dfrA10

Accession ARO:3003011
CARD Short NamedfrA10
DefinitiondfrA10 is an integron-encoded dihydrofolate reductase found in Klebsiella pneumoniae.
AMR Gene Familytrimethoprim resistant dihydrofolate reductase dfr
Drug Classdiaminopyrimidine antibiotic
Resistance Mechanismantibiotic target replacement
Resistomes with Perfect MatchesAcinetobacter baumanniig, Acinetobacter pittiiwgs, Aeromonas veroniig, Enterobacter hormaecheiwgs, Escherichia coliwgs, Klebsiella oxytocawgs, Klebsiella pneumoniaewgs, Morganella morganiiwgs, Proteus mirabilisg+wgs, Providencia rettgeriwgs, Pseudomonas aeruginosawgs, Salmonella entericawgs
Resistomes with Sequence VariantsAcinetobacter baumanniig, Acinetobacter pittiiwgs, Aeromonas veroniig, Enterobacter hormaecheiwgs, Escherichia coliwgs, Klebsiella oxytocawgs, Klebsiella pneumoniaewgs, Morganella morganiiwgs, Proteus mirabilisg+wgs+gi, Providencia rettgeriwgs, Pseudomonas aeruginosawgs, Salmonella entericawgs
Classification9 ontology terms | Show
Parent Term(s)3 ontology terms | Show
+ trimethoprim resistant dihydrofolate reductase dfr [AMR Gene Family]
+ derives_from antibiotic sensitive dihydrofolate reductase
+ confers_resistance_to_antibiotic trimethoprim [Antibiotic]
Publications

Partridge SR and Hall RM. 2002. Antimicrob Agents Chemother 47(1): 342-349. In34, a complex In5 family class 1 integron containing orf513 and dfrA10. (PMID 12499211)

Resistomes

Prevalence of dfrA10 among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GI
Acinetobacter baumannii0.18%0%0%0%
Acinetobacter pittii0%0%0.28%0%
Aeromonas veronii1.82%0%0%0%
Enterobacter hormaechei0%0%0.04%0%
Escherichia coli0%0%0.02%0%
Klebsiella oxytoca0%0%0.42%0%
Klebsiella pneumoniae0%0%0.03%0%
Morganella morganii0%0%0.61%0%
Proteus mirabilis3.67%0%0.5%3.7%
Providencia rettgeri0%0%4.46%0%
Pseudomonas aeruginosa0%0%0.11%0%
Salmonella enterica0%0%0.03%0%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 300


>gb|AHG97174.1|+|dfrA10 [Klebsiella pneumoniae]
MNISLIFANELITRAFGNQGKLPWQFIKEDMQFFQKTTENSVVVMGLNTWRSLPKMKKLGRDFIVISSTITEHEVLNNNIQIFKSFESFL
EAFRDTTKPINVIGGVGLLSEAIEHASTVYMSSIHMVKPVHADVYVPVELMNKLYSDFKYPENILWVGDPIDSVYSLSIDKFVRPASLVG
VPNDINT


>gb|KF976462.2|+|111559-112122|dfrA10 [Klebsiella pneumoniae]
ATGAATATATCACTTATCTTTGCCAATGAATTAATTACCAGAGCATTCGGTAATCAAGGCAAATTACCTTGGCAATTCATTAAAGAAGAT
ATGCAGTTCTTCCAGAAGACTACAGAAAATTCTGTAGTCGTTATGGGATTAAATACATGGAGATCTCTACCTAAGATGAAGAAGCTTGGT
AGAGACTTCATTGTCATATCTTCAACTATCACAGAGCACGAAGTGCTCAACAATAATATCCAAATATTCAAATCATTTGAGAGCTTCTTA
GAAGCATTCAGAGACACAACCAAACCAATCAATGTCATTGGTGGTGTTGGTTTATTATCTGAAGCGATAGAACATGCTAGCACTGTTTAC
ATGAGTTCTATTCATATGGTTAAACCTGTTCATGCTGATGTGTATGTACCGGTAGAACTAATGAATAAACTCTATAGTGATTTCAAATAT
CCAGAAAATATTCTATGGGTAGGTGATCCAATAGATTCTGTGTATAGCTTGTCTATTGATAAGTTTGTTAGACCAGCTTCGCTGGTTGGG
GTGCCAAATGATATTAATACGTGA