Accession | ARO:3000873 |
Synonym(s) | RTEM-1 TEM-1B |
CARD Short Name | TEM-1 |
Definition | TEM-1 is a broad-spectrum beta-lactamase found in many Gram-negative bacteria. Confers resistance to penicillins and first generation cephalosphorins. |
AMR Gene Family | TEM beta-lactamase |
Drug Class | penam, penem, cephalosporin, monobactam |
Resistance Mechanism | antibiotic inactivation |
Resistomes with Perfect Matches | Acinetobacter baumanniig+p+wgs+gi, Acinetobacter calcoaceticuswgs, Acinetobacter johnsoniiwgs, Acinetobacter radioresistenswgs, Acinetobacter towneriwgs, Aeromonas caviaeg+p+wgs, Aeromonas hydrophilag+p+wgs, Aeromonas veroniig+p+wgs, Bacillus subtilisg+wgs, Bacteroides fragiliswgs, Burkholderia glumaeg, Chlamydia trachomatiswgs, Citrobacter amalonaticusp+wgs, Citrobacter freundiig+p+wgs+gi, Citrobacter koserig+p+wgs, Citrobacter portucalensisg+p+wgs, Citrobacter werkmaniip+wgs, Citrobacter youngaep+wgs, Cronobacter malonaticuswgs, Cronobacter sakazakiip, Edwardsiella tardap, Enterobacter asburiaep+wgs, Enterobacter chengduensiswgs, Enterobacter cloacaeg+p+wgs, Enterobacter hormaecheig+p+wgs, Enterobacter kobeig+p+wgs, Enterobacter roggenkampiip+wgs, Enterococcus faeciumwgs, Escherichia albertiig+p+wgs, Escherichia colig+p+wgs+gi, Escherichia fergusoniig+p+wgs, Escherichia marmotaewgs, Haemophilus influenzaeg+p+wgs+gi, Haemophilus parainfluenzaeg+wgs, Kingella kingaegi, Klebsiella aerogenesg+p+wgs+gi, Klebsiella huaxiensisg+p+gi, Klebsiella michiganensisg+p+wgs, Klebsiella oxytocap+wgs, Klebsiella pneumoniaeg+p+wgs+gi, Klebsiella quasipneumoniaeg+p+wgs, Leclercia adecarboxylatawgs, Morganella morganiig+p+wgs+gi, Neisseria gonorrhoeaep+wgs, Neisseria siccawgs, Pasteurella multocidag+wgs, Proteus mirabilisg+p+wgs+gi, Proteus pennerip, Proteus vulgarisp, Providencia rettgerig+wgs, Providencia stuartiip+wgs, Pseudomonas aeruginosag+p+wgs, Pseudomonas monteiliiwgs, Pseudomonas putidawgs, Raoultella planticolap+wgs, Salmonella entericag+p+wgs+gi, Serratia marcescensg+p+wgs, Shigella boydiip+wgs, Shigella dysenteriaeg+p+wgs, Shigella flexnerig+p+wgs, Shigella sonneig+p+wgs, Staphylococcus epidermidisg, Streptococcus suiswgs, Vibrio choleraep+wgs, Vibrio parahaemolyticusp, Yersinia pseudotuberculosiswgs |
Resistomes with Sequence Variants | Acinetobacter baumanniig+p+wgs+gi, Acinetobacter calcoaceticuswgs, Acinetobacter johnsoniiwgs, Acinetobacter radioresistenswgs, Acinetobacter towneriwgs, Aeromonas caviaeg+p+wgs, Aeromonas hydrophilag+p+wgs, Aeromonas veroniig+p+wgs, Bacillus subtilisg+wgs, Bacteroides fragiliswgs, Burkholderia glumaeg, Chlamydia trachomatiswgs, Citrobacter amalonaticusp+wgs, Citrobacter freundiig+p+wgs+gi, Citrobacter koserig+p+wgs, Citrobacter portucalensisg+p+wgs, Citrobacter werkmaniip+wgs, Citrobacter youngaep+wgs, Cronobacter malonaticuswgs, Cronobacter sakazakiip, Edwardsiella tardap, Enterobacter asburiaeg+p+wgs, Enterobacter chengduensiswgs, Enterobacter cloacaeg+p+wgs, Enterobacter hormaecheig+p+wgs, Enterobacter kobeig+p+wgs, Enterobacter roggenkampiip+wgs, Enterococcus faeciumwgs, Escherichia albertiig+p+wgs, Escherichia colig+p+wgs+gi, Escherichia fergusoniig+p+wgs, Escherichia marmotaewgs, Haemophilus influenzaeg+p+wgs+gi, Haemophilus parainfluenzaeg+wgs, Kingella kingaegi, Klebsiella aerogenesg+p+wgs+gi, Klebsiella huaxiensisg+p+gi, Klebsiella michiganensisg+p+wgs, Klebsiella oxytocap+wgs, Klebsiella pneumoniaeg+p+wgs+gi, Klebsiella quasipneumoniaeg+p+wgs, Leclercia adecarboxylatawgs, Morganella morganiig+p+wgs+gi, Neisseria gonorrhoeaep+wgs, Neisseria siccawgs, Pasteurella multocidag+wgs, Proteus mirabilisg+p+wgs+gi, Proteus pennerip, Proteus vulgarisp, Providencia rettgerig+wgs, Providencia stuartiip+wgs, Pseudomonas aeruginosag+p+wgs, Pseudomonas monteiliiwgs, Pseudomonas putidawgs, Raoultella planticolap+wgs, Salmonella entericag+p+wgs+gi, Serratia marcescensg+p+wgs, Shigella boydiip+wgs, Shigella dysenteriaeg+p+wgs, Shigella flexnerig+p+wgs, Shigella sonneig+p+wgs, Staphylococcus epidermidisg, Streptococcus suiswgs, Vibrio choleraep+wgs, Vibrio parahaemolyticusp, Yersinia pseudotuberculosiswgs |
Classification | 17 ontology terms | Show + process or component of antibiotic biology or chemistry + mechanism of antibiotic resistance + determinant of antibiotic resistance + antibiotic molecule + antibiotic inactivation [Resistance Mechanism] + antibiotic inactivation enzyme + hydrolysis of antibiotic conferring resistance + beta-lactam antibiotic + cephem + hydrolysis of beta-lactam antibiotic by serine beta-lactamase + penam [Drug Class] + beta-lactamase + penem [Drug Class] + ampicillin [Antibiotic] + class A beta-lactamase + cephalosporin [Drug Class] + monobactam [Drug Class] |
Parent Term(s) | 5 ontology terms | Show + confers_resistance_to_antibiotic cefazolin [Antibiotic] + confers_resistance_to_antibiotic amoxicillin [Antibiotic] + TEM beta-lactamase [AMR Gene Family] + confers_resistance_to_antibiotic ampicillin [Antibiotic] + confers_resistance_to_antibiotic cefalotin [Antibiotic] |
Sub-Term(s) | 7 ontology terms | Show + tazobactam [Adjuvant] is_small_molecule_inhibitor + clavulanic acid [Adjuvant] is_small_molecule_inhibitor + SYN-1012 [Adjuvant] is_small_molecule_inhibitor + ANT3310 [Adjuvant] is_small_molecule_inhibitor + avibactam [Adjuvant] is_small_molecule_inhibitor + nacubactam [Adjuvant] is_small_molecule_inhibitor + ARX1796 [Adjuvant] is_small_molecule_inhibitor |
Publications | Datta N and Kontomichalou P. 1965. Nature 208(5007): 239-241. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. (PMID 5326330) Sutcliffe JG. 1978. Proc Natl Acad Sci U S A 75(8): 3737-3741. Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. (PMID 358200) Salverda ML, et al. 2010. FEMS Microbiol. Rev. 34(6):1015-36 Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. (PMID 20412308) Tsang KK, et al. 2021. Microb Genom 7(1): Identifying novel β-lactamase substrate activity through in silico prediction of antimicrobial resistance. (PMID 33416461) |
Prevalence of TEM-1 among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).
