MCR-3.1

Accession ARO:3004139
DefinitionMCR-3 is a plasmid-borne phosphoethanolamine transferase that interferes with binding of colistin to the cell membrane via addition of phosphoethanolamine to lipid A, resulting reduction in negative charge of the cell membrane. Originally described by Yin et al. 2017, from a porcine Escherichia coli plasmid pWJ1.
AMR Gene FamilyMCR phosphoethanolamine transferase
Drug Classpeptide antibiotic
Resistance Mechanismantibiotic target alteration
ResistomesEnterobacter hormaecheiwgs, Escherichia coliwgs
Classification15 ontology terms | Show
Parent Term(s)1 ontology terms | Show
Sub-Term(s)
11 ontology terms | Show
+ MCR-3.5 evolutionary_variant_of
+ MCR-3.8 evolutionary_variant_of
+ MCR-3.2 evolutionary_variant_of
+ MCR-3.6 evolutionary_variant_of
+ MCR-3.9 evolutionary_variant_of
+ MCR-3.4 evolutionary_variant_of
+ MCR-3.3 evolutionary_variant_of
+ MCR-3.7 evolutionary_variant_of
+ MCR-3.10 evolutionary_variant_of
+ MCR-3.11 evolutionary_variant_of
+ MCR-3.12 evolutionary_variant_of
Publications

Yin W, et al. 2017. MBio 8(3): Novel Plasmid-Mediated Colistin Resistance Gene mcr-3 in Escherichia coli. (PMID 28655818)

Resistomes

Prevalence of MCR-3.1 among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI for 82 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGS
Citrobacter freundii0%0%0.78%
Enterobacter hormaechei0%0%0.16%
Escherichia coli0%0%0.03%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: perfect, strict and loose. A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.

Bit-score Cut-off (blastP): 1000


>gb|ASF81896.1|+|MCR-3 [Escherichia coli]
MPSLIKIKIVPLMFFLALYFAFMLNWRGVLHFYEILYKLEDFKFGFAISLPILLVAALNFVFVPFSIRYLIKPFFALLIALSAIVSYTMM
KYRVLFDQNMIQNIFETNQNEALAYLSLPIIVWVTIAGFIPAILLFFVEIEYEEKWFKGILTRALSMFASLIVIAVIAALYYQDYVSVGR
NNSNLQREIVPANFVNSTVKYVYNRYLAEPIPFTTLGDDAKRDTNQSKPTLMFLVVGETARGKNFSMNGYEKDTNPFTSKSGGVISFNDV
RSCGTATAVSVPCMFSNMGRKEFDDNRARNSEGLLDVLQKTGISIFWKENDGGCKGVCDRVPNIEIEPKDHPKFCDKNTCYDEVVLQDLD
SEIAQMKGDKLVGFHLIGSHGPTYYKRYPDAHRQFTPDCPRSDIENCTDEELTNTYDNTIRYTDFVIGEMIAKLKTYEDKYNTALLYVSD
HGESLGALGLYLHGTPYQFAPDDQTRVPMQVWMSPGFTKEKGVDMACLQQKAADTRYSHDNIFSSVLGIWDVKTSVYEKGLDIFSQCRNV
Q


>gb|KY924928.1|+|161134-162759|MCR-3 [Escherichia coli]
ATGCCTTCCCTTATAAAAATAAAAATTGTTCCGCTTATGTTCTTTTTGGCACTGTATTTTGCATTTATGCTGAACTGGCGTGGAGTTCTC
CATTTTTACGAAATCCTTTACAAATTAGAAGATTTTAAGTTTGGTTTCGCCATTTCATTACCAATATTGCTTGTTGCAGCGCTTAACTTT
GTATTTGTTCCATTTTCGATACGGTATTTAATAAAGCCTTTTTTTGCACTTCTTATCGCACTTAGTGCAATCGTTAGTTACACAATGATG
AAGTATAGAGTCTTGTTTGATCAAAACATGATTCAGAATATTTTTGAAACCAATCAAAATGAGGCGTTAGCATATTTAAGCTTACCAATT
ATAGTATGGGTTACTATTGCTGGTTTTATCCCTGCCATTTTACTTTTCTTTGTTGAAATTGAATATGAGGAAAAATGGTTCAAAGGGATT
CTAACTCGTGCCCTATCGATGTTTGCATCACTTATAGTGATTGCGGTTATTGCAGCACTATACTATCAAGATTATGTGTCAGTGGGGCGC
AACAATTCAAACCTCCAGCGTGAGATTGTTCCAGCCAATTTCGTTAATAGTACCGTTAAATACGTTTACAATCGTTATCTTGCTGAACCA
ATCCCATTTACAACTTTAGGTGATGATGCAAAACGGGATACTAATCAAAGTAAGCCCACGTTGATGTTTCTGGTCGTTGGTGAAACCGCT
CGTGGTAAAAATTTCTCGATGAATGGCTATGAGAAAGACACCAATCCATTTACCAGTAAATCTGGTGGCGTGATCTCCTTTAATGATGTT
CGTTCGTGTGGGACTGCAACCGCTGTATCCGTCCCCTGCATGTTCTCCAATATGGGGAGAAAGGAGTTTGATGATAATCGCGCTCGCAAT
AGCGAGGGCCTGCTAGATGTGTTGCAAAAAACGGGGATCTCCATTTTTTGGAAGGAGAACGATGGAGGCTGCAAAGGCGTCTGCGACCGA
GTACCTAACATCGAAATCGAACCAAAGGATCACCCTAAGTTCTGCGATAAAAACACATGCTATGACGAGGTTGTCCTTCAAGACCTCGAT
AGTGAAATTGCTCAAATGAAAGGGGATAAGCTGGTTGGCTTCCACCTGATAGGTAGCCATGGCCCAACCTACTACAAGCGCTACCCTGAT
GCTCATCGTCAGTTCACCCCTGACTGTCCACGCAGTGATATTGAAAACTGCACAGATGAAGAGCTCACCAACACCTATGACAACACCATC
CGCTACACCGATTTCGTGATTGGAGAGATGATTGCCAAGTTGAAAACCTACGAAGATAAGTACAACACCGCGTTGCTCTACGTCTCCGAT
CATGGTGAATCACTGGGAGCATTAGGGCTTTACCTACACGGTACACCGTACCAGTTTGCACCGGATGATCAGACCCGTGTTCCTATGCAG
GTGTGGATGTCACCTGGATTTACCAAAGAGAAAGGCGTTGATATGGCGTGTTTGCAGCAGAAAGCCGCTGATACTCGTTACTCACACGAT
AATATTTTCTCATCTGTATTGGGTATCTGGGACGTCAAAACATCAGTTTACGAAAAGGGTCTAGATATTTTCAGTCAATGTCGTAATGTT
CAATAA