tap

Accession ARO:3000343
DefinitionEfflux pump proteins contained within Mycobacterial genomes which confer resistance to a number of different antibiotics including aminoglycosides, and tetracyclines.
AMR Gene Familymajor facilitator superfamily (MFS) antibiotic efflux pump
Drug Classtetracycline antibiotic, isoniazid, penam, glycylcycline, fluoroquinolone antibiotic, peptide antibiotic, oxazolidinone antibiotic, nucleoside antibiotic, rifamycin antibiotic, acridine dye, bicyclomycin, diaminopyrimidine antibiotic, nitroimidazole antibiotic, fosfomycin, antibacterial free fatty acids, cephalosporin, lincosamide antibiotic, macrolide antibiotic, benzalkonium chloride, rhodamine, phenicol antibiotic
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
Classification30 ontology terms | Show
Parent Term(s)2 ontology terms | Show
+ confers_resistance_to_antibiotic tetracycline [Antibiotic]
+ major facilitator superfamily (MFS) antibiotic efflux pump [AMR Gene Family]
Publications

Siddiqi N, et al. 2004. Infection 32(2): 109-111. Mycobacterium tuberculosis isolate with a distinct genomic identity overexpresses a tap-like efflux pump. (PMID 15057575)

Ainsa JA, et al. 1998. J Bacteriol 180(22): 5836-5843. Molecular cloning and characterization of Tap, a putative multidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis. (PMID 9811639)

Resistomes

Prevalence of tap among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI for 82 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGS
No prevalence data


Detection Models

Model Type: protein homolog model

Model Definition: The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.

Bit-score Cut-off (blastP): 700


>gb|CAA03986.1|+|tap [Mycolicibacterium fortuitum]
MTNTKRGPLLLILFAALTAGAGNGITIVAFPWLVLQHNGSALDASIVAMAGTLPLLVATLIAGAAVDYLGRRRVSMISDLLSALSVAAVP
VLALIFGVDAVNVAVLAVLAGLGAFFDPAGMTARETMLPEAAGRAGWTLDHANSVYEAVFNLGYIVGPGIGGLMIATLGGINTMWVTAGA
FCCSILAISVLRLEGAGAPDRSVLTEAVLAGIVEGLRFVWYTPVLRTLAIVDLVATGLYMPMESVLFPKYFTDRNEPTELGWVLMALSIG
GLLGALGYAVMSRYMSRRATMLTAVITLGVAMTVIAFLPPLPLILVLCAIVGFVYGPIAPIYNYVMQTTAPQHLRGRVVGVMGSLAYAAG
PLGLILAGPLADAAGLHATFLALSLPMLLLGVVAVFLPRLRELDLASKP


>gb|AJ000283|+|620-1849|tap [Mycolicibacterium fortuitum]
ATGACGAACACCAAGCGCGGCCCCTTGCTGCTGATCCTGTTCGCCGCGTTGACGGCCGGCGCCGGCAACGGAATCACCATCGTCGCGTTC
CCGTGGCTGGTGTTGCAGCACAACGGATCCGCGCTCGACGCCTCGATCGTCGCGATGGCCGGCACCCTGCCGCTGCTGGTGGCCACACTG
ATCGCCGGGGCGGCGGTGGATTACCTGGGTCGCCGACGGGTTTCGATGATCTCGGATCTGCTCTCGGCGCTGTCGGTCGCTGCGGTACCC
GTGCTGGCCCTGATTTTCGGGGTGGACGCGGTCAATGTCGCGGTGCTGGCGGTCCTGGCGGGGCTGGGAGCGTTCTTCGACCCGGCCGGC
ATGACAGCGCGCGAGACCATGCTGCCCGAGGCCGCGGGCCGGGCCGGTTGGACGCTGGACCATGCCAACTCGGTGTACGAGGCGGTCTTC
AACCTGGGCTACATCGTCGGCCCCGGTATCGGCGGCCTGATGATCGCCACGCTCGGCGGGATCAACACCATGTGGGTGACGGCCGGGGCG
TTCTGCTGCTCGATCCTGGCCATCTCGGTGCTGCGACTGGAGGGCGCGGGCGCGCCGGACCGCTCGGTGCTGACCGAGGCCGTTTTGGCG
GGCATAGTCGAGGGACTGCGATTCGTCTGGTACACACCGGTATTGCGCACCCTGGCCATCGTCGACCTGGTGGCCACCGGCTTGTACATG
CCGATGGAATCGGTCCTTTTTCCGAAGTACTTCACGGACCGGAACGAACCCACCGAACTGGGCTGGGTGCTGATGGCGTTGAGCATCGGC
GGACTGTTGGGTGCGCTCGGTTACGCCGTGATGTCCAGGTACATGAGCCGACGGGCCACCATGCTGACCGCCGTGATCACCCTCGGGGTG
GCGATGACGGTGATCGCCTTCCTGCCACCGCTGCCGCTGATCCTGGTGCTGTGCGCAATCGTCGGCTTCGTCTACGGACCGATCGCACCC
ATCTACAACTACGTCATGCAGACCACCGCTCCCCAACACCTGCGTGGCCGCGTGGTCGGGGTGATGGGCTCATTGGCCTACGCCGCGGGC
CCGCTCGGGCTGATCCTGGCCGGGCCGCTGGCCGACGCCGCAGGCCTGCACGCGACGTTCCTGGCACTGTCCCTACCGATGCTGTTGCTC
GGCGTCGTGGCGGTGTTCCTGCCGCGGCTGCGCGAGCTGGACCTAGCATCGAAACCGTGA