tet(D)

Accession ARO:3000168
Synonym(s)tetD
CARD Short Nametet(D)
DefinitionTetD is a tetracycline efflux pump found exclusively in Gram-negative bacteria.
AMR Gene Familymajor facilitator superfamily (MFS) antibiotic efflux pump
Drug Classtetracycline antibiotic
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
Resistomes with Perfect MatchesAeromonas veroniip, Citrobacter freundiip+wgs, Citrobacter portucalensiswgs, Citrobacter werkmaniiwgs, Citrobacter youngaewgs, Cronobacter sakazakiip, Enterobacter asburiaep, Enterobacter chengduensiswgs, Enterobacter cloacaep+wgs, Enterobacter hormaecheip+wgs, Enterobacter kobeip+wgs, Enterobacter roggenkampiip+wgs, Escherichia colig+p+wgs+gi, Klebsiella aerogeneswgs, Klebsiella michiganensisp+wgs, Klebsiella oxytocag+wgs, Klebsiella pneumoniaeg+p+wgs, Klebsiella quasipneumoniaeg+p+wgs, Morganella morganiip+wgs, Proteus mirabilisg+p+gi, Proteus penneriwgs, Raoultella planticolawgs, Salmonella entericag+p+wgs, Serratia marcescensp+wgs, Vibrio choleraep+wgs
Resistomes with Sequence VariantsAchromobacter xylosoxidansg+wgs, Acinetobacter baumanniig+p+wgs+gi, Acinetobacter indicusp+wgs, Acinetobacter johnsoniiwgs, Acinetobacter nosocomialisp+wgs, Acinetobacter pittiip+wgs, Acinetobacter towneriwgs, Acinetobacter wuhouensisp, Aeromonas caviaeg+wgs, Aeromonas hydrophilag+p+wgs, Aeromonas veroniig+p+wgs+gi, Alcaligenes faecalisg+wgs, Bordetella trematumg+gi, Burkholderia cenocepaciag+wgs, Burkholderia cepaciag+wgs, Burkholderia contaminansg+wgs, Burkholderia latag+wgs, Citrobacter freundiip+wgs, Citrobacter portucalensiswgs, Citrobacter werkmaniiwgs, Citrobacter youngaewgs, Comamonas testosteronip+gi, Corynebacterium diphtheriaeg+wgs+gi, Cronobacter sakazakiip, Delftia tsuruhatensisg+gi, Enterobacter asburiaep+wgs, Enterobacter chengduensiswgs, Enterobacter cloacaep+wgs, Enterobacter hormaecheig+p+wgs+gi, Enterobacter kobeip+wgs, Enterobacter roggenkampiip+wgs, Escherichia colig+p+wgs+gi, Escherichia fergusoniiwgs, Histophilus somnig+wgs, Klebsiella aerogeneswgs, Klebsiella huaxiensisg+gi, Klebsiella michiganensisp+wgs, Klebsiella oxytocag+p+wgs, Klebsiella pneumoniaeg+p+wgs, Klebsiella quasipneumoniaeg+p+wgs, Laribacter hongkongensisg+gi, Morganella morganiig+p+wgs, Paracoccus denitrificansg, Pasteurella multocidag+wgs+gi, Proteus mirabilisg+p+wgs+gi, Proteus penneriwgs, Proteus vulgarisg+wgs, Providencia rettgeriwgs, Providencia stuartiiwgs, Pseudomonas aeruginosag+p+wgs+gi, Pseudomonas monteiliiwgs, Pseudomonas putidag+wgs, Pseudomonas stutzeriwgs, Ralstonia mannitolilyticag+wgs, Ralstonia pickettiig+wgs, Raoultella planticolag+p+wgs, Rhizobium leguminosarumwgs, Rhodobacteraceae bacteriumgi, Salmonella entericag+p+wgs+gi, Serratia marcescensg+p+wgs, Shewanella putrefaciensg+gi, Shigella boydiiwgs, Shigella flexneriwgs, Shigella sonneiwgs, Stenotrophomonas maltophiliag+wgs, Trueperella pyogenesgi, Vibrio choleraeg+p+wgs+gi, Vibrio neocaledonicusgi, Vibrio owensiigi, Vibrio parahaemolyticusg+p+wgs
Classification7 ontology terms | Show
Parent Term(s)2 ontology terms | Show
+ confers_resistance_to_antibiotic tetracycline [Antibiotic]
+ major facilitator superfamily (MFS) antibiotic efflux pump [AMR Gene Family]
Publications

