acrD

Accession ARO:3000491
CARD Short NameacrD
DefinitionAcrD is an aminoglycoside efflux pump expressed in E. coli. Its expression can be induced by indole, and is regulated by baeRS and cpxAR.
AMR Gene Familyresistance-nodulation-cell division (RND) antibiotic efflux pump
Drug Classaminoglycoside antibiotic
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
Resistomes with Perfect MatchesEscherichia colig+p+wgs, Klebsiella oxytocap, Shigella boydiiwgs, Shigella dysenteriaeg+wgs, Shigella flexnerig+wgs, Shigella sonneiwgs
Resistomes with Sequence VariantsEscherichia albertiig+wgs, Escherichia colig+p+wgs, Escherichia marmotaeg+wgs, Klebsiella oxytocap, Shigella boydiig+wgs, Shigella dysenteriaeg+wgs, Shigella flexnerig+wgs, Shigella sonneig+wgs
Classification8 ontology terms | Show
Parent Term(s)7 ontology terms | Show
+ resistance-nodulation-cell division (RND) antibiotic efflux pump [AMR Gene Family]
+ confers_resistance_to_drug_class aminoglycoside antibiotic [Drug Class]
+ confers_resistance_to_antibiotic amikacin [Antibiotic]
+ confers_resistance_to_antibiotic gentamicin [Antibiotic]
+ confers_resistance_to_antibiotic neomycin [Antibiotic]
+ confers_resistance_to_antibiotic kanamycin A [Antibiotic]
+ confers_resistance_to_antibiotic tobramycin [Antibiotic]
Sub-Term(s)
2 ontology terms | Show
+ baeSR regulates
+ cpxAR regulates
Publications

Rosenberg EY, et al. 2000. J Bacteriol 182(6): 1754-1756. AcrD of Escherichia coli is an aminoglycoside efflux pump. (PMID 10692383)

Resistomes

Prevalence of acrD among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GI
Escherichia albertii98.57%0%60%0%
Escherichia coli66.77%0.06%60.95%0%
Escherichia marmotae100%0%70.83%0%
Klebsiella oxytoca0%0.68%0%0%
Shigella boydii26.67%0%26.67%0%
Shigella dysenteriae71.43%0%63.33%0%
Shigella flexneri100%0%81.06%0%
Shigella sonnei97.56%0%94.59%0%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 1900


>gb|BAA16344.1|+|acrD [Escherichia coli str. K-12 substr. W3110]
MANFFIDRPIFAWVLAILLCLTGTLAIFSLPVEQYPDLAPPNVRVTANYPGASAQTLENTVTQVIEQNMTGLDNLMYMSSQSSGTGQASV
TLSFKAGTDPDEAVQQVQNQLQSAMRKLPQAVQNQGVTVRKTGDTNILTIAFVSTDGSMDKQDIADYVASNIQDPLSRVNGVGDIDAYGS
QYSMRIWLDPAKLNSFQMTAKDVTDAIESQNAQIAVGQLGGTPSVDKQALNATINAQSLLQTPEQFRDITLRVNQDGSEVRLGDVATVEM
GAEKYDYLSRFNGKPASGLGVKLASGANEMATAELVLNRLDELAQYFPHGLEYKVAYETTSFVKASIEDVVKTLLEAIALVFLVMYLFLQ
NFRATLIPTIAVPVVLMGTFSVLYAFGYSVNTLTMFAMVLAIGLLVDDAIVVVENVERIMSEEGLTPREATRKSMGQIQGALVGIAMVLS
AVFVPMAFFGGTTGAIYRQFSITIVAAMVLSVLVAMILTPALCATLLKPLKKGEHHGQKGFFAWFNQMFNRNAERYEKGVAKILHRSLRW
IVIYVLLLGGMVFLFLRLPTSFLPLEDRGMFTTSVQLPSGSTQQQTLKVVEQIEKYYFTHEKDNIMSVFATVGSGPGGNGQNVARMFIRL
KDWSERDSKTGTSFAIIERATKAFNQIKEARVIASSPPAISGLGSSAGFDMELQDHAGAGHDALMAARNQLLALAAENPELTRVRHNGLD
DSPQLQIDIDQRKAQALGVAIDDINDTLQTAWGSSYVNDFMDRGRVKKVYVQAAAPYRMLPDDINLWYVRNKDGGMVPFSAFATSRWETG
SPRLERYNGYSAVEIVGEAAPGVSTGTAMDIMESLVKQLPNGFGLEWTAMSYQERLSGAQAPALYAISLLVVFLCLAALYESWSVPFSVM
LVVPLGVIGALLATWMRGLENDVYFQVGLLTVIGLSAKNAILIVEFANEMNQKGHDLFEATLHACRQRLRPILMTSLAFIFGVLPMATST
GAGSGGQHAVGTGVMGGMISATILAIYFVPLFFVLVRRRFPLKPRPE


