tet(31)

Accession ARO:3000476
Synonym(s)tet31
DefinitionTet31 is a tetracycline efflux pump found in Aeromonas salmonicida, a Gram-negative bacteria. It has also been shown to be expressed in Gallibacterium anatis.
AMR Gene Familymajor facilitator superfamily (MFS) antibiotic efflux pump
Drug Classtetracycline antibiotic, peptide antibiotic, nitroimidazole antibiotic, benzalkonium chloride, isoniazid, oxazolidinone antibiotic, nucleoside antibiotic, acridine dye, bicyclomycin, cephalosporin, phenicol antibiotic, rifamycin antibiotic, rhodamine, glycylcycline, penam, diaminopyrimidine antibiotic, fosfomycin, fluoroquinolone antibiotic, antibacterial free fatty acids, lincosamide antibiotic, macrolide antibiotic
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
Classification30 ontology terms | Show
Parent Term(s)2 ontology terms | Show
+ confers_resistance_to_antibiotic tetracycline [Antibiotic]
+ major facilitator superfamily (MFS) antibiotic efflux pump [AMR Gene Family]
Publications

Chopra I and Roberts M. 2001. Microbiol Mol Biol Rev 65(2): 232-260. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. (PMID 11381101)

Bojesen AM, et al. 2011. Vet Microbiol 149(3-4): 497-499. The rarely reported tet(31) tetracycline resistance determinant is common in Gallibacterium anatis. (PMID 21145184)

Tauch A, et al. 2002. Plasmid 48(2): 117-129. The 27.8-kb R-plasmid pTET3 from Corynebacterium glutamicum encodes the aminoglycoside adenyltransferase gene cassette aadA9 and the regulated tetracycline efflux system Tet 33 flanked by active copies of the widespread insertion sequence IS6100. (PMID 12383729)

Resistomes

Prevalence of tet(31) among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI for 82 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGS
No prevalence data


Detection Models

Model Type: protein homolog model

Model Definition: The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.

Bit-score Cut-off (blastP): 800


>gb|CAC80727.1|+|tet(31) [Aeromonas salmonicida subsp. salmonicida]
MIGKLIMMNRYITIALLITFLDATGMGLIMPVLPTLLEEFSVKESIATHYGFILAIYALMQVIFAPILGQLSDKFGRKPVLILSLIGAVC
DYTLLSFSSALWMLYLGRMIAGISAATGAVAASMVADHTKKAERTKWFGKLGAAFGAGLIAGPAIGGFIGQYSAHFPFIIAAILNAIALI
MVIILFPKEQSRPKEIEQDQSKIHEKTTINAPLIHILKPVLLLLMLFFTVQLIGQIPASTWVLFTEYRFEWNTFNIGLSLAGLGLMHIIF
QAFVAGYIASRWKNETVFILGFILDASAFLLLAFISQVWLVIPTLILLAGGGIALPALQGLISIKTADEHQGKIQGIMVSLTNITGIIGP
PIFAFSFAKTVTNWDGTLWLIGAVLYSILLGLYFLYQKIRAYKQLKSQTA


>gb|AJ250203|+|1651-2883|tet(31) [Aeromonas salmonicida subsp. salmonicida]
ATGATAGGGAAGCTTATAATGATGAATCGCTATATCACAATCGCCCTCTTAATTACCTTCCTAGATGCAACAGGAATGGGCTTAATCATG
CCTGTATTACCAACACTTTTAGAAGAGTTCTCTGTCAAAGAGTCTATCGCCACTCATTATGGTTTTATCCTCGCAATCTATGCGCTGATG
CAAGTTATTTTTGCACCAATATTAGGACAACTCTCGGATAAATTTGGCAGAAAACCGGTCTTGATTCTCTCATTAATAGGCGCTGTTTGT
GATTACACCCTACTCTCATTTTCTAGCGCCTTATGGATGCTCTATCTAGGGAGAATGATTGCCGGCATTTCTGCTGCAACAGGAGCCGTA
GCAGCATCAATGGTCGCAGATCACACAAAAAAAGCAGAGAGAACTAAATGGTTTGGAAAGTTAGGCGCAGCTTTTGGGGCGGGACTCATT
GCCGGACCCGCTATTGGTGGATTTATCGGACAATATTCTGCACATTTCCCCTTTATCATTGCCGCAATTTTAAATGCCATTGCTCTTATC
ATGGTCATTATCCTCTTCCCTAAAGAGCAATCACGCCCAAAAGAAATCGAGCAAGATCAATCTAAAATTCATGAAAAAACCACCATCAAT
GCCCCGCTAATTCATATTCTCAAACCCGTTTTGCTACTTCTCATGCTGTTTTTTACAGTACAACTCATCGGACAAATCCCTGCATCAACT
TGGGTTCTATTTACTGAGTACCGTTTTGAGTGGAATACCTTTAACATTGGTTTATCCCTTGCAGGGCTAGGGTTAATGCATATTATCTTT
CAGGCTTTTGTCGCAGGATATATCGCATCTCGCTGGAAAAATGAAACCGTATTTATTCTCGGATTTATACTAGATGCGAGCGCATTCTTA
TTACTGGCCTTTATCTCTCAAGTTTGGCTGGTAATTCCTACATTGATCTTATTAGCAGGAGGAGGCATCGCCTTACCGGCATTACAAGGA
TTAATCTCTATAAAGACAGCAGATGAACATCAAGGAAAGATACAAGGTATCATGGTTAGCCTCACTAATATTACCGGAATAATTGGACCG
CCCATTTTTGCATTTTCCTTTGCAAAAACGGTTACAAACTGGGATGGCACACTTTGGCTAATCGGTGCTGTACTCTATAGCATTTTATTA
GGTCTCTATTTTCTCTATCAAAAGATACGCGCCTATAAACAACTTAAGTCTCAAACTGCTTAA