Accession | ARO:3002909 |
CARD Short Name | vanG |
Definition | VanG is a D-Ala-D-Ala ligase homolog that can synthesize D-Ala-D-Ser, an alternative substrate for peptidoglycan synthesis that reduces vancomycin binding affinity in Enterococcus faecalis. |
AMR Gene Family | Van ligase, glycopeptide resistance gene cluster |
Drug Class | glycopeptide antibiotic |
Resistance Mechanism | antibiotic target alteration |
Resistomes with Perfect Matches | Streptococcus agalactiaeg, Streptococcus anginosusg, Streptococcus suiswgs |
Resistomes with Sequence Variants | Acinetobacter baumanniiwgs, Acinetobacter calcoaceticuswgs, Acinetobacter haemolyticusg, Anaerostipes hadrusg+wgs, Bacillus cereuswgs, Bacillus pumilusg, Bacillus thuringiensiswgs, Bacteroides ovatuswgs, Brevibacillus brevisg+wgs, Citrobacter amalonaticusg+wgs, Citrobacter freundiig+p+wgs, Citrobacter koserig+wgs, Citrobacter portucalensisg+wgs, Citrobacter werkmaniig+wgs, Citrobacter youngaeg+wgs, Clostridium botulinumwgs, Clostridium tetanig+wgs, Cronobacter condimentig+wgs, Cronobacter dublinensisg+wgs, Cronobacter malonaticusg+wgs, Cronobacter sakazakiig+wgs, Cronobacter turicensiswgs, Cronobacter universalisg+wgs, Dysosmobacter welbionisg+wgs, Enterobacter asburiaeg+wgs, Enterobacter cancerogenusg+wgs, Enterobacter chengduensisg+wgs, Enterobacter cloacaeg+wgs, Enterobacter hormaecheig+p+wgs, Enterobacter kobeig+wgs, Enterobacter roggenkampiig+wgs, Erysipelatoclostridium ramosumg+wgs, Escherichia albertiig+wgs, Escherichia colig+p+wgs, Escherichia fergusoniig+p+wgs, Escherichia marmotaeg+wgs, Faecalibacterium prausnitziig+wgs, Herbinix luporumg+wgs, Klebsiella aerogenesg+wgs, Klebsiella huaxiensisg+wgs, Klebsiella michiganensisg+wgs, Klebsiella oxytocag+wgs, Klebsiella pneumoniaeg+wgs, Klebsiella quasipneumoniaeg+wgs, Kosakonia arachidisg+wgs, Leclercia adecarboxylatag+wgs, Paeniclostridium sordelliig+wgs, Parabacteroides distasoniswgs, Proteus columbaeg+wgs, Proteus mirabilisg+wgs, Proteus pennerig+wgs, Proteus vulgarisg+wgs, Providencia alcalifaciensg+wgs, Providencia heimbachaeg+wgs, Providencia rettgerig+wgs, Providencia stuartiig+wgs, Pseudomonas brassicacearumwgs, Pseudomonas chlororaphisg+wgs, Pseudomonas fluorescensg+wgs, Pseudomonas koreensiswgs, Pseudomonas putidag+wgs, Pseudomonas synxanthag+wgs, Pseudomonas syringaewgs, Raoultella planticolag+wgs, Ruthenibacterium lactatiformansg+wgs, Salmonella bongorig+wgs, Salmonella entericag+wgs, Serratia liquefaciensg+wgs, Serratia marcescensg+p+wgs, Shigella boydiig+wgs, Shigella dysenteriaeg+wgs, Shigella flexnerig+wgs, Shigella sonneig+wgs, Streptococcus agalactiaeg, Streptococcus anginosusg, Streptococcus suiswgs |
Classification | 13 ontology terms | Show + process or component of antibiotic biology or chemistry + mechanism of antibiotic resistance + antibiotic target alteration [Resistance Mechanism] + restructuring of bacterial cell wall conferring antibiotic resistance + determinant of antibiotic resistance + protein(s) conferring antibiotic resistance via molecular bypass + antibiotic molecule + gene(s) or protein(s) associated with a glycopeptide resistance cluster + glycopeptide antibiotic [Drug Class] + antibiotic resistance gene cluster, cassette, or operon + Van ligase [AMR Gene Family] + glycopeptide resistance gene cluster [AMR Gene Family] + vancomycin [Antibiotic] |
Parent Term(s) | 2 ontology terms | Show |
Publications | Courvalin P. 2005. Clin Infect Dis 42(SUPPL 1): S25-S34. Vancomycin resistance in gram-positive cocci. (PMID 16323116) Abadia Patino L, et al. 2002. J Bacteriol 184(23): 6457-6464. vanE gene cluster of vancomycin-resistant Enterococcus faecalis BM4405. (PMID 12426332) |
Prevalence of vanG among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 414 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).
