pexA

Accession ARO:3004666
DefinitionpexA is a florfenicol and chloramphenicol resistance gene discovered in Alaskan soil.
AMR Gene Familymajor facilitator superfamily (MFS) antibiotic efflux pump
Drug Classtetracycline antibiotic, acridine dye, nucleoside antibiotic, phenicol antibiotic, peptide antibiotic, bicyclomycin, nitroimidazole antibiotic, penam, rifamycin antibiotic, rhodamine, benzalkonium chloride, antibacterial free fatty acids, glycylcycline, lincosamide antibiotic, fluoroquinolone antibiotic, cephalosporin, fosfomycin, diaminopyrimidine antibiotic, oxazolidinone antibiotic, macrolide antibiotic, isoniazid
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
Classification30 ontology terms | Show
Parent Term(s)3 ontology terms | Show
+ major facilitator superfamily (MFS) antibiotic efflux pump [AMR Gene Family]
+ confers_resistance_to_antibiotic chloramphenicol [Antibiotic]
+ confers_resistance_to_antibiotic florfenicol [Antibiotic]
Publications

Lang KS, et al. 2010. Appl. Environ. Microbiol. 76(15):5321-6 Novel florfenicol and chloramphenicol resistance gene discovered in Alaskan soil by using functional metagenomics. (PMID 20543056)

Resistomes

Prevalence of pexA among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI for 82 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGS
No prevalence data


Detection Models

Model Type: protein homolog model

Model Definition: The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.

Bit-score Cut-off (blastP): 700


>gb|ADI87853.1|-|pexA [uncultured bacterium Ak20-3]
MKKFVLFCERNGIALIPIVLILLGCGLWPEMELLVPSLPDMQRAFNIQDAQIQQLLTANFVGFLIGVLFAGPLCDSAGRRTVMMIGTIGY
LVSSVLCPFCNDFVLLMIARFFQGLFMTGPVIAGGVLLMEATEGVKQIFWMSIGNAAITFCMAAGPIVGSWINTGFGYVGNLWSILILGL
IGCLPALFLVPESLPVEKRAAFHPKLLFKGYFALLKDFRFMCLAIPMCALAAAYWIYVGVSALYMVNQLGIAQEMFGRYQGPIVGCFSII
SLGSSKLLQRFGLMKCLRAGIVSMFTGMLLLLGMSILSLDHAVATTVFMMFFVGGMAPICSMLFPYALGHLPVDLKGNAQAMVQAIRLFF
ASIGTSLVGVFYKSAFLPVALIMFAILLFSCYFLWKGRRYLKEGLGADHILSVGH


>gb|HM537013.1|-|24055-25302|pexA [uncultured bacterium Ak20-3]
ATGAAAAAGTTTGTACTTTTTTGCGAGCGTAATGGAATCGCTTTGATTCCGATCGTTTTGATCCTTTTGGGTTGTGGTCTTTGGCCAGAG
ATGGAACTTTTGGTTCCGAGTTTGCCTGACATGCAGCGTGCCTTTAACATCCAAGATGCGCAGATTCAACAGTTGCTGACTGCAAATTTT
GTCGGATTTCTTATCGGTGTTCTCTTTGCGGGTCCCCTTTGTGACAGTGCAGGTCGAAGAACCGTAATGATGATAGGGACGATAGGTTAC
CTTGTTTCGTCCGTGCTTTGTCCGTTTTGTAACGACTTTGTGCTTTTAATGATTGCCCGATTTTTCCAAGGCTTGTTCATGACGGGGCCG
GTCATTGCCGGTGGTGTCCTCTTGATGGAAGCCACGGAAGGGGTGAAACAAATCTTTTGGATGTCGATTGGTAATGCAGCTATTACGTTT
TGCATGGCTGCAGGACCTATTGTTGGATCTTGGATCAATACAGGTTTTGGCTATGTTGGAAATCTGTGGAGCATTCTCATCCTTGGTTTG
ATTGGCTGCCTTCCTGCGTTATTTTTAGTGCCGGAAAGTCTTCCAGTTGAGAAGCGAGCAGCTTTCCATCCCAAACTACTTTTCAAAGGG
TATTTTGCGCTATTGAAAGATTTTAGGTTTATGTGTCTTGCGATTCCCATGTGCGCACTAGCGGCAGCCTATTGGATCTACGTCGGTGTA
AGTGCCTTATACATGGTGAATCAGTTGGGAATTGCGCAAGAGATGTTCGGTCGTTATCAAGGACCTATCGTTGGTTGCTTCTCGATAATC
TCTCTTGGCTCTTCGAAACTTCTTCAGCGCTTTGGTTTGATGAAATGCCTACGTGCAGGAATTGTTTCCATGTTCACGGGTATGCTTCTT
CTTTTAGGCATGAGCATTCTTTCTTTGGATCATGCAGTAGCGACAACGGTGTTTATGATGTTCTTCGTTGGAGGAATGGCACCGATTTGC
AGCATGCTTTTCCCATATGCTTTGGGACATTTGCCTGTCGATCTAAAAGGGAATGCACAAGCCATGGTACAAGCGATTAGACTCTTTTTC
GCATCAATTGGTACTTCCTTGGTTGGTGTCTTCTACAAAAGTGCTTTTTTGCCAGTAGCCCTGATTATGTTCGCCATTCTTCTCTTCAGT
TGCTACTTCCTTTGGAAGGGAAGACGTTACTTGAAAGAAGGTCTTGGTGCGGATCATATTTTGAGCGTTGGTCACTAG