adeF

Accession ARO:3000777
CARD Short NameadeF
DefinitionAdeF is the membrane fusion protein of the multidrug efflux complex AdeFGH.
AMR Gene Familyresistance-nodulation-cell division (RND) antibiotic efflux pump
Drug Classtetracycline antibiotic, fluoroquinolone antibiotic
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
Resistomes with Perfect MatchesAcinetobacter baumanniig+wgs
Resistomes with Sequence VariantsAchromobacter insolitusg+wgs, Achromobacter xylosoxidansg+wgs+gi, Acinetobacter baumanniig+p+wgs, Acinetobacter calcoaceticusg+wgs, Acinetobacter haemolyticusg+wgs+gi, Acinetobacter johnsoniig+p+wgs+gi, Acinetobacter juniig+wgs, Acinetobacter lwoffiiwgs, Acinetobacter nosocomialisg+p+wgs, Acinetobacter pittiig+p+wgs, Aeromonas caviaeg+p+wgs, Aeromonas enteropelogenesg+wgs, Aeromonas hydrophilag+wgs, Aeromonas veroniig+wgs+gi, Alcaligenes faecalisg+wgs, Aliarcobacter butzlerig+wgs, Alistipes putrediniswgs, Bacteroides caccaeg+wgs, Bacteroides fragilisg+wgs, Bacteroides ovatusg+wgs, Bacteroides thetaiotaomicrong+wgs, Bordetella bronchisepticag+wgs, Bordetella hinziig+wgs, Bordetella holmesiig+wgs, Bordetella parapertussisg+wgs, Bordetella pertussisg+wgs, Bordetella petriig+wgs, Bordetella trematumg+wgs, Brucella abortusg+wgs, Brucella canisg+wgs, Brucella inopinatag+wgs, Brucella intermediag+wgs, Brucella melitensisg+wgs, Brucella ovisg+wgs, Brucella suisg+wgs, Burkholderia ambifariag+wgs, Burkholderia cenocepaciag+p+wgs+gi, Burkholderia cepaciag+wgs, Burkholderia contaminansg+wgs+gi, Burkholderia dolosag+wgs, Burkholderia glumaeg+wgs, Burkholderia latag+wgs+gi, Burkholderia malleig+wgs, Burkholderia multivoransg+wgs, Burkholderia oklahomensisg+wgs, Burkholderia pseudomalleig+wgs, Burkholderia thailandensisg+wgs, Burkholderia vietnamiensisg+p+wgs, Butyricimonas faecalisg, Campylobacter concisusg+wgs, Campylobacter fetuswgs, Campylobacter rectusg+wgs, Campylobacter showaeg+wgs, Chryseobacterium nakagawaig+wgs+gi, Citrobacter amalonaticusg+wgs, Citrobacter freundiig+wgs+gi, Citrobacter koserig+wgs, Citrobacter portucalensisg+wgs, Citrobacter youngaewgs, Comamonas testosteronig+wgs, Cronobacter condimentig+wgs, Cronobacter dublinensisg+wgs, Cronobacter malonaticusg+wgs, Cronobacter sakazakiig+wgs+gi, Cronobacter turicensiswgs, Cronobacter universalisg+wgs, Cupriavidus campinensisg+p+wgs+gi, Cupriavidus metalliduransg+p+wgs+gi, Cytophaga hutchinsoniig+wgs+gi, Dechloromonas aromaticagi, Delftia tsuruhatensisg+wgs, Edwardsiella tardag+wgs, Elizabethkingia anophelisg+wgs, Elizabethkingia miricolag+wgs, Enterobacter asburiaeg+wgs+gi, Enterobacter cancerogenusg+wgs, Enterobacter