATGCATCAGGCGCTTGGTTTTCATGAAACTGAACGTGTGGTTTATTTCAAGAAACACATTGGCTGA " 725 UPDATE GES-11 carbapenem; penam; cephalosporin; antibiotic inactivation; GES beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCGCTTCATTCACGCACTATTACTGGCAGGGATCGCTCACTCTGCATATGCGTCGGAAAAATTAACCTTCAAGACCGATCTTGAGAAGCTAGAGCGCGAAAAAGCAGCTCAGATCGGTGTTGCGATCGTCGATCCCCAAGGAGAGATCGTCGCGGGCCACCGAATGGCGCAGCGTTTTGCAATGTGCTCAACGTTCAAGTTTCCGCTAGCCGCGCTGGTCTTTGAAAGAATTGACTCAGGCACCGAGCGGGGGGATCGAAAACTTTCATATGGGCCGGACATGATCGTCGAATGGTCTCCTGCCACGGAGCGGTTTCTAGCATCGGGACACATGACGGTTCTCGAGGCAGCGCAAGCTGCGGTGCAGCTTAGCGACAATGGGGCTACTAACCTCTTACTGAGAGAAATTGGCGGACCTGCTGCAATGACGCAGTATTTTCGTAAAATTGGCGACTCTGTGAGTCGGCTAGACCGGAAAGAGCCGGAGATGGGCGACAACACACCTGGCGACCTCAGAGATACAACTACGCCTATTGCTATGGCACGTACTGTGGCTAAAGTCCTCTATGGCGGCGCACTGACGTCCACCTCGACCCACACCATTGAGAGGTGGCTGATCGGAAACCAAACGGGAGACGCGACACTACGAGCGGGTTTTCCTAAAGATTGGGTTGTTGGAGAGAAAACTGGTACCTGCGCCAACGGGGCCCGGAACGACATTGGTTTTTTTAAAGCCCAGGAGAGAGATTACGCTGTAGCGGTGTATACAACGGCCCCGAAACTATCGGCCGTAGAACGTGACGAATTAGTTGCCTCTGTCGGTCAAGTTATTACACAACTCATCCTGAGCACGGACAAATAG " 1748 UPDATE lsaC pleuromutilin; pleuromutilin antibiotic; ABC-F ATP-binding cassette ribosomal protection protein; antibiotic target protection; streptogramin antibiotic; lincosamide antibiotic; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCAACAATTAAAATTGAAAACCTTACTTTCTCATATTATGGCTATGTAAAACCTGTATTTGAAAATGTATCATTTTCATTTGATACGAACTGGAAAACAGGACTAATAGGAAGAAACGGAATTGGGAAATCAACACTATTTAAGCTGCTTCTAAACCAAGAAGTTTATAAGGGGAAAATCAGCAAAAGTGTTGACTTTATTAAATTCCCACCCAATTTAAGTGATACTTCAAAATTAGGGATTGAGTTATATAGAGAACTAATATCAGATGAGGAAGAATGGAAATTATTTAGAGAACTTCATTTGCTAAAGGTAGATGAGAGTCTTATTTACAGAAAGTTTGAAACGCTTTCTAAAGGAGAACAAACAAAAATCCTTTTAGCTATTTTGTTTACAAGAGAAGATGGTTTTTTACTTATAGATGAACCAACAAACCATTTAGATATGGACGGAAGAAAAATTGTCAGTGAATATCTGAAAAATAAAAAAGGTTTTTTGCTTATATCACATGATAGAGATTTTTTAGATGGTTGTATCAATCATATTATTTCTATTAACAGGAATTCTATTGATGTCCAATCAGGAAATTTTACATCGTGGTATGAAAATAAATTGATGAAAGACCAATTTGAGATTAGTCAAAATGAGAAATTAAGAAAAGATATTAAACGATTAAAAGAAGCTGCAAGACAAAGTCAAATTTGGTCTGATAAAGTTGAAAATACTAAAAACGGCGTGAAAGTATCAGGTGTAAAACCAGACAAGGGGCATATAGGTCATCAGTCAGCTAAGATGATGAAAAAATCTAAGAATTTGGAGAATAGACAAAATAAGGCAATAGAAGAAAAACAGAATTTACTAAAAGATATTGAAACAAAGGAAAGTCTATTATTGCATCCGTTACATCACCACAAAAATCCTCTAATATCAGTTTGCGATTTATCATCATATTATGGAAAAAAGCAGATATTAAGTAATATAAGTTTTGATATAAAGCAAGGTGATATAGTGGCTATATATGGGGGTAATGGTAGCGGAAAATCAACCTTGATTAAAATTTTATTAGGTCTAAATCACGAGTATTCAGGTGATGTAAAATTAGCAAGTAATTTAAAAATATCATATGTTCCTCAAGATACATCCAATTTAACAGGTAGCCTAAACGAGTATATTCATAAGCAAGGTGTTGATGAAACATTGTGCAAAACAATTCTTAGAAAATTAGATTTTGCAAGAGAATTATTTGAAATAGATATGAAGAACTATAGCGATGGACAAAAAAAGAAAGTTTTAATTGCTGTAAGTTTGTCAAAGTCAGCTCATATATTTATTTGGGACGAACCACTGAATTATTTAGATGTAATATCAAGAATACAGATTGAGGAAATTATAAAAGAAGCAAATCCTACACTCATATTTGTGGAACACGATAAGAGTTTTGTAGAAGATATAGCGAATAAAATAATACGATTATAA DELETED 36001 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. " 1749 UPDATE IMP-18 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAAATTATTTGTTTTATGTGTATTCTTCCTTTGCAACATTGCTGCTGCAGATGATTCTTTGCCTGATTTAAAAATTGAGAAGCTTGAAAAAGGCGTTTATGTTCATACTTCGTTTGAAGAAGTTAAAGGTTGGGGTGTAGTCACAAAACACGGTTTAGTGGTTCTTGTAAAGAATGATGCTTATCTGATAGATACTCCAATTACCGCTAAAGATACTGAAAAATTAGTTAATTGGTTTATTGAGCACGGCTATAGAATCAAAGGCAGTATTTCCACACATTTCCATGGCGACAGTACGGCTGGAATAGAGTGGCTTAATTCTCAATCTATCTCCACGTATGCCTCTGAATTAACAAATGAACTTCTAAAAAAAGACAATAAGGTGCAAGCTACAAATTCTTTTAGTGGAGTTAGTTATTCACTTATCAAAAACAAAATTGAAGTTTTCTATCCAGGTCCAGGACACACTCAAGATAACGTAGTGGTTTGGTTACCTGAAAAGAAAATTTTATTCGGTGGTTGCTTTGTTAAACCGGACGGTCTTGGAAATTTAGGGGATGCAAATTTAGAAGCTTGGCCAAAGTCCGCTAAAATATTAATGTCTAAATATGGTAAAGCAAAACTGGTTGTTTCAAGTCATAGTGAAATTGGAAACGCATCACTCTTGCAACGCACATGGGAGCAGGCTGTTAAAGGGTTAAATGAAAGTAAAAAACCGTTACAGCCAAGTAGCTAA " 720 UPDATE BcI penam; antibiotic inactivation; cephalosporin; Bc beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TTGAAAAATAAGAGGATGCTAAAAATAGGAATATGCGTTGGTATATTAGGTTTAAGTATTACAAGCCTAGAAGCTTTTACAGGAGAGTCACTGCAAGTTGAAGCGAAAGAAAAGACTGGACAAGTGAAACACAAAAATCAGGCAACGCATAAAGAGTTCTCTCAACTTGAGAAAAAATTTGATGCTCGATTAGGTGTATATGCGATTGATACTGGTACAAATCAAACAATCTCTTATCGACCTAACGAAAGATTTGCCTTCGCATCAACATACAAGGCTTTAGCCGCGGGAGTATTACTACAGCAAAACTCAATTGATTCATTAAATGAAGTAATCACATATACGAAAGAAGACTTAGTGGATTATTCACCTGTTACAGAGAAACATGTAGATACTGGAATGAAACTAGGAGAAATTGCAGAGGCAGCTGTTCGTTCAAGTGATAATACTGCAGGGAACATTTTATTTAATAAAATAGGAGGACCGAAAGGATATGAAAAAGCGCTTAGGCATATGGGGGATCGGATTACTATGTCTAATCGCTTTGAAACAGAATTAAACGAAGCTATTCCAGGAGACATTCGTGACACTAGTACAGCGAAAGCTATTGCTACGAATCTTAAAGCTTTTACGGTCGGAAATGCACTTCCAGCTGAAAAACGTAAAATTCTTACAGAGTGGATGAAAGGAAATGCTACAGGGGACAAACTTATTCGTGCAGGCATACCAACTGACTGGGTAGTTGGAGATAAATCAGGTGCTGGTAGTTACGGGACAAGAAATGATATTGCTGTCGTTTGGCCTCCAAATAGAGCACCAATTATCATCGCAATTTTATCTAGTAAAGATGAGAAAGAGGCAATCTATGATAATCAACTCATTGCAGAGGCAACTAAAGTTATAGTTAAGGCTCTTAGGTAA " 721 UPDATE OXA-28 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAACATTTGCCGCATATGTAATTACTGCGTGTCTTTCAAGTACGGCATTAGCTAGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTTTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATAACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAACGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAACAATGGGAAAGAGACTTGAGCTTAAGAGGGGCAATACAAGTTTCAGCGGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATACCTTAAAAAATTTTCATATGGCAACCAGAATATCAGTGGTGGCATTGACAAATTCGGGTTGGAGGGTCAGCTAAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATTTTTAAATAAATTGTCAGCATCAAAAGAAAATCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCTGCGCCTGAATATCTTGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGTTGGGTTGAGAAGGGAACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAATAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGCAAGTGAGGGCATCATTGGTGGCTAA " 1744 UPDATE cmrA antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGCCTTTCGCTATCTACGTCCTCGGGCTTGCCGTCTTTGCCCAGGGCACATCCGAATTCATGTTGTCCGGGCTCATACCGGATATGGCCCGCGACCTCGGCGTCTCGGTCCCCGCCGCCGGACTCCTCACCTCCGCCTTCGCGGTCGGGATGATCATCGGCGCTCCGCTGATGGCCATCGCCAGCATGCGGTGGCCCCGGCGACGCGCCCTTTTGACATTCCTCATCACGTTCATGCTGGTCCACGTCATCGGCGCGCTCACCAGCAGCTTCGAGGTCTTGCTGGTCACACGCATCGTCGGCGCCCTCGCCAACGCCGGATTCTTGGCGGTGGCCCTGGGCGCGGCGATGGCGATGGTGCCCGCCGACATGAAAGGGCGCGCAACGTCCGTCCTCCTCGGTGGTGTCACGATCGCATGTGTAGCCGGAGTTCCCGGGGGCGCCTTCCTCGGTGAAATATGGGGCTGGCGTGCAGCGTTCTGGGCTGTCGTCGTCATCTCCGCCCCTGCGGTGGTGGCGATCATGTTCGCCACCCCGGCCGAGCCGCCAGCAGAGTCCACACCGAACGCCAAGCGTGAACTGTCCTCGCTGCGCTCACGCAAGCTCCAGCTGATGCTTGTCCTCGGTGCCCTGATCAACGGCGCAACATTCTGTTCGTTCACCTACATGGCGCCCACTCTCACCGACATCTCCGGTTTCGACTCCCGTTGGATTCCGTTGCTGCTGGGGTTGTTCGGGCTCGGATCGTTCATCGGCGTCAGCGTCGGAGGCAGGCTCGCCGATACCCGGCCGTTCCAACTTCTCGCCGTGGGATCCGCAGCACTGTTGACGGGATGGATCGTCTTCGCTCTCACGGCATCCCACCCTGCGGTGACATTGGTGATGCTGTTCGTGCAGGGCGCTCTGTCCTTCGCGGTCGGCTCGACCTTGATCTCCCAGGTGCTCTACGCCGCCGACGCGGCGCCGACCTTGGGTGGATCGTTCGCGACGGCCGCGTTCAACGTCGGCGCTGCACTGGGCCCGGCCCTCGGCGGGCTGGCGATCGGTATGGGCCTGAGCTACCGCGCCCCGCTCTGGACGAGCGCCGCGCTGGTGACTCTCGCGATCGTCATCGGCGCAGCCACCTTGTCGCTCTGGCGGCGTCCAGCGTCCGTCCAGGAAACCGTCCCAGCCTGA " 1745 UPDATE KPC-2 antibiotic inactivation; penam; carbapenem; cephalosporin; monobactam; KPC beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCACTGTATCGCCGTCTAGTTCTGCTGTCTTGTCTCTCATGGCCGCTGGCTGGCTTTTCTGCCACCGCGCTGACCAACCTCGTCGCGGAACCATTCGCTAAACTCGAACAGGACTTTGGCGGCTCCATCGGTGTGTACGCGATGGATACCGGCTCAGGCGCAACTGTAAGTTACCGCGCTGAGGAGCGCTTCCCACTGTGCAGCTCATTCAAGGGCTTTCTTGCTGCCGCTGTGCTGGCTCGCAGCCAGCAGCAGGCCGGCTTGCTGGACACACCCATCCGTTACGGCAAAAATGCGCTGGTTCCGTGGTCACCCATCTCGGAAAAATATCTGACAACAGGCATGACGGTGGCGGAGCTGTCCGCGGCCGCCGTGCAATACAGTGATAACGCCGCCGCCAATTTGTTGCTGAAGGAGTTGGGCGGCCCGGCCGGGCTGACGGCCTTCATGCGCTCTATCGGCGATACCACGTTCCGTCTGGACCGCTGGGAGCTGGAGCTGAACTCCGCCATCCCAGGCGATGCGCGCGATACCTCATCGCCGCGCGCCGTGACGGAAAGCTTACAAAAACTGACACTGGGCTCTGCACTGGCTGCGCCGCAGCGGCAGCAGTTTGTTGATTGGCTAAAGGGAAACACGACCGGCAACCACCGCATCCGCGCGGCGGTGCCGGCAGACTGGGCAGTCGGAGACAAAACCGGAACCTGCGGAGTGTATGGCACGGCAAATGACTATGCCGTCGTCTGGCCCACTGGGCGCGCACCTATTGTGTTGGCCGTCTACACCCGGGCGCCTAACAAGGATGACAAGCACAGCGAGGCCGTCATCGCCGCTGCGGCTAGACTCGCGCTCGAGGGATTGGGCGTCAACGGGCAGTAA " 1746 UPDATE IMP-24 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1747 UPDATE CMY-103 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1740 UPDATE TEM-53 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1741 UPDATE OXA-359 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1742 UPDATE SHV-28 carbapenem; penam; cephalosporin; antibiotic inactivation; SHV beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1743 UPDATE OXA-338 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1164 UPDATE MIR-9 antibiotic inactivation; monobactam; cephalosporin; MIR beta-lactamase; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. DELETED 35962 " 1165 UPDATE OKP-A-4 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1166 UPDATE Staphylococcus aureus gyrA conferring resistance to fluoroquinolones nybomycin; grepafloxacin; trovafloxacin; ofloxacin; norfloxacin; nalidixic acid; lomefloxacin; gatifloxacin; fluoroquinolone resistant gyrA; levofloxacin; sparfloxacin; antibiotic target alteration; enoxacin; ciprofloxacin; pefloxacin; fluoroquinolone antibiotic; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with ATGGCTGAATTACCTCAATCAAGAATAAATGAACGAAATATTACCAGTGAAATGCGTGAATCATTTTTAGATTATGCGATGAGTGTTATCGTTGCTCGTGCATTGCCAGATGTTCGTGACGGTTTAAAACCAGTACATCGTCGTATACTATATGGATTAAATGAACAAGGTATGACACCGGATAAATCATATAAAAAATCAGCACGTATCGTTGGTGACGTAATGGGTAAATATCACCCTCATGGTGACTTATCTATCTATGAAGCAATGGTACGTATGGCTCAAGATTTCAGTTATCGTTATCCGCTTGTTGATGGCCAAGGTAACTTTGGTTCAATGGATGGAGATGGCGCAGCAGCAATGCGTTATACTGAAGCACGTATGACTAAAATCACACTTGAACTGTTACGTGATATTAATAAAGATACAATAGATTTTATCGATAACTATGATGGTAATGAAAGAGAGCCGTCAGTCTTACCTGCTCGATTCCCTAACTTGTTAGCCAATGGTGCATCAGGTATCGCGGTAGGTATGGCAACGAATATTCCACCACATAACTTAACAGAATTGATCAATGGTGTACTTAGCTTAAGTAAGAATCCTGATATTTCAATTGCTGAGTTAATGGAAGATATTGAAGGTCCTGATTTCCCAACTGCTGGACTTATTTTAGGTAAGAGTGGTATTAGACGCGCATATGAAACAGGTCGTGGTTCAATTCAAATGCGTTCTCGTGCAGTTATTGAAGAACGTGGAGGCGGACGTCAACGTATTGTTGTCACTGAAATTCCTTTCCAAGTGAATAAGGCTCGTATGATTGAAAAAATTGCAGAGCTTGTTCGTGACAAGAAAATTGACGGTATTACTGATTTACGTGATGAAACAAGTTTACGTACTGGTGTGCGTGTCGTTATTGATGTGCGTAAGGATGCCAATGCTAGTGTCATTTTAAATAACTTATACAAACAAACACCTCTTCAAACATCATTTGGTGTGAATATGATTGCTCTAGTGAATGGTAGACCGAAGCTGATTAATTTAAAAGAAGCGTTAGTACATTATTTAGAGCATCAAAAGACAGTTGTTAGAAGACGTACGCAATACAACTTACGTAAAGCTAAAGATCGTGCCCACATTTTAGAAGGGTTACGTATTGCGTTAGATCATATCGATGAAATTATTTCAACGATTCGTGAATCAGAAACAGATAAAGTCGCAATGGAAAGTTTGCAACAACGCTTCAAACTTTCTGAAAAACAAGCTCAAGCTATTTTAGACATGCGTTTAAGACGTCTAACAGGTTTAGAGAGAGACAAAATTGAAGCTGAATATAATGAGTTATTAAATTATATTAGTGAATTAGAAGCAATCTTAGCTGATGAAGAAGTGTTATTACAGTTAGTTAGAGATGAATTGACTGAAATTAGAGATCGCTTCGGTGATGATCGTCGTACTGAAATTCAATTAGGTGGATTTGAAGACTTAGAGGACGAGGACTTAATTCCAGAAGAACAAATTGTAATTACTTTGAGCCATAATAACTATATTAAACGTTTGCCGGTATCTACATATCGTGCTCAAAACCGTGGTGGTCGTGGTGTTCAAGGTATGAATACATTGGAAGAAGATTTTGTCAGTCAATTGGTAACTTTAAGTACACATGACCATGTATTGTTCTTTACTAACAAAGGTCGTGTATACAAACTAAAAGGTTATGAAGTGCCTGAGTTATCAAGACAGTCTAAAGGTATTCCTGTAGTGAATGCTATTGAACTTGAAAATGATGAAATCATTAGTACAATGATTGCTGTTAAAGACCTTGAAAGTGAAGATAACTTCTTAGTGTTTGCAACTAAACGTGGTGTCGTTAAACGTTCAGCATTAAGTAACTTCTCAAGAATAAATAGAAATGGTAAGATTGCGATTTCGTTCAGAGAAGATGATGAGTTAATTGCAGTTCGCTTAACAAGTGGTCAAGAAGATATCTTGATTGGTACATCACATGCATCATTAATTCGATTCCCTGAATCAACATTACGTCCTTTAGGCCGTACAGCAACGGGTGTGAAAGGTATTACACTTCGTGAAGGTGACGAAGTTGTAGGGCTTGATGTAGCTCATGCAAACAGTGTTGATGAAGTATTAGTAGTTACTGAAAATGGTTATGGTAAACGTACGCCAGTTAATGACTATCGTTTATCAAATCGTGGTGGTAAAGGTATTAAAACAGCTACGATTACTGAGCGTAATGGTAATGTTGTATGTATCACTACAGTAACTGGTGAAGAAGATTTAATGATTGTTACTAATGCAGGTGTCATTATTCGACTAGATGTTGCAGATATTTCTCAAAATGGTCGTGCAGCACAAGGTGTTCGCTTAATTCGCTTAGGCGATGATCAATTTGTTTCAACGGTTGCTAAAGTAAAAGAGGATGCAGACGAAGAAAATGAAGATGAACAATCTACTGTATCTGAAGATGGTACTGAACAACAACGTGAAGCGGTTGTAAATGATGAAACACCAGGAAATGCAATTCATACTGAAGTGATTGATTCAGAAGTAAATGATGAAGATGGACGTATTGAAGTAAGACAAGATTTCATGGACCGTGTTGAAGAAGACATACAACAATCATCAGATGATGATGAAGAATAA " 1167 UPDATE norB antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; sparfloxacin; norfloxacin; efflux pump complex or subunit conferring antibiotic resistance; ciprofloxacin; fluoroquinolone antibiotic; moxifloxacin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2736181 UPDATED strand with - UPDATED accession with HE999704.1 UPDATED fmin with 2734780 UPDATED sequence with ATGACTTCAACAGCGTATAAAGGTACAAATAAACTAATCGTTGGAATTGTTTTCGGGGTTATCACGTTTTGGCTTTTTGCTCAATCTATGGTGAATATTGTTCCGGCCGTGCAATCTGACCTTGGAATTTCCTCTGATTTACTTAGTATTGCCATCAGTTTAACCGCGCTATTTTCAGGTATTTTTATCGTTGTAGCAGGTGGGATGGCTGACAAATTTGGTCGTGTGAAATTAACTTATATCGGACTTATTCTTAGTATCATCGGTTCACTGCTACTTGTTGTCACTCAAGGGTCGACGCTACTTATTATCGGCCGGATTATTCAAGGTCTTTCAGCTGCTTGTATTATGCCAGCAACCCTTGCCTTAATGAAAACTTATTTTGACGGGGCAGATAGACAAAGAGCACTTAGTTACTGGTCAATTGGCTCATGGGGCGGATCAGGTATTTGTTCGTTCGCAGGTGGCGCTATCGCAACATATATGGGCTGGCGCTGGATTTTCATTATTTCCATCGTATTCGCACTGCTTGGAATGCTACTTATTAAAGGTACTCCAGAAAGTAAAGTCGTTCAAAATACAAAAGCAAAATTTGATTCATTTGGTCTTGTTCTTTTTGTTATCGCAATGGTTTGTTTGAACCTTATTATTACTCGTGGCGCAACATTTGGCTGGACAAGCCCAATTACTATTACAATGCTCGTTGTTTTCCTAGTTTCTGCGGGATTATTCTTCCGAGTGGAACTGCGACAAGCAAACGGATTTATTGATTTCTCGTTATTTAAAAATAAAGCTTATACAGGCGCAACACTTTCGAACTTCTTGCTAAACGCAGCAGCTGGAACACTGGTTGTCGCAAACACTTATGTGCAAATTGGTCGCGGTTTTACGGCGTTCCAATCCGGTTTACTTTCTATCGGATATCTTGTCTGTGTGCTCGGAATGATTCGCATCGGTGAAAAAATTCTTCAACGTGTTGGTGCGCGTAAACCAATGATTTTAGGCTCTGGTATTACGGCTGTTGGTATTGCACTAATGGCGCTGACGTTTATTCCGGGAACCCTTTATACAGTGCTTGTATTTATCGGTTTTGCTTTATTCGGGATTGGACTTGGCATGTATGCGACTCCTTCAACAGATACAGCCATTTCTAATGCTCCAGAAGATAAAGTCGGAGTAGCATCTGGTATTTACAAAATGGCAAGTTCGCTAGGTGGCTCATTCGGCGTGGCGATATCTGCTACGATTTATGGTGTGATTGCACTTTCAGGAAATATTGATTTAGCCGCAATGGTGGGGCTTTTAACGAACGTCGGTTTTTGTGTCGTTTCACTTATTTCCGTTGCTATAACAACACCATCTGCGAAAAAAGCGCTCGAATTAAAAGCCGCAAAAGAATAG UPDATED NCBI_taxonomy_name with Listeria monocytogenes UPDATED NCBI_taxonomy_id with 1639 UPDATED NCBI_taxonomy_cvterm_id with 36757 UPDATED accession with CCQ22388.1 UPDATED sequence with MTSTAYKGTNKLIVGIVFGVITFWLFAQSMVNIVPAVQSDLGISSDLLSIAISLTALFSGIFIVVAGGMADKFGRVKLTYIGLILSIIGSLLLVVTQGSTLLIIGRIIQGLSAACIMPATLALMKTYFDGADRQRALSYWSIGSWGGSGICSFAGGAIATYMGWRWIFIISIVFALLGMLLIKGTPESKVVQNTKAKFDSFGLVLFVIAMVCLNLIITRGATFGWTSPITITMLVVFLVSAGLFFRVELRQANGFIDFSLFKNKAYTGATLSNFLLNAAAGTLVVANTYVQIGRGFTAFQSGLLSIGYLVCVLGMIRIGEKILQRVGARKPMILGSGITAVGIALMALTFIPGTLYTVLVFIGFALFGIGLGMYATPSTDTAISNAPEDKVGVASGIYKMASSLGGSFGVAISATIYGVIALSGNIDLAAMVGLLTNVGFCVVSLISVAITTPSAKKALELKAAKE " 1160 UPDATE QnrB34 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1161 UPDATE lsaB pleuromutilin; pleuromutilin antibiotic; ABC-F ATP-binding cassette ribosomal protection protein; antibiotic target protection; streptogramin antibiotic; lincosamide antibiotic; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCAATGATACATGTACAAAATTTAACTTTCTCTTATCCGAGTAGTTTTGATAATATCTTTGAAGATGTAAGCTTTCAAATTGATACAGATTGGAAGCTTGGATTTATTGGTCGAAATGGACGAGGGAAAACAACCCTTTTTAATTTATTACTAGATAAATTTGAATATAGGGGGAAAATCATTTCTTCGGTCGATTTTAACTACTTCCCATATCCAGTAGAAGATAAAAGTAAGTATACACATGAAATTTTAGAAGAAATATGCCCTCAAGCTGAGGACTGGGAATTTCTTCGAGAAATAGCTTATTTAAATGTGGATGCCGAAGCCATGTACCGTCCTTTTGAAACTTTATCAAACGGTGAACAAACAAAGGTATTGCTTGTTGCTCTATTTTTAAACGAAGGACAATTTTTATTAATTGATGAACCAACAAATCATTTAGATACTGAAGCTCGTAAGACGGTTTCGAATTACTTGAGGAAGAAAAAAGGGAATATTTTAATTTCTCATGACCGTAACTTTTTAGATGGCAGTGTTGATCATATCTTGTCTATAAATAGAGCAGATATTGAGGTTCAAAGTGGAAATTATTCCTCATGGAAGTTGAACTTTGACCGACAGCAGGGACATGAACAAGCAACAAATGAACGCTTGCAGAAGGATATTGGAAGGTTAGAACAATCTACAAAACGTTCGGCTGGTTGGTCTAACCGAGTCGAAGCTTCAAAAAATGGAACAACGAATTCTGGTTCTAAATTGGACAAAGGTTTTGTAGGACATAAAGCAGCAAAAATGATGAAACGATCTAAGAACCTTGAGGCTCGACAGCAAAAATCGATTGAAGAAAAGTCAAAGCTTCTAAAAAACATTGAAAAAACGGAGTCCCTACAGTTTGAACCAGTGGAATATAAATCGAAGGAACTCATTCAATTAACAGATGTGTCTGTCATATATGATGGGCAAGTTGTCAACAAACCAATAAGTTTTAATGTTGAACAAGGAGATAGAATTGTACTGGATGGAAAGAACGGCAGTGGAAAAAGTAGTATTTTAAAATTAATCTTAGGCGATCCAATACAGTATACAGGCACGTTAAATACGGGTTCTAACCTGATAACTTCTTATGTTCAGCAAGACACCTCTCATTTAAAGGGGATGCTAGCTGACTTTATTGAAGAAAATGAGATTGATGAATCGTTGTTTAAGGCCATCCTGAGAAAGCTAGATTTTGACCGAGTACAGTTTGAAAAAGATATATCTCATTATTCAGGTGGTCAGAAGAAAAAATTGCTTATCGCTAAAAGTTTATGTGAAAAAGCTCACCTATATATTTGGGATGAACCATTAAACTTTATTGATATTTACTCTCGAATGCAAATTGAAGAGCTTATTCAAACCTTTAATCCGACTATGGTTTTTGTTGAACATGACCAGACCTTCCAAGAGACAATATCAACAAAAATAATAAAAATATAA