adeF

Accession ARO:3000777
CARD Short NameadeF
DefinitionAdeF is the membrane fusion protein of the multidrug efflux complex AdeFGH.
AMR Gene Familyresistance-nodulation-cell division (RND) antibiotic efflux pump
Drug Classtetracycline antibiotic, fluoroquinolone antibiotic
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
Resistomes with Perfect MatchesAcinetobacter baumanniig+wgs
Resistomes with Sequence VariantsAchromobacter insolitusg+wgs, Achromobacter xylosoxidansg+wgs+gi, Acinetobacter baumanniig+wgs, Acinetobacter haemolyticusg+wgs+gi, Acinetobacter johnsoniig+p+wgs+gi, Acinetobacter juniig+wgs, Acinetobacter lwoffiiwgs, Acinetobacter nosocomialisg+p+wgs, Acinetobacter pittiig+p+wgs, Aeromonas caviaeg+wgs, Aeromonas hydrophilag+wgs, Aeromonas veroniig+wgs+gi, Alcaligenes faecalisg+wgs, Bacteroides fragilisg+wgs, Bacteroides ovatusg+wgs, Bordetella pertussisg+wgs, Bordetella trematumg+wgs, Brucella abortusg+wgs, Brucella canisg+wgs, Brucella melitensisg+wgs, Brucella ovisg+wgs, Brucella suisg+wgs, Burkholderia cenocepaciag+wgs+gi, Burkholderia cepaciag+wgs, Burkholderia contaminansg+wgs+gi, Burkholderia dolosag+wgs, Burkholderia latag+wgs+gi, Burkholderia multivoransg+wgs, Burkholderia pseudomalleig+wgs, Butyricimonas faecalisg, Campylobacter jejuniwgs, Chryseobacterium nakagawaig+wgs+gi, Citrobacter amalonaticusg+wgs, Citrobacter freundiig+wgs+gi, Citrobacter koserig+wgs, Citrobacter portucalensiswgs, Comamonas testosteronig+wgs, Cronobacter sakazakiig+wgs+gi, Cupriavidus campinensisg+p+wgs+gi, Cupriavidus metalliduransg+p+wgs+gi, Cytophaga hutchinsoniig+wgs+gi, Dechloromonas aromaticagi, Delftia tsuruhatensisg+wgs, Enterobacter asburiaeg+wgs+gi, Enterobacter chengduensisg+wgs+gi, Enterobacter cloacaeg+p+wgs+gi, Enterobacter hormaecheig+p+wgs+gi, Enterobacter kobeig+wgs+gi, Enterobacter roggenkampiig+wgs, Escherichia albertiip+wgs, Escherichia colig+p+wgs+gi, Escherichia fergusoniip+wgs, Klebsiella aerogenesg+p+wgs, Klebsiella huaxiensisg+wgs+gi, Klebsiella michiganensisg+p+wgs, Klebsiella oxytocag+wgs, Klebsiella pneumoniaeg+p+wgs+gi, Klebsiella quasipneumoniaeg+p+wgs+gi, Kosakonia arachidisg+wgs+gi, Laribacter hongkongensisg+wgs, Leclercia adecarboxylatag+wgs+gi, Legionella pneumophilag+wgs, Luteibacter pinisolig+gi, Methylorubrum populig+wgs+gi, Nitrosomonas europaeag+wgs+gi, Orrella dioscoreaeg+gi, Parabacteroides distasonisg+wgs, Paracoccus kondratievaeg+gi, Phocaeicola doreig+wgs, Photobacterium profundumg+wgs+gi, Proteus