mdsB

Accession ARO:3000790
Synonym(s)gesB mexQ
DefinitionMdsB is the inner membrane transporter of the multidrug and metal efflux complex MdsABC. mdsB corresponds to 1 locus in Pseudomonas aeruginosa PAO1 (gene name: mexQ) and 2 loci in Pseudomonas aeruginosa LESB58.
AMR Gene Familyresistance-nodulation-cell division (RND) antibiotic efflux pump
Drug Classtetracycline antibiotic, triclosan, fluoroquinolone antibiotic, phenicol antibiotic, glycylcycline, antibacterial free fatty acids, penam, diaminopyrimidine antibiotic, monobactam, aminoglycoside antibiotic, macrolide antibiotic, carbapenem, acridine dye, aminocoumarin antibiotic, penem, cephamycin, cephalosporin
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
ResistomesSalmonella entericag+wgs
Classification28 ontology terms | Show
Parent Term(s)2 ontology terms | Show
Publications

Pontel LB, et al. 2007. Mol Microbiol 66(3): 814-825. GolS controls the response to gold by the hierarchical induction of Salmonella-specific genes that include a CBA efflux-coding operon. (PMID 17919284)

Conroy O, et al. 2010. FEMS Microbiol Lett 308(2): 115-122. Differing ability to transport nonmetal substrates by two RND-type metal exporters. (PMID 20497225)

Resistomes

Prevalence of mdsB among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI for 82 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGS
Salmonella enterica16.67%0%16.55%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.

Bit-score Cut-off (blastP): 2090


>gb|AAL19305.1|-|mdsB [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2]
MKFTHFFIARPIFAIVLSLLMLLAGAIAFLKLPLSEYPAVTPPTVQVSASYPGANPQVIADTVAAPLEQVINGVDGMLYMNTQMAIDGRM
VISIAFEQGTDPDMAQIQVQNRVSRALPRLPEEVQRIGVVTEKTSPDMLMVVHLVSPQKRYDSLYLSNFAIRQVRDELARLPGVGDVLVW
GAGEYAMRVWLDPAKIANRGLTASDIVTALREQNVQVAAGSVGQQPEASAAFQMTVNTLGRLTSEEQFGEIVVKIGADGEVTRLRDVARV
TLGADAYTLRSLLNGEAAPALQIIQSPGANAIDVSNAIRGKMDELQQNFPQDIEYRIAYDPTVFVRASLQSVAITLLEALVLVVLVVVMF
LQTWRASIIPLVAVPVSLVGTFALMHLFGFSLNTLSLFGLVLSIGIVVDDAIVVVENVERHISQGKSPGEAAKKAMDEVTGPILSITSVL
TAVFIPSAFLAGLQGEFYRQFALTIAISTILSAINSLTLSPALAAILLRPHHDTAKADWLTRLMGTVTGGFFHRFNRFFDSASNRYVSAV
RRAVRGSVIVMVLYAGFVGLTWLGFHQVPNGFVPAQDKYYLVGIAQLPSGASLDRTEAVVKQMSAIALAEPGVESVVVFPGLSVNGPVNV
PNSALMFAMLKPFDEREDPSLSANAIAGKLMHKFSHIPDGFIGIFPPPPVPGLGATGGFKLQIEDRAELGFEAMTKVQSEIMSKAMQTPE
LANMLASFQTNAPQLQVDIDRVKAKSMGVSLTDIFETLQINLGSLYVNDFNRFGRAWRVMAQADAPFRMQQEDIGLLKVRNAKGEMIPLS
AFVTIMRQSGPDRIIHYNGFPSVDISGGPAPGFSSGQATDAIEKIVRETLPEGMVFEWTDLVYQEKQAGNSALAIFALAVLLAFLILAAQ
YNSWSLPFAVLLIAPMSLLSAIVGVWVSGGDNNIFTQIGFVVLVGLAAKNAILIVEFARAKEHDGADPLTAVLEASRLRLRPILMTSFAF
IAGVVPLVLATGAGAEMRHAMGIAVFAGMLGVTLFGLLLTPVFYVVVRRMALKRENRVDSHDQQA


