AcrF

Accession ARO:3000502
CARD Short NameAcrF
DefinitionAcrF is a inner membrane transporter, similar to AcrB.
AMR Gene Familyresistance-nodulation-cell division (RND) antibiotic efflux pump
Drug Classpenicillin beta-lactam, cephalosporin, fluoroquinolone antibiotic
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
Resistomes with Perfect MatchesEscherichia colig+wgs, Shigella boydiiwgs, Shigella flexnerig+wgs, Shigella sonneiwgs
Resistomes with Sequence VariantsEscherichia colig+p+wgs, Escherichia marmotaeg+wgs, Shigella boydiig+wgs, Shigella dysenteriaeg+wgs+gi, Shigella flexnerig+wgs, Shigella sonneig+wgs
Classification13 ontology terms | Show
Parent Term(s)3 ontology terms | Show
Publications

Lau SY and Zgurskaya HI. 2005. J Bacteriol 187(22): 7815-7825. Cell division defects in Escherichia coli deficient in the multidrug efflux transporter AcrEF-TolC. (PMID 16267305)

Resistomes

Prevalence of AcrF among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 414 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GIGRDI-AMR2
Escherichia coli57.81%0.04%87.5%0%95.17%
Escherichia marmotae100%0%95.83%0%0%
Shigella boydii33.33%0%48.89%0%0%
Shigella dysenteriae21.43%0%13.33%25%0%
Shigella flexneri33%0%3.57%0%0%
Shigella sonnei2.44%0%4.53%0%0%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 1900


>gb|AAC76298.1|+|AcrF [Escherichia coli str. K-12 substr. MG1655]
MANFFIRRPIFAWVLAIILMMAGALAILQLPVAQYPTIAPPAVSVSANYPGADAQTVQDTVTQVIEQNMNGIDNLMYMSSTSDSAGSVTI
TLTFQSGTDPDIAQVQVQNKLQLATPLLPQEVQQQGISVEKSSSSYLMVAGFVSDNPGTTQDDISDYVASNVKDTLSRLNGVGDVQLFGA
QYAMRIWLDADLLNKYKLTPVDVINQLKVQNDQIAAGQLGGTPALPGQQLNASIIAQTRFKNPEEFGKVTLRVNSDGSVVRLKDVARVEL
GGENYNVIARINGKPAAGLGIKLATGANALDTAKAIKAKLAELQPFFPQGMKVLYPYDTTPFVQLSIHEVVKTLFEAIMLVFLVMYLFLQ
NMRATLIPTIAVPVVLLGTFAILAAFGYSINTLTMFGMVLAIGLLVDDAIVVVENVERVMMEDKLPPKEATEKSMSQIQGALVGIAMVLS
AVFIPMAFFGGSTGAIYRQFSITIVSAMALSVLVALILTPALCATLLKPVSAEHHENKGGFFGWFNTTFDHSVNHYTNSVGKILGSTGRY
LLIYALIVAGMVVLFLRLPSSFLPEEDQGVFLTMIQLPAGATQERTQKVLDQVTDYYLKNEKANVESVFTVNGFSFSGQAQNAGMAFVSL
KPWEERNGDENSAEAVIHRAKMELGKIRDGFVIPFNMPAIVELGTATGFDFELIDQAGLGHDALTQARNQLLGMAAQHPASLVSVRPNGL
EDTAQFKLEVDQEKAQALGVSLSDINQTISTALGGTYVNDFIDRGRVKKLYVQADAKFRMLPEDVDKLYVRSANGEMVPFSAFTTSHWVY
GSPRLERYNGLPSMEIQGEAAPGTSSGDAMALMENLASKLPAGIGYDWTGMSYQERLSGNQAPALVAISFVVVFLCLAALYESWSIPVSV
MLVVPLGIVGVLLAATLFNQKNDVYFMVGLLTTIGLSAKNAILIVEFAKDLMEKEGKGVVEATLMAVRMRLRPILMTSLAFILGVLPLAI
SNGAGSGAQNAVGIGVMGGMVSATLLAIFFVPVFFVVIRRCFKG


