mdtC

Accession ARO:3000794
Synonym(s)yegO muxC muxB
DefinitionMdtC is a transporter that forms a heteromultimer complex with MdtB to form a multidrug transporter. MdtBC is part of the MdtABC-TolC efflux complex. In the absence of MdtB, MdtC can form a homomultimer complex that results in a functioning efflux complex with a narrower drug specificity. mdtC corresponds to 3 loci in Pseudomonas aeruginosa PAO1 (gene name: muxC/muxB) and 3 loci in Pseudomonas aeruginosa LESB58.
AMR Gene Familyresistance-nodulation-cell division (RND) antibiotic efflux pump
Drug Classtetracycline antibiotic, aminoglycoside antibiotic, antibacterial free fatty acids, fluoroquinolone antibiotic, diaminopyrimidine antibiotic, carbapenem, acridine dye, penam, glycylcycline, phenicol antibiotic, monobactam, triclosan, macrolide antibiotic, aminocoumarin antibiotic
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
ResistomesEscherichia colig+wgs, Shigella sonneiwgs
Classification24 ontology terms | Show
Parent Term(s)2 ontology terms | Show
Publications

Nagakubo S, et al. 2002. J Bacteriol 184(15): 4161-4167. The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. (PMID 12107133)

Resistomes

Prevalence of mdtC among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI for 82 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGS
Acinetobacter baumannii0%0%0.11%
Citrobacter amalonaticus100%0%100%
Citrobacter freundii86.21%0%92.25%
Citrobacter koseri100%0%91.67%
Citrobacter youngae50%0%25%
Enterobacter cloacae0%0%0.45%
Enterobacter hormaechei0%0%0.16%
Escherichia coli13.02%0%86.5%
Klebsiella oxytoca0%0%0.93%
Klebsiella pneumoniae0%0%0%
Morganella morganii0%0%2.38%
Proteus mirabilis0%0%0%
Pseudomonas aeruginosa0%0%0%
Salmonella enterica0%0%0.05%
Serratia marcescens0%0%0.23%
Shigella dysenteriae55.56%0%77.14%
Shigella flexneri100%0%94.81%
Shigella sonnei100%0%100%
Staphylococcus aureus0%0%0.01%
Vibrio parahaemolyticus0%0%0.17%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.

Bit-score Cut-off (blastP): 1800


>gb|AAC75137.1|+|mdtC [Escherichia coli str. K-12 substr. MG1655]
MKFFALFIYRPVATILLSVAITLCGILGFRMLPVAPLPQVDFPVIIVSASLPGASPETMASSVATPLERSLGRIAGVSEMTSSSSLGSTR
IILQFDFDRDINGAARDVQAAINAAQSLLPSGMPSRPTYRKANPSDAPIMILTLTSDTYSQGELYDFASTQLAPTISQIDGVGDVDVGGS
SLPAVRVGLNPQALFNQGVSLDDVRTAVSNANVRKPQGALEDGTHRWQIQTNDELKTAAEYQPLIIHYNNGGAVRLGDVATVTDSVQDVR
NAGMTNAKPAILLMIRKLPEANIIQTVDSIRAKLPELQETIPAAIDLQIAQDRSPTIRASLEEVEQTLIISVALVILVVFLFLRSGRATI
IPAVSVPVSLIGTFAAMYLCGFSLNNLSLMALTIATGFVVDDAIVVLENIARHLEAGMKPLQAALQGTREVGFTVLSMSLSLVAVFLPLL
LMGGLPGRLLREFAVTLSVAIGISLLVSLTLTPMMCGWMLKASKPREQKRLRGFGRMLVALQQGYGKSLKWVLNHTRLVGVVLLGTIALN
IWLYISIPKTFFPEQDTGVLMGGIQADQSISFQAMRGKLQDFMKIIRDDPAVDNVTGFTGGSRVNSGMMFITLKPRDERSETAQQIIDRL
RVKLAKEPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARLGIDV
QAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAASTISFNLPT
GKSLSDASAAIDRAMTQLGVPSTVRGSFAGTAQVFQETMNSQVILIIAAIATVYIVLGILYESYVHPLTILSTLPSAGVGALLALELFNA
PFSLIALIGIMLLIGIVKKNAIMMVDFALEAQRHGNLTPQEAIFQACLLRFRPIMMTTLAALFGALPLVLSGGDGSELRQPLGITIVGGL
VMSQLLTLYTTPVVYLFFDRLRLRFSRKPKQTVTE


