cmx

Accession ARO:3002703
Definitioncmx is a plasmid or transposon-encoded chloramphenicol exporter that is found in Corynebacterium striatum and Pseudomonas aeruginosa.
AMR Gene Familymajor facilitator superfamily (MFS) antibiotic efflux pump
Drug Classtetracycline antibiotic, nucleoside antibiotic, fosfomycin, penam, phenicol antibiotic, diaminopyrimidine antibiotic, fluoroquinolone antibiotic, antibacterial free fatty acids, benzalkonium chloride, macrolide antibiotic, rifamycin antibiotic, peptide antibiotic, acridine dye, cephalosporin, rhodamine, isoniazid, glycylcycline, nitroimidazole antibiotic, oxazolidinone antibiotic, bicyclomycin, lincosamide antibiotic
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
ResistomesEnterobacter asburiaewgs, Klebsiella oxytocawgs, Serratia marcescenswgs, Stenotrophomonas maltophiliawgs
Classification30 ontology terms | Show
Parent Term(s)2 ontology terms | Show
+ major facilitator superfamily (MFS) antibiotic efflux pump [AMR Gene Family]
+ confers_resistance_to_antibiotic chloramphenicol [Antibiotic]
Publications

Tauch A, et al. 1998. Plasmid 40(2): 126-139. Corynebacterium striatum chloramphenicol resistance transposon Tn5564: genetic organization and transposition in Corynebacterium glutamicum. (PMID 9735314)

Senda K, et al. 1996. Antimicrob. Agents Chemother. 40(2):349-53 Multifocal outbreaks of metallo-beta-lactamase-producing Pseudomonas aeruginosa resistant to broad-spectrum beta-lactams, including carbapenems. (PMID 8834878)

Resistomes

Prevalence of cmx among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI for 82 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGS
Enterobacter asburiae0%0%1.56%
Klebsiella oxytoca0%0%0.93%
Serratia marcescens0%0%1.15%
Stenotrophomonas maltophilia0%0%0.33%
Streptococcus pyogenes0%0%0.06%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.

Bit-score Cut-off (blastP): 700


>gb|AAG03380.1|+|cmx [Corynebacterium striatum]
MPFALYMLALAVFVMGTSEFMLAGLLPAIATELDVSVGTAGLLTSAFAVGMVVGAPVMAAFARRWPPRLTLIVCLLVFAGSHVIGAMTPV
FSLLLITRVLSALANAGFLAVALSTATTLVPANQKGRALSILLSGTTIATVVGVPAGALLGTALGWRTTFWAIAILCIPAAVGVIRGVTN
NVGRSETSATSPRLRVELSQLATPRLILAMALGALINGGTFAAFTFLAPIVTETAGLAEAWVSVALVMFGIGSFLGVTIAGRLSDQRPGL
VLAVGGPLLLTGWIVLAVVASHPVALIVLVLVQGFLSFGVGSTLITRVLYAASGAPTMGGSYATAALNIGAAAGPVLGALGLATGLGLLA
PVWVASVLTAIALVIMLLTRRALTKTAAEAN


>gb|AF024666|+|35935-37110|cmx [Corynebacterium striatum]
ATGCCTTTTGCCCTCTACATGCTTGCCCTGGCGGTCTTCGTCATGGGCACTTCAGAATTCATGCTCGCGGGATTGCTCCCCGCGATCGCG
ACCGAACTTGACGTCTCGGTCGGCACTGCGGGCCTGCTGACCTCCGCATTCGCAGTCGGTATGGTCGTCGGCGCGCCAGTGATGGCGGCA
TTCGCTCGCCGTTGGCCACCGCGGCTCACATTGATCGTTTGCCTTCTCGTGTTCGCGGGAAGCCACGTCATCGGAGCGATGACACCAGTG
TTCTCTCTCCTGCTCATCACCCGGGTGCTCAGCGCTCTCGCAAACGCAGGATTCCTCGCCGTAGCACTGAGCACGGCCACTACCCTCGTG
CCAGCGAACCAGAAGGGGCGTGCACTGTCGATCCTGCTCTCCGGCACGACGATCGCAACCGTCGTGGGCGTCCCCGCCGGGGCACTGCTC
GGCACAGCGCTGGGCTGGCGAACGACGTTCTGGGCGATCGCCATCCTCTGTATTCCCGCGGCCGTTGGAGTCATTCGTGGCGTCACGAAC
AATGTTGGTCGGAGCGAGACTAGCGCGACCTCACCAAGGCTCCGTGTCGAGCTCAGCCAGTTGGCGACGCCGCGGCTCATCCTGGCCATG
GCACTCGGAGCGCTGATCAACGGAGGGACCTTTGCGGCATTCACCTTCCTGGCACCCATCGTGACCGAGACCGCGGGCTTGGCCGAAGCG
TGGGTGTCCGTCGCGCTGGTGATGTTCGGCATCGGATCGTTCCTTGGCGTCACGATCGCAGGACGACTATCAGATCAACGACCTGGCCTC
GTGCTCGCAGTCGGCGGACCGCTATTGCTGACAGGCTGGATCGTGTTGGCAGTGGTCGCATCTCATCCCGTTGCGCTTATCGTCCTCGTC
CTCGTTCAGGGATTCCTGTCGTTCGGCGTCGGCAGTACTCTGATCACGCGTGTGCTGTATGCAGCATCGGGTGCGCCAACGATGGGCGGT
TCGTACGCAACCGCAGCATTGAATATCGGAGCTGCAGCGGGGCCCGTGCTTGGTGCGCTCGGGCTCGCGACCGGGCTGGGGCTGCTCGCG
CCGGTTTGGGTCGCTTCGGTGCTGACAGCGATCGCTCTCGTCATCATGCTTCTCACCAGACGCGCGCTTACGAAGACCGCGGCGGAGGCC
AATTGA