chengduensisg+wgs+gi, Enterobacter cloacaeg+p+wgs+gi, Enterobacter hormaecheig+p+wgs+gi, Enterobacter kobeig+wgs+gi, Enterobacter roggenkampiig+wgs, Escherichia albertiip+wgs, Escherichia colig+p+wgs+gi, Escherichia fergusoniip+wgs, Granulibacter bethesdensisg, Helicobacter canadensisg+wgs, Helicobacter cinaedig+wgs, Helicobacter pullorumg+wgs, Inquilinus limosuswgs, Klebsiella aerogenesg+p+wgs, Klebsiella huaxiensisg+wgs+gi, Klebsiella michiganensisg+p+wgs, Klebsiella oxytocag+wgs, Klebsiella pneumoniaeg+p+wgs+gi, Klebsiella quasipneumoniaeg+wgs+gi, Kosakonia arachidisg+wgs+gi, Laribacter hongkongensisg+wgs, Leclercia adecarboxylatag+wgs+gi, Legionella anisag+wgs, Legionella longbeachaeg+wgs, Legionella pneumophilag+wgs, Luteibacter pinisolig+gi, Methylorubrum populig+wgs+gi, Moraxella osloensiswgs, Nitrosomonas europaeag+wgs+gi, Orrella dioscoreaeg+gi, Pannonibacter phragmitetuswgs, Parabacteroides distasonisg+wgs, Paracoccus kondratievaeg+gi, Phocaeicola doreig+wgs, Phocaeicola massiliensiswgs, Phocaeicola vulgatusg+wgs, Photobacterium profundumg+wgs+gi, Plesiomonas shigelloidesg+p+wgs, Proteus mirabilisg+wgs, Proteus penneriwgs, Proteus vulgarisg+wgs, Providencia alcalifaciensg, Providencia heimbachaeg+wgs, Providencia rettgerig+p+wgs, Providencia stuartiig+wgs, Pseudomonas aeruginosag+p+wgs+gi, Pseudomonas brassicacearumg+wgs+gi, Pseudomonas chlororaphisg+wgs+gi, Pseudomonas fluorescensg+wgs+gi, Pseudomonas koreensisg+wgs+gi, Pseudomonas mendocinag+wgs, Pseudomonas monteiliig+wgs, Pseudomonas putidag+wgs+gi, Pseudomonas stutzerig+wgs, Pseudomonas synxanthag+wgs+gi, Pseudomonas syringaeg+wgs, Ralstonia mannitolilyticag+wgs, Ralstonia pickettiig+wgs, Ralstonia solanacearumg+p+wgs, Raoultella planticolag+wgs, Rhizobium leguminosarumg+p+wgs+gi, Rhodanobacter glycinisg+wgs+gi, Rhodopseudomonas palustrisg+wgs+gi, Salmonella bongorig+wgs, Salmonella entericag+p+wgs+gi, Serratia liquefaciensg+wgs, Serratia marcescensg+p+wgs, Serratia odoriferag+wgs, Serratia rubidaeag+wgs+gi, Shewanella putrefaciensg+wgs, Sphingobacterium hotanenseg+wgs, Sphingobium yanoikuyaeg+p+wgs, Stenotrophomonas maltophiliag+wgs+gi, Thalassospira indicag+gi, Vibrio alginolyticusg+wgs, Vibrio fluvialisg+wgs, Vibrio harveyig+wgs, Vibrio neocaledonicusg, Vibrio owensiig+wgs, Vibrio parahaemolyticusg+wgs, Vibrio vulnificusg+wgs, Xanthomonas campestrisg+wgs, Yersinia canariaeg+wgs, Yersinia enterocoliticag+wgs, Yersinia kristenseniig+wgs, Yersinia pestisg+wgs, Yersinia pseudotuberculosisg+wgs
Classification10 ontology terms | Show
Parent Term(s)2 ontology terms | Show
Publications

