tet(35)

Accession ARO:3000481
Synonym(s)effJ tet35
DefinitionTet35 is a tetracycline efflux pump found in the Gram-negative Vibrio and Stenotrophomonas. It is unrelated to other tet resistance genes.
AMR Gene FamilyATP-binding cassette (ABC) antibiotic efflux pump
Drug Classpeptide antibiotic, nitroimidazole antibiotic, pleuromutilin antibiotic, rifamycin antibiotic, tetracycline antibiotic, fluoroquinolone antibiotic, acridine dye, macrolide antibiotic, penam, cephalosporin
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
Classification18 ontology terms | Show
Parent Term(s)2 ontology terms | Show
+ confers_resistance_to_antibiotic tetracycline [Antibiotic]
+ ATP-binding cassette (ABC) antibiotic efflux pump [AMR Gene Family]
Publications

Teo JW, et al. 2002. Antimicrob Agents Chemother 46(4): 1038-1045. Genetic determinants of tetracycline resistance in Vibrio harveyi. (PMID 11897587)

Resistomes

Prevalence of tet(35) among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI for 82 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGS
Vibrio parahaemolyticus50%0%97.19%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.

Bit-score Cut-off (blastP): 710


>gb|AAK37619.1|-|tet(35) [Vibrio harveyi]
MCVIMPASSWGAYIITIIGGILVSHGITEYSALGAYVRLIPMNFYAVFALLMVFAVAWFGLDIGKMREHEIAASQGRGFDKDKENDSQEA
HDLNEELDIRESEKGKVSDLILPIVTLIVATIASMLYTGGQALAADGKEFVLLGAFENTDVGTSLIYGSLLGLAVALFTVIKQGLPMVEI
ARTLWIGAKSMFGAILILVFAWTIGSVIGDMKTGSYLSTMAQGNINPHWLPVILFLLSGLMAFSTGTSWGTFGIMLPIAGDMAGATDVAL
MLPMLSAVLAGAVFGDHCSPISDTTILSSTGARCNHIDHVSTQLPYALSVAFVSCIGFITLGMTASIAFSFIAASITFVIVCAILSWLSK
SKMASCQNA


>gb|AF353562.1|-|2213-3322|tet(35) [Vibrio harveyi]
ATGTGTGTGATCATGCCAGCTTCTAGTTGGGGTGCGTACATCATTACCATCATCGGTGGTATCTTGGTGTCACACGGCATCACTGAATAC
TCGGCGCTTGGTGCTTACGTTCGTCTTATTCCTATGAACTTCTACGCAGTATTTGCTCTACTAATGGTATTTGCAGTGGCGTGGTTTGGT
CTAGATATCGGTAAGATGCGTGAACATGAAATCGCAGCATCTCAAGGCCGTGGTTTTGATAAAGATAAAGAGAACGACTCACAAGAAGCA
CACGACCTAAACGAAGAGCTAGATATTCGTGAAAGCGAGAAGGGTAAGGTTTCTGACCTAATTCTTCCTATCGTAACGCTTATTGTGGCG
ACTATTGCTTCAATGCTTTACACCGGTGGTCAAGCGCTAGCAGCAGATGGTAAAGAATTTGTGCTGTTGGGTGCGTTTGAAAACACGGAT
GTTGGTACTTCTCTAATCTACGGTAGTTTACTTGGTCTAGCAGTTGCATTGTTCACTGTTATTAAGCAAGGTCTACCAATGGTTGAGATT
GCACGCACGCTTTGGATTGGTGCTAAGTCAATGTTTGGTGCAATCCTTATCCTTGTTTTCGCTTGGACTATTGGTTCAGTTATCGGTGAC
ATGAAGACGGGTTCTTACCTATCTACAATGGCGCAAGGCAACATCAACCCACACTGGCTACCAGTTATCCTGTTCTTGCTGTCTGGCCTA
ATGGCGTTCTCTACAGGTACGTCATGGGGTACGTTCGGTATCATGCTTCCAATCGCGGGTGACATGGCTGGCGCAACAGACGTGGCACTA
ATGCTACCAATGCTAAGTGCGGTTCTAGCTGGTGCAGTATTTGGTGACCACTGTTCACCAATTTCAGATACAACGATTCTGTCGTCAACA
GGTGCACGCTGTAACCACATCGATCACGTATCGACGCAGCTACCTTATGCATTATCAGTGGCGTTTGTGTCATGTATTGGCTTTATCACG
CTGGGTATGACTGCATCGATCGCGTTCTCTTTCATCGCAGCATCGATCACTTTCGTTATCGTTTGTGCGATTCTGTCGTGGCTGTCGAAG
TCTAAAATGGCATCCTGCCAGAACGCGTAG