aadA4

Accession ARO:3002604
CARD Short NameaadA4
DefinitionaadA4 is an aminoglycoside nucleotidyltransferase gene encoded by plasmids and chromosomes in Bordetella parapertussis and E. coli.
AMR Gene FamilyANT(3'')
Drug Classaminoglycoside antibiotic
Resistance Mechanismantibiotic inactivation
Resistomes with Sequence VariantsEnterobacter hormaecheiwgs, Escherichia coliwgs, Klebsiella michiganensiswgs, Klebsiella pneumoniaewgs, Klebsiella quasipneumoniaewgs, Pseudomonas aeruginosag+wgs, Salmonella entericawgs
Classification12 ontology terms | Show
Parent Term(s)3 ontology terms | Show
+ confers_resistance_to_antibiotic spectinomycin [Antibiotic]
+ confers_resistance_to_antibiotic streptomycin [Antibiotic]
+ ANT(3'')-Ia
Publications

Parkhill J, et al. 2003. Nat Genet 35(1): 32-40. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. (PMID 12910271)

Perichon B, et al. 2008. Antimicrob Agents Chemother 52(7): 2581-2592. Sequence of conjugative plasmid pIP1206 mediating resistance to aminoglycosides by 16S rRNA methylation and to hydrophilic fluoroquinolones by efflux. (PMID 18458128)

Resistomes

Prevalence of aadA4 among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GI
Enterobacter hormaechei0%0%0.04%0%
Escherichia coli0%0%0.03%0%
Klebsiella michiganensis0%0%1.6%0%
Klebsiella pneumoniae0%0%0.01%0%
Klebsiella quasipneumoniae0%0%0.13%0%
Pseudomonas aeruginosa0.31%0%0.06%0%
Salmonella enterica0%0%0.03%0%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 450


>gb|AAN34365.1|+|aadA4 [Acinetobacter baumannii]
MGEFFPAQISEQLSHARGVIERHLAATLDTIHLFGSALDGGLKPDSNIDLLVTVSAAPNDSLRQALMLDLLKVSSPPGNGGPWRPLEVTV
VARSEVVPWRYPARRGLQFGEWLRHDILSGTFEPAVLDHDLAILLTKARQHSLALLGPSAVTFFEPVPNEHFSKALFDTIAQWNSESDWK
GDERNVVLALARIWYSASTGLIAPKDVAAAWVSERLPAEHRPIICKARAAYLGSEDDDLAMRVEETAAFVRYAKATIERILR


>gb|AY138986.1|+|1-789|aadA4 [Acinetobacter baumannii]
ATGGGTGAATTCTTTCCTGCACAAATTTCCGAGCAGCTATCCCACGCTCGCGGGGTGATCGAGCGCCATCTAGCTGCAACGCTGGACACA
ATCCACCTGTTCGGATCTGCGCTCGATGGAGGGTTGAAGCCGGACAGCAACATCGACTTGCTCGTGACCGTCAGCGCCGCACCTAACGAT
TCGCTCCGGCAGGCACTAATGCTCGACCTGCTAAAAGTCTCATCACCGCCAGGCAATGGCGGACCATGGCGACCGCTGGAGGTGACTGTT
GTCGCTCGAAGCGAAGTAGTGCCCTGGCGCTATCCGGCGCGACGTGGGCTTCAGTTCGGTGAGTGGCTCCGCCACGACATCCTCTCCGGA
ACGTTCGAGCCTGCCGTTCTGGATCACGATCTTGCGATTTTGCTGACCAAGGCGAGGCAACACAGCCTTGCACTGCTAGGTCCATCCGCA
GTCACGTTCTTCGAGCCGGTGCCGAACGAGCATTTTTCCAAGGCGCTTTTCGACACGATTGCCCAGTGGAATTCAGAGTCGGATTGGAAG
GGTGACGAGCGGAACGTCGTTCTTGCTCTTGCTCGCATTTGGTACAGTGCTTCAACGGGTCTCATTGCTCCTAAGGACGTTGCTGCCGCA
TGGGTATCGGAGCGTTTGCCTGCCGAGCATCGGCCCATCATTTGCAAGGCACGCGCGGCGTACCTGGGTAGCGAGGACGACGACCTAGCA
ATGCGCGTCGAAGAGACGGCTGCGTTCGTTCGATATGCCAAAGCAACGATTGAGAGAATCTTGCGTTGA