Accession ARO:3000216
Synonym(s)ECK0456 JW0451
CARD Short NameacrB
DefinitionProtein subunit of AcrA-AcrB-TolC multidrug efflux complex. AcrB functions as a herterotrimer which forms the inner membrane component and is primarily responsible for substrate recognition and energy transduction by acting as a drug/proton antiporter.
AMR Gene Familyresistance-nodulation-cell division (RND) antibiotic efflux pump
Drug Classtetracycline antibiotic, rifamycin antibiotic, phenicol antibiotic, glycylcycline, disinfecting agents and antiseptics, penam, cephalosporin, fluoroquinolone antibiotic
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
Resistomes with Perfect MatchesEscherichia colig+p+wgs, Shigella boydiig+wgs, Shigella dysenteriaeg+wgs, Shigella flexnerig+wgs, Shigella sonneig+wgs
Resistomes with Sequence VariantsAcinetobacter baumanniiwgs, Bacillus thuringiensiswgs, Bifidobacterium animaliswgs, Burkholderia contaminanswgs, Burkholderia pseudomalleiwgs, Campylobacter jejuniwgs, Citrobacter amalonaticusg+wgs, Citrobacter freundiig+p+wgs, Citrobacter portucalensisg+wgs, Citrobacter werkmaniig+wgs, Citrobacter youngaeg+wgs, Clostridium perfringenswgs, Enterobacter asburiaewgs, Enterobacter cloacaewgs, Enterobacter hormaecheiwgs, Enterobacter kobeiwgs, Escherichia albertiig+wgs, Escherichia colig+p+wgs, Escherichia fergusoniig+p+wgs, Escherichia marmotaeg+wgs, Klebsiella aerogeneswgs, Klebsiella michiganensiswgs, Klebsiella pneumoniaeg+wgs, Klebsiella quasipneumoniaewgs, Pseudomonas aeruginosawgs, Raoultella planticolawgs, Salmonella bongorig+wgs, Salmonella entericag+wgs, Serratia marcescenswgs, Shigella boydiig+wgs, Shigella dysenteriaeg+wgs, Shigella flexnerig+wgs, Shigella sonneig+wgs, Staphylococcus aureuswgs, Streptococcus suiswgs
Classification24 ontology terms | Show
Parent Term(s)2 ontology terms | Show
Publications

Tornroth-Horsefield S, et al. 2007. Structure 15(12): 1663-1673. Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist. (PMID 18073115)

Murakami S, et al. 2002. Nature 419(6907): 587-593. Crystal structure of bacterial multidrug efflux transporter AcrB. (PMID 12374972)

Das D, et al. 2007. J Struct Biol 158(3): 494-502. Crystal structure of the multidrug efflux transporter AcrB at 3.1A resolution reveals the N-terminal region with conserved amino acids. (PMID 17275331)

Pos KM. 2009. Biochim Biophys Acta 1794(5): 782-793. Drug transport mechanism of the AcrB efflux pump. (PMID 19166984)

Eicher T, et al. 2009. Biol Chem 390(8): 693-699. Structural and functional aspects of the multidrug efflux pump AcrB. (PMID 19453279)

