TEM-1

Accession ARO:3000873
Synonym(s)RTEM-1 TEM-1B
CARD Short NameTEM-1
DefinitionTEM-1 is a broad-spectrum beta-lactamase found in many Gram-negative bacteria. Confers resistance to penicillins and first generation cephalosphorins.
AMR Gene FamilyTEM beta-lactamase
Drug Classpenam, monobactam, penem, cephalosporin
Resistance Mechanismantibiotic inactivation
Resistomes with Perfect MatchesAcinetobacter baumanniig+p+wgs+gi, Acinetobacter calcoaceticuswgs, Acinetobacter johnsoniiwgs, Acinetobacter radioresistenswgs, Acinetobacter towneriwgs, Aeromonas caviaeg+p+wgs, Aeromonas hydrophilag+p+wgs, Aeromonas veroniig+p+wgs, Bacillus subtilisg+wgs, Bacteroides fragiliswgs, Burkholderia glumaeg, Chlamydia trachomatiswgs, Citrobacter amalonaticusp+wgs, Citrobacter freundiig+p+wgs+gi, Citrobacter koserig+p+wgs, Citrobacter portucalensisg+p+wgs, Citrobacter werkmaniip+wgs, Citrobacter youngaep+wgs, Cronobacter malonaticuswgs, Cronobacter sakazakiip, Edwardsiella tardap, Enterobacter asburiaep+wgs, Enterobacter chengduensiswgs, Enterobacter cloacaeg+p+wgs, Enterobacter hormaecheig+p+wgs, Enterobacter kobeig+p+wgs, Enterobacter roggenkampiip+wgs, Enterococcus faeciumwgs, Escherichia albertiig+p+wgs, Escherichia colig+p+wgs+gi, Escherichia fergusoniig+p+wgs, Escherichia marmotaewgs, Haemophilus influenzaeg+p+wgs+gi, Haemophilus parainfluenzaeg+wgs, Kingella kingaegi, Klebsiella aerogenesg+p+wgs+gi, Klebsiella huaxiensisg+p+gi, Klebsiella michiganensisg+p+wgs, Klebsiella oxytocap+wgs, Klebsiella pneumoniaeg+p+wgs+gi, Klebsiella quasipneumoniaeg+p+wgs, Leclercia adecarboxylatawgs, Morganella morganiig+p+wgs+gi, Neisseria gonorrhoeaep+wgs, Neisseria siccawgs, Pasteurella multocidag+wgs, Proteus mirabilisg+p+wgs+gi, Proteus pennerip, Proteus vulgarisp, Providencia rettgerig+wgs, Providencia stuartiip+wgs, Pseudomonas aeruginosag+p+wgs, Pseudomonas monteiliiwgs, Pseudomonas putidawgs, Raoultella planticolap+wgs, Salmonella entericag+p+wgs+gi, Serratia marcescensg+p+wgs, Shigella boydiip+wgs, Shigella dysenteriaeg+p+wgs, Shigella flexnerig+p+wgs, Shigella sonneig+p+wgs, Staphylococcus epidermidisg, Streptococcus suiswgs, Vibrio choleraep+wgs, Vibrio parahaemolyticusp, Yersinia pseudotuberculosiswgs
