catII

Accession ARO:3002684
CARD Short NamecatII
DefinitioncatII is a plasmid-encoded variant of the cat gene found in Haemophilus influenzae, Agrobacterium tumefaciens and Escherichia coli.
AMR Gene Familychloramphenicol acetyltransferase (CAT)
Drug Classphenicol antibiotic
Resistance Mechanismantibiotic inactivation
Resistomes with Sequence VariantsAcinetobacter baumanniiwgs, Aeromonas caviaeg+wgs, Aeromonas veroniiwgs, Avibacterium paragallinarumg+wgs+gi, Escherichia colip+wgs, Haemophilus influenzaewgs, Klebsiella aerogeneswgs, Klebsiella huaxiensisgi, Klebsiella pneumoniaewgs, Morganella morganiig+wgs, Pasteurella multocidag+wgs, Proteus mirabiliswgs, Proteus pennerig, Providencia rettgerig, Providencia stuartiiwgs, Pseudomonas aeruginosawgs, Salmonella entericawgs+gi
Classification8 ontology terms | Show
Parent Term(s)4 ontology terms | Show
+ chloramphenicol acetyltransferase (CAT) [AMR Gene Family]
+ confers_resistance_to_antibiotic azidamfenicol [Antibiotic]
+ confers_resistance_to_antibiotic chloramphenicol [Antibiotic]
+ confers_resistance_to_antibiotic thiamphenicol [Antibiotic]
Publications

Murray IA, et al. 1990. Biochem J 272(2): 505-510. Nucleotide sequences of genes encoding the type II chloramphenicol acetyltransferases of Escherichia coli and Haemophilus influenzae, which are sensitive to inhibition by thiol-reactive reagents. (PMID 2268278)

Resistomes

Prevalence of catII among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GI
Acinetobacter baumannii0%0%0.03%0%
Aeromonas caviae2.27%0%0.54%0%
Aeromonas veronii0%0%0.56%0%
Avibacterium paragallinarum18.75%0%2.94%50%
Escherichia coli0%0.01%0.01%0%
Haemophilus influenzae0%0%0.94%0%
Klebsiella aerogenes0%0%0.56%0%
Klebsiella huaxiensis0%0%0%50%
Klebsiella pneumoniae0%0%0.1%0%
Morganella morganii23.08%0%10.43%0%
Pasteurella multocida1.43%0%1.5%0%
Proteus mirabilis0%0%0.33%0%
Proteus penneri50%0%0%0%
Providencia rettgeri2.94%0%0%0%
Providencia stuartii0%0%2.27%0%
Pseudomonas aeruginosa0%0%0.01%0%
Salmonella enterica0%0%0.01%0.99%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 400


>gb|CAA37806.1|+|catII [Haemophilus influenzae]
MNFTRIDLNTWNRREHFALYRQQIKCGFSLTTKLDITAFRTALAETDYKFYPVMIYLISRVVNQFPEFRMAMKDNALIYWDQTDPVFTVF
HKETETFSALFCRYCPDISEFMAGYNAVMAEYQHNTALFPQGALPENHLNISSLPWVSFDGFNLNITGNDDYFAPVFTMAKFQQEDNRVL
LPVSVQVHHAVCDGFHAARFINTLQMMCDNILK


>gb|X53797.1|+|134-775|catII [Haemophilus influenzae]
ATGAATTTTACCAGAATTGATCTGAACACCTGGAACCGCAGAGAACATTTTGCTCTTTATCGTCAGCAGATAAAATGCGGATTCAGCCTG
ACCACAAAACTCGATATTACAGCTTTTCGTACCGCACTGGCGGAAACGGATTATAAATTTTATCCGGTGATGATTTATCTGATCTCCCGG
GTTGTTAATCAGTTTCCGGAGTTCCGGATGGCAATGAAAGATAATGCACTGATTTACTGGGATCAGACCGATCCTGTATTTACTGTTTTT
CATAAAGAGACTGAAACATTTTCTGCGCTCTTCTGCCGTTATTGTCCGGATATCAGTGAATTTATGGCGGGCTATAATGCGGTGATGGCA
GAATATCAGCATAATACTGCATTGTTCCCGCAGGGAGCGTTACCAGAGAACCACCTGAATATATCATCATTACCCTGGGTGAGTTTTGAC
GGATTTAACCTGAATATCACCGGTAATGATGATTATTTTGCTCCGGTGTTTACTATGGCGAAATTTCAGCAGGAAGATAACCGCGTATTA
TTACCTGTTTCTGTACAGGTACATCATGCCGTTTGTGATGGCTTTCATGCAGCCAGGTTTATTAATACACTTCAGATGATGTGTGATAAC
ATACTGAAATAA