mtrD

Accession ARO:3000811
CARD Short NamemtrD
DefinitionMtrD is the inner membrane multidrug transporter of the MtrCDE efflux complex.
AMR Gene Familyresistance-nodulation-cell division (RND) antibiotic efflux pump
Drug Classpenam, macrolide antibiotic
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
Resistomes with Perfect MatchesNeisseria meningitidisg+wgs
Resistomes with Sequence VariantsNeisseria meningitidisg+wgs
Classification13 ontology terms | Show
Parent Term(s)2 ontology terms | Show
Publications

Hagman KE, et al. 1997. Microbiology 143(PT 7): 2117-2125. The MtrD protein of Neisseria gonorrhoeae is a member of the resistance/nodulation/division protein family constituting part of an efflux system. (PMID 9245801)

Jerse AE, et al. 2003. Infect Immun 71(10): 5576-5582. A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. (PMID 14500476)

Resistomes

Prevalence of mtrD among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GI
Neisseria meningitidis4.58%0%5.34%0%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 2130


>gb|AAF42062.1|-|mtrD [Neisseria meningitidis MC58]
MAKFFIDRPIFAWVISIFIIAAGIFGIKSLPVSQYPSVAAPTITLRATYPGASAQVMEDSVLSVIERNMNGVEGLDYMSTSADSSGSGSV
SLTFTPDTDENLAQVEVQNKLSEVLSTLPATVQQYGVTVSKARSNFLMIVMLSSDVQSTEEMNDYAQRNIVPELQRIEGVGQVRLFGAQR
AMRIWVDPKKLQNYNLSFADVGSALSAQNVQISAGSIGSLPAVRGQTVTATVTAQGQLGTAEEFGNVILRANTDGSNVYLKDVARVGLGM
EDYSSSTRLNGVNTTGMAVMLSNSGNAMATAKAVKERMATLEKYFPQGMSWKTPYDTSKFVEISIEKVIHTLIEAMVLVFVVMYLFLQNI
RYTLIPTIVVPISLLGGFAFISYMGMSINVLTMFAMVLVIGIVVDDAIVVVENVERIMAGEGLPPKEATKKAMGQISGAVIGITAVLISV
FVPLAMFSGATGNIYKQFALTMASSIAFSAFLALTLTPALCATMLKTIPKGHHEEKKGFFGWFNKKFNSWTHGYEGRVAKVLRKTFRMMV
VYIGLAVVGVFLFMRLPTSFLPTEDQGFVMVSVQLPAGATQERTNATLAQVTQLAKSIPEIENIITVSGFSFSGSGQNMAMGFAILKDWN
ERTAPGSDAVAIAGKLTGMMMGTLKDGFGIAVVPPPILELGNGSGLSINLQDRNNTGHTALLAKRNELIQKMRASGLFDPSTVRAGGLED
SPQLKIDINRAAAAAQGISFADIRTALASALSSSYVSDFPNQGRLQRVMVQADEDARMQPADILNLTVPNKSGVAVPLSTIATVSWENGT
EQSVRFNGYPSMKLSASPATGVSTGQAMAAVQKMVDELGGGYSLEWGGQSREEAKGGSQTLILYGLAVAAVFLVLAALYESWSIPLAVIL
VIPLGLIGAAAGVTGRNLFEGLLGSVPSFANDIYFQVGFVTVMGLSAKNAILIIEFAKDLQAQGKSAVEAALEAARLRFRPIIMTSFAFI
LGVVPLYIAGGASSASQRAIGTTVFWGMLIGTLLSVFLVPLFYVVVRKFFKETAHEHEMAVKHAAEAGITGSDDSQH