Coyne S, et al. 2010. Antimicrob Agents Chemother 54(10): 4389-4393. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. (PMID 20696879)

Resistomes

Prevalence of adeF among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GI
Achromobacter insolitus100%0%85.71%0%
Achromobacter xylosoxidans100%0%55.73%14.29%
Acinetobacter baumannii98.94%0.52%64.49%0%
Acinetobacter calcoaceticus100%0%82.61%0%
Acinetobacter haemolyticus85.71%0%65.12%88.89%
Acinetobacter johnsonii5.26%2.78%21.82%33.33%
Acinetobacter junii18.18%0%11.94%0%
Acinetobacter lwoffii0%0%7.89%0%
Acinetobacter nosocomialis100%1.64%73.56%0%
Acinetobacter pittii100%0.99%76.7%0%
Aeromonas caviae97.73%1.3%76.88%0%
Aeromonas enteropelogenes100%0%100%0%
Aeromonas hydrophila100%0%80.65%0%
Aeromonas veronii94.55%0%65.17%12.5%
Alcaligenes faecalis90%0%82.35%0%
Aliarcobacter butzleri100%0%25.2%0%
Alistipes putredinis0%0%88%0%
Bacteroides caccae100%0%95%0%
Bacteroides fragilis100%0%55.17%0%
Bacteroides ovatus100%0%44.87%0%
Bacteroides thetaiotaomicron100%0%42.66%0%
Bordetella bronchiseptica100%0%97.26%0%
Bordetella hinzii100%0%81.82%0%
Bordetella holmesii100%0%64.29%0%
Bordetella parapertussis100%0%100%0%
Bordetella pertussis95.28%0%90.88%0%
Bordetella petrii100%0%83.33%0%
Bordetella trematum100%0%100%0%
Brucella abortus52.38%0%71%0%
Brucella canis100%0%94.74%0%
Brucella inopinata100%0%100%0%
Brucella intermedia100%0%75.68%0%
Brucella melitensis95.73%0%71.84%0%
Brucella ovis50%0%93.75%0%
Brucella suis95.83%0%60.42%0%
Burkholderia ambifaria39.53%0%23.38%0%
Burkholderia cenocepacia87.44%3.33%69.96%50%
Burkholderia cepacia89.09%0%79.82%0%
Burkholderia contaminans91.84%0%53.75%60%
Burkholderia dolosa66.67%0%50%0%
Burkholderia glumae100%0%62.5%0%
Burkholderia lata77.78%0%37.5%100%
Burkholderia mallei93.22%0%55.95%0%
Burkholderia multivorans67.95%0%50.96%0%
Burkholderia oklahomensis70%0%100%0%
Burkholderia pseudomallei97.25%0%86.27%0%
Burkholderia thailandensis97.83%0%73.58%0%
Burkholderia vietnamiensis65.62%9.09%52.59%0%
Butyricimonas faecalis100%0%0%0%
Campylobacter concisus50%0%42.73%0%
Campylobacter fetus0%0%1.33%0%
Campylobacter rectus100%0%100%0%
Campylobacter showae100%0%100%0%
Chryseobacterium nakagawai100%0%100%100%
Citrobacter amalonaticus90.91%0%81.82%0%
Citrobacter freundii5.74%0%15.09%9.09%
Citrobacter koseri100%0%49.55%0%
Citrobacter portucalensis3.7%0%3.6%0%
Citrobacter youngae0%0%6.25%0%
Comamonas testosteroni100%0%92.86%0%
Cronobacter condimenti100%0%100%0%
Cronobacter dublinensis100%0%100%0%
Cronobacter malonaticus100%0%87.27%0%
Cronobacter sakazakii100%0%91.93%50%
Cronobacter turicensis0%0%83.33%0%
Cronobacter universalis100%0%100%0%
Cupriavidus campinensis100%50%100%100%
Cupriavidus metallidurans100%16.67%100%100%