Species | NCBI Chromosome | NCBI Plasmid | NCBI WGS | NCBI GI | GRDI-AMR2 |
---|---|---|---|---|---|
Acinetobacter baumannii | 0% | 0% | 0.01% | 0% | 0% |
Acinetobacter calcoaceticus | 0% | 0% | 4.35% | 0% | 0% |
Acinetobacter haemolyticus | 7.14% | 0% | 0% | 0% | 0% |
Anaerostipes hadrus | 100% | 0% | 98.28% | 0% | 0% |
Bacillus cereus | 0% | 0% | 0.1% | 0% | 0% |
Bacillus pumilus | 20% | 0% | 0% | 0% | 0% |
Bacillus thuringiensis | 0% | 0% | 0.17% | 0% | 0% |
Bacteroides ovatus | 0% | 0% | 0.76% | 0% | 0% |
Brevibacillus brevis | 100% | 0% | 100% | 0% | 0% |
Citrobacter amalonaticus | 100% | 0% | 98.18% | 0% | 0% |
Citrobacter freundii | 100% | 0.31% | 99.03% | 0% | 0% |
Citrobacter koseri | 100% | 0% | 100% | 0% | 0% |
Citrobacter portucalensis | 100% | 0% | 99.1% | 0% | 0% |
Citrobacter werkmanii | 100% | 0% | 100% | 0% | 0% |
Citrobacter youngae | 100% | 0% | 100% | 0% | 0% |
Clostridium botulinum | 0% | 0% | 0.82% | 0% | 0% |
Clostridium tetani | 100% | 0% | 100% | 0% | 0% |
Cronobacter condimenti | 100% | 0% | 100% | 0% | 0% |
Cronobacter dublinensis | 100% | 0% | 100% | 0% | 0% |
Cronobacter malonaticus | 100% | 0% | 98.18% | 0% | 0% |
Cronobacter sakazakii | 100% | 0% | 98.65% | 0% | 0% |
Cronobacter turicensis | 0% | 0% | 100% | 0% | 0% |
Cronobacter universalis | 100% | 0% | 100% | 0% | 0% |
Dysosmobacter welbionis | 100% | 0% | 100% | 0% | 0% |
Enterobacter asburiae | 100% | 0% | 99.6% | 0% | 0% |
Enterobacter cancerogenus | 100% | 0% | 100% | 0% | 0% |
Enterobacter chengduensis | 100% | 0% | 100% | 0% | 0% |
Enterobacter cloacae | 100% | 0% | 99.36% | 0% | 0% |
Enterobacter hormaechei | 98.56% | 0.19% | 99.53% | 0% | 0% |
Enterobacter kobei | 100% | 0% | 100% | 0% | 0% |
Enterobacter roggenkampii | 97.67% | 0% | 100% | 0% | 0% |
Erysipelatoclostridium ramosum | 100% | 0% | 100% | 0% | 0% |
Escherichia albertii | 100% | 0% | 96.77% | 0% | 0% |
Escherichia coli | 67.75% | 0.01% | 99.32% | 0% | 99.65% |
Escherichia fergusonii | 100% | 0.36% | 97.83% | 0% | 0% |
Escherichia marmotae | 100% | 0% | 97.92% | 0% | 0% |
Faecalibacterium prausnitzii | 100% | 0% | 93.2% | 0% | 0% |
Herbinix luporum | 100% | 0% | 100% | 0% | 0% |
Klebsiella aerogenes | 100% | 0% | 100% | 0% | 0% |
Klebsiella huaxiensis | 100% | 0% | 100% | 0% | 0% |
Klebsiella michiganensis | 100% | 0% | 99.73% | 0% | 0% |
Klebsiella oxytoca | 97.44% | 0% | 100% | 0% | 0% |
Klebsiella pneumoniae | 99.41% | 0% | 99.4% | 0% | 0% |
Klebsiella quasipneumoniae | 100% | 0% | 100% | 0% | 0% |
Kosakonia arachidis | 100% | 0% | 100% | 0% | 0% |
Leclercia adecarboxylata | 100% | 0% | 100% | 0% | 0% |
Paeniclostridium sordellii | 100% | 0% | 100% | 0% | 0% |
Parabacteroides distasonis | 0% | 0% | 2.8% | 0% | 0% |
Proteus columbae | 100% | 0% | 100% | 0% | 0% |
Proteus mirabilis | 100% | 0% | 98.35% | 0% | 0% |
Proteus penneri | 100% | 0% | 100% | 0% | 0% |
Proteus vulgaris | 100% | 0% | 100% | 0% | 0% |
Providencia alcalifaciens | 72.73% | 0% | 48.28% | 0% | 0% |
Providencia heimbachae | 100% | 0% | 85.71% | 0% | 0% |
Providencia rettgeri | 97.06% | 0% | 100% | 0% | 0% |
Providencia stuartii | 100% | 0% | 100% | 0% | 0% |
Pseudomonas brassicacearum | 0% | 0% | 8% | 0% | 0% |
Pseudomonas chlororaphis | 83.95% | 0% | 69.35% | 0% | 0% |
Pseudomonas fluorescens | 47.22% | 0% | 56.09% | 0% | 0% |
Pseudomonas koreensis | 0% | 0% | 4.35% | 0% | 0% |
Pseudomonas putida | 1.41% | 0% | 2.67% | 0% | 0% |
Pseudomonas synxantha | 90.91% | 0% | 100% | 0% | 0% |
Pseudomonas syringae | 0% | 0% | 0.51% | 0% | 0% |
Raoultella planticola | 100% | 0% | 100% | 0% | 0% |
Ruthenibacterium lactatiformans | 100% | 0% | 100% | 0% | 0% |
Salmonella bongori | 100% | 0% | 100% | 0% | 0% |
Salmonella enterica | 95.21% | 0% | 98.55% | 0% | 0% |
Serratia liquefaciens | 100% | 0% | 100% | 0% | 0% |
Serratia marcescens | 97.73% | 1.29% | 95.81% | 0% | 0% |
Shigella boydii | 100% | 0% | 100% | 0% | 0% |
Shigella dysenteriae | 100% | 0% | 100% | 0% | 0% |
Shigella flexneri | 98% | 0% | 92.86% | 0% | 0% |
Shigella sonnei | 100% | 0% | 99.71% | 0% | 0% |
Streptococcus agalactiae | 1.87% | 0% | 0% | 0% | 0% |
Streptococcus anginosus | 5.88% | 0% | 0% | 0% | 0% |
Streptococcus suis | 0% | 0% | 0.26% | 0% | 0% |
Model Type: protein homolog model
Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.
Bit-score Cut-off (blastP): 250
Curator | Description | Most Recent Edit |
---|