Accession | ARO:3003893 |
CARD Short Name | Ecol_uhpA_FOF |
Definition | uhpA is a positive activator of the fosfomycin importer uhpT, thus mutations to uhpA confer fosfomycin resistance by reducing uhpT expression. Both knockout and amino acid substitution mutations have been found that confer resistance, with the Protein Knockout model describing the large, knockout mutations causing loss of function of the gene, and the Protein Variant model describing the amino acid substitutions. |
AMR Gene Family | antibiotic-resistant UhpT |
Drug Class | phosphonic acid antibiotic |
Resistance Mechanism | antibiotic target alteration |
Resistomes with Sequence Variants | Escherichia albertiig |
Classification | 9 ontology terms | Show + process or component of antibiotic biology or chemistry + mechanism of antibiotic resistance + antibiotic target alteration [Resistance Mechanism] + mutation conferring antibiotic resistance + determinant of antibiotic resistance + antibiotic molecule + phosphonic acid antibiotic [Drug Class] + antibiotic resistant gene variant or mutant + antibiotic-resistant UhpT [AMR Gene Family] |
Parent Term(s) | 3 ontology terms | Show + confers_resistance_to_antibiotic fosfomycin [Antibiotic] + antibiotic resistant gene variant or mutant + UhpA |
Publications | Takahata S, et al. 2010. Int J Antimicrob Agents 35(4): 333-337. Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. (PMID 20071153) |
Prevalence of Escherichia coli uhpA with mutation conferring resistance to fosfomycin among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 414 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).
Species | NCBI Chromosome | NCBI Plasmid | NCBI WGS | NCBI GI | GRDI-AMR2 |
---|---|---|---|---|---|
Escherichia albertii | 1.43% | 0% | 0% | 0% | 0% |
Species | NCBI Chromosome | NCBI Plasmid | NCBI WGS | NCBI GI | GRDI-AMR2 |
---|---|---|---|---|---|
No prevalence data | |||||
Model Type: protein variant model
Model Definition: Protein Variant Models (PVM) perform a similar search as Protein Homolog Models (PHM), i.e. detect protein sequences based on their similarity to a curated reference sequence, but secondarily screen query sequences for curated sets of mutations to differentiate them from antibiotic susceptible wild-type alleles. PVMs are designed to detect AMR acquired via mutation of house-keeping genes or antibiotic targets, e.g. a mutated gyrase resistant to aminocoumarin antibiotics. PVMs include a protein reference sequence (often from antibiotic susceptible wild-type alleles), a curated bit-score cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of single point mutations, insertions, or deletions curated from the scientific literature. A Strict RGI match has a BLASTP bit-score above the curated BLASTP cutoff value and contains at least one curated mutation from amongst the mapped resistance variants, while a Loose RGI match has a bit-score less than the curated BLASTP bit-score cut-off but still contains at least one curated mutation from amongst the mapped resistance variants.
Bit-score Cut-off (blastP): 300
PubMed: mutation data hand curated from the scientific literature, evaluated as conferring resistance (R). CRyPTIC: mutation data acquired from the CRyPTIC catalog, evaluated as resistant (R), susceptible (S), or undetermined (U). ReSeqTB: mutation data acquired from the ReSeqTB catalog, evaluated as conferring resistance (Minimal, Moderate, High), not conferring resistance (None), or Indeterminate. WHO: mutation data acquired from the WHO 2023 catalog, evaluated as resistant (R), susceptible (S), or undetermined (U).Mutation | Mutation type | PubMed |
---|---|---|
G97D | single resistance variant | PMID:20071153 |
Model Type: protein knockout model
Model Definition: Protein Knockout Models (PKM) reflect resistance by the absence of a gene product, most often deletion of a gene involved in antibiotic import, such as Vibrio cholerae OmpT. Like Protein Homolog Models (PHMs), PKMs include a reference sequence and a bitscore cut-off for detection using BLASTP but instead are designed to only report lack of detection under Perfect or Strict criteria. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff. This model type is still under development and not currently supported by the Resistance Gene Identifier (RGI) software.
Bit-score Cut-off (blastP): 300
Curator | Description | Most Recent Edit |
---|