Pseudomonas aeruginosa gyrA conferring resistance to fluoroquinolones

Accession ARO:3003684
DefinitionPoint mutation of Pseudomonas aeruginosa gyrA resulted in the lowered affinity between fluoroquinolones and gyrA. Thus, conferring resistance.
AMR Gene Familyfluoroquinolone resistant gyrA
Drug Classfluoroquinolone antibiotic
Resistance Mechanismantibiotic target alteration
Classification12 ontology terms | Show
Parent Term(s)7 ontology terms | Show
+ confers_resistance_to_antibiotic ciprofloxacin [Antibiotic]
+ confers_resistance_to_antibiotic levofloxacin [Antibiotic]
+ confers_resistance_to_antibiotic ofloxacin [Antibiotic]
+ confers_resistance_to_antibiotic sparfloxacin [Antibiotic]
+ confers_resistance_to_antibiotic pefloxacin [Antibiotic]
+ fluoroquinolone resistant gyrA [AMR Gene Family]
+ confers_resistance_to_antibiotic sitafloxacin [Antibiotic]
Publications

Yonezawa M, et al. 1995. Antimicrob. Agents Chemother. 39(9):1970-2 DNA gyrase gyrA mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa. (PMID 8540700)

Salma R, et al. 2013. J. Infect. Chemother. 19(1):77-81 gyrA and parC mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa from Nini Hospital in north Lebanon. (PMID 22821356)

Resistomes

Prevalence of Pseudomonas aeruginosa gyrA conferring resistance to fluoroquinolones among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI for 82 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein variant model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGS
Pseudomonas aeruginosa0%0%0%
Pseudomonas fluorescens0%0%0%
Pseudomonas putida9.09%0%6.25%
Pseudomonas stutzeri0%0%17.91%
Show Perfect Only


Detection Models

Model Type: protein variant model

Model Definition: The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: strict and loose. A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.

Legend:

  • discovered in clinical, agricultural, or environmental isolates
  • discovered via laboratory selection experiments


Bit-score Cut-off (blastP): 1500

PMID: 8540700T83I T83I,D87H T83I,D87N T83I,D87G D87N
PMID: 22821356H80R T83I

>gb|AAG06556.1|-|Pseudomonas aeruginosa gyrA conferring resistance to fluoroquinolones [Pseudomonas aeruginosa PAO1]
MGELAKEILPVNIEDELKQSYLDYAMSVIVGRALPDARDGLKPVHRRVLYAMSELGNDWN
KPYKKSARVVGDVIGKYHPHGDTAVYDTIVRMAQPFSLRYMLVDGQGNFGSVDGDNAAAM
RYTEVRMAKLAHELLADLEKETVDWVPNYDGTEQIPAVMPTKIPNLLVNGSSGIAVGMAT
NIPPHNLGEVIDGCLALMDNPDLTVDELMQYIPGPDFPTAGIINGRAGIIEAYRTGRGRI
YIRARAVVEEMEKGGGREQIIITELPYQLNKARLIEKIAELVKEKKIEGISELRDESDKD
GMRVVIELRRGEVGEVVLNNLYAQTQLQSVFGINVVALVDGQPRTLNLKDMLEVFVRHRR
EVVTRRTVYELRKARERGHILEGQAVALSNIDPVIELIKSSPTPAEAKERLIATAWESSA
VEAMVERAGADACRPEDLDPQYGLRDGKYYLSPEQAQAILELRLHRLTGLEHEKLLSEYQ
EILNLIGELIRILTNPARLMEVIREELEAVKAEFGDARRTEIVASQVDLTIADLITEEDR
VVTISHGGYAKSQPLAAYQAQRRGGKGKSATGMKDEDYIEHLLVANSHATLLLFSSKGKV
YWLRTFEIPEASRTARGRPLVNLLPLDEGERITAMLQIDLEALQQNGGADDDLDEAEGAV
LEGEVVEAAEVEEVEGETAELVAEPTGAYIFMATAFGTVKKTPLVQFSRPRSSGLIALKL
EEGDTLIAAAITDGAKEVMLFSSAGKVIRFAESVVRIMGRNARGVRGMRLGKGQQLISML
IPESGAQILTASERGFGKRTPLSKFPRRGRGGQGVIAMVTNERNGALIAAVQVQEGEEIM
LISDQGTLVRTRVDEVSLSGRNTQGVTLIKLASDEVLVGLERVQEPSGGDDEDLPEGEEA
AESLGESAESESEPAAEAEGNEE