>gb|AE002098.2|-|1791967-1795170|mtrD [Neisseria meningitidis MC58]
ATGGCTAAATTTTTTATCGACCGCCCCATTTTTGCGTGGGTTATTTCGATTTTCATTATTGCGGCGGGTATTTTCGGCATCAAAAGCCTG
CCGGTTTCGCAATATCCGTCCGTCGCCGCCCCGACCATCACCCTGAGGGCCACTTATCCGGGCGCGTCCGCGCAGGTAATGGAAGACAGC
GTGCTTTCCGTGATCGAGCGGAATATGAACGGCGTGGAAGGTTTGGATTATATGTCCACTTCCGCCGATTCGAGCGGCAGCGGCAGCGTG
AGCCTGACCTTTACGCCCGATACCGACGAGAATCTGGCGCAGGTGGAAGTGCAGAACAAGCTTTCCGAAGTATTGAGCACGCTGCCGGCA
ACTGTCCAGCAATACGGCGTAACCGTATCCAAGGCGCGTTCCAATTTCCTGATGATTGTGATGCTTTCGTCGGATGTGCAGTCAACCGAA
GAGATGAACGACTACGCGCAGCGTAATATCGTTCCCGAGTTGCAGCGTATCGAAGGCGTGGGGCAGGTACGCCTGTTCGGCGCGCAACGC
GCGATGCGGATTTGGGTTGATCCTAAGAAACTGCAAAACTACAATTTGTCGTTTGCCGATGTTGGCAGCGCGCTGTCCGCCCAGAACGTC
CAGATTTCAGCGGGTTCTATCGGTTCGCTTCCCGCCGTTCGCGGACAGACGGTTACGGCTACCGTAACGGCGCAAGGGCAGTTGGGTACG
GCAGAAGAATTCGGCAACGTCATCCTCCGCGCCAATACCGACGGTTCTAATGTTTACCTGAAGGATGTGGCAAGGGTCGGACTGGGTATG
GAAGACTATTCTTCCTCAACCCGTCTGAACGGTGTAAATACCACCGGTATGGCGGTGATGCTGTCCAACAGCGGCAATGCGATGGCGACG
GCAAAGGCGGTTAAAGAACGCATGGCGACGTTGGAAAAATACTTTCCTCAGGGTATGAGCTGGAAAACCCCTTACGATACTTCCAAATTC
GTCGAAATTTCGATTGAAAAAGTGATTCACACTTTAATCGAAGCGATGGTGCTGGTGTTTGTCGTAATGTATCTCTTCCTGCAAAACATC
CGTTATACGCTGATTCCGACCATCGTCGTACCGATTTCGCTGTTGGGCGGTTTCGCCTTCATCTCTTATATGGGCATGTCGATTAACGTA
CTGACCATGTTTGCGATGGTTTTGGTCATCGGCATCGTGGTCGATGACGCGATTGTGGTGGTTGAAAACGTCGAGCGCATTATGGCGGGT
GAAGGCTTGCCGCCCAAAGAAGCGACCAAAAAAGCGATGGGTCAGATTTCGGGCGCGGTCATCGGTATTACCGCCGTTCTGATTTCCGTG
TTCGTACCGTTGGCGATGTTCAGCGGGGCGACGGGCAATATTTACAAACAGTTTGCCCTGACGATGGCGTCATCAATCGCATTCTCCGCC
TTCCTTGCGCTGACCCTTACCCCTGCTTTGTGTGCCACAATGTTGAAGACAATCCCGAAAGGGCATCACGAAGAGAAAAAAGGTTTCTTC
GGCTGGTTTAACAAGAAATTCAACAGTTGGACGCACGGTTACGAAGGCCGGGTTGCCAAAGTGCTGCGTAAGACTTTCCGCATGATGGTT
GTCTATATCGGCTTGGCGGTTGTGGGCGTGTTCCTGTTTATGCGCCTGCCGACTTCATTCCTGCCGACCGAAGACCAAGGCTTCGTCATG
GTCAGCGTGCAACTGCCTGCAGGAGCGACCCAAGAGCGCACCAATGCGACTTTGGCGCAAGTTACCCAACTGGCGAAAAGCATTCCTGAA
ATAGAAAACATCATTACCGTTTCCGGCTTCAGCTTTTCGGGCAGCGGTCAGAATATGGCGATGGGTTTTGCCATATTGAAAGATTGGAAC
GAGCGTACCGCGCCCGGCAGCGATGCCGTTGCGATTGCCGGCAAGCTGACGGGTATGATGATGGGGACGCTTAAAGACGGTTTTGGCATC
GCCGTCGTCCCGCCTCCGATTCTGGAGTTGGGCAACGGTTCGGGTCTGAGCATCAACCTGCAAGACCGCAACAATACCGGCCATACCGCA
TTGCTGGCGAAGCGCAACGAGTTGATTCAGAAAATGCGTGCCAGCGGTTTGTTTGACCCCAGCACCGTCCGTGCTGGCGGTTTGGAAGAC
TCGCCGCAGTTGAAAATCGACATCAACCGTGCCGCGGCGGCGGCGCAAGGCATTTCGTTTGCCGACATCCGCACCGCATTGGCAAGCGCG
CTGAGTTCGTCTTATGTCAGCGACTTCCCGAACCAAGGCCGTCTGCAACGCGTGATGGTGCAGGCCGACGAGGATGCCCGTATGCAGCCT
GCCGATATTTTGAACCTGACCGTGCCGAACAAATCCGGCGTCGCCGTACCGCTTTCCACCATTGCTACTGTTTCTTGGGAAAACGGTACG
GAACAGAGCGTACGCTTCAACGGTTATCCTTCGATGAAGCTGTCCGCTTCGCCTGCAACCGGCGTTTCCACCGGGCAGGCTATGGCGGCG
GTTCAAAAAATGGTTGACGAATTGGGCGGCGGTTACAGCCTGGAGTGGGGCGGACAGTCGCGCGAAGAGGCAAAAGGCGGCTCGCAAACC
CTGATTTTGTACGGTTTGGCGGTTGCAGCCGTATTTTTGGTACTTGCCGCGCTTTATGAAAGCTGGTCGATTCCGCTGGCGGTCATCCTT
GTGATTCCGTTGGGTTTGATCGGTGCGGCTGCGGGCGTAACCGGGCGCAACCTGTTTGAAGGACTGTTGGGCAGCGTTCCCTCGTTCGCC
AACGACATCTACTTTCAAGTCGGTTTCGTTACCGTGATGGGTTTGAGTGCGAAAAATGCGATTTTGATTATCGAATTTGCCAAAGACCTT
CAAGCGCAAGGGAAAAGCGCGGTTGAAGCCGCTTTGGAAGCCGCCCGCCTGCGTTTCCGTCCGATTATCATGACCTCGTTCGCCTTTATT
TTGGGCGTGGTTCCCCTGTATATTGCCGGCGGTGCAAGTTCTGCCAGCCAGCGCGCCATCGGTACAACCGTATTCTGGGGGATGCTCATC
GGCACGCTCTTGTCCGTGTTCCTTGTTCCGCTTTTCTATGTGGTGGTGCGCAAATTCTTCAAAGAAACCGCGCACGAACACGAAATGGCA
GTAAAACACGCCGCCGAAGCGGGCATCACCGGTTCGGACGACAGCCAACATTAA