MCR-2.1

Accession ARO:3004110
Synonym(s)MCR-2
CARD Short NameMCR-2.1
DefinitionMCR-2 is a plasmid-borne phosphoethanolamine transferase that interferes with binding of colistin to the cell membrane via addition of phosphoethanolamine to lipid A, resulting in reduction of the negative charge of the cell membrane. Originally identified in a Belgian sample of Escherichia coli by Xavier et al, (2016).
AMR Gene FamilyMCR phosphoethanolamine transferase
Drug Classpeptide antibiotic
Resistance Mechanismantibiotic target alteration
Classification14 ontology terms | Show
Parent Term(s)3 ontology terms | Show
+ confers_resistance_to_antibiotic colistin A [Antibiotic]
+ confers_resistance_to_antibiotic colistin B [Antibiotic]
+ MCR phosphoethanolamine transferase [AMR Gene Family]
Sub-Term(s)
1 ontology terms | Show
+ MCR-2.2 evolutionary_variant_of
Publications

Xavier BB, et al. 2016. Euro Surveill. 21(27): Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. (PMID 27416987)

Sun J, et al. 2017. MBio 8(3): Deciphering MCR-2 Colistin Resistance. (PMID 28487432)

Partridge SR, et al. 2018. J. Antimicrob. Chemother. 73(10):2625-2630 Proposal for assignment of allele numbers for mobile colistin resistance (mcr) genes. (PMID 30053115)

Resistomes

Prevalence of MCR-2.1 among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GI
No prevalence data


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 1000


>gb|SBV31106.1|+|MCR-2.1 [Escherichia coli]
MTSHHSWYRYSINPFVLMGLVALFLAATANLTFFEKAMAVYPVSDNLGFIISMAVAVMGAMLLIVVLLSYRYVLKPVLILLLIMGAVTSY
FTDTYGTVYDTTMLQNAMQTDQAESKDLMNLAFFVRIIGLGVLPSVLVAVAKVNYPTWGKGLIQRAMTWGVSLVLLLVPIGLFSSQYASF
FRVHKPVRFYINPITPIYSVGKLASIEYKKATAPTDTIYHAKDAVQTTKPSERKPRLVVFVVGETARADHVQFNGYGRETFPQLAKVDGL
ANFSQVTSCGTSTAYSVPCMFSYLGQDDYDVDTAKYQENVLDTLDRLGVGILWRDNNSDSKGVMDKLPATQYFDYKSATNNTICNTNPYN
ECRDVGMLVGLDDYVSANNGKDMLIMLHQMGNHGPAYFKRYDEQFAKFTPVCEGNELAKCEHQSLINAYDNALLATDDFIAKSIDWLKTH
EANYDVAMLYVSDHGESLGENGVYLHGMPNAFAPKEQRAVPAFFWSNNTTFKPTASDTVLTHDAITPTLLKLFDVTAGKVKDRAAFIQ


>gb|LT598652.1|+|26779-28395|MCR-2.1 [Escherichia coli]
ATGACATCACATCACTCTTGGTATCGCTATTCTATCAATCCTTTTGTGCTGATGGGTTTGGTGGCGTTATTTTTGGCAGCGACAGCGAAC
CTGACATTTTTTGAAAAAGCGATGGCGGTCTATCCTGTATCGGATAACTTAGGCTTTATCATCTCAATGGCGGTGGCGGTGATGGGTGCT
ATGCTACTGATTGTCGTGCTGTTATCCTATCGCTATGTGCTAAAGCCTGTCCTGATTTTGCTACTGATTATGGGTGCGGTGACGAGCTAT
TTTACCGATACTTATGGCACGGTCTATGACACCACCATGCTCCAAAATGCCATGCAAACCGACCAAGCCGAGTCTAAGGACTTGATGAAT
TTGGCGTTTTTTGTGCGAATTATCGGGCTTGGCGTGTTGCCAAGTGTGTTGGTCGCAGTTGCCAAAGTCAATTATCCAACATGGGGCAAA
GGTCTGATTCAGCGTGCGATGACATGGGGTGTCAGCCTTGTGCTGTTGCTTGTGCCGATTGGACTATTTAGCAGTCAGTATGCGAGTTTC
TTTCGGGTGCATAAGCCAGTGCGTTTTTATATCAACCCGATTACGCCGATTTATTCGGTGGGTAAGCTTGCCAGTATCGAGTACAAAAAA
GCCACTGCGCCAACAGACACCATCTATCATGCCAAAGACGCCGTGCAGACCACCAAGCCGAGCGAGCGTAAGCCACGCCTAGTGGTGTTC
GTCGTCGGTGAGACGGCGCGTGCTGACCATGTGCAGTTCAATGGCTATGGCCGTGAGACTTTCCCGCAGCTTGCCAAAGTTGATGGCTTG
GCGAATTTTAGCCAAGTGACATCGTGTGGCACATCGACGGCGTATTCTGTGCCGTGTATGTTCAGCTATTTGGGTCAAGATGACTATGAT
GTCGATACCGCCAAATACCAAGAAAATGTGCTAGATACGCTTGACCGCTTGGGTGTGGGTATCTTGTGGCGTGATAATAATTCAGACTCA
AAAGGCGTGATGGATAAGCTACCTGCCACGCAGTATTTTGATTATAAATCAGCAACCAACAATACCATCTGTAACACCAATCCCTATAAC
GAATGCCGTGATGTCGGTATGCTTGTCGGGCTAGATGACTATGTCAGCGCCAATAATGGCAAAGATATGCTCATCATGCTACACCAAATG
GGCAATCATGGGCCGGCGTACTTTAAGCGTTATGATGAGCAATTTGCCAAATTCACCCCCGTGTGCGAAGGCAACGAGCTTGCCAAATGC
GAACACCAATCACTCATCAATGCCTATGACAATGCGCTACTTGCGACTGATGATTTTATCGCCAAAAGCATCGATTGGCTAAAAACGCAT
GAAGCGAACTACGATGTCGCCATGCTCTATGTCAGTGACCACGGCGAGAGCTTGGGCGAAAATGGTGTCTATCTGCATGGTATGCCAAAT
GCCTTTGCACCAAAAGAACAGCGAGCTGTGCCTGCGTTTTTTTGGTCAAATAATACGACATTCAAGCCAACTGCCAGCGATACTGTGCTG
ACGCATGATGCGATTACGCCAACACTGCTTAAGCTGTTTGATGTCACAGCGGGCAAGGTCAAAGACCGCGCGGCATTTATCCAGTAA