acrD

Accession ARO:3000491
DefinitionAcrD is an aminoglycoside efflux pump expressed in E. coli. Its expression can be induced by indole, and is regulated by baeRS and cpxAR.
AMR Gene Familyresistance-nodulation-cell division (RND) antibiotic efflux pump
Drug Classtetracycline antibiotic, aminocoumarin antibiotic, penam, monobactam, phenicol antibiotic, antibacterial free fatty acids, macrolide antibiotic, fluoroquinolone antibiotic, acridine dye, diaminopyrimidine antibiotic, glycylcycline, carbapenem, triclosan, aminoglycoside antibiotic
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
ResistomesEscherichia colig+wgs, Shigella dysenteriaeg+wgs, Shigella sonneiwgs
Classification22 ontology terms | Show
Parent Term(s)2 ontology terms | Show
+ confers_resistance_to_drug_class aminoglycoside antibiotic [Drug Class]
+ resistance-nodulation-cell division (RND) antibiotic efflux pump [AMR Gene Family]
Sub-Term(s)
2 ontology terms | Show
+ baeSR regulates
+ cpxAR regulates
Publications

Rosenberg EY, et al. 2000. J Bacteriol 182(6): 1754-1756. AcrD of Escherichia coli is an aminoglycoside efflux pump. (PMID 10692383)

Resistomes

Prevalence of acrD among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI for 82 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGS
Acinetobacter baumannii0%0%0.07%
Citrobacter amalonaticus0%0%11.11%
Citrobacter freundii27.59%0%39.53%
Enterobacter cloacae0%0%0.45%
Enterobacter hormaechei0%0%0.32%
Enterococcus faecium0%0%0%
Escherichia coli13.02%0%86.34%
Klebsiella oxytoca0%0%1.87%
Klebsiella pneumoniae0%0%0%
Morganella morganii0%0%0%
Neisseria gonorrhoeae0%0%0.17%
Proteus mirabilis0%0%0%
Pseudomonas aeruginosa0%0%0%
Salmonella enterica0.39%0%0.5%
Shigella dysenteriae100%0%100%
Shigella flexneri100%0%99.48%
Shigella sonnei100%0%99.92%
Staphylococcus aureus0%0%0.01%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.

Bit-score Cut-off (blastP): 1900


>gb|BAA16344.1|+|acrD [Escherichia coli str. K-12 substr. W3110]
MANFFIDRPIFAWVLAILLCLTGTLAIFSLPVEQYPDLAPPNVRVTANYPGASAQTLENTVTQVIEQNMTGLDNLMYMSSQSSGTGQASV
TLSFKAGTDPDEAVQQVQNQLQSAMRKLPQAVQNQGVTVRKTGDTNILTIAFVSTDGSMDKQDIADYVASNIQDPLSRVNGVGDIDAYGS
QYSMRIWLDPAKLNSFQMTAKDVTDAIESQNAQIAVGQLGGTPSVDKQALNATINAQSLLQTPEQFRDITLRVNQDGSEVRLGDVATVEM
GAEKYDYLSRFNGKPASGLGVKLASGANEMATAELVLNRLDELAQYFPHGLEYKVAYETTSFVKASIEDVVKTLLEAIALVFLVMYLFLQ
NFRATLIPTIAVPVVLMGTFSVLYAFGYSVNTLTMFAMVLAIGLLVDDAIVVVENVERIMSEEGLTPREATRKSMGQIQGALVGIAMVLS
AVFVPMAFFGGTTGAIYRQFSITIVAAMVLSVLVAMILTPALCATLLKPLKKGEHHGQKGFFAWFNQMFNRNAERYEKGVAKILHRSLRW
IVIYVLLLGGMVFLFLRLPTSFLPLEDRGMFTTSVQLPSGSTQQQTLKVVEQIEKYYFTHEKDNIMSVFATVGSGPGGNGQNVARMFIRL
KDWSERDSKTGTSFAIIERATKAFNQIKEARVIASSPPAISGLGSSAGFDMELQDHAGAGHDALMAARNQLLALAAENPELTRVRHNGLD
DSPQLQIDIDQRKAQALGVAIDDINDTLQTAWGSSYVNDFMDRGRVKKVYVQAAAPYRMLPDDINLWYVRNKDGGMVPFSAFATSRWETG
SPRLERYNGYSAVEIVGEAAPGVSTGTAMDIMESLVKQLPNGFGLEWTAMSYQERLSGAQAPALYAISLLVVFLCLAALYESWSVPFSVM
LVVPLGVIGALLATWMRGLENDVYFQVGLLTVIGLSAKNAILIVEFANEMNQKGHDLFEATLHACRQRLRPILMTSLAFIFGVLPMATST
GAGSGGQHAVGTGVMGGMISATILAIYFVPLFFVLVRRRFPLKPRPE