Species | NCBI Chromosome | NCBI Plasmid | NCBI WGS | NCBI GI |
---|---|---|---|---|
Acinetobacter baumannii | 32.04% | 0.31% | 25.06% | 13.21% |
Acinetobacter calcoaceticus | 0% | 0% | 4.35% | 0% |
Acinetobacter johnsonii | 0% | 0% | 1.82% | 0% |
Acinetobacter radioresistens | 0% | 0% | 5.26% | 0% |
Acinetobacter towneri | 0% | 0% | 3.85% | 0% |
Aeromonas caviae | 4.55% | 5.19% | 2.69% | 0% |
Aeromonas hydrophila | 6.15% | 2.6% | 1.61% | 0% |
Aeromonas veronii | 3.64% | 1.54% | 1.12% | 0% |
Bacillus subtilis | 0.72% | 0% | 0.58% | 0% |
Bacteroides fragilis | 0% | 0% | 0.27% | 0% |
Burkholderia glumae | 1% | 0% | 0% | 0% |
Chlamydia trachomatis | 0% | 0% | 3.23% | 0% |
Citrobacter amalonaticus | 0% | 8.33% | 9.09% | 0% |
Citrobacter freundii | 3.28% | 12.31% | 20.12% | 27.27% |
Citrobacter koseri | 6.25% | 20% | 9.91% | 0% |
Citrobacter portucalensis | 7.41% | 22.06% | 27.93% | 0% |
Citrobacter werkmanii | 0% | 10% | 35.9% | 0% |
Citrobacter youngae | 0% | 9.09% | 12.5% | 0% |
Cronobacter malonaticus | 0% | 0% | 1.82% | 0% |
Cronobacter sakazakii | 0% | 2.56% | 0% | 0% |
Edwardsiella tarda | 0% | 5.26% | 0% | 0% |
Enterobacter asburiae | 3.23% | 2.2% | 10.67% | 0% |
Enterobacter chengduensis | 0% | 0% | 24% | 0% |
Enterobacter cloacae | 5.36% | 8.94% | 22.04% | 0% |
Enterobacter hormaechei | 1.08% | 9.14% | 24.82% | 0% |
Enterobacter kobei | 4.55% | 4.83% | 15.72% | 0% |
Enterobacter roggenkampii | 0% | 2.42% | 6.47% | 0% |
Enterococcus faecium | 0% | 0% | 0.03% | 0% |
Escherichia albertii | 2.86% | 1.13% | 3.23% | 0% |
Escherichia coli | 3.91% | 6.33% | 20.42% | 1.15% |
Escherichia fergusonii | 4.92% | 6.76% | 27.17% | 0% |
Escherichia marmotae | 0% | 0% | 6.25% | 0% |
Haemophilus influenzae | 10.31% | 100% | 12.32% | 75% |
Haemophilus parainfluenzae | 25% | 0% | 7.32% | 0% |
Kingella kingae | 0% | 0% | 0% | 100% |
Klebsiella aerogenes | 4% | 10.87% | 10.73% | 25% |
Klebsiella huaxiensis | 100% | 7.69% | 0% | 50% |
Klebsiella michiganensis | 8.06% | 12.57% | 12.77% | 0% |
Klebsiella oxytoca | 0% | 6.85% | 8.4% | 0% |
Klebsiella pneumoniae | 2.49% | 11.55% | 29.85% | 0.95% |
Klebsiella quasipneumoniae | 0.84% | 4.87% | 26.32% | 0% |
Leclercia adecarboxylata | 0% | 0% | 13.95% | 0% |
Morganella morganii | 13.46% | 2.5% | 8.59% | 7.69% |
Neisseria gonorrhoeae | 0% | 4.59% | 5.44% | 0% |
Neisseria sicca | 0% | 0% | 7.69% | 0% |
Pasteurella multocida | 1.43% | 0% | 3% | 0% |
Proteus mirabilis | 21.1% | 10% | 9.74% | 11.11% |
Proteus penneri | 0% | 100% | 0% | 0% |
Proteus vulgaris | 0% | 11.11% | 0% | 0% |
Providencia rettgeri | 5.88% | 0% | 2.55% | 0% |
Providencia stuartii | 0% | 6.82% | 9.09% | 0% |
Pseudomonas aeruginosa | 0.77% | 0.88% | 0.41% | 0% |
Pseudomonas monteilii | 0% | 0% | 2.38% | 0% |
Pseudomonas putida | 0% | 0% | 0.53% | 0% |
Raoultella planticola | 0% | 13.95% | 12.82% | 0% |
Salmonella enterica | 8.52% | 10.72% | 11.89% | 15.23% |
Serratia marcescens | 2.27% | 10.32% | 6.68% | 0% |
Shigella boydii | 0% | 4.35% | 26.67% | 0% |
Shigella dysenteriae | 14.29% | 4.55% | 13.33% | 0% |
Shigella flexneri | 3% | 17.27% | 15.06% | 0% |
Shigella sonnei | 2.44% | 6.8% | 32.29% | 0% |
Staphylococcus epidermidis | 0.65% | 0% | 0% | 0% |
Streptococcus suis | 0% | 0% | 0.05% | 0% |
Vibrio cholerae | 0% | 21.05% | 0.51% | 0% |
Vibrio parahaemolyticus | 0% | 0.31% | 0% | 0% |
Yersinia pseudotuberculosis | 0% | 0% | 1.47% | 0% |
Model Type: protein homolog model
Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.
Bit-score Cut-off (blastP): 500