>gb|AP009048.1|+|2586251-2589364|acrD [Escherichia coli str. K-12 substr. W3110]
ATGGCGAATTTCTTTATTGATCGCCCCATTTTTGCCTGGGTGCTGGCAATCCTGTTGTGTCTGACAGGTACCCTGGCGATTTTTTCATTG
CCCGTTGAACAATACCCCGATCTCGCGCCACCGAATGTGCGAGTGACCGCTAACTATCCCGGCGCATCGGCCCAGACGCTGGAAAACACC
GTGACCCAGGTTATCGAGCAAAATATGACCGGCCTCGATAATCTCATGTATATGTCATCTCAGAGCAGTGGCACCGGTCAGGCATCTGTC
ACTTTAAGTTTTAAAGCAGGCACCGATCCGGACGAAGCCGTGCAGCAAGTACAAAACCAGCTGCAATCAGCCATGCGAAAGTTACCGCAG
GCGGTGCAAAATCAGGGCGTGACGGTGCGTAAAACCGGCGATACCAACATTCTGACCATTGCCTTCGTCTCTACCGATGGTTCGATGGAT
AAACAGGATATTGCTGATTATGTTGCCAGTAATATTCAGGACCCGTTAAGCCGCGTGAATGGCGTCGGGGATATCGATGCCTATGGTTCG
CAATATTCCATGCGTATCTGGCTGGACCCGGCGAAACTCAACAGTTTCCAGATGACGGCTAAAGATGTCACTGATGCCATTGAGTCACAG
AACGCGCAGATTGCGGTTGGGCAACTTGGTGGTACACCTTCCGTCGATAAGCAGGCGCTCAACGCCACCATTAACGCCCAGTCACTGCTG
CAAACACCAGAACAGTTCCGCGATATCACCTTGCGGGTCAATCAGGACGGCTCAGAGGTAAGGCTGGGCGATGTCGCCACCGTCGAAATG
GGGGCGGAGAAATACGATTATCTTAGCCGCTTCAATGGTAAGCCAGCCTCCGGGCTGGGGGTAAAACTGGCCTCCGGCGCTAACGAAATG
GCGACAGCGGAGCTGGTGCTCAATCGTCTCGACGAGCTGGCGCAGTATTTCCCGCATGGACTGGAATACAAGGTGGCGTATGAAACCACC
TCGTTTGTTAAAGCCTCCATTGAAGACGTGGTGAAAACGCTGCTGGAAGCTATCGCTCTGGTTTTCCTCGTTATGTATCTGTTCCTGCAA
AACTTCCGCGCCACGCTGATACCCACTATCGCCGTGCCGGTGGTGTTGATGGGAACCTTCTCCGTACTTTACGCCTTCGGTTACAGCGTC
AACACCTTAACCATGTTCGCGATGGTGCTGGCGATCGGTCTGCTGGTGGATGACGCCATCGTGGTGGTGGAAAACGTCGAACGTATTATG
AGTGAGGAAGGACTCACTCCTCGCGAAGCCACACGTAAATCGATGGGGCAGATCCAGGGGGCACTGGTCGGGATTGCGATGGTTCTTTCG
GCGGTATTTGTACCAATGGCCTTCTTCGGCGGCACCACCGGTGCCATCTATCGCCAGTTCTCTATTACCATTGTTGCGGCGATGGTGCTG
TCAGTACTGGTAGCGATGATCCTCACTCCGGCTCTGTGTGCCACACTACTTAAGCCACTGAAAAAAGGTGAGCATCATGGGCAAAAAGGC
