mdtN

Accession ARO:3003548
Synonym(s)yjcR sdsR
DefinitionMultidrug resistance efflux pump. Could be involved in resistance to puromycin, acriflavine and tetraphenylarsonium chloride.
AMR Gene Familymajor facilitator superfamily (MFS) antibiotic efflux pump
Drug Classnucleoside antibiotic, tetracycline antibiotic, acridine dye, penam, lincosamide antibiotic, fosfomycin, bicyclomycin, benzalkonium chloride, fluoroquinolone antibiotic, rhodamine, rifamycin antibiotic, glycylcycline, cephalosporin, nitroimidazole antibiotic, isoniazid, oxazolidinone antibiotic, macrolide antibiotic, diaminopyrimidine antibiotic, antibacterial free fatty acids, phenicol antibiotic, peptide antibiotic
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
ResistomesEscherichia colig+wgs, Shigella dysenteriaewgs, Shigella flexneriwgs, Shigella sonneiwgs
Classification34 ontology terms | Show
Parent Term(s)2 ontology terms | Show
Publications

Sulavik MC, et al. 2001. Antimicrob Agents Chemother 45(4): 1126-1136. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. (PMID 11257026)

Dinh T, et al. 1994. J. Bacteriol. 176(13):3825-31 A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria. (PMID 8021163)

Shimada T, et al. 2009. J. Bacteriol. 191(14):4562-71 Involvement of the leucine response transcription factor LeuO in regulation of the genes for sulfa drug efflux. (PMID 19429622)

Resistomes

Prevalence of mdtN among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI for 82 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGS
Acinetobacter baumannii0%0%0%
Citrobacter freundii0%0%1.55%
Enterobacter hormaechei0%0%0.16%
Escherichia coli13.02%0%85.78%
Klebsiella oxytoca0%0%0.93%
Klebsiella pneumoniae0%0%0%
Serratia marcescens0%0%0%
Shigella dysenteriae50%0%74.29%
Shigella flexneri96.97%0%98.7%
Shigella sonnei100%0%98.2%
Staphylococcus aureus0%0%0.01%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.

Bit-score Cut-off (blastP): 600


>gb|BAE78084.1|-|mdtN [Escherichia coli str. K-12 substr. W3110]
MESTPKKAPRSKFPALLVVALALVALVFVIWRVDSAPSTNDAYASADTIDVVPEVSGRIVELAVTDNQAVKQGDLLFRIDPRPYEANLAK
AEASLAALDKQIMLTQRSVDAQQFGADSVNATVEKARAAAKQATDTLRRTEPLLKEGFVSAEDVDRARTAQRAAEADLNAVLLQAQSAAS
AVSGVDALVAQRAAVEADIALTKLHLEMATVRAPFDGRVISLKTSVGQFASAMRPIFTLIDTRHWYVIANFRETDLKNIRSGTPATIRLM
SDSGKTFEGKVDSIGYGVLPDDGGLVLGGLPKVSRSINWVRVAQRFPVKIMVDKPDPEMFRIGASAVANLEPQ


>gb|AP009048.1|-|4306557-4307588|mdtN [Escherichia coli str. K-12 substr. W3110]
ATGGAAAGTACGCCGAAAAAAGCTCCTCGCAGTAAATTCCCTGCTCTGTTAGTGGTTGCGTTGGCGCTGGTTGCCCTTGTTTTCGTTATC
TGGCGCGTAGACAGTGCGCCATCAACTAATGACGCTTACGCGTCAGCAGATACCATTGATGTGGTACCGGAAGTCAGCGGCCGCATTGTA
GAACTGGCGGTCACCGACAACCAGGCAGTCAAACAGGGCGATTTGCTGTTCCGCATCGACCCGCGCCCGTACGAAGCCAATCTGGCGAAA
GCTGAAGCCTCCCTCGCGGCGCTGGATAAGCAAATTATGCTCACCCAGCGTAGCGTTGACGCGCAACAGTTTGGTGCCGACTCGGTTAAT
GCCACGGTAGAAAAAGCCCGTGCCGCCGCGAAACAGGCCACAGATACATTACGCCGCACCGAGCCATTACTGAAAGAAGGTTTTGTCTCA
GCGGAAGATGTTGACCGTGCAAGAACGGCGCAGCGCGCCGCAGAAGCGGATCTTAATGCCGTATTGTTACAGGCGCAGTCAGCCGCCAGC
GCCGTCAGCGGCGTGGATGCATTAGTTGCCCAGCGTGCGGCGGTCGAAGCGGATATTGCCCTGACCAAACTGCATCTGGAAATGGCGACC
GTTCGCGCGCCGTTTGATGGCCGGGTCATTTCCCTCAAAACCTCCGTCGGGCAATTTGCTTCTGCCATGCGCCCTATTTTTACCCTAATC
GACACTCGTCACTGGTATGTGATCGCCAACTTCCGCGAAACCGATCTGAAAAATATTCGCTCAGGTACACCCGCAACGATTCGCCTGATG
AGTGACAGCGGCAAAACCTTCGAGGGTAAAGTGGATTCGATTGGCTACGGCGTGCTACCGGATGACGGCGGCCTGGTGCTGGGCGGCCTG
CCGAAAGTGTCTCGTTCTATTAACTGGGTCCGCGTTGCCCAGCGTTTTCCGGTCAAAATCATGGTCGATAAACCTGACCCGGAAATGTTC
CGCATCGGCGCTTCGGCAGTCGCTAATCTTGAGCCGCAATAA