Resistomes

Prevalence of acrB among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 377 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GI
Acinetobacter baumannii0%0%0.03%0%
Bacillus thuringiensis0%0%0.16%0%
Bifidobacterium animalis0%0%1.27%0%
Burkholderia contaminans0%0%1.28%0%
Burkholderia pseudomallei0%0%0.06%0%
Campylobacter jejuni0%0%0.05%0%
Citrobacter amalonaticus90%0%75%0%
Citrobacter freundii72.32%0.32%54.52%0%
Citrobacter portucalensis48%0%17.24%0%
Citrobacter werkmanii71.43%0%58.97%0%
Citrobacter youngae50%0%87.5%0%
Clostridium perfringens0%0%0.3%0%
Enterobacter asburiae0%0%0.89%0%
Enterobacter cloacae0%0%0.36%0%
Enterobacter hormaechei0%0%0.78%0%
Enterobacter kobei0%0%0.52%0%
Escherichia albertii100%0%94.62%0%
Escherichia coli64.48%0.01%68.37%0%
Escherichia fergusonii98.25%0.38%45.07%0%
Escherichia marmotae100%0%69.57%0%
Klebsiella aerogenes0%0%0.62%0%
Klebsiella michiganensis0%0%0.3%0%
Klebsiella pneumoniae0.07%0%0.25%0%
Klebsiella quasipneumoniae0%0%0.16%0%
Pseudomonas aeruginosa0%0%0.08%0%
Raoultella planticola0%0%2.78%0%
Salmonella bongori100%0%92.86%0%
Salmonella enterica84.2%0%79.32%0%
Serratia marcescens0%0%0.69%0%
Shigella boydii100%0%98.9%0%
Shigella dysenteriae100%0%100%0%
Shigella flexneri100%0%82.14%0%
Shigella sonnei100%0%96%0%
Staphylococcus aureus0%0%0.02%0%
Streptococcus suis0%0%0.06%0%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 1900


>gb|AAC73564.1|-|acrB [Escherichia coli str. K-12 substr. MG1655]
MPNFFIDRPIFAWVIAIIIMLAGGLAILKLPVAQYPTIAPPAVTISASYPGADAKTVQDTVTQVIEQNMNGIDNLMYMSSNSDSTGTVQI
TLTFESGTDADIAQVQVQNKLQLAMPLLPQEVQQQGVSVEKSSSSFLMVVGVINTDGTMTQEDISDYVAANMKDAISRTSGVGDVQLFGS
QYAMRIWMNPNELNKFQLTPVDVITAIKAQNAQVAAGQLGGTPPVKGQQLNASIIAQTRLTSTEEFGKILLKVNQDGSRVLLRDVAKIEL
GGENYDIIAEFNGQPASGLGIKLATGANALDTAAAIRAELAKMEPFFPSGLKIVYPYDTTPFVKISIHEVVKTLVEAIILVFLVMYLFLQ
NFRATLIPTIAVPVVLLGTFAVLAAFGFSINTLTMFGMVLAIGLLVDDAIVVVENVERVMAEEGLPPKEATRKSMGQIQGALVGIAMVLS
AVFVPMAFFGGSTGAIYRQFSITIVSAMALSVLVALILTPALCATMLKPIAKGDHGEGKKGFFGWFNRMFEKSTHHYTDSVGGILRSTGR
YLVLYLIIVVGMAYLFVRLPSSFLPDEDQGVFMTMVQLPAGATQERTQKVLNEVTHYYLTKEKNNVESVFAVNGFGFAGRGQNTGIAFVS
LKDWADRPGEENKVEAITMRATRAFSQIKDAMVFAFNLPAIVELGTATGFDFELIDQAGLGHEKLTQARNQLLAEAAKHPDMLTSVRPNG
LEDTPQFKIDIDQEKAQALGVSINDINTTLGAAWGGSYVNDFIDRGRVKKVYVMSEAKYRMLPDDIGDWYVRAADGQMVPFSAFSSSRWE
YGSPRLERYNGLPSMEILGQAAPGKSTGEAMELMEQLASKLPTGVGYDWTGMSYQERLSGNQAPSLYAISLIVVFLCLAALYESWSIPFS
VMLVVPLGVIGALLAATFRGLTNDVYFQVGLLTTIGLSAKNAILIVEFAKDLMDKEGKGLIEATLDAVRMRLRPILMTSLAFILGVMPLV
ISTGAGSGAQNAVGTGVMGGMVTATVLAIFFVPVFFVVVRRRFSRKNEDIEHSHTVDHH


