dfrA21

Accession ARO:3003017
CARD Short NamedfrA21
DefinitiondfrA21 is an integron-encoded dihydrofolate reductase found in Salmonella enterica.
AMR Gene Familytrimethoprim resistant dihydrofolate reductase dfr
Drug Classdiaminopyrimidine antibiotic
Resistance Mechanismantibiotic target replacement
Resistomes with Perfect MatchesAeromonas veroniip, Citrobacter freundiiwgs, Citrobacter portucalensiswgs, Enterobacter hormaecheip+wgs, Enterobacter kobeiwgs, Enterobacter roggenkampiiwgs, Escherichia colip+wgs, Klebsiella michiganensiswgs, Klebsiella pneumoniaewgs, Klebsiella quasipneumoniaep+wgs, Pseudomonas aeruginosawgs, Salmonella entericawgs
Resistomes with Sequence VariantsAeromonas veroniip, Citrobacter freundiiwgs, Citrobacter portucalensiswgs, Enterobacter hormaecheip+wgs, Enterobacter kobeiwgs, Enterobacter roggenkampiiwgs, Escherichia colip+wgs, Klebsiella michiganensiswgs, Klebsiella pneumoniaewgs, Klebsiella quasipneumoniaep+wgs, Pseudomonas aeruginosawgs, Salmonella entericawgs
Classification9 ontology terms | Show
Parent Term(s)3 ontology terms | Show
+ trimethoprim resistant dihydrofolate reductase dfr [AMR Gene Family]
+ derives_from antibiotic sensitive dihydrofolate reductase
+ confers_resistance_to_antibiotic trimethoprim [Antibiotic]
Publications

Bouallegue-Godet O, et al. 2005. J Clin Microbiol 43(3): 1037-1044. Nosocomial outbreak caused by Salmonella enterica serotype Livingstone producing CTX-M-27 extended-spectrum beta-lactamase in a neonatal unit in Sousse, Tunisia. (PMID 15750057)

Resistomes

Prevalence of dfrA21 among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GI
Aeromonas veronii0%1.54%0%0%
Citrobacter freundii0%0%0.19%0%
Citrobacter portucalensis0%0%0.9%0%
Enterobacter hormaechei0%0.13%0.6%0%
Enterobacter kobei0%0%1.75%0%
Enterobacter roggenkampii0%0%0.36%0%
Escherichia coli0%0.01%0.03%0%
Klebsiella michiganensis0%0%0.27%0%
Klebsiella pneumoniae0%0%0.06%0%
Klebsiella quasipneumoniae0%0.42%0.13%0%
Pseudomonas aeruginosa0%0%0.11%0%
Salmonella enterica0%0%0.01%0%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 300


>gb|CAP69659.1|+|dfrA21 [Salmonella enterica subsp. enterica serovar Bredeney]
MNPESVRIYLVAAMGANRVIGNGPDIPWKIPGEQKIFRRLTESKVVVMGRKTFESIGKPLPNRHTVVLSRQARYSAPGCAVVSTLSQAIA
IAAEHGKELYVAGGAEVYALALPHANGVFLSEVHQTFEGDAFFPVLNAAEFEVVSSETIQGTITYTHSVYARRNG


>gb|AM932669.1|+|106-603|dfrA21 [Salmonella enterica subsp. enterica serovar Bredeney]
ATGAACCCGGAATCGGTCCGCATTTATCTGGTCGCTGCCATGGGTGCCAATCGGGTTATTGGCAATGGTCCCGATATCCCCTGGAAAATC
CCAGGTGAGCAGAAGATTTTTCGCAGGCTCACCGAGAGCAAAGTGGTCGTTATGGGCCGCAAGACATTTGAGTCCATAGGCAAGCCCTTA
CCAAACCGCCACACAGTGGTGCTCTCGCGCCAAGCTCGTTATAGCGCTCCTGGTTGTGCAGTTGTTTCAACGCTGTCACAGGCTATCGCC
ATCGCAGCCGAACACGGCAAAGAACTCTACGTAGCCGGCGGAGCCGAGGTATATGCGCTGGCGCTACCGCATGCCAACGGCGTCTTTCTA
TCTGAGGTACATCAAACCTTTGAGGGTGACGCCTTCTTCCCAGTGCTTAACGCAGCAGAATTCGAGGTTGTCTCATCCGAAACCATTCAA
GGCACAATCACGTACACGCACTCCGTCTATGCGCGTCGTAACGGCTAA