Resistomes with Sequence VariantsAcinetobacter baumanniig+p+wgs+gi, Acinetobacter calcoaceticuswgs, Acinetobacter johnsoniiwgs, Acinetobacter radioresistenswgs, Acinetobacter towneriwgs, Aeromonas caviaeg+p+wgs, Aeromonas hydrophilag+p+wgs, Aeromonas veroniig+p+wgs, Bacillus subtilisg+wgs, Bacteroides fragiliswgs, Burkholderia glumaeg, Chlamydia trachomatiswgs, Citrobacter amalonaticusp+wgs, Citrobacter freundiig+p+wgs+gi, Citrobacter koserig+p+wgs, Citrobacter portucalensisg+p+wgs, Citrobacter werkmaniip+wgs, Citrobacter youngaep+wgs, Cronobacter malonaticuswgs, Cronobacter sakazakiip, Edwardsiella tardap, Enterobacter asburiaeg+p+wgs, Enterobacter chengduensiswgs, Enterobacter cloacaeg+p+wgs, Enterobacter hormaecheig+p+wgs, Enterobacter kobeig+p+wgs, Enterobacter roggenkampiip+wgs, Enterococcus faeciumwgs, Escherichia albertiig+p+wgs, Escherichia colig+p+wgs+gi, Escherichia fergusoniig+p+wgs, Escherichia marmotaewgs, Haemophilus influenzaeg+p+wgs+gi, Haemophilus parainfluenzaeg+wgs, Kingella kingaegi, Klebsiella aerogenesg+p+wgs+gi, Klebsiella huaxiensisg+p+gi, Klebsiella michiganensisg+p+wgs, Klebsiella oxytocap+wgs, Klebsiella pneumoniaeg+p+wgs+gi, Klebsiella quasipneumoniaeg+p+wgs, Leclercia adecarboxylatawgs, Morganella morganiig+p+wgs+gi, Neisseria gonorrhoeaep+wgs, Neisseria siccawgs, Pasteurella multocidag+wgs, Proteus mirabilisg+p+wgs+gi, Proteus pennerip, Proteus vulgarisp, Providencia rettgerig+wgs, Providencia stuartiip+wgs, Pseudomonas aeruginosag+p+wgs, Pseudomonas monteiliiwgs, Pseudomonas putidawgs, Raoultella planticolap+wgs, Salmonella entericag+p+wgs+gi, Serratia marcescensg+p+wgs, Shigella boydiip+wgs, Shigella dysenteriaeg+p+wgs, Shigella flexnerig+p+wgs, Shigella sonneig+p+wgs, Staphylococcus epidermidisg, Streptococcus suiswgs, Vibrio choleraep+wgs, Vibrio parahaemolyticusp, Yersinia pseudotuberculosiswgs
Classification17 ontology terms | Show
Parent Term(s)5 ontology terms | Show
+ TEM beta-lactamase [AMR Gene Family]
+ confers_resistance_to_antibiotic ampicillin [Antibiotic]
+ confers_resistance_to_antibiotic amoxicillin [Antibiotic]
+ confers_resistance_to_antibiotic cefalotin [Antibiotic]
+ confers_resistance_to_antibiotic cefazolin [Antibiotic]
Sub-Term(s)
7 ontology terms | Show
+ tazobactam [Adjuvant] is_small_molecule_inhibitor
+ clavulanic acid [Adjuvant] is_small_molecule_inhibitor
+ SYN-1012 [Adjuvant] is_small_molecule_inhibitor
+ ANT3310 [Adjuvant] is_small_molecule_inhibitor
+ avibactam [Adjuvant] is_small_molecule_inhibitor
+ nacubactam [Adjuvant] is_small_molecule_inhibitor
+ ARX1796 [Adjuvant] is_small_molecule_inhibitor
Publications

