Accession | ARO:3000194 |
Synonym(s) | tetW |
CARD Short Name | tet(W) |
Definition | Tet(W) is a ribosomal protection protein. It is associated with both conjugative and non conjugative DNA and has been found strains of Clostridioides difficile. |
AMR Gene Family | tetracycline-resistant ribosomal protection protein |
Drug Class | tetracycline antibiotic |
Resistance Mechanism | antibiotic target protection |
Resistomes with Perfect Matches | Bifidobacterium bifidumwgs, Bifidobacterium brevewgs, Bifidobacterium longumg+wgs, Christensenella massiliensisgi, Christensenella minutag+wgs+gi, Clostridiales bacteriumgi, Cutibacterium acneswgs, Enterocloster clostridioformisg+wgs, Enterococcus faeciumwgs, Eubacterium limosumwgs, Eubacterium maltosivoransg, Faecalibacterium prausnitziig+wgs, Lachnoclostridium phocaeenseg+gi, Lachnospiraceae bacteriumgi, Massilistercora timonensisg+gi, Megasphaera stantoniig+wgs+gi, Roseburia hominiswgs, Ruthenibacterium lactatiformansg+wgs+gi, Schaalia odontolyticawgs, Streptococcus equig+wgs, Streptococcus suiswgs |
Resistomes with Sequence Variants | Atopobiaceae bacteriumgi, Bifidobacterium animalisg+wgs+gi, Bifidobacterium bifidumwgs, Bifidobacterium breveg+wgs+gi, Bifidobacterium longumg+wgs+gi, Bifidobacterium thermophilumg+wgs+gi, Campylobacter coliwgs, Christensenella massiliensisgi, Christensenella minutag+wgs+gi, Clostridiales bacteriumgi, Collinsella aerofaciensg+wgs+gi, Corynebacterium amycolatumwgs, Corynebacterium diphtheriaeg+wgs, Corynebacterium jeikeiumg+wgs, Cutibacterium acneswgs, Dysosmobacter welbionisg+wgs+gi, Eggerthella lentag+wgs, Enterocloster clostridioformisg+wgs, Enterococcus faeciumwgs, Eubacterium limosumwgs, Eubacterium maltosivoransg, Faecalibacterium prausnitziig+wgs+gi, Gordonibacter urolithinfaciensg+wgs+gi, Lachnoclostridium phocaeenseg+gi, Lachnospiraceae bacteriumgi, Lactobacillus crispatusg+wgs, Lactobacillus johnsoniig+wgs+gi, Ligilactobacillus animalisg+wgs, Massilistercora timonensisg+gi, Megasphaera stantoniig+wgs+gi, Mobiluncus mulieriswgs, Phoenicibacter congonensisg+gi, Roseburia hominisg+wgs+gi, Rothia mucilaginosag+wgs, Ruthenibacterium lactatiformansg+wgs+gi, Schaalia odontolyticawgs, Streptococcus agalactiaewgs, Streptococcus equig+wgs, Streptococcus mitiswgs, Streptococcus pasteurianuswgs, Streptococcus suisg+wgs+gi, Trueperella pyogenesg+wgs+gi, Victivallales bacteriumgi |
Classification | 7 ontology terms | Show |
Parent Term(s) | 7 ontology terms | Show + tetracycline-resistant ribosomal protection protein [AMR Gene Family] + confers_resistance_to_antibiotic tetracycline [Antibiotic] + confers_resistance_to_antibiotic doxycycline [Antibiotic] + confers_resistance_to_antibiotic minocycline [Antibiotic] + confers_resistance_to_antibiotic chlortetracycline [Antibiotic] + confers_resistance_to_antibiotic demeclocycline [Antibiotic] + confers_resistance_to_antibiotic oxytetracycline [Antibiotic] |
Publications | Scott KP, et al. 2000. Antimicrob Agents Chemother 44(3): 775-777. Occurrence of the new tetracycline resistance gene tet(W) in bacteria from the human gut. (PMID 10681357) |
Prevalence of tet(W) among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).
Species | NCBI Chromosome | NCBI Plasmid | NCBI WGS | NCBI GI |
---|---|---|---|---|
Atopobiaceae bacterium | 0% | 0% | 0% | 100% |
Bifidobacterium animalis | 87.18% | 0% | 53.85% | 100% |
Bifidobacterium bifidum | 0% | 0% | 20.4% | 0% |
Bifidobacterium breve | 7.84% | 0% | 18.67% | 50% |
Bifidobacterium longum | 28.42% | 0% | 15.5% | 60% |
Bifidobacterium thermophilum | 100% | 0% | 50% | 100% |
Campylobacter coli | 0% | 0% | 0.09% | 0% |
Christensenella massiliensis | 0% | 0% | 0% | 100% |
Christensenella minuta | 100% | 0% | 80% | 100% |
Clostridiales bacterium | 0% | 0% | 0% | 100% |
Collinsella aerofaciens | 33.33% | 0% | 11.19% | 100% |
Corynebacterium amycolatum | 0% | 0% | 3.7% | 0% |
Corynebacterium diphtheriae | 1.85% | 0% | 1.25% | 0% |
Corynebacterium jeikeium | 20% | 0% | 10.53% | 0% |
Cutibacterium acnes | 0% | 0% | 0.26% | 0% |
Dysosmobacter welbionis | 100% | 0% | 33.33% | 100% |
Eggerthella lenta | 30% | 0% | 31.25% | 0% |
Enterocloster clostridioformis | 100% | 0% | 23.26% | 0% |
Enterococcus faecium | 0% | 0% | 0.1% | 0% |
Escherichia coli | 0% | 0% | 0% | 0% |
Eubacterium limosum | 0% | 0% | 50% | 0% |
Eubacterium maltosivorans | 100% | 0% | 0% | 0% |
Faecalibacterium prausnitzii | 46.67% | 0% | 23.3% | 100% |
Gordonibacter urolithinfaciens | 100% | 0% | 18.18% | 100% |
Lachnoclostridium phocaeense | 100% | 0% | 0% | 100% |
Lachnospiraceae bacterium | 0% | 0% | 0% | 33.33% |
Lactobacillus crispatus | 12% | 0% | 10.9% | 0% |
Lactobacillus johnsonii | 66.67% | 0% | 41.38% | 100% |
Ligilactobacillus animalis | 100% | 0% | 8.33% | 0% |
Massilistercora timonensis | 100% | 0% | 0% | 100% |
Megasphaera stantonii | 100% | 0% | 25% | 50% |
Mobiluncus mulieris | 0% | 0% | 2.94% | 0% |
Phoenicibacter congonensis | 100% | 0% | 0% | 100% |
Roseburia hominis | 66.67% | 0% | 11.11% | 100% |
Rothia mucilaginosa | 20% | 0% | 15.79% | 0% |
Ruthenibacterium lactatiformans | 100% | 0% | 6.67% | 100% |
Schaalia odontolytica | 0% | 0% | 12.5% | 0% |
Streptococcus agalactiae | 0% | 0% | 0.13% | 0% |
Streptococcus equi | 3.12% | 0% | 1.58% | 0% |
Streptococcus mitis | 0% | 0% | 0.51% | 0% |
Streptococcus pasteurianus | 0% | 0% | 5% | 0% |
Streptococcus suis | 2.4% | 0% | 1.31% | 16.67% |
Trueperella pyogenes | 33.33% | 0% | 25% | 50% |
Victivallales bacterium | 0% | 0% | 0% | 100% |
Model Type: protein homolog model
Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.
Bit-score Cut-off (blastP): 300