Cytophaga hutchinsonii100%0%100%100%
Dechloromonas aromatica0%0%0%100%
Delftia tsuruhatensis100%0%100%0%
Edwardsiella tarda100%0%93.33%0%
Elizabethkingia anophelis100%0%67.01%0%
Elizabethkingia miricola100%0%82.61%0%
Enterobacter asburiae100%0%71.15%33.33%
Enterobacter cancerogenus100%0%100%0%
Enterobacter chengduensis100%0%84%50%
Enterobacter cloacae100%0.56%73.48%10%
Enterobacter hormaechei99.64%0.06%67.2%10%
Enterobacter kobei100%0%68.56%50%
Enterobacter roggenkampii97.67%0%62.23%0%
Escherichia albertii0%0.56%1.29%0%
Escherichia coli0.02%0.26%1.02%0.13%
Escherichia fergusonii0%1.07%3.26%0%
Granulibacter bethesdensis100%0%0%0%
Helicobacter canadensis100%0%100%0%
Helicobacter cinaedi100%0%94.12%0%
Helicobacter pullorum100%0%93.1%0%
Inquilinus limosus0%0%75%0%
Klebsiella aerogenes100%1.09%79.94%0%
Klebsiella huaxiensis100%0%66.67%50%
Klebsiella michiganensis100%0.57%69.15%0%
Klebsiella oxytoca100%0%74.79%0%
Klebsiella pneumoniae98.93%0.22%56.94%2.86%
Klebsiella quasipneumoniae100%0%73.68%100%
Kosakonia arachidis100%0%100%100%
Laribacter hongkongensis100%0%10.42%0%
Leclercia adecarboxylata100%0%55.81%50%
Legionella anisa100%0%100%0%
Legionella longbeachae100%0%100%0%
Legionella pneumophila100%0%80.52%0%
Luteibacter pinisoli100%0%0%100%
Methylorubrum populi100%0%100%100%
Moraxella osloensis0%0%7.14%0%
Nitrosomonas europaea100%0%100%100%
Orrella dioscoreae100%0%0%100%
Pannonibacter phragmitetus0%0%16.67%0%
Parabacteroides distasonis100%0%66.36%0%
Paracoccus kondratievae50%0%0%100%
Phocaeicola dorei100%0%79.17%0%
Phocaeicola massiliensis0%0%96.15%0%
Phocaeicola vulgatus100%0%51.25%0%
Photobacterium profundum50%0%66.67%100%
Plesiomonas shigelloides100%33.33%89.66%0%
Proteus mirabilis100%0%42.74%0%
Proteus penneri0%0%25%0%
Proteus vulgaris18.18%0%5.56%0%
Providencia alcalifaciens18.18%0%0%0%
Providencia heimbachae100%0%71.43%0%
Providencia rettgeri100%2.7%54.14%0%
Providencia stuartii100%0%63.64%0%
Pseudomonas aeruginosa35.74%0.29%29.78%6.94%
Pseudomonas brassicacearum100%0%92%100%
Pseudomonas chlororaphis100%0%62.9%88.89%
Pseudomonas fluorescens100%0%55.22%100%
Pseudomonas koreensis100%0%91.3%100%
Pseudomonas mendocina100%0%100%0%
Pseudomonas monteilii100%0%61.9%0%
Pseudomonas putida100%0%73.26%75%
Pseudomonas stutzeri100%0%74.05%0%
Pseudomonas synxantha100%0%87.5%100%
Pseudomonas syringae100%0%78.68%0%
Ralstonia mannitolilytica100%0%100%0%
Ralstonia pickettii100%0%100%0%
Ralstonia solanacearum95.12%27.94%42.42%0%
Raoultella planticola100%0%94.87%0%
Rhizobium leguminosarum100%0.78%74.65%100%
Rhodanobacter glycinis100%0%100%100%
Rhodopseudomonas palustris100%0%100%100%