DELETED 36001 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. " 1162 UPDATE aadA15 antibiotic inactivation; aminoglycoside antibiotic; ANT(3''); streptomycin; spectinomycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGGGAAGCGGTGATCGCCGAAGTATCGACTCAACTATCAGAGGTAGTTGGCGTCATCGAGCGCCATCTCGAACCGACGTTGCTGGCCGTCCATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCACACAGTGATATTGATTTGCTGGTTACGGTGACCGTAAGGCTTGATGAAACAACGCGGCGAGCTTTGATCAACGACCTTTTGGAAACTTCGGCTTCCCCTGGAGAGAGCGAGATTCTCCGCGCTGTAGAAGTCACCATTGTTGTGCACGACGACATCATTCCGTGGCGTTATCCAGCTAAGCGCGAACTGCAATTTGGAGAATGGCAGCGCAATGACATTCTTGCAGGTATCTTCGAGCCAGCCACGATCGACATTGATCTGGCTATCTTGCTGACAAAAGCAAGAGAACATAGCGTTGCCTTGGTAGGTCCAGCGGCGGAGGAACTCTTTGATCCGGTTCCTGAACAGGATCTATTTGAGGCGCTAAATGAAACCTTAACGCTATGGAACTCGCCGCCCGACTGGGCCGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAATAACCGGCAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATAAAACGCCTACCTGCCCAGTATCAGCCCGTCTTACTTGAAGCTAAGCAAGCTTATCTGGGACAAAAAGAAGATCACTTGGCCTCACGCGCAGATCACTTGGAAGAATTTATTCGCTTTGTGAAAGGCGAGATCATCAAGTCAGTTGGTAAATGA " 1163 UPDATE CMY-94 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCGTTATGCTGCGCTCTGCTGCTGACAGCCTCTTTCTCCACATTTGCTGCCGCAAAAACAGAACAACAGATTGCCGATATCGTTAATCGCACCATCACCCCGTTGATGCAGGAGCAGGCTATTCCGGGTATGGCCGTTGCCGTTATCTACCAGGGAAAACCCTATTATTTCACCTGGGGTAAAGCCGATATCGCCAATAACCACCCAGTCACGCAGCAAACGCTGTTTGAGCTAGGATCGGTTAGTAAGACGTTTAACGGCGTGTTGGGCGGCGATGCTATCGCCCGCGGCGAAATTAAGCTCAGCGATCCGGTCACGAAATACTGGCCAGAACTGACAGGCAAACAGTGGCAGGGTATCCGCCTGCTGCACTTAGCCACCTATACGGCAGGCGGCCTACCGCTGCAGATCCCCGATGACGTTAGGGATAAAGCCGCATTACTGCATTTTTATCAAAACTGGCAGCCGCAATGGACTCCGGGCGCTAAGCGACTTTACGCTAACTCCAGCATTGGTCTGTTTGGCGCGCTGGCGGTGAAACCCTCAGGAATGAGTTACGAAGAGGCAATGACCAGACGCGTCCTGCAACCATTAAAACTGGCGCATACCTGGATTACGGTTCCGCAGAACGAACAAAAAGATTATGCCTGGGGCTATCGCGAAGGGAAGCCCGTACACGTTTCTCCGGGACAACTTGACGCCGAAGCCTATGGCGTGAAATCCAGCGTTATTGATATGGCCCGCTGGGTTCAGGCCAACATGGATGCCAGCCACGTTCAGGAGAAAACGCTCCAGCAGGGCATTGCGCTTGCGCAGTCTCGCTACTGGCGTATTGGCGATATGTACCAGGGATTAGGCTGGGAGATGCTGAACTGGCCGCTGAAAGCTGATTCGATCATCAACGGCAGCGACAGCAAAGTGGCATCGGCAGCGCTTCCCGCCGTTGAGGTAAACCCGCCCGCCCCCGCAGTGAAAGCCTCATGGGTGCATAAAACGGGCTCCACTGGTGGATTTGGCAGCTACGTAGCCTTCGTTCCAGAAAAAAACCTTGGCATCGTGATGCTGGCAAACAAAAGCTATCCTAACCCTGTCCGTGTCGAGGCGGCCTGGCGCATTCTTGAAAAGCTGCAATAA " 1168 UPDATE NDM-9 antibiotic inactivation; penam; carbapenem; cephalosporin; cephamycin; NDM beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGAATTGCCCAATATTATGCACCCGGTCGCGAAGCTGAGCACCGCATTAGCCGCTGCATTGATGCTGAGCGGGTGCATGCCCGGTGAAATCCGCCCGACGATTGGCCAGCAAATGGAAACTGGCGACCAACGGTTTGGCGATCTGGTTTTCCGCCAGCTCGCACCGAATGTCTGGCAGCACACTTCCTATCTCGACATGCCGGGTTTCGGGGCAGTCGCTTCCAACGGTTTGATCGTCAGGGATGGCGGCCGCGTGCTGGTGGTCGATACCGCCTGGACCGATGACCAGACCGCCCAGATCCTCAACTGGATCAAGCAGGAGATCAACCTGCCGGTCGCGCTGGCGGTGGTGACTCACGCGCATCAGGACAAGATGGGCGGTATGGACGCGCTGCATGCGGCGGGGATTGCGACTTATGCCAATGCGTTGTCGAACCAGCTTGCCCCGCAAAAGGGGATGGTTGCGGCGCAACACAGCCTGACTTTCGCCGCCAATGGCTGGGTCGAACCAGCAACCGCGCCCAACTTTGGCCCGCTCAAGGTATTTTACCCCGGCCCCGGCCACACCAGTGACAATATCACCGTTGGGATCGACGGCACCGACATCGCTTTTGGTGGCTGCCTGATCAAGGACAGCAAGGCCAAGTCGCTCGGCAATCTCGGTGATGCCGACACTGAGCACTACGCCGCGTCAGCGCGCGCGTTTGGTGCGGCGTTCCCCAAGGCCAGCATGATCGTGATGAGCCATTCCGCCCCCGATAGCCGCGCCGCAATCACTCATACGGCCCGCATGGCCGACAAGCTGCGCTGA " 1169 UPDATE OXA-360 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1366 UPDATE cmx antibiotic efflux; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCCTTTTGCCCTCTACATGCTTGCCCTGGCGGTCTTCGTCATGGGCACTTCAGAATTCATGCTCGCGGGATTGCTCCCCGCGATCGCGACCGAACTTGACGTCTCGGTCGGCACTGCGGGCCTGCTGACCTCCGCATTCGCAGTCGGTATGGTCGTCGGCGCGCCAGTGATGGCGGCATTCGCTCGCCGTTGGCCACCGCGGCTCACATTGATCGTTTGCCTTCTCGTGTTCGCGGGAAGCCACGTCATCGGAGCGATGACACCAGTGTTCTCTCTCCTGCTCATCACCCGGGTGCTCAGCGCTCTCGCAAACGCAGGATTCCTCGCCGTAGCACTGAGCACGGCCACTACCCTCGTGCCAGCGAACCAGAAGGGGCGTGCACTGTCGATCCTGCTCTCCGGCACGACGATCGCAACCGTCGTGGGCGTCCCCGCCGGGGCACTGCTCGGCACAGCGCTGGGCTGGCGAACGACGTTCTGGGCGATCGCCATCCTCTGTATTCCCGCGGCCGTTGGAGTCATTCGTGGCGTCACGAACAATGTTGGTCGGAGCGAGACTAGCGCGACCTCACCAAGGCTCCGTGTCGAGCTCAGCCAGTTGGCGACGCCGCGGCTCATCCTGGCCATGGCACTCGGAGCGCTGATCAACGGAGGGACCTTTGCGGCATTCACCTTCCTGGCACCCATCGTGACCGAGACCGCGGGCTTGGCCGAAGCGTGGGTGTCCGTCGCGCTGGTGATGTTCGGCATCGGATCGTTCCTTGGCGTCACGATCGCAGGACGACTATCAGATCAACGACCTGGCCTCGTGCTCGCAGTCGGCGGACCGCTATTGCTGACAGGCTGGATCGTGTTGGCAGTGGTCGCATCTCATCCCGTTGCGCTTATCGTCCTCGTCCTCGTTCAGGGATTCCTGTCGTTCGGCGTCGGCAGTACTCTGATCACGCGTGTGCTGTATGCAGCATCGGGTGCGCCAACGATGGGCGGTTCGTACGCAACCGCAGCATTGAATATCGGAGCTGCAGCGGGGCCCGTGCTTGGTGCGCTCGGGCTCGCGACCGGGCTGGGGCTGCTCGCGCCGGTTTGGGTCGCTTCGGTGCTGACAGCGATCGCTCTCGTCATCATGCTTCTCACCAGACGCGCGCTTACGAAGACCGCGGCGGAGGCCAATTGA " 48 UPDATE OXA-90 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 49 UPDATE tsnR peptide antibiotic; antibiotic target alteration; thiostrepton; non-erm 23S ribosomal RNA methyltransferase (A1067); model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 46 UPDATE CMY-114 antibiotic inactivation; CMY beta-lactamase; cephamycin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 47 UPDATE OXA-60 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGCTGTCTCGCTACTCGAAGACCCTCGCGTTTGCCGTGGTGGCCTGCACGCTCGCAATAAGCACCGCCACCGCTCATGCCGAGCTGGTCGTGCGCAATGACCTCAAGCGCGTGTTCGACGACGCCGGCGTCTCCGGCACCTTCGTGCTGATGGACATCACCGCCGACCGTACCTATGTCGTCGATCCGGCGCGTGCCGCGCGGAGCATCCATCCGGCTTCGACGTTCAAGATTCCGAACAGCCTGATCGCCTTCGACACCGGGGCCGTGCGCGACGATCAGGAAGTGCTGCCCTACGGCGGCAAGCCGCAGCCTTACGAGCAGTGGGAGCACGACATGGCGTTACCCGAGGCGATTCGCCTGTCGGCCGTGCCGATCTATCAGGAAGTCGCGCGCCGCGTTGGCTTCGAGCGCATGCAGGCTTATGTCGATGCGTTCGACTACGGCAATCGCCAGCTCGGCAGCGCGATCGACCAGTTCTGGCTGCGTGGCCCGCTGGAGATTTCCGCTTTCGAAGAAGCACGCTTCACCAGCCGCATGGCGCTCAAGCAGTTGCCGGTGAAGCCGCGCACGTGGGACATGGTCCAGCGCATGCTGTTGATCGAGCAGCAGGGCGATGCCGCGCTATATGCCAAGACCGGCGTCGCCACCGAATACCAGCCGGAGATCGGTTGGTGGGCCGGCTGGGTGGAGCGTGCGGGGCATGTCTATGCATTCGCGCTGAACATCGACATGCCGCGCGAGGGCGATATGGCCAAGCGCATTCCGCTGGGCAAGCAGTTGATGCGGGCGCTCGAGGTGTGGCCGGCACCGTGA " 44 UPDATE golS penam; antibiotic efflux; resistance-nodulation-cell division (RND) antibiotic efflux pump; protein(s) and two-component regulatory system modulating antibiotic efflux; penem; carbapenem; efflux pump complex or subunit conferring antibiotic resistance; cephalosporin; cephamycin; monobactam; phenicol antibiotic; chloramphenicol; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAACATCGGTAAAGCAGCTAAAGCATCGAAAGTCTCGGCCAAAATGATTCGCTACTATGAACAGATTGGTCTGATTCCCGCGGCAAGTCGGACGGATTCCGGCTATCGGGCCTATACCCAGGCTGATGTTAATCAATTGCATTTTATACGCCGCGCGCGCGACCTCGGTTTTTCAGTTGCTGAAATCAGCGACTTACTGAATCTTTGGAATAACCAGTCGCGGCAAAGCGCTGACGTCAAACGCCTGGCGCAGACGCACATTGATGAACTGGACAGACGTATCCAGAACATGCAGCACATGGCGCAAACCCTCAAAGCGCTGATTCACTGCTGCGCCGGCGACGCGCTGCCAGATTGCCCCATTCTGCATACGCTTGGACAACCTGACGATAGCGAGCCGGAGGCGCGTACCGGAGCGGTATTGCGACGTCCTCGTCGCCACGGACTGGCAAAGCGTCTGTAA " 45 UPDATE mdtP antibiotic efflux; major facilitator superfamily (MFS) antibiotic efflux pump; efflux pump complex or subunit conferring antibiotic resistance; acridine dye; puromycin; acriflavin; nucleoside antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 4304509 UPDATED strand with - UPDATED accession with AP009048.1 UPDATED fmin with 4303042 UPDATED sequence