AAC(3)-IIc

Accession ARO:3002535
Synonym(s)aacC2
DefinitionAAC(3)-IIc is a plasmid-encoded aminoglycoside acetyltransferase in E. coli and P. aeruginosa
AMR Gene FamilyAAC(3)
Drug Classaminoglycoside antibiotic
Resistance Mechanismantibiotic inactivation
Resistomes with Sequence VariantsAcinetobacter baumanniip+wgs, Acinetobacter juniip, Citrobacter freundiip+wgs, Enterobacter cloacaewgs, Enterobacter hormaecheiwgs, Escherichia colig+p+wgs, Klebsiella oxytocawgs, Klebsiella pneumoniaep+wgs, Pseudomonas aeruginosawgs, Salmonella entericap+wgs, Serratia marcescenswgs, Shigella flexnerip, Stenotrophomonas maltophiliawgs, Vibrio choleraep+wgs
Classification9 ontology terms | Show
Parent Term(s)5 ontology terms | Show
+ confers_resistance_to_antibiotic neomycin [Antibiotic]
+ confers_resistance_to_antibiotic butirosin [Antibiotic]
+ confers_resistance_to_antibiotic kanamycin A [Antibiotic]
+ AAC(3) [AMR Gene Family]
+ confers_resistance_to_antibiotic paromomycin [Antibiotic]
Publications

Dubois V, et al. 2008. J Antimicrob Chemother 62(2): 316-323. Beta-lactam and aminoglycoside resistance rates and mechanisms among Pseudomonas aeruginosa in French general practice (community and private healthcare centres). (PMID 18467306)

Shaw KJ, et al. 1993. Microbiol Rev 57(1): 138-163. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. (PMID 8385262)

Resistomes

Prevalence of AAC(3)-IIc among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI for 88 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGS
Acinetobacter baumannii0%0.47%0.23%
Acinetobacter junii0%50%0%
Citrobacter freundii0%0.94%4.46%
Enterobacter cloacae0%0%0.59%
Enterobacter hormaechei0%0%0.61%
Escherichia coli0.04%0.16%0.26%
Klebsiella oxytoca0%0%0.39%
Klebsiella pneumoniae0%0.25%1.06%
Pseudomonas aeruginosa0%0%0.02%
Salmonella enterica0%0.09%0.03%
Serratia marcescens0%0%0.18%
Shigella flexneri0%1.32%0%
Stenotrophomonas maltophilia0%0%1.58%
Vibrio cholerae0%16.67%0.16%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.

Bit-score Cut-off (blastP): 300


>gb|CAA38525.1|+|AAC(3)-IIc [Escherichia coli]
MHTRKAITEALQKLGVQTGDLLMVHASLKAIGPVEGGAETVVAALRSAVGPTGTVMGYASWDRSPYEETRNGARLDDKTRRTWPPFDPAT
AGTYRGFGLLNQFLVQAPGARRSAHPDASMVAVGPLAETLTEPHKLGHALGEGSPVERFVRLGGKALLLGAPLNSVTALHYAEAVADIPN
KRRVTYEMPMLGSNGEVAWKTASDYDSNGILDCFAIEGKPDAVETIANAYVKLGRHREGVVGFAQCYLFDAQDIVTFGVTYLEKHFGTTP
IVPAHEVAECSCEPSG


>gb|X54723|+|819-1679|AAC(3)-IIc [Escherichia coli]
ATGCATACGCGGAAGGCAATAACGGAGGCGCTTCAAAAACTCGGAGTCCAAACCGGTGACCTATTGATGGTGCATGCCTCACTTAAAGCG
ATTGGTCCGGTCGAAGGAGGAGCGGAGACGGTCGTTGCCGCGTTACGCTCCGCGGTTGGGCCGACTGGCACTGTGATGGGATACGCATCG
TGGGACCGATCACCCTACGAGGAGACTCGTAATGGCGCTCGGTTGGATGACAAAACCCGCCGTACCTGGCCGCCGTTCGATCCCGCAACG
GCCGGGACTTACCGTGGGTTCGGCCTGCTGAATCAGTTTCTGGTTCAAGCCCCCGGCGCGCGGCGCAGCGCGCACCCCGATGCATCGATG
GTCGCGGTTGGTCCACTGGCTGAAACGCTGACGGAGCCTCACAAGCTCGGTCACGCCTTGGGGGAAGGGTCGCCCGTCGAGCGGTTCGTT
CGCCTTGGCGGGAAGGCCCTGCTGTTGGGTGCGCCGCTAAACTCCGTTACCGCATTGCACTACGCCGAGGCGGTTGCCGATATCCCCAAC
AAACGGCGGGTGACGTATGAGATGCCGATGCTTGGAAGCAACGGCGAAGTCGCCTGGAAAACGGCATCGGATTACGATTCAAACGGCATT
CTCGATTGCTTTGCTATCGAAGGAAAGCCGGATGCGGTCGAAACTATAGCAAATGCTTACGTGAAGCTCGGTCGCCATCGAGAAGGTGTC
GTGGGCTTTGCTCAGTGCTACCTGTTCGACGCGCAGGACATCGTGACGTTCGGCGTCACCTATCTTGAGAAGCATTTCGGAACCACTCCG
ATCGTGCCAGCACACGAAGTCGCCGAGTGCTCTTGCGAGCCTTCAGGTTAG