Accession | ARO:3004658 |
CARD Short Name | catA8 |
Definition | catA8 is a chloramphenicol acetyltransferase that confers resistance to chloramphenicol. |
AMR Gene Family | chloramphenicol acetyltransferase (CAT) |
Drug Class | phenicol antibiotic |
Resistance Mechanism | antibiotic inactivation |
Resistomes with Perfect Matches | Enterococcus faecaliswgs, Enterococcus faeciump+wgs, Enterococcus hiraep+wgs, Lactococcus garvieaep, Listeria innocuap, Streptococcus agalactiaeg+wgs |
Resistomes with Sequence Variants | Enterococcus faecalisg+p+wgs, Enterococcus faeciump+wgs, Enterococcus hiraep+wgs, Glaesserella parasuiswgs, Lactobacillus crispatusg, Lactococcus garvieaep, Listeria innocuap, Staphylococcus arlettaewgs, Staphylococcus aureusp+wgs, Staphylococcus epidermidiswgs, Staphylococcus equorumwgs, Staphylococcus haemolyticusp+wgs, Staphylococcus pasteuriwgs, Streptococcus agalactiaeg+wgs, Streptococcus dysgalactiaeg, Streptococcus iniaep, Streptococcus pneumoniaewgs, Streptococcus suisg+wgs |
Classification | 8 ontology terms | Show + process or component of antibiotic biology or chemistry + mechanism of antibiotic resistance + determinant of antibiotic resistance + antibiotic molecule + antibiotic inactivation [Resistance Mechanism] + antibiotic inactivation enzyme + phenicol antibiotic [Drug Class] + acylation of antibiotic conferring resistance |
Parent Term(s) | 2 ontology terms | Show + chloramphenicol acetyltransferase (CAT) [AMR Gene Family] + confers_resistance_to_antibiotic chloramphenicol [Antibiotic] |
Publications | Schwarz FV, et al. 2001. Plasmid 46(3): 170-187. Sequence of the 50-kb conjugative multiresistance plasmid pRE25 from Enterococcus faecalis RE25. (PMID 11735367) Perreten V, et al. 2001. Antimicrob Agents Chemother 45(4): 1109-1114. Mdt(A), a new efflux protein conferring multiple antibiotic resistance in Lactococcus lactis and Escherichia coli. (PMID 11257023) Perreten V, et al. 1997. Nature 389(6653): 801-802. Antibiotic resistance spread in food. (PMID 9349809) |
Prevalence of catA8 among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).
Species | NCBI Chromosome | NCBI Plasmid | NCBI WGS | NCBI GI |
---|---|---|---|---|
Enterococcus faecalis | 5.45% | 8.62% | 5.62% | 0% |
Enterococcus faecium | 0% | 0.52% | 1.43% | 0% |
Enterococcus hirae | 0% | 2.38% | 0.46% | 0% |
Escherichia coli | 0% | 0% | 0% | 0% |
Glaesserella parasuis | 0% | 0% | 3.08% | 0% |
Lactobacillus crispatus | 4% | 0% | 0% | 0% |
Lactococcus garvieae | 0% | 8.33% | 0% | 0% |
Listeria innocua | 0% | 10.53% | 0% | 0% |
Staphylococcus arlettae | 0% | 0% | 7.5% | 0% |
Staphylococcus aureus | 0% | 0.15% | 0.08% | 0% |
Staphylococcus epidermidis | 0% | 0% | 1.76% | 0% |
Staphylococcus equorum | 0% | 0% | 3.57% | 0% |
Staphylococcus haemolyticus | 0% | 3.77% | 0.88% | 0% |
Staphylococcus pasteuri | 0% | 0% | 3.85% | 0% |
Streptococcus agalactiae | 0.93% | 0% | 0.58% | 0% |
Streptococcus dysgalactiae | 2% | 0% | 0% | 0% |
Streptococcus iniae | 0% | 100% | 0% | 0% |
Streptococcus pneumoniae | 0% | 0% | 0.01% | 0% |
Streptococcus suis | 0.8% | 0% | 1.31% | 0% |
Model Type: protein homolog model
Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.
Bit-score Cut-off (blastP): 400