Roberts MC. 2005. FEMS Microbiol Lett 245(2): 195-203. Update on acquired tetracycline resistance genes. (PMID 15837373)

Resistomes

Prevalence of tet(D) among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 263 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GI
Achromobacter xylosoxidans80.95%0%68.57%0%
Acinetobacter baumannii1.56%0.64%1.68%0.63%
Acinetobacter indicus0%2.13%4.17%0%
Acinetobacter johnsonii0%0%4.17%0%
Acinetobacter nosocomialis0%6.56%6.9%0%
Acinetobacter pittii0%0.57%4.41%0%
Acinetobacter towneri0%0%15.79%0%
Acinetobacter wuhouensis0%13.64%0%0%
Aeromonas caviae7.14%0%2.7%0%
Aeromonas hydrophila12.5%2.78%7.45%0%
Aeromonas veronii11.11%8.57%5.56%25%
Alcaligenes faecalis7.14%0%8.7%0%
Bordetella trematum40%0%0%50%
Burkholderia cenocepacia32.62%0%73.7%0%
Burkholderia cepacia34.29%0%78.28%0%
Burkholderia contaminans29.17%0%51.95%0%
Burkholderia lata33.33%0%33.33%0%
Citrobacter freundii0%2.6%6.08%0%
Citrobacter portucalensis0%0%22%0%
Citrobacter werkmanii0%0%9.52%0%
Citrobacter youngae0%0%14.29%0%
Comamonas testosteroni0%50%0%100%
Corynebacterium diphtheriae3.45%0%1.96%50%
Cronobacter sakazakii0%6.25%0%0%
Delftia tsuruhatensis50%0%0%100%
Enterobacter asburiae0%1.14%1.39%0%
Enterobacter chengduensis0%0%27.27%0%
Enterobacter cloacae0%0.74%5.45%0%
Enterobacter hormaechei0.6%7.3%8.02%3.33%
Enterobacter kobei0%1.43%4.92%0%
Enterobacter roggenkampii0%0.66%1.21%0%
Escherichia coli0.49%0.07%1.07%0.64%
Escherichia fergusonii0%0%1.54%0%
Histophilus somni34.48%0%25%0%
Klebsiella aerogenes0%0%1.89%0%
Klebsiella huaxiensis100%0%0%50%
Klebsiella michiganensis0%0.8%1.62%0%
Klebsiella oxytoca3.85%0.95%3.23%0%
Klebsiella pneumoniae0.09%1.69%8.53%0%
Klebsiella quasipneumoniae1.02%1.91%5.56%0%
Laribacter hongkongensis66.67%0%0%50%
Morganella morganii30.61%2.7%12.5%0%
Paracoccus denitrificans16.67%0%0%0%
Pasteurella multocida16.85%0%17.37%16.67%
Proteus mirabilis100%6.45%69.31%7.41%
Proteus penneri0%0%16.67%0%
Proteus vulgaris66.67%0%80%0%
Providencia rettgeri0%0%1.72%0%
Providencia stuartii0%0%13.95%0%
Pseudomonas aeruginosa8.1%1.72%2.96%9.72%
Pseudomonas monteilii0%0%6.9%0%
Pseudomonas putida4.08%0%2.27%0%
Pseudomonas stutzeri0%0%1.02%0%
Ralstonia mannitolilytica25%0%18.18%0%
Ralstonia pickettii16.67%0%1.27%0%
Raoultella planticola100%2.27%88.24%0%
Rhizobium leguminosarum0%0%0.6%0%
Rhodobacteraceae bacterium0%0%0%100%
Salmonella enterica2.36%0.21%4.76%3.97%
Serratia marcescens9.17%0.71%12.86%0%
Shewanella putrefaciens11.11%0%0%50%
Shigella boydii0%0%3.23%0%
Shigella flexneri0%0%1.96%0%
Shigella sonnei0%0%0.59%0%
Stenotrophomonas maltophilia1.61%0%0.6%0%
Trueperella pyogenes0%0%0%30%
Vibrio cholerae1%6.25%1.89%9.52%
Vibrio neocaledonicus0%0%0%100%
Vibrio owensii0%0%0%50%
Vibrio parahaemolyticus0.39%0.36%0.06%0%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.