with ATGATCAATCGTCAACTTTCACGTCTGCTGTTGTGCAGCATTCTCGGCAGCACGACGCTGATTTCCGGCTGTGCCCTGGTACGTAAGGATTCTGCACCTCATCAACAGCTCAAACCGGAACAAATCAAACTGGCCGACGATATTCATCTTGCCAGCTCCGGCTGGCCGCAGGCGCAGTGGTGGAAACAACTCAATGACCCGCAGCTGGATGCGCTGATCCAACGGACGCTAAGTGGTTCACACACCCTCGCCGAAGCGAAACTGCGGGAAGAAAAAGCGCAGTCCCAGGCCGATTTGTTAGATGCCGGTTCACAATTACAGGTCGCAGCGTTAGGGATGCTCAACCGCCAACGTGTCTCGGCGAACGGCTTTTTAAGCCCTTATTCAATGGATGCGCCAGCACTGGGTATGGACGGGCCGTACTATACGGAAGCCACAGTAGGTTTGTTTGCCGGACTGGATCTTGATTTGTGGGGTGTGCATCGCTCAGCGGTTGCCGCCGCCATTGGCGCGCATAATGCCGCGCTGGCAGAAACCGCAGCAGTAGAGCTATCGCTGGCCACGGGCGTAGCGCAGCTTTATTACAGTATGCAGGCCAGCTATCAGATGCTCGATCTGTTAGAACAAACTCACGATGTGATTGATTACGCGGTGAAAGCGCACCAGAGTAAAGTGGCGCACGGTCTGGAAGCGCAAGTGCCTTTCCACGGCGCGCGGGCACAGATTCTGGCGGTCGATAAACAAATTGTTGCCGTCAAAGGGCAAATCACCGAAACGCGAGAATCTCTGCGTGCATTGATTGGCGCGGGAGCCAGCGATATGCCGGAGATCAGACCGGTGGCATTACCGCAAGTCCAGACCGGCATTCCGGCGACACTCTCTTATGAGTTGCTCGCCAGACGCCCGGATCTGCAAGCCATGCGCTGGTATGTTCAGGCGTCATTAGATCAGGTGGATTCCGCGCGGGCGTTGTTCTATCCGAGCTTTGATATCAAAGCGTTTTTCGGTCTGGACTCCATCCATCTGCATACCTTATTCAAAAAAACCAGTCGCCAGTTCAACTTCATCCCGGGTCTGAAATTGCCGCTGTTTGACGGTGGACGGTTGAATGCCAATCTCGAAGGCACGCGCGCCGCCAGCAACATGATGATTGAACGTTACAACCAGTCAGTACTGAACGCGGTGCGTGACGTTGCCGTCAACGGCACGCGTCTGCAAACGCTCAACGACGAGCGAGAAATGCAGGCTGAACGCGTGGAAGCCACGCGCTTTACCCAGCGCGCTGCCGAGGCCGCCTATCAGCGCGGCTTAACCAGCCGCTTACAGGCCACCGAAGCCCGGTTGCCAGTGCTTGCCGAAGAGATGTCATTACTGATGCTGGACAGCCGCCGGGTGATCCAAAGCATTCAGTTGATGAAATCGCTGGGCGGCGGGTATCAGGCAGGTCCCGTCGTCGAGAAAAAATAA UPDATED NCBI_taxonomy_name with Escherichia coli str. K-12 substr. W3110 UPDATED NCBI_taxonomy_id with 316407 UPDATED NCBI_taxonomy_cvterm_id with 36839 UPDATED accession with BAE78082.1 UPDATED sequence with MINRQLSRLLLCSILGSTTLISGCALVRKDSAPHQQLKPEQIKLADDIHLASSGWPQAQWWKQLNDPQLDALIQRTLSGSHTLAEAKLREEKAQSQADLLDAGSQLQVAALGMLNRQRVSANGFLSPYSMDAPALGMDGPYYTEATVGLFAGLDLDLWGVHRSAVAAAIGAHNAALAETAAVELSLATGVAQLYYSMQASYQMLDLLEQTHDVIDYAVKAHQSKVAHGLEAQVPFHGARAQILAVDKQIVAVKGQITETRESLRALIGAGASDMPEIRPVALPQVQTGIPATLSYELLARRPDLQAMRWYVQASLDQVDSARALFYPSFDIKAFFGLDSIHLHTLFKKTSRQFNFIPGLKLPLFDGGRLNANLEGTRAASNMMIERYNQSVLNAVRDVAVNGTRLQTLNDEREMQAERVEATRFTQRAAEAAYQRGLTSRLQATEARLPVLAEEMSLLMLDSRRVIQSIQLMKSLGGGYQAGPVVEKK " 42 UPDATE OXY-6-1 penam; OXY beta-lactamase; cephalosporin; antibiotic inactivation; monobactam; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 43 UPDATE tet(42) tetracycline antibiotic; efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; tetracycline; antibiotic efflux; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 40 UPDATE QnrB58 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 41 UPDATE rmtH antibiotic target alteration; aminoglycoside antibiotic; 16S rRNA methyltransferase (G1405); model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1568 UPDATE OXA-183 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAACATTTGCCGCATATGTAATTACTGCGTGTCTTTCAAGTACGGCATTAGCTAGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTGCCGAAGCCGTCAATGGTGTTTTCGTGCTTTGTAAAAGTAGCAGTAAATCCTGCGCTACCAATAACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATCAACATTTAAGATCCCCAACGCAATTATCGGCCTAGAAACTGGTGTCATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAACAATGGGAAAGAGACTTGAGCTTAAGAGGGGCAATACAAGTTTCAGCGGTTCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGAAATACCTTAAAAAATTTTCATATGGCAACCAGAATATCAGTGGTGGCACTGACAAATTCTGGTTGGAGGATCAGCTAAGAATTTCCGCAGTTAATCAAGTGGAGTTTCTAGAGTCTCTATTTTTAAATAAATTGTCAGCATCAAAAGAAAATCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCTGCGCCTGAATATCTTGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCCTGGTGTCGCATGGTGGGTTGGTTGGGTTGAGAAGGGAACAGAGGTTTACTTTTTCGCCTTTAACATGGATATAGACAACGAAAATAAGTTGCCGCTAAGAAAATCCATTCCCACCAAAATCATGGCAAGTGAGGGCATCATTGGTGGCTAA " 1569 UPDATE catD antibiotic inactivation; thiamphenicol; chloramphenicol acetyltransferase (CAT); azidamfenicol; phenicol antibiotic; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1298 UPDATE lsaA dalfopristin; pleuromutilin; quinupristin; pleuromutilin antibiotic; ABC-F ATP-binding cassette ribosomal protection protein; antibiotic target protection; streptogramin antibiotic; clindamycin; lincosamide antibiotic; model_description; model_sequences; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCGAAAATTGAACTAAAACAACTATCTTTTGCCTATGATAATCAAGAAGTATTGCTTTTTGATCAGGCAAATATCACGATGGATACCAATTGGAAATTAGGATTGATTGGCCGCAATGGCCGTGGGAAAACAACCTTATTAAGATTGTTACAAAAACAGTTGGATTACCAAGGAGAGATTCTTCATCAAGTCGATTTCGTCTATTTTCCACAAACAGTTGCAGAAGAACAACAGCTCACTTATTATGTCTTACAAGAGGTGACTTCTTTTGAACAGTGGGAATTAGAACGAGAATTAACGCTTTTAAACGTTGATCCTGAAGTTTTATGGCGGCCCTTTTCTTCTTTATCAGGCGGCGAAAAGACGAAAGTTTTATTAGGTCTTCTTTTTATTGAAGAAAATGCCTTTCCTTTAATTGACGAGCCAACAAATCATTTAGATCTAGCTGGCAGACAACAAGTGGCTGAATATTTGAAGAAAAAGAAACACGGGTTTATTTTAGTCAGCCACGATCGGGCATTTGTTGATGAAGTGGTTGATCATATTTTGGCGATTGAAAAAAGTCAATTGACGCTGTATCAAGGGAATTTTTCTATTTATGAAGAGCAAAAAAAATTAAGAGATGCTTTTGAACTAGCAGAAAATGAAAAAATCAAAAAAGAAGTCAATCGCTTGAAAGAAACCGCTCGTAAAAAAGCGGAATGGTCGATGAACCGTGAAGGTGATAAGTACGGCAACGCTAAGGAAAAAGGGAGCGGGGCGATTTTTGATACAGGAGCCATTGGTGCCCGGGCAGCGCGCGTAATGAAGCGCTCGAAACACATTCAACAACGCGCCGAAACACAATTAGCAGAAAAAGAAAAACTATTAAAAGATCTTGAGTATATTGATCCTTTGTCAATGGATTATCAGCCAACGCATCACAAAACATTATTGACGGTGGAAGAGCTTCGTCTAGGCTACGAGAAAAATTGGCTATTTGCGCCACTTTCTTTTTCAATAAACGCGGGAGAAATTGTTGGAATAACAGGGAAAAATGGCTCAGGAAAATCGAGCTTAATTCAGTATTTATTGGATAATTTTTCTGGGGATTCAGAAGGCGAAGCCACTTTGGCTCACCAATTAACCATTTCTTATGTGCGCCAAGATTATGAAGACAATCAAGGAACTTTATCCGAATTTGCAGAGAAAAATCAGTTAGATTACACTCAATTTTTAAATAACTTACGAAAACTTGGGATGGAGCGTGCCGTTTTCACTAATCGAATTGAACAAATGAGTATGGGGCAACGGAAAAAAGTCGAAGTAGCCAAATCATTGTCTCAATCAGCTGAACTTTATATTTGGGATGAACCCCTTAATTACTTGGATGTATTTAATCATCAACAATTAGAAGCGCTAATCTTATCTGTGAAGCCTGCAATGCTAGTGATTGAGCATGATGCACATTTCATGAAGAAAATAACAGATAAAAAAATTGTCTTGAAATCATAA DELETED 36001 UPDATED category_aro_name with ABC-F ATP-binding cassette ribosomal protection protein UPDATED category_aro_cvterm_id with 41687 UPDATED category_aro_accession with 3004469 UPDATED category_aro_class_name with AMR Gene Family UPDATED category_aro_description with A subfamily of the ATP-binding cassette protein superfamily. Unlike other ABC proteins, ABC-F genes are not fused to a transmembrane domain nor associated with transport. It has been shown that ABC-F proteins confer antibiotic resistance via ribosomal protection and not antibiotic efflux as in other ABC proteins. UPDATED category_aro_name with antibiotic target protection UPDATED category_aro_cvterm_id with 35999 UPDATED category_aro_accession with 0001003 UPDATED category_aro_class_name with Resistance Mechanism UPDATED category_aro_description with Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance. " 1299 UPDATE AAC(6')-Ic antibiotic inactivation; kanamycin A; aminoglycoside antibiotic; AAC(6'); isepamicin; sisomicin; arbekacin; gentamicin B; netilmicin; amikacin; dibekacin; neomycin; tobramycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATCGTCATCTGCGACCACGACAACCTCGACGCCTGGCTGGCGCTGCGCACCGCGCTGTGGCCCTCCGGCTCGCCTGAAGATCACCGCGCGGAAATGCGCGAGATATTGGCTTCGCCGCACCACACCGCGTTTATGGCGCGGGGGCTGGACGGCGCTTTCGTTGCCTTTGCCGAGGTCGCGCTGCGCTACGATTACGTCAACGGCTGCGAATCGTCGCCGGTGGCGTTTTTGGAAGGAATTTATACCGCCGAACGCGCCCGCCGCCAGGGCTGGGCCGCGCGCCTGATCGCGCAGGTGCAGGAGTGGGCGAAGCAACAGGGGTGCAGCGAGCTGGCGTCGGATACCGATATCGCCAATCTGGACTCCCAGCGCCTGCATGCGGCGCTGGGCTTTGCCGAAACGGAGCGAGTAGTGTTTTACCGCAAAACGCTGGGCTGA " 1560 UPDATE OKP-B-20 penam; antibiotic inactivation; OKP beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1561 UPDATE vanTG glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanT; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGACTAAAAACGAAAGCTATTCTGGCATTGATTATTTTAGATTTATTGCAGCCTTATTGATTGTTGCTATTCATACTTCGCCTCTCTCTTCTTTTAGTGAAACAGGCAACTTTATATTTACACGCATTGTAGCCCGTGTAGCCGTTCCGTTCTTTTTTATGACATCTGGATTTTTTCTGATTTCCAGATATACCTGTAATGCCGAAAAGCTGGGAGCTTTTATAAAAAAGACAACCTTAATTTACGGGGTTGCAATACTCTTATACATACCTATCAATGTTTATAACGGTTATTTCAAAATGGACAACCTTTTGCCAAATATCATAAAAGATATTGTATTTGATGGTACTTTATATCACTTGTGGTATCTTCCTGCATCTATTATCGGAGCTGCGATTGCTTGGTATCTGGTAAAGAAAGTTCATTATCGCAAAGCCTTTTTGATAGCTTCTATACTCTATATCATAGGCTTATTTGGAGATAGTTATTATGGAATTGTGAAAAGCGTTTCCTGCTTAAATGTTTTTTACAATCTAATCTTCCAATTAACAGATTACACAAGAAACGGAATATTTTTTGCCCCAATCTTTTTTGTGCTTGGTGGATATATCTCTGATAGTCAAAACAGACTATCGTTAAAAAGAAGTATAGTAGGATTTATAGTTTGTTTTGCCCTTATGTTTGGAGAAGCCCTTACTTTACATCATTTTGATATACAGAAACATGACAGTATGTATGTGCTTTTACTTCCGAGTGTGTATTGCTTATTTAATCTTCTTCTGCACTTTAGAGGAAAACGCCGCACAGGATTACGGACAATATCATTGATTATCTATATCATTCATCCGTTTATGATTGTTGTAATACGATTGTTTGCCAAATTACTGCATCTGCAAAGCCTGCTTGTTGAAAACAGCCTTGTTCATTATATTGCGGTCTGCTTTGCATCGGTAGTATTAGCAGTGGTTATAACAGCGTTATTGAGCAGTCTGAAACCGAAAAAGGCAAAACATACCGCCGATACGGATAGAGCGTATCTGGAAATCAACCTAAATAATTTAGAGCATAATGTAAACACTTTGCAAAAAGCAATGTCACCTAAATGTGAATTGATGGCGGTTGTAAAAGCGGAAGCCTATGGTCACGGTATGTATGAAGTGACGACATATCTTGAGCAGATAGGAGTTTCTTCATTTGCGGTAGCTACCATTGATGAAGGTATCCGATTGAGAAAATATGGCATCTCTAGCGAAATCCTAATTTTAGGCTATACATCGCCTTCAAGGGCAAAAGAACTTTGTAAGTATGAGCTGACACAAACCTTGATAGATTATAGGTATTCGTTGCTTTTGAATAAACAGGGATATGACATTAAAGCACATATTAAAATTGACACAGGTATGCATAGACTTGGATTTAGCACAGAAGATAAGGATAAAATCCTTGCAGCTTTTTCTTTGAAGCACATCAAAGTTGCGGGAATTTTTACACATTTGTGTGCGGCTGACAGCCTTGAAGAAAATGATGTTGCATTTACAAACAAGCAAATAGGCAGTTTCTATAAAGTGCTTGATTGGCTGAAAAGCAGCGGTTTGAATATACCTAAAGTACATATCCAAAGTAGTTATGGATTATTGAATTATCCAGAGCTTGAATGTGATTATATCAGAGTGGGTGTTGCTCTGTATGGTGTTTTAAGCTCTACTAATGACAAAACAAAATTAGAACTTGATTTAAGACCTGTACTTTCTTTGAAAGCAAAAGTTGTTTTAATTCGGAAGATAAAGCAGGGCGAAAGTGTTGGTTATAGCAGGGCTTTTACTGCAACCCGAGATAGTTTAATTGCCATATTACCAATTGGATATGCAGATGGTTTTCCAAGAAATCTGTCTTGTGGAAATAGTTATGTGCTGATTGGTGGACGACAAGCCCCTATTGTCGGAAAAATCTGTATGGATCAACTTGCAGTTGATGTAACAGATATTCCCAATGTTAAGACTGGAAGTATTGCAACGCTGATTGGTAAAGATGGAAAGGAAGAAATTACAGCACCGATGGTAGCTGAAAGTGCAGAAAGCATAACCAATGAATTGTTAAGCCGTATGGGACACAGATTAAATATTATTCGTAGAGCGTAA " 1562 UPDATE aad(6) antibiotic inactivation; streptomycin; aminoglycoside antibiotic; ANT(6); model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1563 UPDATE CTX-M-63 antibiotic inactivation; cephalosporin; CTX-M beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1564 UPDATE QnrB16 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1565 UPDATE ACT-18 antibiotic inactivation; carbapenem; penam; ACT beta-lactamase; cephalosporin; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGATGAAAAAATCTCTTTGCTGCGCCCTGCTGCTCGGCATCTCTTGCTCTGCTCTCGCCGCGCCAGTGTCAGAAAAACAGCTGGCGGAGGTGGTCGCGAATACGATTACCCCGCTGATGAAAGCCCAGTCGATTCCAGGCATGGCGGTGGCCGTTATTTATCAGGGTAAACCGCACTATTATACGTTTGGCAAAGCCGATATCGCGGCTAATAAACCCGTTACGCCTCAGACTCTGTTCGAGCTGGGCTCTATAAGTAAAACCTTCACCGGGGTTTTAGGTGGGGATGCCATTGCTCGCGGTGAAATTTCGCTGGACGATCCGGTGACCAGATACTGGCCACAGCTGACGGGCAAGCAGTGGCAGGGGATTCGTATGCTGGATCTCGCAACCTACACCGCTGGCGGCCTGCCGCTACAGGTACCGGATGAGGTCACGGATAATGCCGCCCTGCTGCGCTTTTATCAAAACTGGCAGCCGCAGTGGAAGCCTGGCACAACGCGTCTTTACGCCAACGCCAGTATCGGTCTTTTTGGCGCGCTGGCGGTCAAACCTTCCGGCATGGGCTATGAGCAGGCCATGACGACGCGGGTCCTTAAGCCGCTCAAGCTGGACCATACCTGGATTAACGTTCCGAAAGCGGAAGAGGCGCATTACGCCTGGGGCTATCGTGACGGTAAAGCGGTGCGCGTTTCGCCGGGAATGCTGGATGCACAAGCCTATGGCGTGAAAACCAACGTGCAGGATATGGCGAACTGGGTCATGGCAAACATGGCGCCGGAGAAGGTTGCTGATGCCTCACTTAAGCAGGGCATCGCGCTGGCGCAGTCGCGCTACTGGCGTATCGGGTCAATGTATCAGGGTCTGGGCTGGGAGATGCTCAACTGGCCCGTGGAGGCCAACACGGTGATCGAGGGCAGCGACAGTAAGGTGGCGCTGGCACCGCTGCCCGTGGCAGAAGTGAATCCACCGGCTCCCCCGGTCAAAGCGTCCTGGGTCCATAAAACGGGCTCTACTGGCGGGTTTGGCAGCTACGTGGCCTTTATTCCTGAAAAGCAGATCGGTATTGTGATGCTCGCGAATAAAAGCTATCCGAACCCGGCACGCGTTGAGGCGGCATACCATATCCTCGACGCGCTACAGTAA " 1566 UPDATE vanXD glycopeptide antibiotic; glycopeptide resistance gene cluster; vanX; antibiotic target alteration; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1567 UPDATE FosB fosfomycin; fosfomycin thiol transferase; antibiotic inactivation; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1713 UPDATE vanYM glycopeptide antibiotic; glycopeptide resistance gene cluster; antibiotic target alteration; vanY; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGGTCTTTCAAGGAAACTTACTCTTGGTTAATAACGAATATCCGGTTCTCGAAGAGAGTATAAAAACAGACGTTGTAAATTTATTTAAACATGATGAATTGACAAAAGGATATGAATTGCTCAATAGGGAAATTTATTTATCGGAGAAAGTTGCCCGTGAATTTTCAGAGATGGTAGATGCGGCTGAAAAAGAAGGAGTTCGCCATTTTTCAATCAATAGTGGGTTTCGAAACTTTGATGAGCAAAATGCCCTTTATCAAGAAATGGGGTCTGACTACGCCTTGCCTGCAGGTTATAGCGAACATAATTTAGGTTTAGCACTTGATATCGGATCTACTCAAATGGAAATGAGTGAGGCACCGGAAGGAAAGTGGCTAGAAGATAATGCGTGGGAATACGGCTTTATTTTACGCTATCCAATGGACAAAACGGCCATCACAGGTATTCAGTATGAACCTTGGCATTTTCGCTATGTGGGATTACCGCACAGTGCAATTATAGAGGAAAAGAATTTTGCTTTAGAAGAATATTTGGATTTCCTAAAAGAACAAAAATCCATTTCAGGTACTATACATGGCGAAAATTATGAGATTTCTTATTATCCTATTACCGAAAAAACAGACATTGAAATGCCTGCCAATCTTCATTATGAAATATCAGGAAACAATATGGATGGTGTGATTGTGACAGTGTATCGCTAA " 474 UPDATE dfrD iclaprim; trimethoprim; brodimoprim; tetroxoprim; diaminopyrimidine antibiotic; antibiotic target replacement; trimethoprim resistant dihydrofolate reductase dfr; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with TTGAAAATTTCTTTAATTGTTGCGATGGATAAGAAAAGAGTAATCGGCAAGGATAACGACATTCCATGGAGAATTTCTAGTGATTGGGAATATGTAAAAAACACTACAAAAGGACATGCAATCATATTAGGTAGAAAGAACCTTCAATCAATCGGAAGGGCTTTACCTGACAGAAGAAATATTATTTTGACTAGAGATAAAAACTTTAACTTTAAGGATTGTGAAATTGCCCATTCAATAGAAGCTGCATTTAAGTTATGCGAAAATGAAGAAGAGGTTTTCATTTTCGGGGGAGAACAGATATATGTTATGTTCTTGCCTTATGTCGAGAAAATGTACGTTACAAAAATTCATCATGAATTCGAAGGAGATACATTTTTTCCAGTAGTTAATTTTGACGATTGGAAAGAAGTATCTGTTGAAAAAGGAATAAAAGATGAAAAGAATCCTTACGATTATTATTTTCATATATATGAGAGAATTCGTTAA " 796 UPDATE iri antibiotic inactivation; rifampin monooxygenase; rifampin; rifapentine; rifabutin; rifaximin; rifamycin antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGTGACGTCATCATTGTCGGTGCTGGACCAACTGGATTGATGCTGGCAGGTGAGCTCCGGCTACAGGGCGTCGATGTCGTCGTCGTGGACAAGGACGAGGAGCCGACTCAGTTCGTCCGTGCCCTCGGCATCCATGTGCGCAGCATCGAAATCATGGAGCAGCGCGGGTTGCTGGACAAGTTCCTCGCGCACGGCCGCAAGTATCCGCTCGGTGGATTCTTCGCGGGGATCAGCAAACCGGCACCCGCGCACCTCGATACTGCGCACGGGTACGTCCTGGGCATACCTCAGCCCGAGATCGACAGGATTCTTGCCGAACATGCCACCGAAGTCGGCGCGGACATTCAGCGAGGGAAGCGCGTCGTCGCGATCCGTCAAGATACCGACAACGTCGCAGCGGAATTGTCCGACGGCACAACACTTCACGCGCGGTACCTTGTAGGCTGCGACGGCGGCCGCAGCACTGTTCGGAAGCTGAGATCGACGTCGGTATTCCCGGCGAGCCGTACGAGCGCCGACACGTTGATCGGCGAAATGGACGTGACCATGCCTGCTGATGAACTGGCCGCCGTTGTCGCCGAAATCCGGGAAACGCACAAACGATTCGGAGTCGGTCCCGCCGGCAACGGTGCTTTTCGTGTCGTGGTCCCTGCGGCCGAAGTTGCCGACGGTCGCGCAACACCGACCACCCTCGACGACATCAAACAACAGCTACTGGCCATTGCCGGTACCGACTTCGGTGTGCACTCGCCGCGGTGGCTCTCGCGCTTCGGCGACGCCACTCGTCTGGCGGACGACTACCGGCGCGACCGGGTGTTTCTCGCCGGCGACGCCGCACACATCCACCCACCGATGGGCGGTCAAGGTCTCAATCTCGGTGTGCAGGACGCCTTCAACCTCGGCTGGAAGCTCGCCGCCGAGATCAACGGCTGGGCACCGGTGGGCCTGCTCGACACGTACGAATCGGAACGGCGTCCGGTGGCTGCCGACGTGCTGGACAACACGCGCGCCCAGGCCGAGTTGATCTCCACCGCTGCCGGACCACAAGCGGTGCGGCGCTTGATCTCCGAGCTGATGGAATTCGAAGACGTCAAGCGCTATTTGACCGAGAAGATCACTGCGATCTCGATTCGCTACGATTTCGGCGAAGGCGACGACCTACTCGGTCGGAGGCTGCGGAACATCGCGTTGACGCGCGGCAACCTGTACGACCTGATGCGATCCGGCCGCGGACTTCTTCTCGACCAGGGTGGCCAACTGTCCGTCGATGGTTGGAGCGATCGCGCCGACCATATCGTTGACACAAGCACTGAATTGGAAGCTCCGGCTGTCCTGCTTCGGCCGGACGGTCATGTGGCATGGATCGGGGATGCGCAGGCGGAGTTGGATACTCAGCTGTCCACATGGTTCGGCCGGTCGGCGAGGGACCGCGCGTGA " 1361 UPDATE OXA-223 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1711 UPDATE AQU-1 antibiotic inactivation; AQU beta-lactamase; cephalosporin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1381 UPDATE CcrA carbapenem; antibiotic