mgtA

Accession ARO:3000462
Synonym(s)mgt
CARD Short NamemgtA
DefinitionA macrolide glycosyltransferase encoded by the mgtA gene in Streptomyces lividans. This enzyme inactivates macrolides using UDP-glucose as a cofactor. Its optimal substrates are lankamycin, calcomycin, rosaramicin, methymycin, and pikromycin, while interactions with erythomycin, oldeandomycin, azithromycin, and tylosin were weaker. It is inactive against spiramycin and carbomycin. Mechanism first described by Cundliffe, 1992.
AMR Gene Familymgt macrolide glycotransferase
Drug Classmacrolide antibiotic
Resistance Mechanismantibiotic inactivation
Classification10 ontology terms | Show
Parent Term(s)5 ontology terms | Show
+ confers_resistance_to_antibiotic erythromycin [Antibiotic]
+ confers_resistance_to_antibiotic tylosin [Antibiotic]
+ confers_resistance_to_antibiotic azithromycin [Antibiotic]
+ confers_resistance_to_antibiotic methymycin [Antibiotic]
+ mgt macrolide glycotransferase [AMR Gene Family]
Publications

Cundliffe E. 1992. Gene 115(1-2): 75-84. Resistance to macrolides and lincosamides in Streptomyces lividans and to aminoglycosides in Micromonospora purpurea. (PMID 1612452)

Cundliffe E. 1992. Antimicrob Agents Chemother 36(2): 348-352. Glycosylation of macrolide antibiotics in extracts of Streptomyces lividans. (PMID 1605601)

Resistomes

Prevalence of mgtA among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GI
No prevalence data


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 700


>gb|ABA28305.2|+|mgtA [Streptomyces lividans]
MKRKELHETSRLAYGRRMTTRPAHIAMFSIALHGHVNPSLEVIRELVARGHRVTYAIPPLLADKVAEAGAEPKLWNSTLPGPDADPEAWG
STLLDNVEPFLADAIQSLPQLAQAYEGDEPDLVLHDIASYTARVLGRRWEVPVISLSPCMVAWEGYEQEVGEPMWEEPRKTERGQAYYAR
FHAWLEENGITDHPDPFIGRPDRSLVLIPKALQPHADRVDETTYTFVGACQGDRTAEGDWARPEGAEKVVLVSLGSAFTKQPAFYRECVR
AFGELPGWHTVLQVGRHVDPAELGDVPDNVEVRTWVPQLAILQQADLFVTHAGAGGSQEGLATATPMIAVPQAADQFGNADMLQGLGVAR
TLPTEEATAKALRTAALALVDDPEVAARLKEIQARMAQEGGTRRAADLIEAELAAARG


>gb|DQ185434.2|+|1-1257|mgtA [Streptomyces lividans]
ATGAAGCGAAAAGAGTTGCACGAGACGTCTCGTCTCGCATACGGTCGTCGCATGACCACTCGCCCCGCGCACATCGCCATGTTCTCCATC
GCCCTGCACGGCCACGTGAACCCCAGCCTGGAGGTCATCCGCGAGCTCGTCGCGCGGGGGCACCGGGTGACGTACGCGATCCCGCCGCTC
CTCGCGGACAAGGTCGCCGAGGCGGGCGCCGAACCCAAGCTCTGGAACAGCACACTGCCCGGCCCCGACGCCGACCCGGAGGCCTGGGGG
AGCACCCTCCTGGACAACGTGGAGCCCTTCCTCGCCGACGCGATCCAGTCGCTCCCGCAGCTCGCCCAGGCGTACGAGGGGGACGAGCCG
GACCTGGTCCTGCACGACATCGCCTCCTACACCGCCCGCGTCCTGGGCCGCCGCTGGGAGGTGCCCGTGATCTCCCTGTCGCCCTGCATG
GTCGCCTGGGAGGGGTACGAGCAGGAGGTCGGCGAGCCGATGTGGGAGGAGCCGCGGAAGACCGAGCGCGGGCAGGCGTACTACGCCCGC
TTCCACGCCTGGCTGGAGGAGAACGGGATCACCGACCACCCCGACCCGTTCATCGGCCGCCCCGACCGCTCCCTGGTGCTGATCCCCAAG
GCGCTCCAGCCCCACGCCGACCGGGTGGACGAGACGACGTACACCTTCGTCGGCGCCTGCCAGGGGGACCGCACCGCCGAGGGCGACTGG
GCCCGTCCCGAGGGCGCGGAGAAGGTCGTCCTGGTCTCGCTCGGTTCGGCCTTCACCAAGCAGCCCGCGTTCTACCGGGAGTGCGTCCGG
GCCTTCGGTGAGCTGCCCGGCTGGCACACCGTGCTCCAGGTCGGCCGGCACGTAGACCCGGCCGAGCTGGGCGACGTACCGGACAACGTG
GAAGTCCGCACGTGGGTACCGCAGTTGGCGATCCTCCAGCAGGCCGACCTGTTCGTCACCCACGCGGGCGCGGGCGGCAGCCAGGAGGGT
CTGGCCACCGCCACGCCGATGATCGCCGTACCGCAGGCCGCGGACCAGTTCGGCAACGCCGACATGCTCCAGGGCCTCGGCGTCGCCCGC
ACCCTCCCGACCGAGGAGGCCACCGCGAAGGCGCTGCGCACCGCCGCCCTCGCCCTGGTCGACGACCCGGAGGTGGCGGCGCGCCTGAAG
GAGATCCAGGCGCGGATGGCCCAGGAGGGCGGCACCCGCCGGGCCGCCGACCTCATCGAGGCCGAACTGGCCGCCGCGCGCGGCTGA