Accession | ARO:3002898 |
CARD Short Name | SAT-3 |
Definition | SAT-3 is a plasmid-mediated streptothricin acetyltransferase and streptothricin resistance determinant. Originally described from an E. coli plasmid gene by Tietze and Brevet, 1995. |
AMR Gene Family | streptothricin acetyltransferase (SAT) |
Drug Class | nucleoside antibiotic |
Resistance Mechanism | antibiotic inactivation |
Classification | 8 ontology terms | Show + process or component of antibiotic biology or chemistry + mechanism of antibiotic resistance + determinant of antibiotic resistance + antibiotic molecule + antibiotic inactivation [Resistance Mechanism] + antibiotic inactivation enzyme + acylation of antibiotic conferring resistance + nucleoside antibiotic [Drug Class] |
Parent Term(s) | 2 ontology terms | Show + confers_resistance_to_antibiotic streptothricin [Antibiotic] + streptothricin acetyltransferase (SAT) [AMR Gene Family] |
Publications | Tietze E, et al. 1995. Biochim Biophys Acta 1263(2): 176-178. Nucleotide sequence of the bacterial streptothricin resistance gene sat3. (PMID 7640311) |
Prevalence of SAT-3 among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).
Species | NCBI Chromosome | NCBI Plasmid | NCBI WGS | NCBI GI |
---|---|---|---|---|
No prevalence data | ||||
Model Type: protein homolog model
Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.
Bit-score Cut-off (blastP): 300