AAC(3)-IIb

Accession ARO:3002534
Synonym(s)aac(3)-Vb
CARD Short NameAAC(3)-IIb
DefinitionAAC(3)-IIb is an aminoglycoside acetyltransferase in E. coli, A. faecalis and S. marcescens.
AMR Gene FamilyAAC(3)
Drug Classaminoglycoside antibiotic
Resistance Mechanismantibiotic inactivation
Resistomes with Perfect MatchesEnterobacter asburiaewgs
Resistomes with Sequence VariantsEnterobacter asburiaewgs, Enterobacter hormaecheiwgs, Escherichia colig+wgs, Paracoccus denitrificansg+p+wgs+gi, Pseudomonas aeruginosawgs, Salmonella entericawgs+gi
Classification12 ontology terms | Show
Parent Term(s)8 ontology terms | Show
+ confers_resistance_to_antibiotic dibekacin [Antibiotic]
+ confers_resistance_to_antibiotic sisomicin [Antibiotic]
+ confers_resistance_to_antibiotic netilmicin [Antibiotic]
+ confers_resistance_to_antibiotic tobramycin [Antibiotic]
+ confers_resistance_to_antibiotic 6'-N-ethylnetilmicin [Antibiotic]
+ confers_resistance_to_antibiotic 2'-N-ethylnetilmicin [Antibiotic]
+ confers_resistance_to_antibiotic gentamicin [Antibiotic]
+ AAC(3)-II
Publications

Rather PN, et al. 1992. Antimicrob Agents Chemother 36(10): 2222-2227. Cloning and DNA sequence analysis of an aac(3)-Vb gene from Serratia marcescens. (PMID 1444303)

Shaw KJ, et al. 1993. Microbiol Rev 57(1): 138-163. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. (PMID 8385262)

Resistomes

Prevalence of AAC(3)-IIb among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GI
Enterobacter asburiae0%0%0.4%0%
Enterobacter hormaechei0%0%0.04%0%
Escherichia coli0.02%0%0.02%0%
Paracoccus denitrificans37.5%25%83.33%100%
Pseudomonas aeruginosa0%0%0.1%0%
Salmonella enterica0%0%0.04%0.33%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 300


>gb|AAA26548.1|+|AAC(3)-IIb [Serratia marcescens]
MNTIESITADLHGLGVRPGDLIMVHASLKAVGPVEGGAASVVSALRAAVGSAGTLMGYASWDRSPYEETLNGARMDEELRRRWPPFDLAT
SGTYPGFGLLNRFLLEAPDARRSAHPDASMVAVGPLAATLTEPHRLGQALGEGSPLERFVGHGGKVLLLGAPLDSVTVLHYAEAIAPIPN
KRRVTYEMPMLGPDGRVRWELAEDFDSNGILDCFAVDGKPDAVETIAKAYVELGRHREGIVGRAPSYLFEAQDIVSFGVTYLEQHFGAP


>gb|M97172.1|+|656-1465|AAC(3)-IIb [Serratia marcescens]
ATGAACACGATCGAATCGATCACGGCGGACCTGCACGGACTGGGCGTCCGGCCCGGCGACCTGATCATGGTCCATGCATCGCTGAAAGCC
GTCGGCCCGGTCGAGGGAGGTGCGGCCTCGGTGGTGTCGGCCCTTCGCGCCGCGGTCGGGTCCGCAGGGACCCTGATGGGTTATGCCTCA
TGGGACCGCTCGCCCTATGAGGAGACGCTGAACGGCGCGCGGATGGACGAAGAACTGCGCCGCCGGTGGCCACCCTTCGATCTGGCCACA
TCCGGTACCTATCCCGGCTTCGGCCTGCTCAACCGGTTTCTGCTTGAGGCGCCCGACGCACGGCGCAGCGCGCATCCCGACGCCTCCATG
GTCGCGGTCGGCCCCCTTGCCGCCACGCTGACAGAGCCGCACCGGCTTGGGCAGGCGCTGGGCGAAGGCTCGCCGCTGGAGCGCTTCGTC
GGGCATGGCGGAAAGGTCCTGCTTCTGGGAGCGCCGCTCGACTCCGTCACCGTGCTGCATTACGCCGAGGCCATCGCCCCCATCCCGAAC
AAACGCCGCGTGACCTATGAAATGCCGATGCTCGGCCCGGATGGCAGGGTCCGATGGGAGCTGGCCGAGGATTTCGACAGCAACGGCATT
CTCGATTGCTTCGCGGTCGATGGGAAGCCGGATGCCGTCGAGACGATCGCCAAGGCTTATGTCGAACTGGGCCGGCATCGGGAAGGCATC
GTCGGTCGCGCACCCTCCTATCTGTTTGAAGCGCAGGATATCGTCTCGTTCGGCGTCACCTATCTCGAACAGCATTTCGGCGCGCCCTGA