Escherichia coli mdfA

Accession ARO:3001328
Synonym(s)cmlA cmr
DefinitionMultidrug efflux pump in E. coli. This multidrug efflux system was originally identified as the Cmr/CmlA chloramphenicol exporter.
AMR Gene Familymajor facilitator superfamily (MFS) antibiotic efflux pump
Drug Classtetracycline antibiotic, benzalkonium chloride, rhodamine
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
Classification8 ontology terms | Show
Parent Term(s)4 ontology terms | Show
+ confers_resistance_to_antibiotic tetracycline [Antibiotic]
+ major facilitator superfamily (MFS) antibiotic efflux pump [AMR Gene Family]
+ confers_resistance_to_antibiotic benzalkonium chloride [Drug Class]
+ confers_resistance_to_antibiotic rhodamine [Drug Class]
Publications

Heng J, et al. 2015. Cell Res. 25(9):1060-73 Substrate-bound structure of the E. coli multidrug resistance transporter MdfA. (PMID 26238402)

Bohn C, et al. 1998. J. Bacteriol. 180(22):6072-5 The Escherichia coli cmlA gene encodes the multidrug efflux pump Cmr/MdfA and is responsible for isopropyl-beta-D-thiogalactopyranoside exclusion and spectinomycin sensitivity. (PMID 9811673)

Resistomes

Prevalence of Escherichia coli mdfA among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI for 82 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGS
Acinetobacter baumannii0%0%0.04%
Citrobacter amalonaticus100%0%100%
Citrobacter freundii96.55%0%89.92%
Citrobacter koseri100%0%100%
Citrobacter youngae100%0%50%
Enterobacter cloacae0%0%0.45%
Enterobacter hormaechei0%0%0.79%
Escherichia coli13.02%0%86.32%
Klebsiella oxytoca0%0%0.93%
Klebsiella pneumoniae0%0%0%
Listeria monocytogenes0%0%0.04%
Pseudomonas aeruginosa0%0%0%
Salmonella enterica88.76%0%90.75%
Shigella dysenteriae94.44%0%97.14%
Shigella flexneri96.97%0%98.7%
Shigella sonnei80%0%98.98%
Staphylococcus aureus0%0%0.01%
Stenotrophomonas maltophilia0%0%0.33%
Vibrio parahaemolyticus0%0%0.17%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.

Bit-score Cut-off (blastP): 700


>gb|AFH35853.1|+|Escherichia coli mdfA [Escherichia coli]
MQNKLASGARLGRQALLFPLCLVLYEFSTYIGNDMRQPGMLENVEQYQAGIEWVPTSMNAYLAGGMFIQWLLGPLSDRIGRRPVMLAGVV
WFIVTCLAILLAQNIEQFTLLRFLHGISLCFIGAVGYDAIQESFEEAVCIKITALMANVALIAPLLGPLVGASWIHVLPWEGMFVLFAAL
AAISFFGLQRAMPETATRIGEKLSLKELGRDYKLVLKNGRFVAGALALGFLSLPLLAWIAQSPIIIITGEQLSSYEYGLLQVPIFGALIA
GNLLLARLTSRRTVRSLIIMGGWPIMIGLLVAAAATVISSHAYLWMTAGLSIYAFGIGLANAGLVRLTLFASVMSKGTVSAAMGMLQMLI
FTVGIEISKHAWLNGGNGLFNLFNLVNGILLLSLMVIFLKDKQMGNSHEG


>gb|JQ394987|+|1-1233|Escherichia coli mdfA [Escherichia coli]
ATGCAAAATAAATTAGCTTCCGGTGCCAGGCTTGGACGTCAGGCGTTACTTTTTCCTCTCTGTCTGGTGCTTTACGAATTTTCAACCTAT
ATCGGCAACGATATGAGGCAACCCGGTATGTTGGAAAATGTGGAACAATATCAGGCGGGCATTGAGTGGGTTCCTACTTCGATGAACGCG
TATCTGGCGGGCGGGATGTTTATACAATGGCTGCTGGGGCCGCTGTCGGATCGTATTGGTCGTCGTCCGGTGATGCTGGCGGGAGTGGTG
TGGTTTATCGTCACATGTCTGGCAATATTGCTGGCGCAAAACATTGAACAATTCACCCTGTTGCGCTTCTTGCACGGCATAAGCCTCTGT
TTCATTGGCGCTGTGGGATACGACGCAATTCAGGAATCCTTCGAAGAGGCGGTTTGTATCAAGATCACCGCGCTGATGGCGAACGTGGCG
CTGATTGCTCCGCTACTTGGTCCGCTGGTGGGCGCGTCGTGGATCCATGTGCTGCCCTGGGAGGGGATGTTTGTTTTGTTTGCCGCATTG
GCAGCGATCTCCTTTTTCGGTCTGCAACGGGCCATGCCTGAAACCGCCACGCGTATAGGCGAGAAACTGTCACTGAAAGAACTCGGTCGT
GACTATAAGCTGGTGCTGAAGAACGGCCGCTTTGTGGCGGGGGCGCTGGCGCTGGGATTCCTTAGTCTGCCGTTGCTGGCGTGGATCGCC
CAGTCGCCGATTATCATCATTACCGGCGAGCAGTTGAGCAGCTATGAATATGGCTTGCTGCAAGTGCCTATTTTCGGGGCGTTAATTGCG
GGTAACTTGCTGTTAGCGCGTCTGACCTCGCGCCGCACCGTACGTTCGCTGATTATTATGGGCGGCTGGCCGATTATGATTGGTCTATTG
GTCGCTGCTGCGGCAACGGTTATCTCATCGCACGCGTATTTATGGATGACTGCCGGGTTAAGTATTTATGCTTTCGGTATTGGTCTGGCG
AATGCGGGACTGGTGCGATTAACCCTGTTTGCCAGCGTTATGAGTAAAGGTACGGTTTCTGCCGCGATGGGAATGCTGCAAATGCTGATC
TTTACCGTTGGTATTGAAATCAGCAAACATGCCTGGCTGAACGGGGGCAACGGACTGTTTAATCTCTTCAACCTTGTCAACGGAATTTTG
TTGCTGTCGCTGATGGTTATCTTTTTAAAAGATAAACAGATGGGAAATTCTCACGAAGGGTAA