efpA

Accession ARO:3003955
DefinitionefpA is an MFS transporter found in Mycobacterium tuberculosis.
AMR Gene Familymajor facilitator superfamily (MFS) antibiotic efflux pump
Drug Classrifamycin antibiotic, isoniazid
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
ResistomesMycobacterium tuberculosisg+wgs
Classification8 ontology terms | Show
Parent Term(s)3 ontology terms | Show
+ major facilitator superfamily (MFS) antibiotic efflux pump [AMR Gene Family]
+ confers_resistance_to_antibiotic rifampin [Antibiotic]
+ confers_resistance_to_antibiotic isoniazid [Drug Class]
Publications

Rodrigues L, et al. 2012. Infect. Genet. Evol. 12(4):695-700 Contribution of efflux activity to isoniazid resistance in the Mycobacterium tuberculosis complex. (PMID 21871582)

Doran JL, et al. 1997. Clin. Diagn. Lab. Immunol. 4(1):23-32 Mycobacterium tuberculosis efpA encodes an efflux protein of the QacA transporter family. (PMID 9008277)

Li XZ, et al. 2004. Antimicrob Agents Chemother 48(7): 2415-2423. Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. (PMID 15215089)

Resistomes

Prevalence of efpA among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI for 82 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGS
Mycobacterium tuberculosis100%0%99.43%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.

Bit-score Cut-off (blastP): 1000


>gb|CCP45647.1|-|efpA [Mycobacterium tuberculosis H37Rv]
MTALNDTERAVRNWTAGRPHRPAPMRPPRSEETASERPSRYYPTWLPSRSFIAAVIAIGGMQLLATMDSTVAIVALPKIQNELSLSDAGR
SWVITAYVLTFGGLMLLGGRLGDTIGRKRTFIVGVALFTISSVLCAVAWDEATLVIARLSQGVGSAIASPTGLALVATTFPKGPARNAAT
AVFAAMTAIGSVMGLVVGGALTEVSWRWAFLVNVPIGLVMIYLARTALRETNKERMKLDATGAILATLACTAAVFAFSIGPEKGWMSGIT
IGSGLVALAAAVAFVIVERTAENPVVPFHLFRDRNRLVTFSAILLAGGVMFSLTVCIGLYVQDILGYSALRAGVGFIPFVIAMGIGLGVS
SQLVSRFSPRVLTIGGGYLLFGAMLYGSFFMHRGVPYFPNLVMPIVVGGIGIGMAVVPLTLSAIAGVGFDQIGPVSAIALMLQSLGGPLV
LAVIQAVITSRTLYLGGTTGPVKFMNDVQLAALDHAYTYGLLWVAGAAIIVGGMALFIGYTPQQVAHAQEVKEAIDAGEL


>gb|AL123456.3|-|3153039-3154631|efpA [Mycobacterium tuberculosis H37Rv]
ATGACGGCTCTCAACGACACAGAGCGGGCGGTCCGTAACTGGACAGCCGGACGCCCACACCGTCCGGCCCCGATGCGCCCGCCGCGCTCG
GAGGAGACCGCTTCAGAGCGCCCCAGCAGGTACTACCCGACTTGGCTGCCCTCGCGCAGCTTTATCGCTGCGGTTATTGCTATCGGCGGG
ATGCAGCTGCTGGCGACCATGGACAGCACCGTCGCCATCGTCGCGCTACCTAAGATTCAAAACGAGCTGAGCTTGTCTGATGCCGGCCGC
AGCTGGGTGATCACCGCCTACGTGCTGACCTTCGGCGGGCTGATGCTGCTCGGCGGCCGGCTTGGCGACACCATCGGGCGCAAACGCACC
TTCATTGTTGGCGTTGCGCTATTCACCATCTCGTCGGTGCTGTGCGCGGTCGCCTGGGACGAGGCGACGTTGGTGATCGCCCGGTTGTCC
CAGGGTGTGGGGTCGGCCATCGCATCTCCGACCGGTCTGGCGCTGGTGGCGACCACGTTCCCCAAGGGACCTGCCCGCAACGCCGCGACG
GCGGTGTTCGCCGCGATGACCGCGATCGGGTCGGTGATGGGGCTGGTGGTCGGCGGAGCACTGACCGAGGTGTCATGGCGGTGGGCGTTC
CTGGTGAACGTGCCGATCGGGCTGGTGATGATCTACCTGGCCCGCACCGCCCTACGGGAAACCAACAAAGAACGGATGAAGCTCGACGCC
ACCGGGGCCATACTGGCCACGCTGGCATGCACCGCGGCGGTTTTCGCCTTCTCGATCGGTCCTGAAAAGGGCTGGATGTCAGGCATTACC
ATCGGTTCGGGCCTGGTGGCCTTGGCGGCCGCTGTCGCGTTTGTCATCGTGGAGCGCACTGCCGAGAACCCCGTCGTGCCGTTCCACTTG
TTCCGCGACCGCAACCGGTTGGTCACGTTCAGCGCGATCCTGTTGGCCGGCGGCGTCATGTTCAGCCTGACCGTCTGCATCGGCCTGTAC
GTGCAGGACATCTTGGGCTACAGCGCGCTACGCGCGGGCGTAGGTTTCATCCCGTTCGTCATCGCGATGGGAATCGGCCTAGGTGTGTCC
TCGCAGCTGGTGTCCCGGTTTTCGCCACGGGTGTTGACCATCGGCGGCGGATATCTGCTATTCGGCGCCATGCTGTACGGCTCATTTTTC
ATGCACCGTGGTGTGCCCTACTTCCCCAACCTGGTCATGCCGATCGTCGTCGGCGGGATTGGCATCGGCATGGCCGTCGTCCCGCTGACT
CTGTCGGCGATCGCTGGCGTCGGCTTCGACCAGATCGGTCCGGTATCGGCAATTGCGCTGATGCTGCAGAGCCTGGGCGGTCCGCTGGTG
CTCGCCGTCATCCAGGCTGTGATCACGTCGCGCACGCTGTACCTGGGCGGTACCACCGGTCCGGTGAAGTTCATGAACGACGTGCAGTTG
GCCGCGCTTGACCACGCCTACACCTACGGCCTGCTGTGGGTGGCCGGAGCGGCCATCATCGTCGGCGGTATGGCGCTGTTTATCGGGTAT
ACGCCGCAGCAGGTTGCCCATGCGCAGGAGGTCAAGGAAGCGATCGACGCCGGCGAGCTGTAA