rmtA

Accession ARO:3000859
CARD Short NamermtA
DefinitionRmtA is a 16S rRNA methyltransferase found in Pseudomonas aeruginosa which methylates G1405 of the 16S rRNA. It confers high level resistance to many aminoglycosides.
AMR Gene Family16S rRNA methyltransferase (G1405)
Drug Classaminoglycoside antibiotic
Resistance Mechanismantibiotic target alteration
Classification12 ontology terms | Show
Parent Term(s)12 ontology terms | Show
+ confers_resistance_to_antibiotic dibekacin [Antibiotic]
+ confers_resistance_to_antibiotic amikacin [Antibiotic]
+ confers_resistance_to_antibiotic gentamicin C [Antibiotic]
+ confers_resistance_to_antibiotic sisomicin [Antibiotic]
+ confers_resistance_to_antibiotic netilmicin [Antibiotic]
+ confers_resistance_to_antibiotic kanamycin A [Antibiotic]
+ confers_resistance_to_antibiotic tobramycin [Antibiotic]
+ confers_resistance_to_antibiotic isepamicin [Antibiotic]
+ confers_resistance_to_antibiotic G418 [Antibiotic]
+ confers_resistance_to_antibiotic arbekacin [Antibiotic]
+ confers_resistance_to_antibiotic gentamicin B [Antibiotic]
+ 16S rRNA methyltransferase (G1405) [AMR Gene Family]
Publications

Yokoyama K, et al. 2003. Lancet 362(9399): 1888-1893. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. (PMID 14667745)

Resistomes

Prevalence of rmtA among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 414 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GIGRDI-AMR2
No prevalence data


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 450


>gb|BAC20579.1|+|rmtA [Pseudomonas aeruginosa]
MSFDDALASILSSKKYRSLCPDTVRRILDQEWGRHKSPKLAVEATRTRLHGICGAYVTPESLKAAAAALSVGDVQKALSLHASTKERLAE
LDCLYDFIFSGGVPHRVLDIACGLNPLALFIRDITSVWACDIHQGLGDVITPFAHHQGLDFTFALQDVMCTPPTETGDLALVFKLLPLLE
REQAGAAMALLQALATPRIAVSFPTRSLGGRGKGMEANYSAWFEGALPDEFEIEDTKTIGIELVYMIKRNK


>gb|AB083212.2|+|5482-6237|rmtA [Pseudomonas aeruginosa]
ATGAGCTTTGACGATGCCCTAGCGTCCATCCTTTCCTCAAAAAAATATCGTTCCCTCTGCCCGGATACCGTACGGCGGATTTTAGATCAG
GAATGGGGGCGGCACAAATCGCCTAAGCTGGCAGTGGAGGCCACTCGCACCCGGCTGCACGGGATTTGCGGGGCCTATGTCACGCCGGAA
TCGCTCAAGGCTGCAGCAGCGGCATTATCGGTTGGCGATGTGCAAAAGGCACTGTCGCTGCACGCCTCTACCAAGGAGCGGTTGGCCGAA
TTGGACTGCCTCTACGATTTTATCTTTTCTGGCGGGGTGCCCCATCGTGTGTTGGATATCGCTTGCGGCCTAAACCCGCTGGCCCTCTTT
ATACGTGACATAACATCTGTATGGGCGTGCGACATCCATCAGGGGTTGGGCGATGTGATCACCCCCTTTGCCCATCATCAGGGATTGGAC
TTCACGTTCGCCCTGCAGGATGTGATGTGTACGCCGCCCACTGAGACGGGGGATTTGGCACTGGTATTTAAATTACTGCCTTTGCTGGAG
CGAGAGCAAGCTGGCGCCGCCATGGCGCTACTGCAGGCACTAGCTACCCCTCGGATTGCCGTCAGCTTCCCCACCCGCAGTTTAGGCGGG
CGCGGCAAGGGCATGGAAGCAAACTATTCCGCATGGTTCGAGGGGGCACTGCCTGATGAATTTGAAATTGAGGATACCAAGACCATTGGA
ATAGAGCTTGTGTACATGATAAAAAGGAATAAGTGA

Curator Acknowledgements
Curator Description Most Recent Edit