>gb|AP009048.1|+|2586251-2589364|acrD [Escherichia coli str. K-12 substr. W3110]
ATGGCGAATTTCTTTATTGATCGCCCCATTTTTGCCTGGGTGCTGGCAATCCTGTTGTGTCTGACAGGTACCCTGGCGATTTTTTCATTG
CCCGTTGAACAATACCCCGATCTCGCGCCACCGAATGTGCGAGTGACCGCTAACTATCCCGGCGCATCGGCCCAGACGCTGGAAAACACC
GTGACCCAGGTTATCGAGCAAAATATGACCGGCCTCGATAATCTCATGTATATGTCATCTCAGAGCAGTGGCACCGGTCAGGCATCTGTC
ACTTTAAGTTTTAAAGCAGGCACCGATCCGGACGAAGCCGTGCAGCAAGTACAAAACCAGCTGCAATCAGCCATGCGAAAGTTACCGCAG
GCGGTGCAAAATCAGGGCGTGACGGTGCGTAAAACCGGCGATACCAACATTCTGACCATTGCCTTCGTCTCTACCGATGGTTCGATGGAT
AAACAGGATATTGCTGATTATGTTGCCAGTAATATTCAGGACCCGTTAAGCCGCGTGAATGGCGTCGGGGATATCGATGCCTATGGTTCG
CAATATTCCATGCGTATCTGGCTGGACCCGGCGAAACTCAACAGTTTCCAGATGACGGCTAAAGATGTCACTGATGCCATTGAGTCACAG
AACGCGCAGATTGCGGTTGGGCAACTTGGTGGTACACCTTCCGTCGATAAGCAGGCGCTCAACGCCACCATTAACGCCCAGTCACTGCTG
CAAACACCAGAACAGTTCCGCGATATCACCTTGCGGGTCAATCAGGACGGCTCAGAGGTAAGGCTGGGCGATGTCGCCACCGTCGAAATG
GGGGCGGAGAAATACGATTATCTTAGCCGCTTCAATGGTAAGCCAGCCTCCGGGCTGGGGGTAAAACTGGCCTCCGGCGCTAACGAAATG
GCGACAGCGGAGCTGGTGCTCAATCGTCTCGACGAGCTGGCGCAGTATTTCCCGCATGGACTGGAATACAAGGTGGCGTATGAAACCACC
TCGTTTGTTAAAGCCTCCATTGAAGACGTGGTGAAAACGCTGCTGGAAGCTATCGCTCTGGTTTTCCTCGTTATGTATCTGTTCCTGCAA
AACTTCCGCGCCACGCTGATACCCACTATCGCCGTGCCGGTGGTGTTGATGGGAACCTTCTCCGTACTTTACGCCTTCGGTTACAGCGTC
AACACCTTAACCATGTTCGCGATGGTGCTGGCGATCGGTCTGCTGGTGGATGACGCCATCGTGGTGGTGGAAAACGTCGAACGTATTATG
AGTGAGGAAGGACTCACTCCTCGCGAAGCCACACGTAAATCGATGGGGCAGATCCAGGGGGCACTGGTCGGGATTGCGATGGTTCTTTCG
GCGGTATTTGTACCAATGGCCTTCTTCGGCGGCACCACCGGTGCCATCTATCGCCAGTTCTCTATTACCATTGTTGCGGCGATGGTGCTG
TCAGTACTGGTAGCGATGATCCTCACTCCGGCTCTGTGTGCCACACTACTTAAGCCACTGAAAAAAGGTGAGCATCATGGGCAAAAAGGC