mirabilisg+wgs, Proteus penneriwgs, Proteus vulgarisg+wgs, Providencia heimbachaeg+wgs, Providencia rettgerig+p+wgs, Providencia stuartiig+wgs, Pseudomonas aeruginosag+p+wgs+gi, Pseudomonas brassicacearumg+wgs+gi, Pseudomonas chlororaphisg+wgs+gi, Pseudomonas fluorescensg+wgs+gi, Pseudomonas koreensisg+wgs+gi, Pseudomonas monteiliig+wgs, Pseudomonas putidag+wgs+gi, Pseudomonas stutzerig+wgs, Pseudomonas synxanthag+wgs+gi, Pseudomonas syringaeg+wgs, Ralstonia mannitolilyticag+wgs, Ralstonia pickettiig+wgs, Raoultella planticolag+wgs, Rhizobium leguminosarumg+p+wgs+gi, Rhodanobacter glycinisg+wgs+gi, Rhodopseudomonas palustrisg+wgs+gi, Salmonella entericag+p+wgs+gi, Serratia liquefaciensg+wgs, Serratia marcescensg+p+wgs, Serratia odoriferag+wgs, Serratia rubidaeag+wgs+gi, Shewanella putrefaciensg+wgs, Sphingobacterium hotanenseg, Stenotrophomonas maltophiliag+wgs+gi, Thalassospira indicag+gi, Vibrio neocaledonicusg, Vibrio owensiig+wgs, Vibrio parahaemolyticusg+wgs, Vibrio vulnificusg+wgs, Xanthomonas campestrisg+wgs, Yersinia canariaeg+wgs, Yersinia enterocoliticag+wgs, Yersinia pestisg+wgs
Classification10 ontology terms | Show
Parent Term(s)2 ontology terms | Show
Publications

Coyne S, et al. 2010. Antimicrob Agents Chemother 54(10): 4389-4393. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. (PMID 20696879)

Resistomes

Prevalence of adeF among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 263 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GI
Achromobacter insolitus100%0%80%0%
Achromobacter xylosoxidans100%0%87.14%14.29%
Acinetobacter baumannii99.69%0%78.72%0%
Acinetobacter haemolyticus85.71%0%65.85%88.89%
Acinetobacter johnsonii7.14%3.17%8.33%33.33%
Acinetobacter junii12.5%0%12.73%0%
Acinetobacter lwoffii0%0%9.52%0%
Acinetobacter nosocomialis100%1.64%77.24%0%
Acinetobacter pittii100%1.15%85.29%0%
Aeromonas caviae100%0%77.48%0%
Aeromonas hydrophila100%0%92.55%0%
Aeromonas veronii88.89%0%77.78%12.5%
Alcaligenes faecalis85.71%0%95.65%0%
Bacteroides fragilis100%0%78.57%0%
Bacteroides ovatus100%0%83.7%0%
Bordetella pertussis94.72%0%87.55%0%
Bordetella trematum100%0%100%0%
Brucella abortus54%0%68.23%0%
Brucella canis100%0%94.74%0%
Brucella melitensis95.61%0%87.1%0%
Brucella ovis50%0%93.75%0%
Brucella suis95.83%0%59.57%0%
Burkholderia cenocepacia88.77%0%80.82%50%
Burkholderia cepacia85.71%0%79.64%0%
Burkholderia contaminans95.83%0%51.95%60%
Burkholderia dolosa66.67%0%47.37%0%
Burkholderia lata77.78%0%33.33%100%
Burkholderia multivorans67.69%0%67.86%0%