>gb|AE004091.2|-|3556427-3559198|Pseudomonas aeruginosa gyrA conferring resistance to fluoroquinolones [Pseudomonas aeruginosa PAO1]
ATGGGCGAACTGGCCAAAGAAATTCTCCCGGTCAATATCGAAGACGAGCTGAAACAGTCCTATCTCGACTACGCGATGAGCGTGATCGTC
GGGCGGGCCCTGCCGGATGCACGTGACGGCCTGAAGCCGGTGCACCGCCGTGTGCTTTATGCCATGAGCGAGCTGGGCAACGACTGGAAC
AAGCCCTACAAGAAATCCGCCCGTGTGGTCGGCGACGTGATCGGTAAGTACCACCCGCACGGCGACACCGCGGTCTACGACACCATCGTG
CGCATGGCGCAGCCGTTCTCGCTGCGCTACATGCTGGTAGACGGCCAGGGCAACTTCGGTTCGGTGGACGGCGACAACGCCGCAGCCATG
CGATACACCGAAGTGCGCATGGCCAAGCTGGCCCACGAACTGCTGGCGGACCTGGAAAAGGAAACCGTCGACTGGGTGCCCAACTACGAT
GGCACCGAGCAGATCCCGGCGGTCATGCCGACCAAGATTCCCAACCTGCTGGTCAACGGTTCCAGCGGTATCGCCGTGGGCATGGCGACC
AACATCCCGCCGCACAACCTCGGCGAAGTGATCGACGGCTGCCTGGCGCTGATGGACAACCCCGACCTGACCGTCGATGAGCTGATGCAG
TACATCCCCGGTCCGGACTTCCCCACCGCCGGCATCATCAACGGCCGCGCCGGGATCATCGAGGCCTACCGCACCGGTCGCGGGCGCATC
TACATCCGTGCCCGCGCCGTCGTCGAGGAGATGGAGAAGGGCGGCGGTCGCGAGCAGATTATCATCACCGAGCTGCCGTACCAGTTGAAC
AAGGCGCGGTTGATCGAGAAGATCGCCGAGCTGGTGAAAGAGAAGAAGATCGAGGGTATTTCCGAGCTGCGCGACGAGTCTGACAAGGAC
GGCATGCGCGTGGTCATCGAGCTGCGTCGCGGCGAGGTGGGCGAGGTGGTCCTCAACAACCTCTATGCCCAGACCCAGCTGCAGAGCGTG
TTCGGCATCAACGTGGTGGCCCTGGTCGACGGCCAGCCGCGCACGCTGAACCTGAAGGACATGCTCGAGGTGTTCGTCCGCCACCGCCGC
GAAGTGGTGACCCGGCGTACCGTCTACGAGCTGCGCAAGGCCCGCGAGCGCGGGCACATCCTGGAAGGCCAGGCGGTCGCCCTGTCGAAC
ATCGACCCGGTGATCGAGCTGATCAAGAGTTCGCCGACCCCGGCCGAGGCCAAGGAACGCCTGATCGCCACTGCCTGGGAGTCCAGCGCG
GTGGAAGCGATGGTCGAGCGTGCCGGCGCCGACGCCTGTCGTCCGGAAGACCTGGATCCGCAGTACGGCCTGCGCGACGGCAAGTACTAC
CTGTCGCCGGAGCAGGCCCAGGCGATCCTCGAGCTGCGCCTGCATCGCCTGACCGGCCTGGAGCACGAGAAGCTGCTCTCCGAATACCAG
GAAATCCTCAACCTGATCGGCGAGCTGATCCGCATCCTGACCAACCCGGCGCGCCTGATGGAGGTGATCCGTGAGGAACTGGAAGCGGTC
AAGGCCGAATTCGGCGATGCTCGCCGCACCGAGATCGTGGCTTCCCAGGTCGACCTGACCATCGCCGACCTGATCACCGAGGAAGACCGC
GTGGTGACCATCTCGCACGGCGGCTACGCCAAGTCCCAGCCGCTGGCCGCCTACCAGGCGCAGCGTCGCGGCGGCAAAGGCAAGTCCGCC
ACCGGGATGAAGGACGAGGACTACATCGAACACCTGCTGGTGGCCAACAGCCATGCGACCCTCCTGCTGTTCTCCAGCAAGGGCAAGGTC
TACTGGCTGCGTACCTTCGAGATTCCGGAAGCCTCGCGTACCGCGCGTGGCCGGCCGCTGGTGAACCTGCTGCCGCTGGATGAGGGCGAG
CGGATCACCGCGATGTTGCAGATCGACCTGGAGGCGCTGCAGCAGAACGGTGGCGCCGATGACGACCTCGACGAAGCCGAAGGCGCGGTG
CTCGAGGGCGAGGTGGTCGAGGCCGCCGAGGTCGAGGAAGTCGAGGGCGAGACCGCCGAGCTGGTGGCCGAGCCGACCGGCGCCTACATC
TTCATGGCCACCGCCTTCGGTACCGTGAAGAAGACCCCGCTGGTGCAGTTCAGCCGTCCGCGCAGCAGCGGCCTGATCGCGCTCAAGCTG
GAAGAGGGCGACACCCTGATCGCCGCCGCGATCACCGATGGCGCCAAGGAAGTCATGCTGTTCTCCAGCGCCGGCAAGGTGATCCGCTTC
GCCGAGAGCGTGGTGCGCATCATGGGCCGCAACGCCCGCGGCGTACGTGGCATGCGCCTGGGCAAGGGGCAGCAGCTGATCTCCATGCTG
ATTCCGGAGTCCGGGGCGCAGATCCTCACCGCCTCCGAGCGCGGCTTCGGCAAGCGTACCCCGCTGAGCAAGTTCCCGCGTCGCGGCCGC
GGCGGCCAGGGGGTGATCGCCATGGTCACCAACGAGCGCAACGGCGCGCTGATCGCCGCGGTACAGGTCCAGGAAGGCGAGGAGATCATG
CTGATTTCCGACCAGGGCACCCTGGTGCGGACGCGTGTCGACGAAGTCTCCCTGTCCGGCCGCAATACCCAGGGCGTAACCCTGATCAAG
CTCGCCAGCGACGAGGTACTGGTCGGTCTGGAGCGTGTCCAGGAGCCGTCGGGCGGAGATGACGAGGACCTGCCCGAGGGCGAGGAAGCT
GCCGAATCTCTGGGCGAGTCGGCCGAGTCCGAGTCCGAGCCCGCGGCGGAAGCGGAAGGCAACGAAGAGTAA