inactivation; CcrA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAACAGTATTTATCCTTATCTCCATGCTTTTCCCTGTCGCAGTTATGGCACAGAAAAGCGTAAAAATATCCGATGACATCAGTATCACCCAACTCTCGGACAAAGTGTACACTTATGTATCCCTCGCCGAAATCGAAGGATGGGGTATGGTACCTTCCAACGGGATGATTGTTATCAACAACCACCAGGCAGCGTTGCTGGACACACCGATCAATGACGCACAAACGGAAATGCTGGTCAACTGGGTGACAGACTCTTTGCATGCCAAAGTCACCACGTTTATCCCGAACCACTGGCACGGCGATTGTATTGGCGGACTGGGTTACCTGCAAAGGAAAGGTGTCCAATCATACGCGAACCAGATGACGATAGACCTCGCCAAGGAAAAAGGGTTGCCCGTACCGGAACATGGATTCACCGATTCACTGACCGTCAGCTTGGACGGCATGCCTCTCCAATGTTATTATTTAGGAGGCGGACATGCGACCGACAATATCGTGGTTTGGCTGCCGACAGAGAATATCCTTTTTGGCGGATGTATGCTTAAAGACAACCAGGCGACAAGCATCGGCAACATCTCGGACGCGGACGTGACGGCATGGCCGAAAACTCTCGATAAGGTAAAAGCCAAGTTCCCCTCGGCCCGTTACGTCGTGCCCGGACATGGCGACTATGGCGGAACCGAACTGATAGAGCATACCAAGCAGATCGTGAACCAATATATAGAAAGCACTTCAAAGCCATAG " 1710 UPDATE Mycobacterium leprae gyrB conferring resistance to fluoroquinolone aminocoumarin antibiotic; antibiotic target alteration; moxifloxacin; fluoroquinolone resistant gyrB; grepafloxacin; trovafloxacin; ofloxacin; norfloxacin; nalidixic acid; lomefloxacin; gatifloxacin; coumermycin A1; ciprofloxacin; fleroxacin; levofloxacin; sparfloxacin; clorobiocin; novobiocin; Clofazimine; clinafloxacin; enoxacin; pefloxacin; fluoroquinolone antibiotic; cinoxacin; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with GTGGCTGCCCAGAGGAAGGCCCAAGACGAATATGGCGCTGCGTCCATCACTATTCTTGAAGGGCTGGAGGCCGTTCGCAAACGTCCCGGTATGTACGTCGGGTCAACTGGTGAGCGTGGTCTCCACCATCTGATATGGGAAGTGGTGGACAACTCAGTAGATGAGGCGATGGCCGGTTATGCTACGCAAGTTGATGTGCGGTTATTCGACGACGGTAGTGTCGAGGTCGCCGATAACGGTCGTGGTATTCCGGTGGCAGTGCATGCTACGGGGGTACCGACTGTTGACGTAGTTATGACCCAATTACATGCCGGCGGTAAATTCGGTGGTAAAGATAGCGGTTATAACGTCAGTGGTGGTTTGCATGGGGTAGGTGTGTCGGTGGTTAACGCATTGTCCACCAGGGTCGAGGTCGACATCAAACGTGACGGCTATGAATGGTCACAGTTTTACGACAAGGCTGTGCCGGGCATTCTTAAGCAAGGCGAAGCTACTGAGGCGACGGGAACGACGATTAGATTTTGGGCAGATCCTGACATTTTCGAAACCACAAAGTATGACTTTGGGACGGTGGCGCGCCGAATTCAAGAAGTGGCTTTCTTGAACAAGGGTTTGACGATCAATCTTGTTGACGAACGGGTGAAGCAGGACGAAGTTGTCGACGATGTCGTCAGCGATACAGCCGAGGCTCCTGTGGCTATGACCGTTGAAGAAAAGTCAACGGAGTCGAGTGCGCCGCACAAGGTTAGACACCGTACGTTCCACTACCCCGGAGGCCTGGTGGACTTCGTCAAGCACATCAACCGGACTAAGACTCCTATTCAACAGAGCATTATCGATTTTGATGGCAAAGGTGCCGGTCACGAGGTTGAAGTTGCGATGCAGTGGAACGGCGGCTATTCGGAATCAGTGCATACCTTTGCGAACACGATTAACACCCATGAAGGCGGCACCCACGAAGAAGGTTTCCGTAGCGCTTTGACATCAGTGGTGAACAAGTACGCTAAGGATAAAAAACTACTCAAAGACAAGGATCCCAACCTAACTGGCGACGATATCCGTGAAGGTCTGGCGGCGGTTATCTCGGTTAAGGTCAGTGAACCACAGTTTGAGGGTCAGACCAAAACAAAGCTGGGGAACACCGAAGTTAAGTCATTCGTGCAGAGGGTCTGTAATGAGCAACTTATTCACTGGTTTGAAGCCAATCCAGTAGATGCGAAAGCGGTTGTGAATAAGGCGATATCGTCGGCACAAGCCCGAATAGCTGCACGTAAAGCACGAGAGTTAGTGCGTCGAAAAAGTGCCACCGATCTTGGTGGACTTCCTGGAAAACTTGCCGATTGCCGCTCTACTGATCCTCGAAGTTCTGAACTGTATGTAGTGGAAGGTGATTCGGCTGGTGGTTCAGCAAAGAGTGGCCGTGATTCGATGTTTCAGGCAATCCTTCCGTTACGTGGCAAGATCATAAATGTTGAAAAGGCACGTATTGACCGAGTGCTAAAGAACACCGAAGTTCAAGCAATTATTACGGCATTGGGTACTGGAATCCATGATGAATTCGATATCTCCAGGCTGCGTTATCACAAAATTGTTTTGATGGCCGACGCTGACGTTGACGGCCAACATATCTCGACGCTGTTGTTGACTTTGTTATTTCGGTTCATGCGACCACTCATCGAGCATGGGTACGTGTTTTTAGCGCAGCCGCCACTTTACAAATTGAAGTGGCAACGTATGGATCCGGAATTTGCTTACTCCGATAGCGAGCGCGACGGCTTATTAGAGACCGGGCTTAAGCTTGGCAAGAAAATCAACAAAGAGGATGGTATCCAACGTTATAAAGGTTTAGGTGAAATGGATGCCAAGGAGTTGTGGGAAACCACCATGGACCCGTCGGTGCGAGTTTTGCGTCAAGTAACACTGGATGACGCGGCGGCTGCTGACGAGTTATTCTCTATTCTGATGGGTGAGGACGTCGATGCACGCCGTAGCTTTATCACCCGTAATGCCAAGGATGTTCGTTTCCTGGATGTCTAG " 1717 UPDATE OXA-230 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAGTTTAAAATGAAAGGTTTATTTTGTGTCATCCTCAGTAGTTTGGCATTTTCAGGTTGTGTTTATGATTCAAAACTACAACGCCCAGTCATATCAGAGCGAGAAACTGAGATTCCTTTATTATTTAATCAAGCACAGACTCAAGCTGTGTTTGTTACTTATGATGGGATTCATCTAAAAAGTTATGGTAATGATCTAAGCCGAGCAAAGACTGAATATATTCCTGCATCTACATTTAAGATGTTGAATGCTTTAATTGGCTTGCAAAATGGAAAAGCAACCAATACTGAAGTATTTCAGTGGAATGGTGAAAAGCGTGCTTTTTCAGCATGGGAAAAAGATATGACTTTGGCAGAAGCGATGCAGGCTTCAGCTGTTCCCGTATATCAAGAGCTTGCTCGACGTATTGGCTTGGAATTGATGCGTGAAGAAGTGAAGCGTGTAGGTTTTGGCAATGCGGAGATTGGTCAGCAAGTCGATAATTTTTGGTTGGTGGGTCCTTTAAAAATCTCCCCTGAACAAGAAGTTCAATTTGCCTATCAACTGGCGATGAAGCAATTACCTTTTGATCGAAATGTACAGCAACAAGTCAAAGATATGCTTTATATCGAGAGACGTGGTGACAGTAAACTGTATGCTAAAAGTGGTTGGGGAATGGATGTTGAACCTCAAGTGGGTTGGTATACGGGATGGGTTGAACAACCCAATGGCAAGGTGACTGCATTTGCGTTAAATATGAACATGCAAGCAGGTAATGATCCAGCTGAACGTAAACAATTAACCTTAAGTATTTTGGACAAATTGGGTCTATTTTTTTATTTAAGATAA " 1716 UPDATE OXA-398 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1715 UPDATE OXA-73 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAATAAATATTTTACTTGCTATGTGGTTGCTTCTCTTTTTCTTTCTGGTTGTACGGTTCAGCATAATTTAATAAATGAAACCCCGAGTCAGATTGTTCAAGGACATAATCAGGTGATTCATCAATACTTTGATGAAAAAAACACCTCAGGTGTGCTGGTTATTCAAACAGATAAAAAAATTAATCTATATGGTAATGCTCTAAGCCGCGCAAATACAGAATATGTGCCAGCCTCTACATTTAAAATGTTGAATGCCCTGATCGGATTGGAGAACCAGAAAACGGATATTAATGAAATATTTAAATGGAAGGGCGAGAAAAGGTCATTTACCGCTTGGGAAAAAGACATGACACTAGGAGAAGCCATGAAGCTTTCTGCAGTCCCAGTCTATCAGGAACTTGCGCGACGTATCGGTCTTGATCTCATGCAAAAAGAAGTAAAACGTATTGGTTTCGGTAATGCTGAAATTGGACAGCAGGTTGATAATTTCTGGTTGGTAGGACCATTAAAGGTTACGCCTATTCAAGAGGTAGAGTTTGTTTCCCAATTAGCACATACACAGCTTCCATTTAGTGAAAAAGTGCAGGCTAATGTAAAAAATATGCTTCTTTTAGAAGAGAGTAATGGCTACAAAATTTTTGGAAAGACTGGTTGGGCAATGGATATAAAACCACAAGTGGGCTGGTTGACCGGCTGGGTTGAGCAGCCAGATGGAAAAATTGTCGCTTTTGCATTAAAAATGGAAATGCGGTCAGAAATGCCGGCATCTATACGTAATGAATTATTGATGAAATCATTAAAACAGCTGAATATTATTTAA " 1201 UPDATE CARB-22 penam; antibiotic inactivation; CARB beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 477559 UPDATED strand with - UPDATED accession with BA000032.2 UPDATED fmin with 476707 UPDATED sequence with ATGAAAAAGTTATTCCTGTTGGTTGGGCTGATGGTTTGCTCAACTGTTAGTTACGCCTCCAAATTAAACGAAGACATCTCCCTCATCGAGAAACAAACATCTGGGCGAATTGGAGTGTCAGTCTGGGATACACAAACGGACAAGCGTTGGGATTATCGCGGAGACGAACGTTTCCCATTAATGAGCACATTCAAAACGTTAGCGTGTGCCACCATGCTAAGCGACATGGACAGCGGCAAACTCAACAAAAATGCCACAGCGAAAATCGATGAACGCAATATTGTGGTTTGGTCTCCGGTGATGGATAAACTGGCTGGACAAAGCACACGCATCGAACACGCTTGTGAAGCCGCCATGTTGATGAGCGACAACACCGCCGCGAACTTAGTGTTAAATGAAATTGGTGGTCCTAAAGCGGTCACGCAGTTTTTGCGATCTATTGGCGACAAAGCAACGCGACTTGACCGATTGGAACCCCGTTTGAATGAAGCAAAACCGGGCGACAAGCGAGACACCACAACGCCTAACGCCATGGTAAACACCCTACACACCTTGATGGAAGATAACGCCCTATCTTACGAGTCACGCACACAGCTGAAAATCTGGATGCAAGACAACAAAGTATCGGATTCTCTCATGCGCTCTGTTCTGCCAAAAGGCTGGTCGATTGCAGACCGCTCTGGCGCAGGTAACTACGGTTCACGCGGCATTAGCGCGATGATCTGGAAAGACAACTACAAGCCGGTTTACATCAGTATTTACGTCACAGACACAGACCTTTCGCTTCAAGCTCGCGATCAACTGATCGCGCAAATCAGCCAACTGATTTTAGAGCACTACAAAGAAAGTTAA UPDATED NCBI_taxonomy_name with Vibrio parahaemolyticus RIMD 2210633 UPDATED NCBI_taxonomy_id with 223926 UPDATED NCBI_taxonomy_cvterm_id with 39776 UPDATED accession with BAC61820.1 UPDATED sequence with MKKLFLLVGLMVCSTVSYASKLNEDISLIEKQTSGRIGVSVWDTQTDKRWDYRGDERFPLMSTFKTLACATMLSDMDSGKLNKNATAKIDERNIVVWSPVMDKLAGQSTRIEHACEAAMLMSDNTAANLVLNEIGGPKAVTQFLRSIGDKATRLDRLEPRLNEAKPGDKRDTTTPNAMVNTLHTLMEDNALSYESRTQLKIWMQDNKVSDSLMRSVLPKGWSIADRSGAGNYGSRGISAMIWKDNYKPVYISIYVTDTDLSLQARDQLIAQISQLILEHYKES " 1714 UPDATE ErmW antibiotic target alteration; streptogramin antibiotic; Erm 23S ribosomal RNA methyltransferase; macrolide antibiotic; lincosamide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGTCATCAATCCGGCGCCGGCACGCCGCCGCTTCGCTCGACACCCCTGCCGTGGGCGGCAGGCACGAACTCGGTCAGAACTTCCTCGTCGACCGAGGTGTATGCACAAGGATCGCCGAGGTCGTCTCCTCGACGACGGCCCATCCGGTCCTCGAACTGGGCGCCGGTGACGGTGCCATCACCCGGGCCCTGGTCGCGGCGAATCTCCCGGTCACCGCGCTGGAACTCGACCCCCGGCGGGTCCGGCGGCTCCAGCGGACCTTCGCCGACGGGGTCACCGTCGTGCACGGGGACATGCTCCGGTACGACTTCGGGCCGTACCCGCACCACGTGGTGTCGACCGTGCCGTTCTCCATCACCACGCCGCTGCTCCGGCGCCTGATCGGCCAGCGGTTCTGGCACACCGCGGTGCTGTTGGTGCAGTGGGAGGTGGCCCGTAAGCGGGCCGGTGTGGGCGGCACCACGATGCTCACCGCAGCCAGTTGGCCGTGGTACGAGTTCACCCTGGTGGAGCGGGTGCCGAAGACCTCGTTCGACCCGGTGCCGAGCGTCGACGGCGGCATCCTCGTCATCGAGCGTCGATCCGCGCCGCTGCTCGACGACCGCTGCGTGGGTGACTACCAGAACCTGGTACGCGAGGTGTACACCGGTCCCGGTCGTGGTCTGGCCGCGATTCTCCGTACCCGTCTGCCCGGTCGTGAGGTGGACGCCTGGCTCCGCCGCGAGCGGGTGGACCCGGCGGCCCTGCCCCGCGACCTCAAGGCCGGGCACTGGGCATCCCTCTACCGGCTCTACCGGGAGGTGGGTACTCGGCCCGCCCCTGCCGGCCGGTCCGTCCGGGCCCGGCCCGGATCCGTCGGCCCCGACCGCTCGCTCCCTCCGCGCGGCCTGCGATCCGGTCCGCCGAGGGCTCGACGACGTGGTGGAGGCGCCTGA " 472 UPDATE TEM-128 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 473 UPDATE mphE antibiotic inactivation; macrolide phosphotransferase (MPH); macrolide antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGCGCGGGACCGGGCAGACTGCCGGCATGACCGAGACCTCTCCCTCGAGCCCGTCGTCGGCCACGGCCGATGCCGGGACTCCCCCGCCCGCCGACCTCGAGCAGCTCCTCGCCCTCGCCGCCGATCACGGGCTCGACCTCCTCGGCGACTCGCTGCGCACCGAGGAGATCGGCCTCGACTTCCGCGTCGCCTTCGCCCGGTCGCGGGACTGGCAGGACTGGGTGCTGCGCATCCCCCGCCGCGCCGAGGTGCTGGCCCGCGCCGCGGTCGAGGGCCGGCTGCTCGCCCACCTCGCCCCGCACCTGGACATCGCGATCCCCGACTGGCGGATCAGCACGGAGCGCCTGATCGCCTATCCCCTCCTGCCCGGCACCCCGGGACTGACCGTCAGCGCCGACGGCACGGTCGAGTGGCACGTGGACATGGCCTCGACCGAGTACGCCCGCGCCCTCGGCACCTTCCTCGCCCAGCTCCACACCGTGGACCCCGAGGAGGCCGCCGCCACCGGGATCCCGTCCCGCACCCCGTCGGAGGTGCGCGGTGTATGGCGCGAGGACCTCACCCGGGTCGCGGAGGCCTTCCCCATCGCGCCGGCGCTGCGGGAGCGGTGGGAGGCGTGGCTGGCGGAGGACTCCTACTGGCCGGACCGCAGCGTGCTCACCCACGGTGAGGTGTACCCCGGCCACACCCTCGTCGAGGGCGAGCGGCTCAGCGCGGTGCTCGACTGGACCACGGCGTCCGTCGGCGATCCGGCGCGGGACCTCATGTTCCACCGCTCGAGCGCACCCCCGGAAGCCTTCGCGGCGACGCTCGCCGCCTACGTGGCCGGCGGCGGCACCCTCCACCCGCGGCTCGGCGAGCACGCCGAGGAGATGTTCTCCGCCTCCCCGCTCGCCTACGGGCTCTACGCGCTGGAGACCGGCGAGGAGGAGCACCGCGCCGCGGCGGCGGCCGCGCTCGACCCGCCGGACGCCGACTGA " 470 UPDATE OXA-4 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAAAAACACAATACATATCAACTTCGCTATTTTTTTAATAATTGCAAATATTATCTACAGCAGCGCCAGTGCATCAACAGATATCTCTACTGTTGCATCTCCATTATTTGAAGGAACTGAAGGTTGTTTTTTACTTTACGATGTATCCACAAACGCTGAAATTGCTCAATTCAATAAAGCAAAGTGTGCAACGCAAATGGCACCAGATTCAACTTTCAAGATCGCATTATCACTTATGGCATTTGATGCGGAAATAATAGATCAGAAAACCATATTCAAATGGGATAAAACCCCCAAAGGAATGGAGATCTGGAACAGCAATCATACACCAAAGACGTGGATGCAATTTTCTGTTGTTTGGGTTTCGCAAGAAATAACCCAAAAAATTGGATTAAATAAAATCAAGAATTATCTCAAAGATTTTGATTATGGAAATCAAGACTTCTCTGGAGATAAAGAAAGAAACAACGGATTAACAGAAGCATGGCTCGAAAGTAGCTTAAAAATTTCACCAGAAGAACAAATTCAATTCCTGCGTAAAATTATTAATCACAATCTCCCAGTTAAAAACTCAGCCATAGAAAACACCATAGAGAACATGTATCTACAAGATCTGGAGAATAGTACAAAACTGTATGGGAAAACTGGTGCAGGATTCACAGCAAATAGAACCTTACAAAACGGATGGTTTGAAGGGTTTATTATAAGCAAATCAGGACATAAATATGTTTTTGTGTCCGCACTTACAGGAAACTTGGGGTCGAATTTAACATCAAGCATAAAAGCCAAGAAAAATGCGATCACCATTCTAAACACACTAAATTTATAA " 471 UPDATE TEM-151 penam; antibiotic inactivation; penem; cephalosporin; monobactam; TEM beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 476 UPDATE amrB efflux pump complex or subunit conferring antibiotic resistance; aminoglycoside antibiotic; resistance-nodulation-cell division (RND) antibiotic efflux pump; antibiotic efflux; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED fmax with 2150949 UPDATED strand with - UPDATED accession with NC_006350.1 UPDATED fmin with 2147817 UPDATED sequence with ATGGCTCGTTTCTTCATCGATCGCCCGGTGTTCGCATGGGTGATCTCCTTGTTCATCATGCTGGGCGGCATCTTCGCGATCCGCGCGCTGCCCGTCGCGCAGTATCCGGACATCGCGCCGCCCGTCGTCAGCCTCTATGCGACGTATCCGGGCGCGTCCGCGCAGGTCGTCGAGGAATCGGTCACCGCCGTGATCGAGCGCGAGATGAACGGCGTGCCCGGCCTGCTGTACACGTCGGCGACGAGCAGCGCCGGCCAGGCGTCGCTGTCGCTCACGTTCAAGCAGGGCGTGAGCGCCGATCTCGCGGCCGTCGACGTGCAGAACCGCCTGAAAATCGTCGAGGCGCGGCTGCCCGAGCCCGTGCGGCGCGACGGCATCTCGATCGAGAAGGCGGCCGACAACGCGCAGATCATCGTGTCGCTCACGTCGGAGGACGGACGGTTATCGGGCGTGGAGCTCGGCGAATACGCGTCGGCGAACGTGTTGCAGGCGCTGCGGCGCGTCGAGGGCGTCGGCAAGGTGCAGTTCTGGGGCGCCGAGTATGCGATGCGGATCTGGCCGGACCCCGTGAAGATGGCGGCGCTCGGCCTGACGGCGTCCGATATCGCGTCGGCCGTGCGCGCGCACAACGCGCGCGTGACGATCGGCGACGTCGGCCGCAGCGCGGTGCCCGACAGCGCGCCGATCGCGGCGACCGTGCTCGCCGACGCGCCGCTCACGACGCCCGACGCGTTCGGCGCGATCGCGCTGCGCGCGCGCGCCGACGGCTCGACGCTGTACCTGCGCGACGTCGCGAGAATCGAGTTCGGCGGCAACGATTACAACTACCCGTCGTTCGTGAACGGCAAGACGGCGACGGGCATGGGCATCAAGCTCGCGCCCGGTTCGAATGCGGTCGCCACCGAAAAGCGCGTGCGCGCGACGATGGAGGAGCTCGCGAAGTTCTTTCCGCCGGGCGTCAAGTACCAGATTCCGTACGAGACGGCGTCGTTCGTGCGCGTGTCGATGAGCAAGGTCGTCACGACGCTCGTCGAGGCGGGCGTGCTCGTGTTCGCGGTGATGTTCCTCTTCATGCAGAACTTCCGCGCGACGCTGATTCCGACGCTCGTCGTGCCCGTCGCGCTGCTCGGCACGTTCGGCGCGATGCTCGCCGCGGGCTTCTCGATCAACGTGCTGACGATGTTCGGGATGGTGCTCGCGATCGGCATCCTCGTCGACGACGCGATCGTCGTCGTCGAGAACGTCGAGCGGCTGATGGTCGAGGAGAAGCTGCCGCCGTACGAGGCCACCGTGAAGGCGATGAAGCAGATCAGCGGCGCGATCGTCGGGATCACCGTCGTGCTCACGTCGGTGTTCGTGCCGATGGCGTTCTTCGGCGGCGCGGTCGGCAACATCTACCGGCAGTTCGCGTTCGCGCTGGCGGTGTCGATCGGCTTCTCGGCGTTTCTCGCGCTGTCGCTCACGCCGGCGCTCTGCGCGACGCTGCTCAAGCCCGTCGCCGACGACCATCACGAGAAGGACGGCTTCTTCGGCTGGTTCAACCGTTTCGTCGCGCGCTCGACGCACCGCTACACGCGGCGCGTCGGGCGGGTGCTCGAGCGCCCGCTGCGCTGGCTCGTCGTCTACGGCGCGCTGACGGCCGCCGCCGCGCTGCTGATCACGAAGCTGCCGGCCGCGTTCCTGCCCGACGAGGATCAGGGCAACTTCATGGTGATGGTGATTCGCCCGCAGGGCACGCCGCTCGCCGAGACGATGCAGAGCGTGCGGCGCGTCGAGGAATACGTGCGCACGCATTCGCCGAGCGCGTACACGTTCGCGCTCGGCGGCTACAACCTGTACGGCGAAGGGCCGAACGGCGGGATGATCTTCGTCACGATGAAGGACTGGAAGGAGCGCAAGCGGGCGCGGGACCAGGTGCAGGCGATCATCGCGGAGATCAACGCGCATTTCGCCGGCACGCCGAACACGATGGTGTTCGCGATCAACATGCCGGCGCTGCCGGACCTCGGCCTGACGGGCGGCTTCGACTTCCGGCTGCAGGACCGCGGCGGGCTCGGCTACGGCGCGTTCGTCGCCGCGCGCGAGAAGCTGCTCGCCGAGGGGCGCAAGGACCCCGTCCTGACCGATTTGATGTTCGCCGGCACGCAGGACGCGCCGCAGCTGAAGCTCGACATCGATCGCGCGAAGGCGTCGGCGCTCGGCGTATCGATGGAGGAAATCAACGCGACGCTCGCTGTGATGTTCGGCTCGGACTACATCGGCGATTTCATGCACGGCTCGCAGGTGCGCCGCGTGATCGTGCAGGCGGACGGGCGGCACCGGCTCGACGCCGCCGACGTGACGAAGCTGCGCGTGCGCAACGCGAAGGGCGAGATGGTGCCGCTCGCGGCGTTCGCGACGCTGCACTGGACGATGGGCCCGCCGCAGTTGACGCGCTACAACGGCTTTCCGTCGTTTACGATCAACGGCGCGGCGTCGGCCGGGCACAGCAGCGGCGAGGCGATGGCGGCGATCGAGCGGATCGCGTCGACGCTGCCCGCCGGCACCGGCTACGCGTGGTCCGGCCAGTCGTACGAGGAGCGGCTGTCGGGCGCGCAGGCGCCGATGCTGTTCGCGCTGTCGGTGCTCGTCGTGTTCCTCGCGCTCGCGGCGCTGTACGAGAGCTGGTCGATTCCGTTCGCGGTGATGCTCGTCGTGCCGCTCGGCGTGATCGGCGCGGTCGCGGGCGTCACGCTGCGCGGGATGCCGAACGACATCTATTTCAAGGTGGGGCTGATCGCGACGATCGGTTTGTCCGCGAAGAACGCGATCCTGATCGTCGAGGTCGCGAAGGATCTGGTCGCGCAGCGCATGTCGCTCGCCGACGCGGCGCTCGAGGCCGCGCGGCTGCGGCTGCGGCCGATCGTGATGACCTCGCTCGCGTTCGGCGTCGGCGTGCTGCCGCTCGCGTTCGCGACGGGCGCCGCATCCGGCGCGCAGATCGCGATCGGCACGGGGGTGCTCGGCGGCGTGATCAGCGCGACGCTGTTCGCGATCTTCCTCGTCCCGCTCTTTTTCGTCTGCGTCGGGCGCGTGTTCGACGTCGTTCCGCGCCGCCGAGGCGGCGCGCAAGCGGCACTGGAGGCCAAGTGA UPDATED NCBI_taxonomy_name with Burkholderia pseudomallei K96243 UPDATED NCBI_taxonomy_id with 272560 UPDATED NCBI_taxonomy_cvterm_id with 41211 UPDATED accession with YP_108402.1 UPDATED sequence with MARFFIDRPVFAWVISLFIMLGGIFAIRALPVAQYPDIAPPVVSLYATYPGASAQVVEESVTAVIEREMNGVPGLLYTSATSSAGQASLSLTFKQGVSADLAAVDVQNRLKIVEARLPEPVRRDGISIEKAADNAQIIVSLTSEDGRLSGVELGEYASANVLQALRRVEGVGKVQFWGAEYAMRIWPDPVKMAALGLTASDIASAVRAHNARVTIGDVGRSAVPDSAPIAATVLADAPLTTPDAFGAIALRARADGSTLYLRDVARIEFGGNDYNYPSFVNGKTATGMGIKLAPGSNAVATEKRVRATMEELAKFFPPGVKYQIPYETASFVRVSMSKVVTTLVEAGVLVFAVMFLFMQNFRATLIPTLVVPVALLGTFGAMLAAGFSINVLTMFGMVLAIGILVDDAIVVVENVERLMVEEKLPPYEATVKAMKQISGAIVGITVVLTSVFVPMAFFGGAVGNIYRQFAFALAVSIGFSAFLALSLTPALCATLLKPVADDHHEKDGFFGWFNRFVARSTHRYTRRVGRVLERPLRWLVVYGALTAAAALLITKLPAAFLPDEDQGNFMVMVIRPQGTPLAETMQSVRRVEEYVRTHSPSAYTFALGGYNLYGEGPNGGMIFVTMKDWKERKRARDQVQAIIAEINAHFAGTPNTMVFAINMPALPDLGLTGGFDFRLQDRGGLGYGAFVAAREKLLAEGRKDPVLTDLMFAGTQDAPQLKLDIDRAKASALGVSMEEINATLAVMFGSDYIGDFMHGSQVRRVIVQADGRHRLDAADVTKLRVRNAKGEMVPLAAFATLHWTMGPPQLTRYNGFPSFTINGAASAGHSSGEAMAAIERIASTLPAGTGYAWSGQSYEERLSGAQAPMLFALSVLVVFLALAALYESWSIPFAVMLVVPLGVIGAVAGVTLRGMPNDIYFKVGLIATIGLSAKNAILIVEVAKDLVAQRMSLADAALEAARLRLRPIVMTSLAFGVGVLPLAFATGAASGAQIAIGTGVLGGVISATLFAIFLVPLFFVCVGRVFDVVPRRRGGAQAALEAK " 477 UPDATE catP antibiotic inactivation; thiamphenicol; chloramphenicol acetyltransferase (CAT); azidamfenicol; phenicol antibiotic; chloramphenicol; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1360 UPDATE Bartonella bacilliformis gyrB conferring resistance to aminocoumarin clorobiocin; aminocoumarin antibiotic; novobiocin; coumermycin A1; antibiotic target alteration; aminocoumarin resistant gyrB; model_description; model_sequences "UPDATED model_description with The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model. UPDATED sequence with