Datta N and Kontomichalou P. 1965. Nature 208(5007): 239-241. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. (PMID 5326330)

Sutcliffe JG. 1978. Proc Natl Acad Sci U S A 75(8): 3737-3741. Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. (PMID 358200)

Salverda ML, et al. 2010. FEMS Microbiol. Rev. 34(6):1015-36 Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. (PMID 20412308)

Tsang KK, et al. 2021. Microb Genom 7(1): Identifying novel β-lactamase substrate activity through in silico prediction of antimicrobial resistance. (PMID 33416461)

Resistomes

Prevalence of TEM-1 among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GI
Acinetobacter baumannii32.04%0.31%25.06%13.21%
Acinetobacter calcoaceticus0%0%4.35%0%
Acinetobacter johnsonii0%0%1.82%0%
Acinetobacter radioresistens0%0%5.26%0%
Acinetobacter towneri0%0%3.85%0%
Aeromonas caviae4.55%5.19%2.69%0%
Aeromonas hydrophila6.15%2.6%1.61%0%
Aeromonas veronii3.64%1.54%1.12%0%
Bacillus subtilis0.72%0%0.58%0%
Bacteroides fragilis0%0%0.27%0%
Burkholderia glumae1%0%0%0%
Chlamydia trachomatis0%0%3.23%0%
Citrobacter amalonaticus0%8.33%9.09%0%
Citrobacter freundii3.28%12.31%20.12%27.27%
Citrobacter koseri6.25%20%9.91%0%
Citrobacter portucalensis7.41%22.06%27.93%0%
Citrobacter werkmanii0%10%35.9%0%
Citrobacter youngae0%9.09%12.5%0%
Cronobacter malonaticus0%0%1.82%0%
Cronobacter sakazakii0%2.56%0%0%
Edwardsiella tarda0%5.26%0%0%
Enterobacter asburiae3.23%2.2%10.67%0%
Enterobacter chengduensis0%0%24%0%
Enterobacter cloacae5.36%8.94%22.04%0%
Enterobacter hormaechei1.08%9.14%24.82%0%
Enterobacter kobei4.55%4.83%15.72%0%
Enterobacter roggenkampii0%2.42%6.47%0%
Enterococcus faecium0%0%0.03%0%
Escherichia albertii2.86%1.13%3.23%0%
Escherichia coli3.91%6.33%20.42%1.15%
Escherichia fergusonii4.92%6.76%27.17%0%
Escherichia marmotae0%0%6.25%0%
Haemophilus influenzae10.31%100%12.32%75%
Haemophilus parainfluenzae25%0%7.32%0%
Kingella kingae0%0%0%100%
Klebsiella aerogenes4%10.87%10.73%25%
Klebsiella huaxiensis100%7.69%0%50%
Klebsiella michiganensis8.06%12.57%12.77%0%
Klebsiella oxytoca0%6.85%8.4%0%
Klebsiella pneumoniae2.49%11.55%29.85%0.95%
Klebsiella quasipneumoniae0.84%4.87%26.32%0%
Leclercia adecarboxylata0%0%13.95%0%
Morganella morganii13.46%2.5%8.59%7.69%
Neisseria gonorrhoeae0%4.59%5.44%0%
Neisseria sicca0%0%7.69%0%
Pasteurella multocida1.43%0%3%0%
Proteus mirabilis21.1%10%9.74%11.11%
Proteus penneri0%100%0%0%
Proteus vulgaris0%11.11%0%0%
Providencia rettgeri5.88%0%2.55%0%
Providencia stuartii0%6.82%9.09%0%
Pseudomonas aeruginosa0.77%0.88%0.41%0%
Pseudomonas monteilii0%0%2.38%0%
Pseudomonas putida0%0%0.53%0%
Raoultella planticola0%13.95%12.82%0%
Salmonella enterica8.52%10.72%11.89%15.23%
Serratia marcescens2.27%10.32%6.68%0%
Shigella boydii0%4.35%26.67%0%
Shigella dysenteriae14.29%4.55%13.33%0%
Shigella flexneri3%17.27%15.06%0%
Shigella sonnei2.44%6.8%32.29%0%
Staphylococcus epidermidis0.65%0%0%0%
Streptococcus suis0%0%0.05%0%
Vibrio cholerae0%21.05%0.51%0%
Vibrio parahaemolyticus0%0.31%0%0%
Yersinia pseudotuberculosis0%0%1.47%0%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 500


>gb|CAD09800.1|+|TEM-1 [Salmonella enterica subsp. enterica serovar Typhi str. CT18]
MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEDQLGARVGYIELDLNSGKILESFRPEERFPMMSTFKVLLCGAVLSRVDAGQEQLG
RRIHYSQNDLVEYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTM
PAAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGAGERGSRGIIAALGPDGKPSRIVVIYTTGSQATMDE
RNRQIAEIGASLIKHW


>gb|AL513383.1|+|161911-162771|TEM-1 [Salmonella enterica subsp. enterica serovar Typhi str. CT18]
ATGAGTATTCAACATTTTCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAA
GTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCC
GAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGTGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGT
CGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTA
TGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTG
CACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATG
CCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAG
GCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCT
CGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAA
CGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA