Accession ARO:3002569
DefinitionAAC(6')-Iy is a chromosomal-encoded aminoglycoside acetyltransferase in S. enteritidis and S. enterica. Regulatory mutation required to increase expression of this chromosomally-encoded gene for resistance. In the specific system, aminoglycoside resistance was due to a transcriptional fusion secondary to a chromosomal deletion in which the downstream aac(6')-Iy gene was placed under the control of the upstream nmpC promoter.
AMR Gene FamilyAAC(6')
Drug Classaminoglycoside antibiotic
Resistance Mechanismantibiotic inactivation
Resistomes with Perfect MatchesSalmonella entericag+wgs
Resistomes with Sequence VariantsEscherichia coliwgs, Klebsiella pneumoniaewgs, Salmonella entericag+wgs
Classification19 ontology terms | Show
Parent Term(s)1 ontology terms | Show
+ AAC(6') [AMR Gene Family]

Magnet S, et al. 1999. J Bacteriol 181(21): 6650-6655. Activation of the cryptic aac(6')-Iy aminoglycoside resistance gene of Salmonella by a chromosomal deletion generating a transcriptional fusion. (PMID 10542165)


Prevalence of AAC(6')-Iy among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI for 88 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGS
Escherichia coli0%0%0.01%
Klebsiella pneumoniae0%0%0.01%
Salmonella enterica75.84%0%70.19%
Show Perfect Only

Detection Models

Model Type: protein homolog model

Model Definition: The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.

Bit-score Cut-off (blastP): 275

>gb|AAF03531.1|+|AAC(6')-Iy [Salmonella enterica subsp. enterica serovar Enteritidis]

>gb|AF144880|+|3542-3979|AAC(6')-Iy [Salmonella enterica subsp. enterica serovar Enteritidis]