Accession | ARO:3002530 |
Synonym(s) | aacCA2 |
CARD Short Name | AAC(3)-Ib |
Definition | AAC(3)-Ib is an integron-encoded aminoglycoside acetyltransferase in P. aeruginosa. |
AMR Gene Family | AAC(3) |
Drug Class | aminoglycoside antibiotic |
Resistance Mechanism | antibiotic inactivation |
Resistomes with Perfect Matches | Citrobacter amalonaticuswgs, Enterobacter cloacaep+wgs, Enterobacter hormaecheip+wgs, Klebsiella michiganensisp+wgs, Klebsiella pneumoniaewgs, Klebsiella quasipneumoniaewgs, Pseudomonas aeruginosawgs, Serratia marcescenswgs |
Resistomes with Sequence Variants | Citrobacter amalonaticuswgs, Citrobacter freundiiwgs, Enterobacter cloacaep+wgs, Enterobacter hormaecheip+wgs, Escherichia coligi, Klebsiella michiganensisp+wgs, Klebsiella pneumoniaewgs, Klebsiella quasipneumoniaewgs, Pseudomonas aeruginosawgs, Salmonella entericagi, Serratia marcescenswgs |
Classification | 12 ontology terms | Show + process or component of antibiotic biology or chemistry + mechanism of antibiotic resistance + determinant of antibiotic resistance + antibiotic inactivation [Resistance Mechanism] + antibiotic inactivation enzyme + aminoglycoside modifying enzyme + acylation of antibiotic conferring resistance + antibiotic molecule + aminoglycoside acetyltransferase (AAC) + aminoglycoside antibiotic [Drug Class] + antibiotic mixture + AAC(3) [AMR Gene Family] |
Parent Term(s) | 4 ontology terms | Show + confers_resistance_to_antibiotic astromicin [Antibiotic] + confers_resistance_to_antibiotic sisomicin [Antibiotic] + confers_resistance_to_antibiotic gentamicin [Antibiotic] + AAC(3)-I |
Publications | Schwocho LR, et al. 1995. Antimicrob Agents Chemother 39(8): 1790-1796. Cloning and characterization of a 3-N-aminoglycoside acetyltransferase gene, aac(3)-Ib, from Pseudomonas aeruginosa. (PMID 7486920) |
Prevalence of AAC(3)-Ib among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 414 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).
Species | NCBI Chromosome | NCBI Plasmid | NCBI WGS | NCBI GI | GRDI-AMR2 |
---|---|---|---|---|---|
Citrobacter amalonaticus | 0% | 0% | 1.82% | 0% | 0% |
Citrobacter freundii | 0% | 0% | 0.19% | 0% | 0% |
Enterobacter cloacae | 0% | 0.56% | 0.64% | 0% | 0% |
Enterobacter hormaechei | 0% | 0.45% | 0.69% | 0% | 0% |
Escherichia coli | 0% | 0% | 0% | 0.13% | 0% |
Klebsiella michiganensis | 0% | 1.71% | 1.33% | 0% | 0% |
Klebsiella pneumoniae | 0% | 0% | 0.03% | 0% | 0% |
Klebsiella quasipneumoniae | 0% | 0% | 0.39% | 0% | 0% |
Pseudomonas aeruginosa | 0% | 0% | 0.19% | 0% | 0% |
Salmonella enterica | 0% | 0% | 0% | 1.32% | 0% |
Serratia marcescens | 0% | 0% | 0.13% | 0% | 0% |
Model Type: protein homolog model
Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.
Bit-score Cut-off (blastP): 300
Curator | Description | Most Recent Edit |
---|