floR

Accession ARO:3002705
DefinitionfloR is a plasmid or chromosome-encoded chloramphenicol exporter that is found in Bordetella bronchiseptica, Escherichia coli, Klebsiella pneumoniae, Salmonella enterica subsp. enterica serovar Typhimurium str. DT104 and Vibrio cholerae
AMR Gene Familymajor facilitator superfamily (MFS) antibiotic efflux pump
Drug Classtetracycline antibiotic, benzalkonium chloride, penam, diaminopyrimidine antibiotic, antibacterial free fatty acids, isoniazid, rifamycin antibiotic, nitroimidazole antibiotic, nucleoside antibiotic, fluoroquinolone antibiotic, macrolide antibiotic, peptide antibiotic, lincosamide antibiotic, oxazolidinone antibiotic, glycylcycline, fosfomycin, rhodamine, bicyclomycin, phenicol antibiotic, acridine dye, cephalosporin
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
ResistomesEscherichia colip+wgs, Salmonella entericag+p+wgs
Classification33 ontology terms | Show
Parent Term(s)3 ontology terms | Show
+ confers_resistance_to_antibiotic chloramphenicol [Antibiotic]
+ confers_resistance_to_antibiotic florfenicol [Antibiotic]
+ flo
Publications

Arcangioli MA, et al. 1999. FEMS Microbiol Lett 174(2): 327-332. A new chloramphenicol and florfenicol resistance gene flanked by two integron structures in Salmonella typhimurium DT104. (PMID 10339826)

Boyd D, et al. 2001. J Bacteriol 183(19): 5725-5732. Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. (PMID 11544236)

Blickwede M, et al. 2003. J Antimicrob Chemother 53(1): 58-64. Molecular analysis of florfenicol-resistant Escherichia coli isolates from pigs. (PMID 14645321)

Frech G, et al. 2002. J Antimicrob Chemother 51(1): 180-182. Resistance phenotypes and genotypes of multiresistant Salmonella enterica subsp. enterica serovar Typhimurium var. Copenhagen isolates from animal sources. (PMID 12493808)

Cloeckaert A, et al. 2001. Antimicrob Agents Chemother 45(8): 2381-2382. Nonenzymatic chloramphenicol resistance mediated by IncC plasmid R55 is encoded by a floR gene variant. (PMID 11451703)

Kim S, et al. 2009. Foodborne Pathog Dis 6(4): 471-479. An additional novel antimicrobial resistance gene cluster in Salmonella genomic island 1 of a Salmonella enterica serovar Typhimurium DT104 human isolate. (PMID 19292580)

Hochhut B, et al. 2001. Antimicrob Agents Chemother 45(11): 2991-3000. Molecular analysis of antibiotic resistance gene clusters in vibrio cholerae O139 and O1 SXT constins. (PMID 11600347)

Beaber JW, et al. 2002. J Bacteriol 184(15): 4259-4269. Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae. (PMID 12107144)

Kadlec K, et al. 2007. J Antimicrob Chemother 59(2): 191-196. Efflux-mediated resistance to florfenicol and/or chloramphenicol in Bordetella bronchiseptica: identification of a novel chloramphenicol exporter. (PMID 17224413)

Cloeckaert A, et al. 2000. Antimicrob Agents Chemother 44(10): 2858-2860. Plasmid-mediated florfenicol resistance encoded by the floR gene in Escherichia coli isolated from cattle. (PMID 10991873)

White DG, et al. 2000. J Clin Microbiol 38(12): 4593-4598. Characterization of chloramphenicol and florfenicol resistance in Escherichia coli associated with bovine diarrhea. (PMID 11101601)

Resistomes

Prevalence of floR among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI for 82 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGS
Acinetobacter baumannii3.18%0.58%2.51%
Acinetobacter haemolyticus0%6.67%0%
Acinetobacter lwoffii0%0%7.14%
Acinetobacter nosocomialis0%0%4%
Citrobacter amalonaticus0%0%22.22%
Citrobacter freundii0%2.33%3.1%
Enterobacter cloacae0%0%0.45%
Enterobacter hormaechei0%2.7%3.01%
Escherichia coli0.15%1.11%4.05%
Klebsiella pneumoniae0%0%0%
Morganella morganii0%6.67%0%
Proteus mirabilis17.39%11.11%26.72%
Providencia rettgeri0%0%15.38%
Pseudomonas stutzeri0%0%1.49%
Salmonella enterica3.1%4.58%8.27%
Shigella flexneri0%0%0.26%
Shigella sonnei0%0%1.57%
Stenotrophomonas maltophilia0%0%1.97%
Vibrio cholerae8.24%20%36.6%
Vibrio parahaemolyticus1.56%0%0.41%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.