Salmonella bongori100%0%89.47%0%
Salmonella enterica67.82%1.53%58.76%2.32%
Serratia liquefaciens100%0%50.79%0%
Serratia marcescens100%4.52%78.24%0%
Serratia odorifera100%0%100%0%
Serratia rubidaea100%0%90.91%100%
Shewanella putrefaciens100%0%87.5%0%
Sphingobacterium hotanense100%0%100%0%
Sphingobium yanoikuyae100%4%88.24%0%
Stenotrophomonas maltophilia100%0%73%75%
Thalassospira indica100%0%0%100%
Vibrio alginolyticus97.53%0%25.79%0%
Vibrio fluvialis97.37%0%32%0%
Vibrio harveyi50%0%78%0%
Vibrio neocaledonicus100%0%0%0%
Vibrio owensii83.33%0%84.21%0%
Vibrio parahaemolyticus50%0%74.24%0%
Vibrio vulnificus47.27%0%74.69%0%
Xanthomonas campestris100%0%38.89%0%
Yersinia canariae100%0%50%0%
Yersinia enterocolitica100%0%75.45%0%
Yersinia kristensenii100%0%65.71%0%
Yersinia pestis100%0%57.23%0%
Yersinia pseudotuberculosis100%0%92.65%0%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 750


>gb|CAJ77856.1|+|adeF [Acinetobacter baumannii AYE]
MNISKFFIDRPIFAGVLSVLILLAGLLSVFQLPISEYPEVVPPSVVVRAQYPGANPKVIAETVASPLEESINGVEDMLYMQSQANSDGNL
TITVNFKLGIDPDKAQQLVQNRVSQAMPRLPEDVQRLGVTTLKSSPTLTMVVHLTSPDNRYDMTYLRNYAVLNVKDRLARLQGVGEVGLF
GSGDYAMRVWLDPQKVAQRNLTATEIVNAIREQNIQVAAGTIGASPSNSPLQLSVNAQGRLTTEQEFADIILKTAPDGAVTRLGDVARVE
LAASQYGLRSLLDNKQAVAIPIFQAPGANALQVSDQVRSTMKELSKDFPSSIKYDIVYDPTQFVRASIKAVVHTLLEAITLVVVVVILFL
QTWRASIIPLLAVPVSIIGTFALMLAFGYSINALSLFGMVLAIGIVVDDAIVVVENVERNIEAGLNPREATYRAMREVSGPIIAIALTLV
AVFVPLAFMTGLTGQFYKQFAMTIAISTVISAFNSLTLSPALAALLLKGHDAKPDALTRIMNRVFGRFFALFNRVFSRASDRYSQGVSRV
ISHKASAMGVYAALLGLTVGISYIVPGGFVPAQDKQYLISFAQLPNGASLDRTEAVIRKMSDTALKQPGVESAVAFPGLSINGFTNSSSA
GIVFVTLKPFDERKAKDLSANAIAGALNQKYSAIQDAYIAVFPPPPVMGLGTMGGFKLQLEDRGALGYSALNDAAQNFMKAAQSAPELGP
MFSSYQINVPQLNVDLDRVKAKQQGVAVTDVFNTMQIYLGSQYVNDFNRFGRVYQVRAQADAPFRANPEDILQLKTRNSAGQMVPLSSLV
NVTQTYGPEMVVRYNGYTSADINGGPAPGYSSSQAEAAVERIAAQTLPRGIKFEWTDLTYQKILAGNAGLWVFPISVLLVFLVLAAQYES
LTLPLAVILIVPMGILAALTGVWLTAGDNNIFTQIGLMVLVGLACKNAILIVEFARELEMQGATAFKAAVEASRLRLRPILMTSIAFIMG
VVPLVTSTGAGSEMRHAMGVAVFFGMIGVTFFGLFLTPAFYVLIRTLNSKHKLHSAAVHEAPLASPHDH


>gb|CT025801.2|+|1-3180|adeF [Acinetobacter baumannii AYE]
ATGAATATTTCTAAATTTTTTATTGATCGGCCGATCTTTGCTGGTGTGCTATCAGTCTTGATTTTACTCGCCGGTCTCCTTTCGGTATTT
CAGTTACCGATTTCTGAATATCCCGAGGTTGTTCCACCATCTGTGGTGGTACGCGCCCAATATCCGGGTGCAAACCCAAAAGTGATTGCT
GAAACGGTTGCATCTCCGCTCGAAGAGTCAATCAACGGCGTCGAAGACATGCTGTATATGCAATCTCAAGCAAACAGCGACGGTAACCTA
ACCATTACGGTGAACTTTAAGCTCGGTATCGACCCAGACAAAGCCCAACAATTGGTTCAAAACCGTGTGTCTCAGGCCATGCCCCGTTTA
CCTGAAGATGTACAGCGCTTAGGTGTAACCACACTAAAAAGCTCACCTACTTTAACTATGGTAGTGCATCTGACCTCACCAGATAATCGC
TATGACATGACCTACTTACGTAACTATGCGGTGCTCAACGTGAAAGACCGTTTAGCGCGTTTACAAGGGGTTGGTGAAGTCGGATTATTT
