mdtP

Accession ARO:3003550
Synonym(s)yjcP sdsP
DefinitionMultidrug resistance efflux pump. Could be involved in resistance to puromycin, acriflavine and tetraphenylarsonium chloride
AMR Gene Familymajor facilitator superfamily (MFS) antibiotic efflux pump
Drug Classtetracycline antibiotic, nucleoside antibiotic, cephalosporin, rhodamine, penam, acridine dye, bicyclomycin, lincosamide antibiotic, diaminopyrimidine antibiotic, glycylcycline, nitroimidazole antibiotic, oxazolidinone antibiotic, macrolide antibiotic, antibacterial free fatty acids, isoniazid, phenicol antibiotic, fosfomycin, rifamycin antibiotic, peptide antibiotic, benzalkonium chloride, fluoroquinolone antibiotic
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
ResistomesEscherichia colig+wgs, Shigella dysenteriaewgs, Shigella sonneiwgs
Classification34 ontology terms | Show
Parent Term(s)2 ontology terms | Show
Publications

Sulavik MC, et al. 2001. Antimicrob Agents Chemother 45(4): 1126-1136. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. (PMID 11257026)

Shimada T, et al. 2009. J. Bacteriol. 191(14):4562-71 Involvement of the leucine response transcription factor LeuO in regulation of the genes for sulfa drug efflux. (PMID 19429622)

Resistomes

Prevalence of mdtP among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI for 82 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGS
Acinetobacter nosocomialis0%0%2%
Citrobacter freundii0%0%0%
Enterobacter cloacae0%0%0%
Escherichia coli13.02%0%86.1%
Klebsiella oxytoca0%0%0.93%
Klebsiella pneumoniae0%0%0%
Shigella dysenteriae50%0%74.29%
Shigella flexneri100%0%98.44%
Shigella sonnei100%0%98.2%
Staphylococcus pseudintermedius0%0%0.51%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.

Bit-score Cut-off (blastP): 875


>gb|BAE78082.1|-|mdtP [Escherichia coli str. K-12 substr. W3110]
MINRQLSRLLLCSILGSTTLISGCALVRKDSAPHQQLKPEQIKLADDIHLASSGWPQAQWWKQLNDPQLDALIQRTLSGSHTLAEAKLRE
EKAQSQADLLDAGSQLQVAALGMLNRQRVSANGFLSPYSMDAPALGMDGPYYTEATVGLFAGLDLDLWGVHRSAVAAAIGAHNAALAETA
AVELSLATGVAQLYYSMQASYQMLDLLEQTHDVIDYAVKAHQSKVAHGLEAQVPFHGARAQILAVDKQIVAVKGQITETRESLRALIGAG
ASDMPEIRPVALPQVQTGIPATLSYELLARRPDLQAMRWYVQASLDQVDSARALFYPSFDIKAFFGLDSIHLHTLFKKTSRQFNFIPGLK
LPLFDGGRLNANLEGTRAASNMMIERYNQSVLNAVRDVAVNGTRLQTLNDEREMQAERVEATRFTQRAAEAAYQRGLTSRLQATEARLPV
LAEEMSLLMLDSRRVIQSIQLMKSLGGGYQAGPVVEKK


>gb|AP009048.1|-|4303043-4304509|mdtP [Escherichia coli str. K-12 substr. W3110]
ATGATCAATCGTCAACTTTCACGTCTGCTGTTGTGCAGCATTCTCGGCAGCACGACGCTGATTTCCGGCTGTGCCCTGGTACGTAAGGAT
TCTGCACCTCATCAACAGCTCAAACCGGAACAAATCAAACTGGCCGACGATATTCATCTTGCCAGCTCCGGCTGGCCGCAGGCGCAGTGG
TGGAAACAACTCAATGACCCGCAGCTGGATGCGCTGATCCAACGGACGCTAAGTGGTTCACACACCCTCGCCGAAGCGAAACTGCGGGAA
GAAAAAGCGCAGTCCCAGGCCGATTTGTTAGATGCCGGTTCACAATTACAGGTCGCAGCGTTAGGGATGCTCAACCGCCAACGTGTCTCG
GCGAACGGCTTTTTAAGCCCTTATTCAATGGATGCGCCAGCACTGGGTATGGACGGGCCGTACTATACGGAAGCCACAGTAGGTTTGTTT
GCCGGACTGGATCTTGATTTGTGGGGTGTGCATCGCTCAGCGGTTGCCGCCGCCATTGGCGCGCATAATGCCGCGCTGGCAGAAACCGCA
GCAGTAGAGCTATCGCTGGCCACGGGCGTAGCGCAGCTTTATTACAGTATGCAGGCCAGCTATCAGATGCTCGATCTGTTAGAACAAACT
CACGATGTGATTGATTACGCGGTGAAAGCGCACCAGAGTAAAGTGGCGCACGGTCTGGAAGCGCAAGTGCCTTTCCACGGCGCGCGGGCA
CAGATTCTGGCGGTCGATAAACAAATTGTTGCCGTCAAAGGGCAAATCACCGAAACGCGAGAATCTCTGCGTGCATTGATTGGCGCGGGA
GCCAGCGATATGCCGGAGATCAGACCGGTGGCATTACCGCAAGTCCAGACCGGCATTCCGGCGACACTCTCTTATGAGTTGCTCGCCAGA
CGCCCGGATCTGCAAGCCATGCGCTGGTATGTTCAGGCGTCATTAGATCAGGTGGATTCCGCGCGGGCGTTGTTCTATCCGAGCTTTGAT
ATCAAAGCGTTTTTCGGTCTGGACTCCATCCATCTGCATACCTTATTCAAAAAAACCAGTCGCCAGTTCAACTTCATCCCGGGTCTGAAA
TTGCCGCTGTTTGACGGTGGACGGTTGAATGCCAATCTCGAAGGCACGCGCGCCGCCAGCAACATGATGATTGAACGTTACAACCAGTCA
GTACTGAACGCGGTGCGTGACGTTGCCGTCAACGGCACGCGTCTGCAAACGCTCAACGACGAGCGAGAAATGCAGGCTGAACGCGTGGAA
GCCACGCGCTTTACCCAGCGCGCTGCCGAGGCCGCCTATCAGCGCGGCTTAACCAGCCGCTTACAGGCCACCGAAGCCCGGTTGCCAGTG
CTTGCCGAAGAGATGTCATTACTGATGCTGGACAGCCGCCGGGTGATCCAAAGCATTCAGTTGATGAAATCGCTGGGCGGCGGGTATCAG
GCAGGTCCCGTCGTCGAGAAAAAATAA