Burkholderia pseudomallei98.22%0%90.18%0%
Butyricimonas faecalis100%0%0%0%
Campylobacter jejuni0%0%0.23%0%
Chryseobacterium nakagawai100%0%100%100%
Citrobacter amalonaticus90%0%85.42%0%
Citrobacter freundii9.23%0%16.46%9.09%
Citrobacter koseri100%0%46.67%0%
Citrobacter portucalensis0%0%2%0%
Comamonas testosteroni100%0%93.33%0%
Cronobacter sakazakii100%0%93.13%50%
Cupriavidus campinensis100%50%100%100%
Cupriavidus metallidurans100%18.18%100%100%
Cytophaga hutchinsonii100%0%100%100%
Dechloromonas aromatica0%0%0%100%
Delftia tsuruhatensis100%0%100%0%
Enterobacter asburiae100%0%88.89%33.33%
Enterobacter chengduensis100%0%90.91%50%
Enterobacter cloacae100%0.74%82.27%10%
Enterobacter hormaechei99.4%0.17%80.88%10%
Enterobacter kobei91.67%0%87.7%50%
Enterobacter roggenkampii96.15%0%73.94%0%
Escherichia albertii0%2.63%1.15%0%
Escherichia coli0.03%0.23%1%0.13%
Escherichia fergusonii0%1.2%4.62%0%
Klebsiella aerogenes100%1.45%81.45%0%
Klebsiella huaxiensis100%0%50%50%
Klebsiella michiganensis97.67%0.8%75.65%0%
Klebsiella oxytoca100%0%81.57%0%
Klebsiella pneumoniae98.78%0.2%71.38%2.86%
Klebsiella quasipneumoniae100%0.27%81.54%100%
Kosakonia arachidis100%0%100%100%
Laribacter hongkongensis100%0%66.67%0%
Leclercia adecarboxylata100%0%90.48%50%
Legionella pneumophila100%0%91.96%0%
Luteibacter pinisoli100%0%0%100%
Methylorubrum populi100%0%100%100%
Nitrosomonas europaea100%0%100%100%
Orrella dioscoreae100%0%0%100%
Parabacteroides distasonis100%0%82.84%0%
Paracoccus kondratievae50%0%0%100%
Phocaeicola dorei100%0%83.56%0%
Photobacterium profundum50%0%66.67%100%
Proteus mirabilis100%0%68.62%0%
Proteus penneri0%0%33.33%0%
Proteus vulgaris22.22%0%6.67%0%
Providencia heimbachae100%0%100%0%
Providencia rettgeri100%3.03%54.31%0%
Providencia stuartii100%0%62.79%0%
Pseudomonas aeruginosa35.65%0.34%34.23%6.94%
Pseudomonas brassicacearum100%0%91.67%100%
Pseudomonas chlororaphis100%0%80.95%88.89%
Pseudomonas fluorescens100%0%54.22%100%
Pseudomonas koreensis100%0%94.74%100%
Pseudomonas monteilii88.89%0%68.97%0%
Pseudomonas putida100%0%87.88%75%
Pseudomonas stutzeri100%0%95.92%0%
Pseudomonas synxantha100%0%87.5%100%
Pseudomonas syringae100%0%84.34%0%
Ralstonia mannitolilytica100%0%100%0%
Ralstonia pickettii100%0%100%0%
Raoultella planticola100%0%94.12%0%
Rhizobium leguminosarum100%0.8%74.3%100%
Rhodanobacter glycinis100%0%100%100%
Rhodopseudomonas palustris100%0%88.89%100%
Salmonella enterica67.6%1.18%64.23%2.32%
Serratia liquefaciens100%0%100%0%
Serratia marcescens100%4.96%85.93%0%