GGTTCTGGTGACTACGCGATGCGTGTATGGCTTGACCCGCAAAAAGTAGCGCAGCGTAACCTCACCGCGACCGAAATTGTGAATGCAATC
CGTGAACAAAATATTCAGGTTGCAGCGGGTACAATCGGTGCATCACCAAGTAATTCACCTTTACAGCTTTCAGTCAATGCTCAAGGTCGT
TTAACTACTGAACAAGAATTCGCAGATATCATTTTAAAAACTGCACCAGATGGCGCGGTTACCCGATTGGGTGATGTTGCTCGTGTCGAA
CTTGCAGCCTCTCAATATGGCTTACGTTCATTGCTTGATAATAAACAAGCGGTCGCGATTCCAATTTTCCAAGCACCGGGTGCGAATGCT
TTACAAGTTTCCGATCAAGTGCGTAGCACAATGAAGGAGCTTTCAAAAGATTTCCCATCTTCAATTAAATACGACATTGTTTATGACCCG
ACTCAATTCGTACGTGCAAGTATTAAAGCGGTCGTTCATACCTTACTTGAAGCAATTACACTGGTTGTTGTGGTCGTTATTTTATTCTTG
CAAACATGGCGTGCCTCAATCATTCCATTGCTTGCCGTACCGGTTTCAATTATTGGTACATTCGCGCTCATGCTCGCTTTTGGTTACTCA
ATCAATGCGCTATCACTGTTCGGAATGGTACTTGCCATCGGGATTGTCGTCGATGACGCGATTGTGGTCGTCGAAAATGTCGAGAGGAAT
ATTGAAGCAGGCTTAAACCCAAGGGAGGCGACTTACCGTGCCATGCGAGAAGTCAGTGGACCGATTATTGCCATTGCTTTAACACTTGTT
GCAGTATTCGTACCTCTTGCCTTTATGACAGGCTTAACAGGGCAATTCTATAAACAATTTGCCATGACCATTGCCATTTCAACGGTTATT
TCGGCATTTAACTCGCTTACCCTATCTCCTGCTTTGGCAGCGCTGTTACTGAAAGGACATGATGCTAAACCGGATGCCTTAACACGTATT
ATGAATCGTGTATTCGGTCGTTTCTTTGCACTGTTTAACCGTGTGTTTTCACGTGCTTCAGACCGTTATAGTCAAGGCGTCAGCCGTGTC
ATTTCCCATAAAGCTTCGGCAATGGGTGTCTATGCAGCACTCTTAGGTTTAACCGTTGGTATTTCCTATATTGTTCCAGGTGGTTTCGTT
CCTGCGCAGGACAAACAATATTTAATTAGCTTTGCGCAGCTACCAAACGGCGCATCATTAGATCGTACCGAAGCGGTCATTCGTAAAATG
AGTGACACTGCACTTAAACAACCTGGTGTAGAAAGTGCAGTTGCCTTTCCTGGCCTATCAATTAACGGTTTCACCAATAGCTCAAGTGCC
GGTATTGTCTTTGTGACTTTAAAGCCATTTGATGAACGTAAGGCAAAAGACTTATCTGCAAATGCAATTGCAGGTGCGCTCAACCAGAAA
TATTCAGCTATTCAAGATGCCTATATCGCGGTTTTCCCACCGCCACCAGTGATGGGCTTAGGTACTATGGGCGGCTTTAAACTACAACTT
GAAGACCGAGGTGCCTTAGGCTATTCAGCCTTGAACGATGCTGCACAAAACTTTATGAAGGCAGCACAATCAGCCCCTGAACTGGGTCCA
ATGTTCTCAAGTTATCAAATTAACGTACCTCAACTCAACGTAGATCTGGACCGTGTAAAAGCTAAACAGCAAGGCGTTGCTGTGACAGAT
GTTTTCAATACTATGCAGATTTATTTAGGTTCTCAGTACGTTAACGACTTTAACCGCTTTGGACGTGTTTATCAGGTTCGTGCACAAGCC
GATGCGCCTTTCCGTGCTAACCCTGAAGATATTTTGCAGCTTAAAACCCGTAATAGTGCCGGACAAATGGTGCCATTATCTTCATTGGTG
AATGTAACTCAAACCTATGGTCCTGAAATGGTCGTTCGTTATAACGGTTACACATCAGCAGATATTAACGGTGGCCCTGCCCCAGGTTAT
TCATCTAGCCAAGCAGAAGCTGCGGTTGAACGTATTGCTGCACAAACTCTACCGCGTGGTATCAAGTTTGAATGGACAGATTTAACTTAT
CAAAAAATCTTGGCTGGTAATGCTGGACTTTGGGTATTCCCTATTAGCGTATTACTCGTGTTCTTAGTGTTAGCTGCTCAGTATGAAAGC
TTAACCCTACCATTAGCAGTTATCTTAATTGTACCAATGGGAATCTTAGCGGCTCTGACAGGTGTCTGGTTGACAGCTGGAGATAACAAC
ATCTTTACTCAAATCGGTCTAATGGTACTGGTCGGGCTAGCCTGTAAAAATGCCATCTTAATTGTCGAATTTGCGAGGGAACTTGAAATG
CAAGGTGCGACTGCCTTTAAAGCAGCCGTTGAAGCAAGTCGTCTACGTTTACGCCCAATTTTAATGACCTCTATTGCATTTATTATGGGT
GTAGTGCCACTGGTTACTTCAACTGGCGCAGGTTCTGAAATGCGACATGCGATGGGTGTTGCCGTATTCTTCGGTATGATCGGTGTAACA
TTCTTTGGTTTATTCCTCACCCCGGCCTTTTACGTTCTGATTCGTACCCTCAACAGCAAACATAAACTGCATTCTGCGGCAGTTCATGAA
GCGCCGTTAGCTAGCCCACATGATCATTAA