aac(6')-Ib-cr10

Accession ARO:3007770
CARD Short Nameaac(6')-Ib-cr10
DefinitionA fluoroquinolone-acetylating aminoglycoside acetyltransferase variant, identified from Escherichia coli. These variants confers resistance to both aminoglycoside and fluoroquinolone antibiotics.
AMR Gene FamilyAAC(6'), AAC(6')-Ib-cr
Drug Classaminoglycoside antibiotic, fluoroquinolone antibiotic
Resistance Mechanismantibiotic inactivation
Classification12 ontology terms | Show
Parent Term(s)5 ontology terms | Show
+ confers_resistance_to_antibiotic amikacin [Antibiotic]
+ confers_resistance_to_antibiotic ciprofloxacin [Antibiotic]
+ confers_resistance_to_antibiotic kanamycin A [Antibiotic]
+ confers_resistance_to_antibiotic tobramycin [Antibiotic]
+ AAC(6')-Ib-cr [AMR Gene Family]
Resistomes

Prevalence of aac(6')-Ib-cr10 among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 414 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GIGRDI-AMR2
No prevalence data


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 350


>gb|WP_124042715.1|+|aac(6')-Ib-cr10 [Escherichia coli]
MTNSNDSVTLRLMTEHDLAMLYEWLNRSHIVEWWGGEEARPTLADVQEQYLPSVLAQESVTPYIAMLNGEPMGYAQSYVALGSGDGRWEE
ETDPGVRGIDQLLANASQLGKGLGTKLVRALVELLFNDPEVTKIQTDPSPSNLRAIRCYEKAGFERQGTVTTPYGPAVYMVQTRQAFERT
RSDA


>gb|NG_067968.1|+|101-655|aac(6')-Ib-cr10 [Escherichia coli]
GTGACCAACAGCAACGATTCCGTCACACTGCGCCTCATGACTGAGCATGACCTTGCGATGCTCTATGAGTGGCTAAATCGATCTCATATC
GTCGAGTGGTGGGGCGGAGAAGAAGCACGCCCGACACTTGCTGACGTACAGGAACAGTACTTGCCAAGCGTTTTAGCGCAAGAGTCCGTC
ACTCCATACATTGCAATGCTGAATGGAGAGCCGATGGGGTATGCCCAGTCGTACGTTGCTCTTGGAAGCGGGGACGGACGGTGGGAAGAA
GAAACCGATCCAGGAGTACGCGGAATAGACCAGTTACTGGCGAATGCATCACAACTGGGCAAAGGCTTGGGAACCAAGCTGGTTCGAGCT
CTGGTTGAGTTGCTGTTCAATGATCCCGAGGTCACCAAGATCCAAACGGACCCGTCGCCGAGCAACTTGCGAGCGATCCGATGCTACGAG
AAAGCGGGGTTTGAGAGGCAAGGTACCGTAACCACCCCATATGGTCCAGCCGTGTACATGGTTCAAACACGCCAGGCATTCGAGCGAACA
CGCAGTGATGCCTAA

Curator Acknowledgements
Curator Description Most Recent Edit