MCR-3.1

Accession ARO:3004139
CARD Short NameMCR-3.1
DefinitionMCR-3 is a plasmid-borne phosphoethanolamine transferase that interferes with binding of colistin to the cell membrane via addition of phosphoethanolamine to lipid A, resulting reduction in negative charge of the cell membrane. Originally described by Yin et al. 2017, from a porcine Escherichia coli plasmid pWJ1.
AMR Gene FamilyMCR phosphoethanolamine transferase
Drug Classpeptide antibiotic
Resistance Mechanismantibiotic target alteration
Resistomes with Perfect MatchesEnterobacter hormaecheiwgs, Escherichia colip+wgs, Klebsiella pneumoniaewgs, Salmonella entericap+wgs
Resistomes with Sequence VariantsEnterobacter hormaecheiwgs, Escherichia colip+wgs, Klebsiella pneumoniaewgs, Salmonella entericap+wgs
Classification14 ontology terms | Show
Parent Term(s)3 ontology terms | Show
+ confers_resistance_to_antibiotic colistin A [Antibiotic]
+ confers_resistance_to_antibiotic colistin B [Antibiotic]
+ MCR phosphoethanolamine transferase [AMR Gene Family]
Sub-Term(s)
11 ontology terms | Show
+ MCR-3.5 evolutionary_variant_of
+ MCR-3.8 evolutionary_variant_of
+ MCR-3.2 evolutionary_variant_of
+ MCR-3.6 evolutionary_variant_of
+ MCR-3.9 evolutionary_variant_of
+ MCR-3.4 evolutionary_variant_of
+ MCR-3.3 evolutionary_variant_of
+ MCR-3.7 evolutionary_variant_of
+ MCR-3.10 evolutionary_variant_of
+ MCR-3.11 evolutionary_variant_of
+ MCR-3.12 evolutionary_variant_of
Publications

Yin W, et al. 2017. MBio 8(3): Novel Plasmid-Mediated Colistin Resistance Gene mcr-3 in Escherichia coli. (PMID 28655818)

Resistomes

Prevalence of MCR-3.1 among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GI
Enterobacter hormaechei0%0%0.04%0%
Escherichia coli0%0.06%0.09%0%
Klebsiella pneumoniae0%0%0.01%0%
Salmonella enterica0%0.71%0.11%0%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 1000


>gb|ASF81896.1|+|MCR-3.1 [Escherichia coli]
MPSLIKIKIVPLMFFLALYFAFMLNWRGVLHFYEILYKLEDFKFGFAISLPILLVAALNFVFVPFSIRYLIKPFFALLIALSAIVSYTMM
KYRVLFDQNMIQNIFETNQNEALAYLSLPIIVWVTIAGFIPAILLFFVEIEYEEKWFKGILTRALSMFASLIVIAVIAALYYQDYVSVGR
NNSNLQREIVPANFVNSTVKYVYNRYLAEPIPFTTLGDDAKRDTNQSKPTLMFLVVGETARGKNFSMNGYEKDTNPFTSKSGGVISFNDV
RSCGTATAVSVPCMFSNMGRKEFDDNRARNSEGLLDVLQKTGISIFWKENDGGCKGVCDRVPNIEIEPKDHPKFCDKNTCYDEVVLQDLD
SEIAQMKGDKLVGFHLIGSHGPTYYKRYPDAHRQFTPDCPRSDIENCTDEELTNTYDNTIRYTDFVIGEMIAKLKTYEDKYNTALLYVSD
HGESLGALGLYLHGTPYQFAPDDQTRVPMQVWMSPGFTKEKGVDMACLQQKAADTRYSHDNIFSSVLGIWDVKTSVYEKGLDIFSQCRNV
Q


>gb|KY924928.1|+|161134-162759|MCR-3.1 [Escherichia coli]
ATGCCTTCCCTTATAAAAATAAAAATTGTTCCGCTTATGTTCTTTTTGGCACTGTATTTTGCATTTATGCTGAACTGGCGTGGAGTTCTC
CATTTTTACGAAATCCTTTACAAATTAGAAGATTTTAAGTTTGGTTTCGCCATTTCATTACCAATATTGCTTGTTGCAGCGCTTAACTTT
GTATTTGTTCCATTTTCGATACGGTATTTAATAAAGCCTTTTTTTGCACTTCTTATCGCACTTAGTGCAATCGTTAGTTACACAATGATG
AAGTATAGAGTCTTGTTTGATCAAAACATGATTCAGAATATTTTTGAAACCAATCAAAATGAGGCGTTAGCATATTTAAGCTTACCAATT
ATAGTATGGGTTACTATTGCTGGTTTTATCCCTGCCATTTTACTTTTCTTTGTTGAAATTGAATATGAGGAAAAATGGTTCAAAGGGATT
CTAACTCGTGCCCTATCGATGTTTGCATCACTTATAGTGATTGCGGTTATTGCAGCACTATACTATCAAGATTATGTGTCAGTGGGGCGC
AACAATTCAAACCTCCAGCGTGAGATTGTTCCAGCCAATTTCGTTAATAGTACCGTTAAATACGTTTACAATCGTTATCTTGCTGAACCA
ATCCCATTTACAACTTTAGGTGATGATGCAAAACGGGATACTAATCAAAGTAAGCCCACGTTGATGTTTCTGGTCGTTGGTGAAACCGCT
CGTGGTAAAAATTTCTCGATGAATGGCTATGAGAAAGACACCAATCCATTTACCAGTAAATCTGGTGGCGTGATCTCCTTTAATGATGTT
CGTTCGTGTGGGACTGCAACCGCTGTATCCGTCCCCTGCATGTTCTCCAATATGGGGAGAAAGGAGTTTGATGATAATCGCGCTCGCAAT
AGCGAGGGCCTGCTAGATGTGTTGCAAAAAACGGGGATCTCCATTTTTTGGAAGGAGAACGATGGAGGCTGCAAAGGCGTCTGCGACCGA
GTACCTAACATCGAAATCGAACCAAAGGATCACCCTAAGTTCTGCGATAAAAACACATGCTATGACGAGGTTGTCCTTCAAGACCTCGAT
AGTGAAATTGCTCAAATGAAAGGGGATAAGCTGGTTGGCTTCCACCTGATAGGTAGCCATGGCCCAACCTACTACAAGCGCTACCCTGAT
GCTCATCGTCAGTTCACCCCTGACTGTCCACGCAGTGATATTGAAAACTGCACAGATGAAGAGCTCACCAACACCTATGACAACACCATC
CGCTACACCGATTTCGTGATTGGAGAGATGATTGCCAAGTTGAAAACCTACGAAGATAAGTACAACACCGCGTTGCTCTACGTCTCCGAT
CATGGTGAATCACTGGGAGCATTAGGGCTTTACCTACACGGTACACCGTACCAGTTTGCACCGGATGATCAGACCCGTGTTCCTATGCAG
GTGTGGATGTCACCTGGATTTACCAAAGAGAAAGGCGTTGATATGGCGTGTTTGCAGCAGAAAGCCGCTGATACTCGTTACTCACACGAT
AATATTTTCTCATCTGTATTGGGTATCTGGGACGTCAAAACATCAGTTTACGAAAAGGGTCTAGATATTTTCAGTCAATGTCGTAATGTT
CAATAA