Serratia odorifera100%0%100%0%
Serratia rubidaea100%0%100%100%
Shewanella putrefaciens100%0%71.43%0%
Sphingobacterium hotanense100%0%0%0%
Stenotrophomonas maltophilia100%0%91.82%75%
Thalassospira indica100%0%0%100%
Vibrio neocaledonicus100%0%0%0%
Vibrio owensii80%0%82.35%0%
Vibrio parahaemolyticus50%0%89.48%0%
Vibrio vulnificus47.17%0%76.52%0%
Xanthomonas campestris100%0%44.44%0%
Yersinia canariae100%0%50%0%
Yersinia enterocolitica100%0%87.29%0%
Yersinia pestis100%0%58.81%0%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.

Bit-score Cut-off (blastP): 750


>gb|CAJ77856.1|+|adeF [Acinetobacter baumannii AYE]
MNISKFFIDRPIFAGVLSVLILLAGLLSVFQLPISEYPEVVPPSVVVRAQYPGANPKVIAETVASPLEESINGVEDMLYMQSQANSDGNL
TITVNFKLGIDPDKAQQLVQNRVSQAMPRLPEDVQRLGVTTLKSSPTLTMVVHLTSPDNRYDMTYLRNYAVLNVKDRLARLQGVGEVGLF
GSGDYAMRVWLDPQKVAQRNLTATEIVNAIREQNIQVAAGTIGASPSNSPLQLSVNAQGRLTTEQEFADIILKTAPDGAVTRLGDVARVE
LAASQYGLRSLLDNKQAVAIPIFQAPGANALQVSDQVRSTMKELSKDFPSSIKYDIVYDPTQFVRASIKAVVHTLLEAITLVVVVVILFL
QTWRASIIPLLAVPVSIIGTFALMLAFGYSINALSLFGMVLAIGIVVDDAIVVVENVERNIEAGLNPREATYRAMREVSGPIIAIALTLV
AVFVPLAFMTGLTGQFYKQFAMTIAISTVISAFNSLTLSPALAALLLKGHDAKPDALTRIMNRVFGRFFALFNRVFSRASDRYSQGVSRV
ISHKASAMGVYAALLGLTVGISYIVPGGFVPAQDKQYLISFAQLPNGASLDRTEAVIRKMSDTALKQPGVESAVAFPGLSINGFTNSSSA
GIVFVTLKPFDERKAKDLSANAIAGALNQKYSAIQDAYIAVFPPPPVMGLGTMGGFKLQLEDRGALGYSALNDAAQNFMKAAQSAPELGP
MFSSYQINVPQLNVDLDRVKAKQQGVAVTDVFNTMQIYLGSQYVNDFNRFGRVYQVRAQADAPFRANPEDILQLKTRNSAGQMVPLSSLV
NVTQTYGPEMVVRYNGYTSADINGGPAPGYSSSQAEAAVERIAAQTLPRGIKFEWTDLTYQKILAGNAGLWVFPISVLLVFLVLAAQYES
LTLPLAVILIVPMGILAALTGVWLTAGDNNIFTQIGLMVLVGLACKNAILIVEFARELEMQGATAFKAAVEASRLRLRPILMTSIAFIMG
VVPLVTSTGAGSEMRHAMGVAVFFGMIGVTFFGLFLTPAFYVLIRTLNSKHKLHSAAVHEAPLASPHDH


>gb|CT025801.2|+|1-3180|adeF [Acinetobacter baumannii AYE]
ATGAATATTTCTAAATTTTTTATTGATCGGCCGATCTTTGCTGGTGTGCTATCAGTCTTGATTTTACTCGCCGGTCTCCTTTCGGTATTT
CAGTTACCGATTTCTGAATATCCCGAGGTTGTTCCACCATCTGTGGTGGTACGCGCCCAATATCCGGGTGCAAACCCAAAAGTGATTGCT
GAAACGGTTGCATCTCCGCTCGAAGAGTCAATCAACGGCGTCGAAGACATGCTGTATATGCAATCTCAAGCAAACAGCGACGGTAACCTA
ACCATTACGGTGAACTTTAAGCTCGGTATCGACCCAGACAAAGCCCAACAATTGGTTCAAAACCGTGTGTCTCAGGCCATGCCCCGTTTA
CCTGAAGATGTACAGCGCTTAGGTGTAACCACACTAAAAAGCTCACCTACTTTAACTATGGTAGTGCATCTGACCTCACCAGATAATCGC
TATGACATGACCTACTTACGTAACTATGCGGTGCTCAACGTGAAAGACCGTTTAGCGCGTTTACAAGGGGTTGGTGAAGTCGGATTATTT
GGTTCTGGTGACTACGCGATGCGTGTATGGCTTGACCCGCAAAAAGTAGCGCAGCGTAACCTCACCGCGACCGAAATTGTGAATGCAATC
CGTGAACAAAATATTCAGGTTGCAGCGGGTACAATCGGTGCATCACCAAGTAATTCACCTTTACAGCTTTCAGTCAATGCTCAAGGTCGT
