mcr-10.1

Accession ARO:3007137
CARD Short Namemcr-10.1
DefinitionAn MCR-10-type colistin resistance gene variant.
AMR Gene FamilyMCR phosphoethanolamine transferase
Drug Classpeptide antibiotic
Resistance Mechanismantibiotic target alteration
Resistomes with Perfect MatchesCronobacter sakazakiip, Enterobacter asburiaep+wgs, Enterobacter cloacaep+wgs, Enterobacter hormaecheip+wgs, Enterobacter kobeig+p+wgs, Enterobacter roggenkampiig+p+wgs, Escherichia colip, Klebsiella pneumoniaep+wgs, Klebsiella quasipneumoniaep+wgs
Resistomes with Sequence VariantsCronobacter sakazakiip, Enterobacter asburiaep+wgs, Enterobacter cloacaep+wgs, Enterobacter hormaecheip+wgs, Enterobacter kobeig+p+wgs, Enterobacter roggenkampiig+p+wgs, Escherichia colip+wgs, Klebsiella pneumoniaep+wgs, Klebsiella quasipneumoniaep+wgs
Classification14 ontology terms | Show
Parent Term(s)3 ontology terms | Show
+ MCR phosphoethanolamine transferase [AMR Gene Family]
+ confers_resistance_to_antibiotic colistin A [Antibiotic]
+ confers_resistance_to_antibiotic colistin B [Antibiotic]
Publications

Guan J, et al. 2022. Microbiol Spectr :e0112722 First Report of the Colistin Resistance Gene mcr-10.1 Carried by IncpA1763-KPC Plasmid pSL12517-mcr10.1 in Enterobacter cloacae in Sierra Leone. (PMID 35695522)

Resistomes

Prevalence of mcr-10.1 among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GI
Cronobacter sakazakii0%2.56%0%0%
Enterobacter asburiae0%0.83%3.56%0%
Enterobacter cloacae0%1.68%3.19%0%
Enterobacter hormaechei0%0.19%0.13%0%
Enterobacter kobei4.55%2.07%10.92%0%
Enterobacter roggenkampii2.33%6.76%11.51%0%
Escherichia coli0%0.02%0.01%0%
Klebsiella pneumoniae0%0.03%0.01%0%
Klebsiella quasipneumoniae0%0.21%0.13%0%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 1000


>gb|QDO66747.1|+|mcr-10.1 [Enterobacter roggenkampii]
MPVLFRMRVIPLVLLLALVFAFLLNWPVLLHFYDILSRLEHVRAGFVISIPFVLVAALNFVFMPFSVRYLLKPFFALLLVTGSVVSYATL
KYKVMFDQSMIENILETNPQEAHAYLNGSLVLWLVFMGILPAILLFLIKIEYADKWYKGVAHRLLSMLASLILIAGVAALYYQDYASVGR
NNPTLNKEIIPANYAYSTFHYVKDTYFTTKMPFRTLGDDARRVTRNGKPTLMFLVIGETARSQNFSMNGYPRDTNAFTSKIDGVISFRNM
RSCGTATAVSVPCMFSDMNRTDYDGKKAAGSENVLDIVQKTGVSLLWKENDGGCKGVCSRIPTVEINPGISKKLCDGKTCYDDVMLENLD
TEIGKMAGDKLIAFHMIGSHGPTYYQRYPAEHRHFMPECARSDIENCTQEQLVNTYDNTIRHTDYVLAQMIEKLKQYSEQYNTVLLYVSD
HGESLGESGLYLHGTPYKLAPDQQTHIPMQLWMSPGFIAAKNINAACLQHNAVNRTYSHDNLFASVLGLWDITTGAYLPESDLFRECRG


>gb|MN179494.1|+|1-1620|mcr-10.1 [Enterobacter roggenkampii]
ATGCCCGTACTTTTCAGGATGAGGGTAATCCCCTTGGTTTTACTTCTGGCACTCGTTTTTGCATTCTTACTTAACTGGCCGGTGTTGCTG
CATTTCTACGATATCCTGAGCCGTCTTGAACATGTGAGGGCGGGGTTCGTCATCTCCATTCCGTTTGTGCTGGTTGCAGCGCTTAACTTT
GTGTTTATGCCCTTCTCGGTTCGCTACCTGCTCAAACCCTTCTTTGCCCTGTTGCTGGTCACCGGTTCGGTGGTGAGTTACGCCACACTG
AAATATAAAGTGATGTTTGATCAGTCCATGATCGAAAATATACTGGAAACAAACCCACAGGAAGCGCATGCCTACCTGAATGGCTCACTG
GTGCTGTGGCTGGTCTTCATGGGCATTCTTCCGGCTATCCTGTTGTTTTTGATTAAAATTGAATATGCAGACAAATGGTACAAAGGGGTT
GCCCACCGGCTGCTTTCCATGCTCGCTTCGCTGATCCTGATTGCAGGTGTTGCCGCTCTGTATTACCAGGATTATGCTTCTGTCGGGCGC
AATAACCCGACGCTGAACAAAGAAATTATCCCGGCAAACTATGCGTACAGCACTTTCCATTACGTGAAGGATACCTATTTTACGACGAAA
ATGCCTTTCCGGACGCTGGGGGATGATGCAAGGCGCGTTACCCGGAATGGTAAACCCACGCTGATGTTCCTGGTAATTGGCGAAACGGCA
CGGAGCCAGAATTTCTCCATGAACGGCTACCCGCGTGACACAAATGCCTTTACCAGCAAAATCGATGGCGTTATTTCGTTCAGGAATATG
CGTTCCTGTGGCACGGCGACCGCAGTCTCGGTGCCCTGTATGTTCTCGGATATGAACCGGACGGATTACGATGGTAAAAAGGCTGCCGGC
AGTGAAAATGTCCTCGACATCGTGCAGAAAACGGGGGTTTCGCTGTTGTGGAAAGAAAACGATGGCGGGTGTAAAGGCGTATGCAGCCGT
ATCCCGACTGTCGAAATTAATCCCGGTATCAGTAAAAAACTGTGTGACGGTAAAACCTGCTATGACGATGTTATGCTGGAAAACCTGGAT
ACCGAAATCGGCAAAATGGCCGGAGACAAGCTGATCGCCTTCCATATGATTGGCAGCCATGGACCGACCTATTACCAGCGTTATCCGGCA
GAGCATCGTCACTTCATGCCGGAATGTGCGCGCAGCGATATCGAAAACTGCACGCAGGAACAGCTGGTTAATACCTACGACAATACCATT
CGCCACACCGACTATGTGTTAGCGCAGATGATTGAAAAGCTTAAGCAATACAGCGAACAGTACAACACCGTACTGCTGTATGTGTCCGAT
CACGGCGAATCTCTGGGAGAGAGCGGACTGTATCTGCACGGTACCCCCTACAAACTGGCACCGGATCAGCAGACGCACATCCCGATGCAG
CTCTGGATGTCGCCAGGCTTCATTGCTGCTAAAAATATTAACGCCGCGTGTCTGCAGCATAATGCCGTTAACAGGACATATTCCCACGAT
AACCTTTTCGCGTCCGTACTGGGGCTCTGGGACATCACCACCGGGGCCTATCTTCCGGAAAGCGACCTGTTCCGCGAATGTCGTGGATAG