>gb|U00096|+|2158386-2161463|mdtC [Escherichia coli str. K-12 substr. MG1655]
GTGAAGTTTTTTGCCCTCTTCATTTACCGCCCGGTGGCGACGATTTTACTGTCGGTTGCCATTACCCTGTGCGGCATACTGGGCTTCCGT
ATGCTGCCGGTCGCCCCGCTGCCGCAGGTCGATTTTCCGGTGATTATCGTCAGCGCCTCGCTGCCCGGTGCGTCACCAGAAACAATGGCG
TCTTCCGTTGCCACGCCGCTGGAGCGCTCACTTGGGCGCATTGCCGGAGTCAGTGAAATGACCTCCAGCAGTTCGCTCGGCAGCACGCGT
ATTATTTTGCAGTTTGATTTTGACCGGGATATCAACGGCGCAGCGCGTGATGTGCAGGCGGCGATCAACGCTGCACAAAGTTTGCTGCCC
AGTGGGATGCCCAGCCGCCCGACCTATCGCAAAGCGAACCCGTCGGATGCGCCAATTATGATCCTCACGCTGACGTCCGATACTTATTCG
CAGGGTGAACTGTACGATTTCGCCTCGACGCAGCTGGCTCCGACGATTTCGCAAATCGACGGTGTTGGTGATGTCGATGTCGGAGGCAGC
TCACTGCCCGCCGTACGCGTCGGGCTGAATCCGCAGGCGCTGTTTAATCAGGGCGTGTCGCTGGACGACGTACGCACCGCCGTCAGCAAT
GCCAACGTGCGTAAACCGCAGGGCGCGCTGGAAGATGGCACTCACCGCTGGCAGATCCAGACCAATGATGAGCTAAAAACCGCCGCTGAA
TATCAGCCGTTGATTATTCACTACAACAACGGCGGCGCGGTTCGTCTGGGCGATGTGGCGACGGTGACCGACTCAGTGCAGGATGTGCGC
AACGCCGGGATGACCAACGCCAAACCGGCTATTTTACTGATGATCCGCAAACTGCCGGAAGCCAATATTATCCAGACGGTTGACAGCATC
CGGGCAAAATTACCGGAGTTGCAGGAAACCATTCCGGCGGCGATTGATCTGCAAATTGCCCAGGATCGCTCCCCCACCATTCGCGCCTCG
CTGGAAGAAGTCGAGCAAACGCTGATTATCTCGGTGGCGCTGGTGATTCTGGTGGTGTTTTTATTCCTGCGCTCGGGTCGCGCCACTATT
ATTCCCGCCGTTTCGGTGCCGGTTTCGCTGATTGGTACGTTTGCGGCGATGTACCTGTGCGGATTCAGTCTCAATAACCTTTCGTTAATG
GCGCTCACCATCGCTACTGGTTTCGTGGTGGATGACGCCATCGTGGTGCTGGAAAACATTGCACGTCATCTGGAAGCGGGAATGAAACCG
TTGCAAGCCGCACTGCAAGGTACTCGCGAAGTCGGTTTTACGGTGCTGTCGATGAGTCTGTCACTGGTGGCGGTGTTCCTGCCGCTGCTG
TTGATGGGCGGATTGCCGGGCCGACTGTTACGCGAATTTGCCGTGACGCTTTCTGTCGCCATTGGTATATCGTTGCTGGTTTCTCTGACA
TTAACGCCAATGATGTGTGGCTGGATGCTGAAAGCCAGCAAGCCGCGCGAGCAAAAGCGACTGCGTGGTTTTGGTCGCATGTTGGTAGCC
CTGCAACAAGGCTACGGCAAGTCACTAAAATGGGTGCTCAATCATACCCGTCTGGTGGGCGTGGTGCTGCTTGGCACCATTGCGCTGAAT
ATCTGGCTGTATATCTCGATCCCGAAAACCTTCTTCCCGGAGCAGGACACTGGCGTGTTGATGGGCGGGATTCAGGCGGATCAGAGTATT
TCGTTTCAGGCGATGCGCGGTAAGTTGCAGGATTTCATGAAAATTATCCGTGACGATCCGGCAGTGGATAATGTCACCGGCTTTACAGGC
GGTTCGCGAGTGAACAGCGGGATGATGTTTATCACCCTCAAGCCACGCGACGAACGCAGCGAAACGGCGCAGCAAATTATCGACCGTCTG
CGCGTAAAACTGGCGAAAGAACCGGGGGCGAATCTGTTCCTGATGGCGGTACAGGATATTCGCGTTGGTGGGCGTCAGTCGAACGCCAGC
TACCAGTACACGTTGTTATCCGACGACCTGGCGGCACTGCGAGAATGGGAGCCGAAAATCCGCAAAAAACTGGCGACGTTGCCGGAACTG
GCGGACGTGAACTCCGATCAGCAGGATAACGGCGCGGAGATGAATCTGGTTTACGACCGCGACACCATGGCACGGCTGGGAATCGACGTA
CAAGCCGCCAACAGTCTGTTAAATAACGCCTTCGGTCAGCGGCAAATCTCGACCATTTACCAGCCGATGAACCAGTATAAAGTGGTGATG
GAAGTGGATCCGCGCTATACCCAGGACATCAGTGCGCTGGAAAAAATGTTCGTTATCAATAACGAAGGCAAAGCGATCCCGCTGTCGTAT
TTCGCTAAATGGCAACCGGCGAATGCCCCACTATCGGTGAATCATCAGGGATTATCGGCGGCCTCGACCATTTCGTTTAACCTGCCGACC
GGAAAATCGCTCTCGGACGCCAGTGCGGCGATCGATCGCGCAATGACCCAGCTTGGTGTGCCTTCGACGGTGCGCGGCAGTTTTGCCGGC
ACGGCGCAGGTGTTCCAGGAGACGATGAACTCGCAGGTGATCCTGATTATCGCCGCCATCGCCACGGTGTATATCGTGCTGGGTATCCTT
TACGAGAGTTACGTACATCCGCTGACGATTCTCTCCACCCTGCCCTCGGCGGGCGTTGGAGCGCTGTTGGCGCTGGAGCTGTTCAATGCC
CCGTTCAGCCTAATCGCCCTGATAGGGATCATGCTATTAATCGGCATCGTGAAGAAAAACGCCATTATGATGGTCGATTTTGCGCTTGAA
GCCCAACGGCACGGTAACCTGACGCCGCAGGAAGCTATTTTCCAGGCCTGTCTGCTGCGTTTTCGCCCGATTATGATGACTACCCTGGCG
GCGCTGTTTGGTGCGCTGCCGCTGGTATTGTCGGGCGGCGACGGCTCGGAGCTGCGGCAACCCCTGGGGATCACCATTGTCGGCGGACTG
GTAATGAGCCAGCTCCTTACGCTGTATACCACGCCGGTGGTGTATCTCTTTTTCGACCGTCTGCGGCTGCGTTTTTCGCGTAAACCTAAA
CAAACGGTAACCGAGTAA