TTAACTACTGAACAAGAATTCGCAGATATCATTTTAAAAACTGCACCAGATGGCGCGGTTACCCGATTGGGTGATGTTGCTCGTGTCGAA
CTTGCAGCCTCTCAATATGGCTTACGTTCATTGCTTGATAATAAACAAGCGGTCGCGATTCCAATTTTCCAAGCACCGGGTGCGAATGCT
TTACAAGTTTCCGATCAAGTGCGTAGCACAATGAAGGAGCTTTCAAAAGATTTCCCATCTTCAATTAAATACGACATTGTTTATGACCCG
ACTCAATTCGTACGTGCAAGTATTAAAGCGGTCGTTCATACCTTACTTGAAGCAATTACACTGGTTGTTGTGGTCGTTATTTTATTCTTG
CAAACATGGCGTGCCTCAATCATTCCATTGCTTGCCGTACCGGTTTCAATTATTGGTACATTCGCGCTCATGCTCGCTTTTGGTTACTCA
ATCAATGCGCTATCACTGTTCGGAATGGTACTTGCCATCGGGATTGTCGTCGATGACGCGATTGTGGTCGTCGAAAATGTCGAGAGGAAT
ATTGAAGCAGGCTTAAACCCAAGGGAGGCGACTTACCGTGCCATGCGAGAAGTCAGTGGACCGATTATTGCCATTGCTTTAACACTTGTT
GCAGTATTCGTACCTCTTGCCTTTATGACAGGCTTAACAGGGCAATTCTATAAACAATTTGCCATGACCATTGCCATTTCAACGGTTATT
TCGGCATTTAACTCGCTTACCCTATCTCCTGCTTTGGCAGCGCTGTTACTGAAAGGACATGATGCTAAACCGGATGCCTTAACACGTATT
ATGAATCGTGTATTCGGTCGTTTCTTTGCACTGTTTAACCGTGTGTTTTCACGTGCTTCAGACCGTTATAGTCAAGGCGTCAGCCGTGTC
ATTTCCCATAAAGCTTCGGCAATGGGTGTCTATGCAGCACTCTTAGGTTTAACCGTTGGTATTTCCTATATTGTTCCAGGTGGTTTCGTT
CCTGCGCAGGACAAACAATATTTAATTAGCTTTGCGCAGCTACCAAACGGCGCATCATTAGATCGTACCGAAGCGGTCATTCGTAAAATG
AGTGACACTGCACTTAAACAACCTGGTGTAGAAAGTGCAGTTGCCTTTCCTGGCCTATCAATTAACGGTTTCACCAATAGCTCAAGTGCC
GGTATTGTCTTTGTGACTTTAAAGCCATTTGATGAACGTAAGGCAAAAGACTTATCTGCAAATGCAATTGCAGGTGCGCTCAACCAGAAA
TATTCAGCTATTCAAGATGCCTATATCGCGGTTTTCCCACCGCCACCAGTGATGGGCTTAGGTACTATGGGCGGCTTTAAACTACAACTT
GAAGACCGAGGTGCCTTAGGCTATTCAGCCTTGAACGATGCTGCACAAAACTTTATGAAGGCAGCACAATCAGCCCCTGAACTGGGTCCA
ATGTTCTCAAGTTATCAAATTAACGTACCTCAACTCAACGTAGATCTGGACCGTGTAAAAGCTAAACAGCAAGGCGTTGCTGTGACAGAT
GTTTTCAATACTATGCAGATTTATTTAGGTTCTCAGTACGTTAACGACTTTAACCGCTTTGGACGTGTTTATCAGGTTCGTGCACAAGCC
GATGCGCCTTTCCGTGCTAACCCTGAAGATATTTTGCAGCTTAAAACCCGTAATAGTGCCGGACAAATGGTGCCATTATCTTCATTGGTG
AATGTAACTCAAACCTATGGTCCTGAAATGGTCGTTCGTTATAACGGTTACACATCAGCAGATATTAACGGTGGCCCTGCCCCAGGTTAT
TCATCTAGCCAAGCAGAAGCTGCGGTTGAACGTATTGCTGCACAAACTCTACCGCGTGGTATCAAGTTTGAATGGACAGATTTAACTTAT
CAAAAAATCTTGGCTGGTAATGCTGGACTTTGGGTATTCCCTATTAGCGTATTACTCGTGTTCTTAGTGTTAGCTGCTCAGTATGAAAGC
TTAACCCTACCATTAGCAGTTATCTTAATTGTACCAATGGGAATCTTAGCGGCTCTGACAGGTGTCTGGTTGACAGCTGGAGATAACAAC
ATCTTTACTCAAATCGGTCTAATGGTACTGGTCGGGCTAGCCTGTAAAAATGCCATCTTAATTGTCGAATTTGCGAGGGAACTTGAAATG
CAAGGTGCGACTGCCTTTAAAGCAGCCGTTGAAGCAAGTCGTCTACGTTTACGCCCAATTTTAATGACCTCTATTGCATTTATTATGGGT
GTAGTGCCACTGGTTACTTCAACTGGCGCAGGTTCTGAAATGCGACATGCGATGGGTGTTGCCGTATTCTTCGGTATGATCGGTGTAACA
TTCTTTGGTTTATTCCTCACCCCGGCCTTTTACGTTCTGATTCGTACCCTCAACAGCAAACATAAACTGCATTCTGCGGCAGTTCATGAA
GCGCCGTTAGCTAGCCCACATGATCATTAA