>gb|AE006468.2|-|393894-397061|mdsB [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2]
ATGAAATTCACCCACTTTTTCATTGCACGCCCCATCTTCGCCATCGTCCTGTCGCTGTTAATGCTGCTGGCTGGCGCTATCGCCTTTTTA
AAACTGCCGCTGAGTGAATATCCGGCCGTTACGCCGCCCACGGTACAGGTTAGCGCCAGCTACCCCGGCGCTAACCCGCAAGTGATTGCC
GATACGGTAGCCGCGCCGCTGGAACAGGTGATCAACGGCGTTGACGGCATGTTGTATATGAATACCCAGATGGCCATTGATGGTCGCATG
GTTATCTCTATCGCCTTCGAACAGGGAACCGATCCTGATATGGCGCAAATTCAGGTGCAAAACCGGGTATCCCGCGCGCTGCCTCGCCTG
CCCGAAGAAGTCCAGCGAATTGGCGTTGTAACGGAGAAAACGTCCCCCGATATGTTGATGGTGGTTCATCTTGTCTCGCCGCAAAAACGC
TATGACTCGCTTTACCTGTCTAACTTCGCCATCCGGCAGGTTCGCGACGAACTGGCCCGTTTACCCGGCGTCGGCGATGTTCTCGTCTGG
GGCGCGGGCGAGTACGCCATGCGCGTCTGGCTGGACCCGGCGAAAATCGCCAACCGCGGTCTTACCGCCAGTGATATCGTTACGGCGTTG
CGGGAACAAAACGTACAGGTCGCCGCCGGTTCCGTCGGGCAACAGCCGGAGGCCTCCGCCGCTTTTCAGATGACGGTAAACACGCTGGGC
CGCCTGACCAGCGAAGAACAGTTCGGCGAGATTGTGGTAAAAATCGGCGCTGACGGCGAGGTGACGCGTCTGCGTGATGTCGCCCGCGTC
ACGCTGGGCGCAGATGCCTATACGCTGCGCAGTTTACTGAATGGCGAAGCGGCGCCAGCGTTACAGATTATTCAAAGTCCGGGCGCCAAT
GCGATTGACGTTTCTAACGCGATTCGCGGCAAAATGGATGAGTTGCAGCAAAACTTCCCGCAGGATATCGAATACCGGATTGCCTATGAT
CCTACGGTCTTCGTGCGCGCATCGCTACAATCGGTGGCGATTACGTTGCTGGAAGCCCTCGTGCTGGTCGTCCTTGTCGTGGTGATGTTC
CTGCAAACCTGGCGGGCGTCCATTATTCCTCTGGTGGCGGTTCCCGTTTCGCTGGTCGGCACCTTTGCCTTGATGCACCTGTTTGGCTTT
TCGCTGAATACGCTTTCGCTGTTTGGTTTGGTCCTGTCGATAGGTATCGTTGTCGATGACGCCATCGTTGTGGTCGAAAACGTGGAACGG
CATATCTCGCAGGGCAAAAGTCCCGGAGAGGCGGCAAAGAAGGCGATGGATGAAGTCACTGGTCCCATTCTTTCTATTACCTCGGTGCTA
ACGGCGGTCTTTATCCCTTCCGCATTCCTGGCGGGCCTGCAGGGTGAGTTTTATCGTCAGTTCGCGTTGACCATCGCTATTTCGACCATC
CTTTCGGCCATTAACTCGCTGACGCTCTCCCCTGCGCTGGCTGCCATTTTGCTAAGACCGCACCACGATACTGCGAAGGCTGACTGGCTA
ACGCGGTTGATGGGCACGGTCACTGGCGGTTTTTTCCATCGCTTTAACCGTTTCTTCGACAGCGCGTCGAACCGCTATGTTAGCGCCGTC
CGTCGGGCCGTGCGCGGCAGCGTCATTGTGATGGTGCTCTATGCTGGCTTTGTGGGGCTGACCTGGCTTGGCTTCCATCAGGTGCCGAAC
GGGTTTGTGCCTGCGCAGGATAAATACTATCTCGTCGGCATCGCCCAGCTCCCAAGCGGCGCATCGTTGGATCGCACAGAGGCGGTCGTG
AAACAGATGTCCGCTATCGCGCTGGCGGAACCCGGCGTTGAAAGCGTCGTCGTCTTCCCCGGTCTGTCGGTTAACGGCCCGGTAAATGTG
CCAAATTCGGCGCTGATGTTCGCCATGCTGAAACCCTTTGACGAGCGTGAAGATCCTTCGCTTTCCGCTAACGCTATCGCCGGAAAGCTA
ATGCACAAATTTAGCCACATTCCCGACGGATTTATTGGCATCTTCCCGCCACCGCCGGTTCCAGGGCTTGGCGCGACGGGCGGCTTTAAA
TTGCAGATTGAAGATCGTGCGGAACTGGGATTTGAAGCGATGACAAAGGTGCAAAGCGAGATTATGTCTAAGGCGATGCAGACGCCCGAA
CTGGCCAATATGCTGGCCAGTTTCCAGACAAACGCCCCGCAATTACAGGTGGATATCGACCGGGTAAAGGCGAAATCAATGGGGGTATCG
CTCACCGACATCTTTGAAACGTTGCAAATTAACCTCGGCTCGCTTTACGTCAACGATTTCAACCGATTTGGCCGTGCCTGGCGGGTGATG
GCGCAGGCCGATGCGCCATTCCGTATGCAGCAAGAGGATATCGGCCTGCTTAAAGTCCGCAATGCGAAGGGCGAGATGATCCCGCTTAGC
GCTTTCGTCACGATTATGCGCCAGTCGGGGCCGGACAGAATCATCCATTACAACGGCTTCCCCTCGGTAGATATTAGCGGTGGACCGGCT
CCGGGCTTCTCCTCCGGACAGGCGACGGACGCGATTGAAAAGATCGTGCGTGAAACGTTACCGGAAGGGATGGTCTTCGAATGGACCGAT
CTGGTTTATCAGGAAAAACAGGCCGGCAACTCTGCGCTTGCTATCTTTGCGCTGGCGGTGCTGCTGGCCTTCCTGATCCTGGCGGCGCAG
TACAACAGTTGGTCGCTGCCCTTCGCCGTCCTGCTTATTGCGCCTATGTCATTACTCTCAGCCATTGTCGGCGTGTGGGTATCTGGCGGA
GATAACAATATCTTTACGCAGATTGGTTTCGTGGTGCTGGTCGGCCTGGCGGCCAAGAACGCCATTTTGATTGTCGAGTTTGCCCGCGCC
AAAGAACACGACGGCGCAGACCCGCTGACCGCCGTACTGGAAGCGTCCCGCCTGCGTCTGCGTCCTATCCTGATGACCTCATTCGCCTTT
ATCGCAGGTGTAGTACCACTGGTACTCGCGACGGGTGCCGGCGCGGAAATGCGACATGCGATGGGCATCGCCGTGTTTGCCGGCATGTTG
GGCGTCACGCTCTTCGGCCTGTTATTGACGCCTGTATTTTACGTGGTGGTTCGCAGGATGGCATTAAAGCGTGAGAACCGCGTTGATTCG
CATGATCAGCAAGCATAA