TEM-30

Accession ARO:3000900
Synonym(s)IRT-2 E-GUER TEM-99 TRI-2
DefinitionTEM-30 is an inhibitor-resistant beta-lactamase found in E. coli. Confers resistance to amoxycilllin-clavulanic acid, ticarcillin-clavulanic acid, kanamycin, neomycin, and intermediate resistance to mezlocillin and piperacillin.
AMR Gene FamilyTEM beta-lactamase
Drug Classpenam, monobactam, cephalosporin, penem
Resistance Mechanismantibiotic inactivation
ResistomesEscherichia colip+wgs, Klebsiella pneumoniaep+wgs, Salmonella entericawgs, Shigella flexneriwgs
Classification22 ontology terms | Show
Parent Term(s)3 ontology terms | Show
+ confers_resistance_to_antibiotic amoxicillin [Antibiotic]
+ TEM beta-lactamase [AMR Gene Family]
+ confers_resistance_to_antibiotic amoxicillin-clavulanic acid [Antibiotic]
Publications

Belaaouaj A, et al. 1994. FEMS Microbiol Lett 120(1-2): 75-80. Nucleotide sequences of the genes coding for the TEM-like beta-lactamases IRT-1 and IRT-2 (formerly called TRI-1 and TRI-2). (PMID 8056297)

Vedel G, et al. 1992. J Antimicrob Chemother 30(4): 449-462. Clinical isolates of Escherichia coli producing TRI beta-lactamases: novel TEM-enzymes conferring resistance to beta-lactamase inhibitors. (PMID 1490918)

Resistomes

Prevalence of TEM-30 among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI for 88 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGS
Acinetobacter baumannii0%0%0.02%
Enterobacter hormaechei0%0%0.12%
Escherichia coli0.09%0.04%0.06%
Klebsiella pneumoniae0%0.07%0.14%
Neisseria gonorrhoeae0%0%0.17%
Salmonella enterica0%0%0.01%
Shigella flexneri0%0%0.17%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.

Bit-score Cut-off (blastP): 500


>gb|CAD24670.1|+|TEM-30 [Escherichia coli]
MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEDQLGARVGYIELDLNSGKILESFRPEERFPMMSTFKVLLCGAVLSRVDAGQEQLG
RRIHYSQNDLVEYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTM
PAAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGAGERGSSGIIAALGPDGKPSRIVVIYTTGSQATMDE
RNRQIAEIGASLIKHW


>gb|AJ437107|+|209-1069|TEM-30 [Escherichia coli]
ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAA
GTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCC
GAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGT
CGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTA
TGCAGTGCTGCCATAACCATGAGTGATAACACTGCTGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTG
CACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATG
CCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAG
GCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCT
AGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAA
CGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA