CTX-M-27

Accession ARO:3001889
CARD Short NameCTX-M-27
DefinitionCTX-M-27 is a beta-lactamase found in Escherichia coli.
AMR Gene FamilyCTX-M beta-lactamase
Drug Classcarbapenem, cephalosporin, penam
Resistance Mechanismantibiotic inactivation
Resistomes with Perfect MatchesEnterobacter cloacaewgs, Enterobacter hormaecheiwgs, Escherichia colig+p+wgs, Klebsiella pneumoniaeg+p+wgs+gi, Klebsiella quasipneumoniaep+wgs, Salmonella entericap+wgs, Shigella boydiiwgs, Shigella flexneriwgs, Shigella sonneip+wgs
Resistomes with Sequence VariantsEnterobacter cloacaewgs, Enterobacter hormaecheiwgs, Escherichia colig+p+wgs, Klebsiella pneumoniaeg+p+wgs+gi, Klebsiella quasipneumoniaep+wgs, Salmonella entericap+wgs, Shigella boydiiwgs, Shigella flexneriwgs, Shigella sonneip+wgs
Classification15 ontology terms | Show
Parent Term(s)7 ontology terms | Show
+ CTX-M beta-lactamase [AMR Gene Family]
+ confers_resistance_to_antibiotic ceftazidime [Antibiotic]
+ confers_resistance_to_antibiotic cefalotin [Antibiotic]
+ confers_resistance_to_antibiotic ampicillin [Antibiotic]
+ confers_resistance_to_antibiotic cefazolin [Antibiotic]
+ confers_resistance_to_antibiotic ertapenem [Antibiotic]
+ confers_resistance_to_antibiotic cefixime [Antibiotic]
Sub-Term(s)
2 ontology terms | Show
+ avibactam [Adjuvant] is_small_molecule_inhibitor
+ ARX1796 [Adjuvant] is_small_molecule_inhibitor
Publications

Bonnet R, et al. 2003. J Antimicrob Chemother 52(1): 29-35. Effect of D240G substitution in a novel ESBL CTX-M-27. (PMID 12775683)

Tsang KK, et al. 2021. Microb Genom 7(1): Identifying novel β-lactamase substrate activity through in silico prediction of antimicrobial resistance. (PMID 33416461)

Resistomes

Prevalence of CTX-M-27 among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GI
Enterobacter cloacae0%0%0.32%0%
Enterobacter hormaechei0%0%0.04%0%
Escherichia coli0.12%0.59%1.46%0%
Klebsiella pneumoniae0.24%0.12%0.53%0.95%
Klebsiella quasipneumoniae0%0.21%0.13%0%
Salmonella enterica0%0.16%0.01%0%
Shigella boydii0%0%2.22%0%
Shigella flexneri0%0%0.62%0%
Shigella sonnei0%0.97%0.29%0%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 500


>gb|AAO61597.1|+|CTX-M-27 [Escherichia coli]
MVTKRVQRMMFAAAACIPLLLGSAPLYAQTSAVQQKLAALEKSSGGRLGVALIDTADNTQVLYRGDERFPMCSTSKVMAAAAVLKQSETQ
KQLLNQPVEIKPADLVNYNPIAEKHVNGTMTLAELSAAALQYSDNTAMNKLIAQLGGPGGVTAFARAIGDETFRLDRTEPTLNTAIPGDP
RDTTTPRAMAQTLRQLTLGHALGETQRAQLVTWLKGNTTGAASIRAGLPTSWTVGDKTGSGGYGTTNDIAVIWPQGRAPLVLVTYFTQPQ
QNAESRRDVLASAARIIAEGL


>gb|AY156923.1|+|1-876|CTX-M-27 [Escherichia coli]
ATGGTGACAAAGAGAGTGCAACGGATGATGTTCGCGGCGGCGGCGTGCATTCCGCTGCTGCTGGGCAGCGCGCCGCTTTATGCGCAGACG
AGTGCGGTGCAGCAAAAGCTGGCGGCGCTGGAGAAAAGCAGCGGAGGGCGGCTGGGCGTCGCGCTCATCGATACCGCAGATAATACGCAG
GTGCTTTATCGCGGTGATGAACGCTTTCCAATGTGCAGTACCAGTAAAGTTATGGCGGCCGCGGCGGTGCTTAAGCAGAGTGAAACGCAA
AAGCAGCTGCTTAATCAGCCTGTCGAGATCAAGCCTGCCGATCTGGTTAACTACAATCCGATTGCCGAAAAACACGTCAACGGCACAATG
ACGCTGGCAGAACTGAGCGCGGCCGCGTTGCAGTACAGCGACAATACCGCCATGAACAAATTGATTGCCCAGCTCGGTGGCCCGGGAGGC
GTGACGGCTTTTGCCCGCGCGATCGGCGATGAGACGTTTCGTCTGGATCGCACTGAACCTACGCTGAATACCGCCATTCCCGGCGACCCG
AGAGACACCACCACGCCGCGGGCGATGGCGCAGACGTTGCGTCAGCTTACGCTGGGTCATGCGCTGGGCGAAACCCAGCGGGCGCAGTTG
GTGACGTGGCTCAAAGGCAATACGACCGGCGCAGCCAGCATTCGGGCCGGCTTACCGACGTCGTGGACTGTGGGTGATAAGACCGGCAGC
GGCGGCTACGGCACCACCAATGATATTGCGGTGATCTGGCCGCAGGGTCGTGCGCCGCTGGTTCTGGTGACCTATTTTACCCAGCCGCAA
CAGAACGCAGAGAGCCGCCGCGATGTGCTGGCTTCAGCGGCGAGAATCATCGCCGAAGGGCTGTAA