Accession | ARO:3004113 |
CARD Short Name | FosA7 |
Definition | FosA7 is an enzyme that confers resistance to fosfomycin in Escherichia coli by breaking the epoxide ring of the molecule. |
AMR Gene Family | fosfomycin thiol transferase |
Drug Class | phosphonic acid antibiotic |
Resistance Mechanism | antibiotic inactivation |
Resistomes with Perfect Matches | Salmonella entericag+wgs |
Resistomes with Sequence Variants | Citrobacter freundiig+wgs, Citrobacter koserig+wgs, Citrobacter portucalensiswgs, Enterobacter cloacaewgs, Enterobacter hormaecheiwgs, Escherichia colig+wgs, Klebsiella aerogeneswgs, Klebsiella michiganensiswgs, Klebsiella oxytocawgs, Klebsiella pneumoniaeg+wgs, Klebsiella quasipneumoniaewgs, Salmonella entericag+wgs, Serratia marcescenswgs |
Classification | 10 ontology terms | Show + process or component of antibiotic biology or chemistry + mechanism of antibiotic resistance + determinant of antibiotic resistance + antibiotic inactivation [Resistance Mechanism] + antibiotic inactivation enzyme + hydrolysis of antibiotic conferring resistance + antibiotic molecule + phosphonic acid antibiotic [Drug Class] + fosfomycin inactivation enzyme + hydrolysis of fosfomycin epoxide ring |
Parent Term(s) | 2 ontology terms | Show + confers_resistance_to_antibiotic fosfomycin [Antibiotic] + fosfomycin thiol transferase [AMR Gene Family] |
Publications | Rehman MA, et al. 2017. Antimicrob. Agents Chemother. : First Detection of a Fosfomycin Resistance Gene fosA7 in Salmonella enterica serovar Heidelberg Isolated from Broiler Chickens. (PMID 28533247) |
Prevalence of FosA7 among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).
Species | NCBI Chromosome | NCBI Plasmid | NCBI WGS | NCBI GI |
---|---|---|---|---|
Citrobacter freundii | 0.82% | 0% | 2.71% | 0% |
Citrobacter koseri | 18.75% | 0% | 18.02% | 0% |
Citrobacter portucalensis | 0% | 0% | 2.7% | 0% |
Enterobacter cloacae | 0% | 0% | 0.96% | 0% |
Enterobacter hormaechei | 0% | 0% | 0.13% | 0% |
Escherichia coli | 0.02% | 0% | 0.01% | 0% |
Klebsiella aerogenes | 0% | 0% | 1.41% | 0% |
Klebsiella michiganensis | 0% | 0% | 1.06% | 0% |
Klebsiella oxytoca | 0% | 0% | 1.26% | 0% |
Klebsiella pneumoniae | 0.06% | 0% | 0.08% | 0% |
Klebsiella quasipneumoniae | 0% | 0% | 0.26% | 0% |
Salmonella enterica | 5.43% | 0% | 7.16% | 0% |
Serratia marcescens | 0% | 0% | 0.66% | 0% |
Model Type: protein homolog model
Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.
Bit-score Cut-off (blastP): 250
Type of Antibiotic Resistance: Intrinsic or chromosomally-encoded