Bit-score Cut-off (blastP): 250


>gb|AAL75563.1|+|tet(D) [Shigella flexneri Y]
MNKPAVIALVITLLDAMGIGLIMPVLPSLLREYLPEADVANHYGILLALYAVMQVCFAPLLGRWSDKLGRRPVLLLSLAGAAFDYTLLAL
SNVLWMLYLGRIISGITGATGAVAASVVADSTAVSERTAWFGRLGAAFGAGLIAGPAIGGLAGDISPHLPFVIAAILNACTFLMVFFIFK
PAVQTEEKPAEQKQESAGISFITLLKPLALLLFVFFTAQLIGQIPATVWVLFTESRFAWDSAAVGFSLAGLGAMHALFQAVVAGALAKRL
SEKTIIFAGFIADATAFLLMSAITSGWMVYPVLILLAGGGIALPALQGIISAGASAANQGKLQGVLVSLTNLTGVAGPLLFAFIFSQTQQ
SADGTVWLIGTALYGLLLAICLLIRKPAPVAATC


>gb|AF467077.1|+|164-1348|tet(D) [Shigella flexneri Y]
ATGAATAAACCCGCTGTCATCGCGCTGGTGATTACACTGCTGGACGCGATGGGAATTGGTCTGATCATGCCGGTATTACCGTCACTGCTG
CGGGAATATCTCCCGGAAGCGGATGTGGCAAACCATTACGGCATTCTGCTGGCGCTGTATGCGGTGATGCAGGTCTGTTTTGCTCCGCTG
CTGGGCAGATGGTCAGATAAGCTGGGGCGCAGACCGGTGCTGCTGTTATCCCTGGCGGGTGCCGCGTTTGATTACACACTGCTGGCACTG
TCCAATGTGCTGTGGATGTTGTATCTCGGGCGGATTATCTCCGGGATCACTGGTGCCACCGGCGCGGTTGCGGCTTCGGTAGTGGCGGAC
AGCACGGCGGTCAGCGAGCGTACCGCCTGGTTCGGCCGTCTCGGTGCGGCCTTTGGTGCCGGGCTGATTGCCGGGCCGGCTATCGGCGGA
CTGGCGGGGGATATCTCACCGCATCTGCCGTTTGTCATTGCGGCAATACTGAATGCCTGCACCTTTCTGATGGTCTTTTTTATCTTTAAA
CCGGCGGTACAGACAGAAGAAAAACCGGCGGAGCAGAAACAAGAAAGCGCAGGTATCAGCTTTATCACACTGCTTAAACCTCTGGCGCTG
TTGCTGTTTGTCTTTTTTACCGCGCAGCTTATCGGGCAGATCCCGGCCACTGTCTGGGTATTGTTTACGGAGAGCCGCTTTGCCTGGGAC
AGCGCGGCGGTCGGTTTTTCACTGGCGGGACTCGGGGCGATGCATGCACTGTTTCAGGCGGTGGTTGCCGGGGCGCTGGCAAAACGGCTG
AGTGAGAAAACCATTATTTTCGCCGGATTTATTGCCGATGCCACCGCGTTTTTACTGATGTCTGCTATCACTTCCGGATGGATGGTGTAT
CCGGTCCTGATCCTGCTGGCAGGCGGCGGAATTGCACTGCCTGCATTGCAGGGCATTATCTCTGCCGGGGCATCGGCGGCAAATCAGGGA
AAACTACAGGGTGTGCTGGTCAGCCTGACCAATCTGACCGGCGTGGCGGGCCCGCTGCTGTTTGCTTTTATTTTCAGTCAGACACAGCAG
AGTGCGGACGGTACGGTGTGGCTGATTGGCACGGCACTGTACGGTCTGCTGCTGGCAATCTGTCTGCTGATCAGAAAACCGGCACCGGTG
GCGGCCACCTGCTGA