TTTTTTGCCTGGTTTAACCAGATGTTTAACCGCAACGCCGAACGCTACGAAAAAGGGGTGGCGAAAATTCTCCACCGTAGCCTGCGCTGG
ATTGTGATTTATGTCCTGCTGCTTGGCGGCATGGTGTTCCTGTTCCTGCGTTTGCCGACGTCGTTCTTACCGCTGGAAGACCGTGGCATG
TTTACTACCTCGGTACAGTTGCCCAGCGGTTCAACGCAACAACAGACCCTGAAAGTCGTTGAGCAAATCGAGAAATACTACTTCACCCAT
GAAAAAGACAACATCATGTCGGTGTTTGCCACCGTTGGTTCTGGCCCTGGGGGTAACGGGCAAAACGTGGCGCGAATGTTTATCCGCCTG
AAAGACTGGAGCGAACGCGACAGTAAGACCGGCACCTCGTTTGCCATTATCGAGCGTGCAACGAAGGCGTTTAACCAAATTAAAGAAGCT
CGCGTTATCGCCAGCAGCCCGCCAGCAATTAGCGGTCTTGGTAGTTCTGCAGGTTTTGATATGGAGTTGCAGGACCACGCTGGAGCGGGT
CACGATGCGCTGATGGCAGCACGTAATCAGTTGCTGGCGCTGGCGGCGGAAAACCCGGAGCTAACCCGTGTGCGCCATAACGGCCTCGAC
GACAGTCCGCAGTTGCAGATTGATATCGACCAGCGTAAAGCTCAGGCGCTGGGCGTTGCTATCGACGATATTAACGACACACTGCAAACC
GCCTGGGGTTCGAGCTATGTGAATGACTTTATGGATCGCGGTCGCGTGAAGAAAGTCTATGTGCAGGCAGCTGCGCCGTATCGCATGCTG
CCAGATGACATCAATCTCTGGTATGTCCGAAATAAAGATGGCGGCATGGTGCCCTTCTCTGCTTTCGCGACCTCACGCTGGGAAACAGGC
TCGCCGCGTCTGGAACGCTATAACGGTTATTCTGCGGTTGAGATTGTTGGGGAAGCCGCACCGGGGGTCAGTACCGGTACGGCGATGGAT
ATTATGGAATCGTTAGTGAAGCAGCTGCCAAACGGCTTTGGTCTGGAGTGGACGGCGATGTCGTATCAGGAGCGGCTTTCCGGCGCGCAG
GCTCCGGCGCTGTACGCCATTTCCTTGCTGGTGGTATTCCTGTGTCTGGCTGCGTTGTATGAAAGCTGGTCGGTGCCGTTCTCGGTAATG
CTGGTCGTGCCGCTGGGGGTAATCGGCGCGCTGCTGGCAACCTGGATGCGCGGGCTGGAAAACGACGTTTACTTCCAGGTGGGCCTGTTA
ACGGTCATTGGTTTATCGGCGAAAAACGCCATCCTGATCGTCGAGTTTGCTAACGAGATGAACCAAAAAGGCCACGACCTGTTTGAAGCG
ACGCTCCACGCCTGCCGTCAGCGTTTACGCCCGATTCTGATGACCTCGCTGGCATTTATCTTCGGCGTATTGCCAATGGCAACCAGCACG
GGTGCCGGTTCCGGTGGTCAGCATGCGGTGGGTACTGGCGTAATGGGCGGGATGATTTCGGCCACTATTCTGGCTATTTACTTCGTGCCG
CTGTTCTTTGTGCTGGTGCGCCGCCGCTTCCCGCTGAAGCCGCGCCCGGAATAA