AAC(3)-IIa

Accession ARO:3002533
Synonym(s)aacC5 aac(3)-Va aacC2 aaC3
CARD Short NameAAC(3)-IIa
DefinitionAAC(3)-IIa is a plasmid-encoded aminoglycoside acetyltransferase in K. pneumoniae, E. cloacae, Actinobacillus pleuropneumoniae, S. typhimurium, Citrobacter freundii, and P. aeruginosa.
AMR Gene FamilyAAC(3)
Drug Classaminoglycoside antibiotic
Resistance Mechanismantibiotic inactivation
Resistomes with Sequence VariantsEnterobacter hormaecheip, Escherichia coliwgs, Pseudomonas aeruginosawgs
Classification10 ontology terms | Show
Parent Term(s)5 ontology terms | Show
+ confers_resistance_to_antibiotic gentamicin C [Antibiotic]
+ confers_resistance_to_antibiotic tobramycin [Antibiotic]
+ AAC(3) [AMR Gene Family]
+ confers_resistance_to_antibiotic gentamicin B [Antibiotic]
+ confers_resistance_to_antibiotic plazomicin [Antibiotic]
Publications

Allmansberger R, et al. 1985. Mol Gen Genet 198(3): 514-520. Genes for gentamicin-(3)-N-acetyl-transferases III and IV. II. Nucleotide sequences of three AAC(3)-III genes and evolutionary aspects. (PMID 3892230)

Mugnier P, et al. 1996. Antimicrob Agents Chemother 40(11): 2488-2493. A TEM-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa. (PMID 8913451)

Shaw KJ, et al. 1993. Microbiol Rev 57(1): 138-163. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. (PMID 8385262)

Resistomes

Prevalence of AAC(3)-IIa among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 377 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GI
Enterobacter hormaechei0%0.13%0%0%
Escherichia coli0%0%0.01%0%
Pseudomonas aeruginosa0%0%0.02%0%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 560


>gb|CAA31895.1|+|AAC(3)-IIa [Plasmid pWP113a]
MHTQKAITEALQKLGVQSGDLLMVHASLKSIGPVEGGAETVVAALRSAVGPTGTVMGYASWDRSPYEETLNGARLDDNARRTWPPFDPAT
AGTYRGFGLLNQFLVQAPGARRSAHPDASMVAVGPLAETLTEPHELGHALGEGSPNERFVRLGGKALLLGAPLNSVTALHYAEAVADIPN
KRWVTYEMPMPGRDGEVAWKTASDYDSNGILDCFAIEGKQDAVETIANAYVKLGRHREGVVGFAQCYLFDAQDIVTFGVTYLEKHFGTTP
IVPAHEAIERSCEPSG


>gb|X13543.1|+|186-1046|AAC(3)-IIa [Plasmid pWP113a]
ATGCATACGCAGAAGGCAATAACGGAGGCGCTTCAAAAACTCGGAGTCCAATCCGGTGACCTGTTGATGGTGCATGCCTCACTTAAATCG
ATTGGTCCGGTCGAAGGAGGAGCGGAGACGGTCGTCGCCGCGTTACGCTCCGCGGTTGGGCCGACTGGCACTGTGATGGGATACGCATCG
TGGGACCGATCACCCTACGAGGAGACTCTGAATGGCGCTCGGTTGGATGACAATGCCCGCCGTACCTGGCCGCCGTTCGATCCCGCAACG
GCCGGGACTTACCGTGGGTTCGGCCTGCTGAATCAGTTTCTGGTTCAAGCCCCCGGCGCGCGGCGCAGCGCGCACCCCGATGCATCGATG
GTCGCGGTTGGTCCGCTGGCTGAAACGCTGACGGAGCCTCACGAACTCGGTCACGCCTTGGGGGAAGGGTCGCCCAACGAGCGGTTCGTC
CGCCTTGGCGGGAAGGCCCTGCTGTTGGGTGCGCCGCTAAACTCCGTTACCGCATTGCACTACGCCGAGGCGGTTGCCGATATACCCAAT
AAACGGTGGGTGACGTATGAGATGCCGATGCCTGGAAGAGACGGTGAAGTCGCCTGGAAAACGGCATCGGATTACGATTCAAACGGCATT
CTCGATTGCTTTGCTATCGAAGGAAAGCAGGATGCGGTCGAAACTATAGCAAATGCTTACGTGAAGCTCGGTCGCCATCGAGAAGGTGTC
GTGGGCTTTGCCCAGTGCTACCTGTTCGACGCGCAGGACATCGTGACGTTCGGCGTCACCTATCTTGAGAAGCATTTCGGAACCACTCCG
ATCGTGCCTGCGCACGAAGCCATCGAGCGCTCTTGCGAGCCTTCAGGTTAG