Bit-score Cut-off (blastP): 750


>gb|AAG16656.1|+|floR [Escherichia coli]
MTTTRPAWAYTLPAALLLMAPFDILASLAMDIYLPVVPAMPGILNTTPAMIQLTLSLYMVMLGVGQVIFGPLSDRIGRRPILLAGATAFV
IASLGAAWSSTAPAFVAFRLLQAVGASAMLVATFATVRDVYANRPEGVVIYGLFSSVLAFVPALGPIAGALIGEFLGWQAIFITLAILAM
LALLNAGFRWHETRPLDQVKTRRSVLPIFASPAFWVYTVGFSAGMGTFFVFFSTAPRVLIGQAEYSEIGFSFAFATVALVMIVTTRFAKS
FVARWGIAGCVARGMALLVCGAVLLGIGELYGSPSFLTFILPMWVVAVGIVFTVSVTANGALAEFDDIAGSAVAFYFCVQSLIVSIVGTL
AVALLNGDTAWPVICYATAMAVLVSLGLVLLRLRGAATEKSPVV


>gb|AF231986|+|3308-4522|floR [Escherichia coli]
ATGACCACCACACGCCCCGCGTGGGCCTATACGCTGCCGGCAGCACTGCTGCTGATGGCTCCTTTCGACATCCTCGCTTCACTGGCGATG
GATATTTATCTCCCTGTCGTTCCAGCGATGCCCGGCATCCTGAACACGACGCCCGCTATGATCCAACTCACGTTGAGCCTCTATATGGTG
ATGCTCGGCGTGGGCCAGGTGATTTTTGGTCCGCTCTCAGACAGAATCGGGCGACGGCCAATTCTACTTGCGGGCGCAACGGCTTTCGTC
ATTGCGTCTCTGGGAGCAGCTTGGTCTTCAACTGCACCGGCCTTTGTCGCTTTCCGTCTACTTCAAGCAGTGGGCGCGTCGGCCATGCTG
GTGGCGACGTTCGCGACGGTTCGCGACGTTTATGCCAACCGTCCTGAGGGTGTCGTCATCTACGGCCTTTTCAGTTCGGTGCTGGCGTTC
GTGCCTGCGCTCGGCCCTATCGCCGGAGCATTGATCGGCGAGTTCTTGGGATGGCAGGCGATATTCATTACTTTGGCTATACTGGCGATG
CTCGCACTCCTAAATGCGGGTTTCAGGTGGCACGAAACCCGCCCTCTGGATCAAGTCAAGACGCGCCGATCTGTCTTGCCGATCTTCGCG
AGTCCGGCTTTTTGGGTTTACACTGTCGGCTTTAGCGCCGGTATGGGCACCTTCTTCGTCTTCTTCTCGACGGCTCCCCGTGTGCTCATA
GGCCAAGCGGAATATTCCGAGATCGGATTCAGCTTTGCCTTCGCCACTGTCGCGCTTGTAATGATCGTGACAACCCGTTTCGCGAAGTCC
TTTGTCGCCAGATGGGGCATCGCAGGATGCGTGGCGCGTGGGATGGCGTTGCTTGTTTGCGGAGCGGTCCTGTTGGGGATCGGCGAACTT
TACGGCTCGCCGTCATTCCTCACCTTCATCCTACCGATGTGGGTTGTCGCGGTCGGTATTGTCTTCACGGTGTCCGTTACCGCGAACGGC
GCTTTGGCAGAGTTCGACGACATCGCGGGATCAGCGGTCGCGTTCTACTTCTGCGTTCAAAGCCTGATAGTCAGCATTGTCGGGACATTG
GCGGTGGCACTTTTAAACGGTGACACAGCGTGGCCCGTGATCTGTTACGCCACGGCGATGGCGGTACTGGTTTCGTTGGGGCTGGTGCTC
CTTCGGCTCCGTGGGGCTGCCACCGAGAAGTCGCCAGTCGTCTAA