TTTTTTGCCTGGTTTAACCAGATGTTTAACCGCAACGCCGAACGCTACGAAAAAGGGGTGGCGAAAATTCTCCACCGTAGCCTGCGCTGG
ATTGTGATTTATGTCCTGCTGCTTGGCGGCATGGTGTTCCTGTTCCTGCGTTTGCCGACGTCGTTCTTACCGCTGGAAGACCGTGGCATG
TTTACTACCTCGGTACAGTTGCCCAGCGGTTCAACGCAACAACAGACCCTGAAAGTCGTTGAGCAAATCGAGAAATACTACTTCACCCAT
GAAAAAGACAACATCATGTCGGTGTTTGCCACCGTTGGTTCTGGCCCTGGGGGTAACGGGCAAAACGTGGCGCGAATGTTTATCCGCCTG
AAAGACTGGAGCGAACGCGACAGTAAGACCGGCACCTCGTTTGCCATTATCGAGCGTGCAACGAAGGCGTTTAACCAAATTAAAGAAGCT
CGCGTTATCGCCAGCAGCCCGCCAGCAATTAGCGGTCTTGGTAGTTCTGCAGGTTTTGATATGGAGTTGCAGGACCACGCTGGAGCGGGT
CACGATGCGCTGATGGCAGCACGTAATCAGTTGCTGGCGCTGGCGGCGGAAAACCCGGAGCTAACCCGTGTGCGCCATAACGGCCTCGAC
GACAGTCCGCAGTTGCAGATTGATATCGACCAGCGTAAAGCTCAGGCGCTGGGCGTTGCTATCGACGATATTAACGACACACTGCAAACC
GCCTGGGGTTCGAGCTATGTGAATGACTTTATGGATCGCGGTCGCGTGAAGAAAGTCTATGTGCAGGCAGCTGCGCCGTATCGCATGCTG
CCAGATGACATCAATCTCTGGTATGTCCGAAATAAAGATGGCGGCATGGTGCCCTTCTCTGCTTTCGCGACCTCACGCTGGGAAACAGGC
TCGCCGCGTCTGGAACGCTATAACGGTTATTCTGCGGTTGAGATTGTTGGGGAAGCCGCACCGGGGGTCAGTACCGGTACGGCGATGGAT
ATTATGGAATCGTTAGTGAAGCAGCTGCCAAACGGCTTTGGTCTGGAGTGGACGGCGATGTCGTATCAGGAGCGGCTTTCCGGCGCGCAG
GCTCCGGCGCTGTACGCCATTTCCTTGCTGGTGGTATTCCTGTGTCTGGCTGCGTTGTATGAAAGCTGGTCGGTGCCGTTCTCGGTAATG
CTGGTCGTGCCGCTGGGGGTAATCGGCGCGCTGCTGGCAACCTGGATGCGCGGGCTGGAAAACGACGTTTACTTCCAGGTGGGCCTGTTA
ACGGTCATTGGTTTATCGGCGAAAAACGCCATCCTGATCGTCGAGTTTGCTAACGAGATGAACCAAAAAGGCCACGACCTGTTTGAAGCG
ACGCTCCACGCCTGCCGTCAGCGTTTACGCCCGATTCTGATGACCTCGCTGGCATTTATCTTCGGCGTATTGCCAATGGCAACCAGCACG
GGTGCCGGTTCCGGTGGTCAGCATGCGGTGGGTACTGGCGTAATGGGCGGGATGATTTCGGCCACTATTCTGGCTATTTACTTCGTGCCG
CTGTTCTTTGTGCTGGTGCGCCGCCGCTTCCCGCTGAAGCCGCGCCCGGAATAA