ATGAGTGATGAAACAACCTCACCGACATCTGGTGACTATGGTGCCGCTTCTATCAAGGTTCTCAAAGGTCTTGATGCTGTCCGTAAACGTCCTGGTATGTACATCGGTGATACCGACGACGGTTCAGGCTTACACCATATGGTTTATGAAGTCGTCGACAACGCTATTGATGAAGCATTAGCTGGCTACGCAACTCTTGTAAATGTTACGCTCCATGCCGATGGATCCTGTTCTGTTTGTGATAATGGACGTGGAATTCCAACTGATATTCACCCAACAGAACATGTATCAGCTGCTGAAGTGATCATGACGCAACTTCATGCTGGTGGAAAATTTGATCAAAATTCTTATAAAGTTTCAGGGGGATTACACGGCGTTGGTGTCTCTGTTGTTAATGCACTATCGGTTTGGTTGCGCCTTCGAATCAAGCGTGATGGTAAAATCCATGAAATGTCGTTTACTCATGGAGTGGCTGATGCTCCGCTCAAAGTCGTTGGTCAATGCGGTACAGAAAGTGGCACAGAAATCAGCTTTTTACCAAGCCCCGAAACCTTCACCATGGTTAAATTTGATTTCGAAACATTAGAGCGTCGTCTTAGAGAATTAGCTTTTTTGAATTCTGGTGTACACATTCTTCTTGTTAACCAACACCATGCTGATGTTCGATCAGTAGAATTATATTACGAAGGTGGATTAATTGAATTTATCAAATATATTGACCAATCAAAAAAACCCTTAATTGATGCACCGATTTACATCACAAGCGAAAAAGATGGGATCAGTGTAGATGTTGCTTTATGGTGGAACGATTCTTATCATGAGAAAGTATTGTGTTTCACCAATAATATTCCTCAACGCGATGGAGGAACCCATTTAGCGGGATTCCGCAGCGCCTTAACACGTCAAATTAACGGTTATGCTGAATCCTCAGGCATTGCAAAAAAAGAAAAAGTTAATTTAACTGGCGATGATTGCCGTGAAGGACTCACAGCCATTCTTTCCGTTAAAGTTCCCGATCCAAAATTTTCTTCACAGACAAAGGATAAATTGGTTTCTTCTGAAGTCCGTCCAATTGTTGAAAATTTGGTAAATGAAGGACTTTCAGCATGGCTAGAAGAACACCCTAATGAAGCAAAAATTCTCATTAGCAAAGTTGTAGAAGCTGCTGCAGCGCGCGAAGCAGCACGCAAAGCGCGTGAACTTACACGGCGAAAAGGAGCTCTCGATATCACTTCTTTACCAGGTAAACTTGCTGATTGTCAGGAACGTGATCCTACAAAATCAGAAATTTTTATCGTCGAGGGGGATTCAGCTGGTGGTTCAGCTAAAAGCGGACGTTCACGCCAAAATCAAGCAATTTTGCCTTTACGCGGTAAAATTCTTAATGTCGAACGAGCACGTTTCGACCGAATGCTTTCATCCGAAATGATTGGTACGCTTATTACTGCCCTTGGAACCTCTATTGGTAAGGATGAATTTTCACCTGATAAATTGCGTTATCACAAAATCATCATTATGACAGATGCAGATGTTGATGGCGCTCATATTCGCACCTTGCTTCTCACTTTCTTTTTCAGACAAATGCCTGAATTAATTGAACGTGGTCATCTTTATATCGCGCAACCACCTCTTTATAAAGTATCACGTGGTAAATCCTCTCAGTACATTAAAAATGAAGCAGCATTTGAAGATTTCTTAATTGATAGTGGTTTGGAAGAAACAACATTAGAATTATCAAGTGGTGAGGTTTGTGCAGGCATTGATTTACGCCAATTCGTCCAAGATGCCCGTTTGTTGCGCCAACTCTTAAACGGTCTCCATACCCGCTATGACCGCAATATTGTTGAGCAAGCAGCAATCGCTGGTGCTTTCAATTTTGAGGCTTTTGCAACACCAGAAACAGCACAAAAAATAGCGGATACGATAGCAAAACGTCTTGATTTAATTGCTGATGATATGGAACGTGGTTGGAGCGGTCAATATACATCAGATGGAAGTTTATGCTTTGAACGCGTTTTGCGCGGAGTTAAAGATGTTATTACTCTTGATGCAGGGTTTATAAATTCAGCAGATGCACGCCAAATTGGTCATATTGCCAAAAATCTCAAAGACATCTATCGTGATCCTCCTCTTTTGCGTCGCAAAGATAAGTCAGAACGCATTTTTGGTCCTACGAGTTTATTGGAAAGTATTTTTATAAACGGTAAAAAAGGTATTACTTTACAGCGTTACAAAGGCCTTGGAGAAATGAATGCTGATCAGCTTTGGGAAACAACTCTTGATCCTGATGCGCGTTCTCTTTTACAAGTTAAAATCAATGACGCAACTGATGCAGATTCTCTCTTCTCCCAGTTAATGGGTGATGAAGTTGAACCACGGCGAATTTTTATTCAAAAAAATGCCCTAAACGTTGCTAATCTTGATATCTAA " 475 UPDATE OXA-106 penam; antibiotic inactivation; cephalosporin; OXA beta-lactamase; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 478 UPDATE AAC(3)-IIa antibiotic inactivation; AAC(3); plazomicin; gentamicin B; gentamicin C; aminoglycoside antibiotic; tobramycin; model_description; ARO_category "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED category_aro_name with plazomicin UPDATED category_aro_cvterm_id with 40307 UPDATED category_aro_accession with 3003675 UPDATED category_aro_class_name with Antibiotic UPDATED category_aro_description with Plazomicin is a neoglycoside, or next-generation, aminoglycoside, that has been identified as a potentially useful agent to combat drug-resistant bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa. " 479 UPDATE IMP-29 penam; antibiotic inactivation; penem; carbapenem; cephalosporin; IMP beta-lactamase; cephamycin; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with ATGAGCAAGTTATTTGTATTCCTTATTTTTTTGTTTTGTAGCATTACTGCCGCAGCAGAGTCTTTGCCAGATTTAAAAATTGAGAAGCTCGACGAAGGCGTTTATGTTCATACTTCGTTTGAAGAAGTTAACGGTTGGGGTGTTGTTCCTAAACATGGCTTGGTGGTTCTTGTAAATACTGAGGCCTATCTGATTGACACTCCATTTACGGCTAAAGATACTGAAAAGTTAGTCACTTGGTTTGTGGAACGCGGCTATAAAATAAAAGGCAGTATTTCCTCTCATTTTCATAGCGACAGCACAGGCGGAATAGAGTGGCTTAATTCTCAATCTATCCCCACGTATGCATCTGAATTAACAAATGAACTTCTTAAAAAAGGCGGTAAAGTACAAGCTAAAAATTCATTTAGCGGAGTTAGCTATTGGCTAGTTAAGAAAAAGATTGAAGTTTTTTATCCTGGTCCAGGGCACACTCCAGATAACGTAGTGGTTTGGCTACCTGAAAATAGAGTTTTGTTCGGTGGTTGTTTTGTTAAACCGTACGGTCTTGGAAATCTCGATGACGCAAATGTTGAAGCATGGCCACATTCTGCTGAAATATTAATGTCTAGGTATGGTAATGCAAAACTGGTTGTTCCAAGCCATAGTGACATCGGAAATGCGTCGCTCTTGAAGCTTACATGGGAGCAGGCTGTTAAAGGGCTAAAAGAAAGTAAAAAACCATCACAGCCAAGTAACTAA " 1368 UPDATE abeM antibiotic efflux; triclosan; efflux pump complex or subunit conferring antibiotic resistance; ofloxacin; norfloxacin; multidrug and toxic compound extrusion (MATE) transporter; acridine dye; acriflavin; ciprofloxacin; fluoroquinolone antibiotic; model_description; model_sequences "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. UPDATED sequence with GTGTCGAATGTCACGTCGTTTCGGTCTGAATTAAAACAACTCTTCCATTTAATGTTACCTATTTTAATTACGCAGTTTGCTCAAGCAGGGTTCGGGTTAATTGATACCATTATGGCTGGGCATTTATCTGCCGCAGACTTAGCCGCTATTGCGGTAGGTGTAGGCTTATGGATTCCAGTCATGCTCTTGTTCAGTGGCATCATGATTGCAACCACACCATTAGTTGCCGAAGCAAAAGGCGCTAGAAATACAGAGCAAATTCCAGTGATTGTCCGCCAATCATTATGGGTTGCAGTAATTCTAGGGGTATTGGCAATGCTCATTTTGCAGCTTATGCCATTTTTCTTACATGTGTTTGGCGTACCAGAAAGTTTACAACCTAAAGCCAGTTTATTCTTACATGCAATTGGTTTGGGTATGCCCGCTGTAACCATGTATGCAGCGCTCCGAGGCTATTCCGAAGCATTAGGCCATCCCCGCCCTGTCACGGTCATTAGCTTACTAGCCTTAGTGGTTTTAATCCCGCTTAACATGATTTTTATGTATGGCTTAGGACCAATACCTGCTTTGGGTAGCGCAGGCTGTGGTTTTGCAACATCCATTTTACAGTGGCTGATGCTCATTACGTTAGCAGGCTATATTTATAAGGCTTCGGCTTATCGAAACACATCTATTTTTAGCAGATTCGATAAAATTAGCCTGACTTGGGTTAAAAGAATTTTACAGCTCGGCCTGCCAATTGGTTTAGCTGTGTTTTTTGAAGTGAGTATTTTTAGTACAGGGGCATTGGTCCTTAGCCCTCTAGGGGAAGTCTTTATTGCCGCACACCAAGTAGCAATTTCAGTCACTTCGGTACTGTTTATGATTCCACTTTCTCTTGCCATTGCTTTAACCATTCGCGTGGGGACGTATTATGGTGAAAAGAACTGGGCTTCCATGTACCAAGTACAGAAAATTGGTCTAAGCACAGCAGTATTTTTTGCTCTATTGACCATGTCTTTTATTGCTTTAGGCCGTGAACAAATTGTCTCGGTTTATACTCAAGATATAAATGTTGTGCCGGTTGCCATGTATTTGCTCTGGTTTGCAATGGCATATCAATTAATGGATGCTCTACAAGTCAGCGCTGCCGGCTGTTTAAGAGGTATGCAAGATACTCAGGCACCGATGTGGATCACCTTAATGGCGTATTGGGTAATTGCTTTTCCAATCGGTCTTTATTTAGCGCGTTATACCGATTGGGGCGTAGCTGGTGTGTGGTTAGGTTTAATTATTGGTTTAAGTATTGCCTGTGTTTTATTGCTATCACGACTCTATTTGAATACCAAACGTTTAAGTCAAACCTAA " 1369 UPDATE QnrB69 sparfloxacin; norfloxacin; quinolone resistance protein (qnr); gatifloxacin; levofloxacin; antibiotic target protection; ciprofloxacin; fluoroquinolone antibiotic; nalidixic acid; moxifloxacin; model_description "UPDATED model_description with The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore. " 1302 DELETE tet34 tetracycline antibiotic; antibiotic target alteration; tetracycline inactivation enzyme; antibiotic inactivation; tetracycline; N/A N/A 1204 DELETE tcmA efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; antibiotic efflux; N/A N/A 2879 DELETE QepA3 efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; antibiotic efflux; N/A N/A 1974 DELETE emrD efflux pump complex or subunit conferring antibiotic resistance; major facilitator superfamily (MFS) antibiotic efflux pump; antibiotic efflux; N/A N/A 2244 DELETE vanSI glycopeptide antibiotic; vanS; antibiotic target alteration; vancomycin; glycopeptide resistance gene cluster; N/A N/A 432 DELETE sav1866 efflux pump complex or subunit conferring antibiotic resistance; ATP-binding cassette (ABC) antibiotic efflux pump; antibiotic efflux; N/A N/A 2431 DELETE hp1184 efflux pump complex or subunit conferring antibiotic resistance; multidrug and toxic compound extrusion (MATE) transporter; antibiotic efflux; N/A N/A 2903 ADD CrpP antibiotic inactivation; ciprofloxacin phosphotransferase; fluoroquinolone antibiotic; ciprofloxacin; N/A N/A 2902 ADD ICR-Mc peptide antibiotic; antibiotic target alteration; colistin B; intrinsic colistin resistant phosphoethanolamine transferase; colistin A; N/A N/A 2901 ADD CFE-2 antibiotic inactivation; CMY beta-lactamase; cephamycin; N/A N/A 2904 ADD poxtA antibiotic target protection; linezolid; ABC-F ATP-binding cassette ribosomal protection protein; tetracycline; florfenicol; tetracycline antibiotic; oxazolidinone antibiotic; phenicol antibiotic; doxycycline; chloramphenicol; N/A N/A