ErmW

Accession ARO:3001306
Synonym(s)myrB
CARD Short NameErmW
DefinitionErmW is a methyltransferase found in the mycinamicin producer Micromonospora griseorubida. Like other Erm enzymes, it catalyzes the methylation of A2058 of the 23S ribosomal RNA. The gene is found within the mycinamicin biosynthetic cluster and is responsible for self-resistance.
AMR Gene FamilyErm 23S ribosomal RNA methyltransferase
Drug Classstreptogramin antibiotic, lincosamide antibiotic, macrolide antibiotic
Resistance Mechanismantibiotic target alteration
Classification12 ontology terms | Show
Parent Term(s)3 ontology terms | Show
+ confers_resistance_to_antibiotic erythromycin [Antibiotic]
+ Erm 23S ribosomal RNA methyltransferase [AMR Gene Family]
+ confers_resistance_to_antibiotic josamycin [Antibiotic]
Publications

Anzai Y, et al. 2003. FEMS Microbiol Lett 218(1): 135-141. Organization of the biosynthetic gene cluster for the polyketide macrolide mycinamicin in Micromonospora griseorubida. (PMID 12583909)

Inouye M, et al. 1994. Gene 141(1): 39-46. Cloning and sequences of two macrolide-resistance-encoding genes from mycinamicin-producing Micromonospora griseorubida. (PMID 8163173)

Resistomes

Prevalence of ErmW among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GI
No prevalence data


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 400


>gb|BAA03402.1|+|ErmW [Micromonospora griseorubida]
MSSIRRRHAAASLDTPAVGGRHELGQNFLVDRGVCTRIAEVVSSTTAHPVLELGAGDGAITRALVAANLPVTALELDPRRVRRLQRTFAD
GVTVVHGDMLRYDFGPYPHHVVSTVPFSITTPLLRRLIGQRFWHTAVLLVQWEVARKRAGVGGTTMLTAASWPWYEFTLVERVPKTSFDP
VPSVDGGILVIERRSAPLLDDRCVGDYQNLVREVYTGPGRGLAAILRTRLPGREVDAWLRRERVDPAALPRDLKAGHWASLYRLYREVGT
RPAPAGRSVRARPGSVGPDRSLPPRGLRSGPPRARRRGGGA


>gb|D14532.1|+|1039-1974|ErmW [Micromonospora griseorubida]
ATGTCATCAATCCGGCGCCGGCACGCCGCCGCTTCGCTCGACACCCCTGCCGTGGGCGGCAGGCACGAACTCGGTCAGAACTTCCTCGTC
GACCGAGGTGTATGCACAAGGATCGCCGAGGTCGTCTCCTCGACGACGGCCCATCCGGTCCTCGAACTGGGCGCCGGTGACGGTGCCATC
ACCCGGGCCCTGGTCGCGGCGAATCTCCCGGTCACCGCGCTGGAACTCGACCCCCGGCGGGTCCGGCGGCTCCAGCGGACCTTCGCCGAC
GGGGTCACCGTCGTGCACGGGGACATGCTCCGGTACGACTTCGGGCCGTACCCGCACCACGTGGTGTCGACCGTGCCGTTCTCCATCACC
ACGCCGCTGCTCCGGCGCCTGATCGGCCAGCGGTTCTGGCACACCGCGGTGCTGTTGGTGCAGTGGGAGGTGGCCCGTAAGCGGGCCGGT
GTGGGCGGCACCACGATGCTCACCGCAGCCAGTTGGCCGTGGTACGAGTTCACCCTGGTGGAGCGGGTGCCGAAGACCTCGTTCGACCCG
GTGCCGAGCGTCGACGGCGGCATCCTCGTCATCGAGCGTCGATCCGCGCCGCTGCTCGACGACCGCTGCGTGGGTGACTACCAGAACCTG
GTACGCGAGGTGTACACCGGTCCCGGTCGTGGTCTGGCCGCGATTCTCCGTACCCGTCTGCCCGGTCGTGAGGTGGACGCCTGGCTCCGC
CGCGAGCGGGTGGACCCGGCGGCCCTGCCCCGCGACCTCAAGGCCGGGCACTGGGCATCCCTCTACCGGCTCTACCGGGAGGTGGGTACT
CGGCCCGCCCCTGCCGGCCGGTCCGTCCGGGCCCGGCCCGGATCCGTCGGCCCCGACCGCTCGCTCCCTCCGCGCGGCCTGCGATCCGGT
CCGCCGAGGGCTCGACGACGTGGTGGAGGCGCCTGA