>gb|U00096.1|+|3415033-3418137|AcrF [Escherichia coli str. K-12 substr. MG1655]
ATGGCAAACTTTTTTATTCGACGACCGATATTTGCATGGGTGCTGGCCATTATTCTGATGATGGCGGGCGCACTGGCGATCCTACAATTG
CCCGTCGCTCAGTATCCAACAATTGCACCGCCTGCGGTTTCTGTTTCAGCAAACTATCCGGGCGCTGATGCGCAGACCGTGCAGGATACG
GTGACGCAGGTTATCGAACAGAATATGAACGGTATCGATAACCTGATGTATATGTCCTCCACCAGCGATTCCGCCGGTAGCGTGACAATT
ACCCTTACCTTCCAGTCCGGGACCGATCCTGATATCGCGCAAGTGCAGGTGCAGAACAAACTCCAGCTCGCCACGCCGTTGCTGCCGCAG
GAGGTTCAGCAGCAGGGGATCAGTGTTGAAAAGTCCAGTAGCAGCTATTTGATGGTGGCGGGCTTTGTCTCTGATAACCCAGGCACCACA
CAGGACGATATCTCGGACTATGTGGCCTCTAACGTTAAAGATACGCTTAGCCGTCTGAATGGCGTCGGTGACGTACAGCTTTTCGGCGCA
CAGTATGCGATGCGTATCTGGCTGGATGCCGATCTGCTAAACAAATATAAACTGACACCGGTTGATGTGATTAACCAGTTGAAGGTACAG
AACGATCAGATCGCTGCCGGACAGTTGGGCGGAACGCCAGCGTTACCAGGGCAACAATTGAACGCCTCGATTATTGCTCAGACGCGGTTT
AAAAATCCGGAAGAATTCGGCAAAGTGACCCTGCGCGTAAACAGTGACGGCTCGGTGGTACGCCTGAAAGATGTCGCACGGGTTGAACTT
GGCGGTGAAAACTATAACGTTATCGCTCGTATCAACGGAAAACCGGCGGCGGGCCTGGGGATTAAGCTGGCAACCGGCGCGAATGCTCTC
GATACCGCGAAAGCCATTAAGGCAAAACTGGCGGAATTACAGCCATTCTTCCCGCAGGGAATGAAGGTTCTCTACCCTTATGACACCACG
CCATTCGTCCAGCTTTCTATTCACGAAGTGGTAAAAACGCTGTTCGAAGCCATTATGCTGGTGTTCCTGGTGATGTATCTGTTCTTGCAG
AATATGCGAGCAACGCTGATCCCCACCATTGCGGTACCCGTGGTGTTGTTAGGGACGTTTGCCATCCTCGCCGCTTTTGGTTACTCCATC
AACACACTAACGATGTTCGGGATGGTGCTTGCCATCGGGCTGCTCGTCGATGATGCGATAGTGGTGGTGGAGAACGTCGAGCGCGTGATG
ATGGAGGATAAGCTCCCGCCAAAAGAAGCGACGGAAAAATCGATGTCGCAAATTCAGGGCGCACTGGTGGGTATCGCGATGGTGCTGTCA
GCGGTATTTATTCCGATGGCATTCTTCGGCGGTTCTACTGGGGCAATTTATCGCCAGTTCTCTATCACCATCGTTTCGGCAATGGCGCTT
TCTGTTCTGGTGGCATTGATTCTTACCCCTGCGTTATGTGCAACGCTGCTTAAACCCGTCTCTGCTGAGCATCACGAAAATAAGGGCGGT
TTCTTCGGTTGGTTTAATACCACCTTCGATCATAGCGTTAACCACTACACCAACAGCGTCGGCAAAATCCTCGGATCCACAGGACGATAT
TTACTGATCTATGCGCTGATTGTTGCAGGAATGGTGGTGTTGTTTTTACGTCTTCCGTCTTCCTTCTTACCTGAAGAGGATCAGGGTGTC
TTTCTGACCATGATTCAGTTACCCGCTGGCGCGACGCAAGAGCGGACGCAAAAAGTGTTGGATCAAGTTACGGATTACTATCTGAAGAAC
GAGAAAGCGAACGTTGAAAGTGTCTTTACGGTTAACGGCTTTAGCTTCAGCGGCCAGGCACAAAACGCCGGTATGGCCTTCGTCAGTCTG
AAACCGTGGGAAGAGCGTAATGGTGACGAAAACAGTGCGGAAGCGGTAATCCATCGTGCCAAAATGGAATTGGGCAAGATCCGCGACGGT
TTTGTCATTCCATTCAATATGCCAGCCATTGTTGAACTGGGCACGGCAACGGGTTTCGACTTTGAGTTAATTGATCAGGCTGGGCTGGGT
CACGATGCCCTAACCCAGGCCCGTAACCAGTTGCTTGGTATGGCGGCGCAACATCCTGCCAGCTTAGTCAGCGTGCGCCCTAATGGCCTG
GAAGACACCGCGCAGTTTAAACTGGAAGTTGACCAGGAAAAGGCGCAGGCATTAGGTGTTTCACTTTCTGACATCAATCAGACCATTTCA
ACGGCGCTGGGTGGGACTTACGTTAACGACTTCATCGACCGTGGCCGCGTGAAAAAGTTGTATGTTCAGGCGGATGCCAAATTCCGTATG
CTGCCAGAAGATGTCGATAAACTTTATGTCCGCAGCGCCAACGGCGAAATGGTGCCATTCTCGGCCTTTACCACTTCACATTGGGTGTAT
GGCTCTCCGCGACTGGAACGCTACAACGGTCTGCCGTCAATGGAGATTCAGGGGGAAGCCGCGCCAGGAACCAGTTCCGGCGATGCCATG
GCGTTGATGGAAAACCTTGCGTCAAAATTACCTGCGGGCATTGGTTATGACTGGACGGGTATGTCGTATCAGGAACGCTTATCGGGAAAC
CAGGCTCCCGCTCTGGTAGCAATTTCCTTTGTGGTTGTTTTCCTGTGCCTTGCTGCACTCTATGAAAGCTGGTCAATTCCTGTCTCGGTT
ATGTTGGTAGTGCCGTTAGGGATTGTCGGCGTGCTGCTGGCGGCGACACTCTTTAATCAAAAAAATGACGTCTACTTTATGGTGGGCTTG
CTAACGACAATTGGCTTGTCGGCCAAAAACGCTATTTTGATCGTTGAGTTCGCTAAAGATCTCATGGAGAAAGAGGGTAAAGGTGTTGTT
GAAGCGACACTGATGGCAGTACGTATGCGTCTGCGTCCTATCCTGATGACCTCTCTCGCCTTTATTCTCGGCGTATTACCGCTAGCTATC
AGTAACGGTGCCGGCAGTGGCGCGCAGAACGCTGTGGGTATCGGGGTAATGGGAGGAATGGTCTCTGCAACGTTGCTGGCAATCTTCTTC
GTACCGGTGTTCTTTGTGGTGATCCGCCGTTGCTTTAAAGGATAA

Curator Acknowledgements
Curator Description Most Recent Edit