>gb|U00096.3|-|481254-484403|acrB [Escherichia coli str. K-12 substr. MG1655]
ATGCCTAATTTCTTTATCGATCGCCCGATTTTTGCGTGGGTGATCGCCATTATCATCATGTTGGCAGGGGGGCTGGCGATCCTCAAACTG
CCGGTGGCGCAATATCCTACGATTGCACCGCCGGCAGTAACGATCTCCGCCTCCTACCCCGGCGCTGATGCGAAAACAGTGCAGGACACG
GTGACACAGGTTATCGAACAGAATATGAACGGTATCGATAACCTGATGTACATGTCCTCTAACAGTGACTCCACGGGTACCGTGCAGATC
ACCCTGACCTTTGAGTCTGGTACTGATGCGGATATCGCGCAGGTTCAGGTGCAGAACAAACTGCAGCTGGCGATGCCGTTGCTGCCGCAA
GAAGTTCAGCAGCAAGGGGTGAGCGTTGAGAAATCATCCAGCAGCTTCCTGATGGTTGTCGGCGTTATCAACACCGATGGCACCATGACG
CAGGAGGATATCTCCGACTACGTGGCGGCGAATATGAAAGATGCCATCAGCCGTACGTCGGGCGTGGGTGATGTTCAGTTGTTCGGTTCA
CAGTACGCGATGCGTATCTGGATGAACCCGAATGAGCTGAACAAATTCCAGCTAACGCCGGTTGATGTCATTACCGCCATCAAAGCGCAG
AACGCCCAGGTTGCGGCGGGTCAGCTCGGTGGTACGCCGCCGGTGAAAGGCCAACAGCTTAACGCCTCTATTATTGCTCAGACGCGTCTG
ACCTCTACTGAAGAGTTCGGCAAAATCCTGCTGAAAGTGAATCAGGATGGTTCCCGCGTGCTGCTGCGTGACGTCGCGAAGATTGAGCTG
GGTGGTGAGAACTACGACATCATCGCAGAGTTTAACGGCCAACCGGCTTCCGGTCTGGGGATCAAGCTGGCGACCGGTGCAAACGCGCTG
GATACCGCTGCGGCAATCCGTGCTGAACTGGCGAAGATGGAACCGTTCTTCCCGTCGGGTCTGAAAATTGTTTACCCATACGACACCACG
CCGTTCGTGAAAATCTCTATTCACGAAGTGGTTAAAACGCTGGTCGAAGCGATCATCCTCGTGTTCCTGGTTATGTATCTGTTCCTGCAG
AACTTCCGCGCGACGTTGATTCCGACCATTGCCGTACCGGTGGTATTGCTCGGGACCTTTGCCGTCCTTGCCGCCTTTGGCTTCTCGATA
AACACGCTAACAATGTTCGGGATGGTGCTCGCCATCGGCCTGTTGGTGGATGACGCCATCGTTGTGGTAGAAAACGTTGAGCGTGTTATG
GCGGAAGAAGGTTTGCCGCCAAAAGAAGCTACCCGTAAGTCGATGGGGCAGATTCAGGGCGCTCTGGTCGGTATCGCGATGGTACTGTCG
GCGGTATTCGTACCGATGGCCTTCTTTGGCGGTTCTACTGGTGCTATCTATCGTCAGTTCTCTATTACCATTGTTTCAGCAATGGCGCTG
TCGGTACTGGTGGCGTTGATCCTGACTCCAGCTCTTTGTGCCACCATGCTGAAACCGATTGCCAAAGGCGATCACGGGGAAGGTAAAAAA
GGCTTCTTCGGCTGGTTTAACCGCATGTTCGAGAAGAGCACGCACCACTACACCGACAGCGTAGGCGGTATTCTGCGCAGTACGGGGCGT
TACCTGGTGCTGTATCTGATCATCGTGGTCGGCATGGCCTATCTGTTCGTGCGTCTGCCAAGCTCCTTCTTGCCAGATGAGGACCAGGGC
GTGTTTATGACCATGGTTCAGCTGCCAGCAGGTGCAACGCAGGAACGTACACAGAAAGTGCTCAATGAGGTAACGCATTACTATCTGACC
AAAGAAAAGAACAACGTTGAGTCGGTGTTCGCCGTTAACGGCTTCGGCTTTGCGGGACGTGGTCAGAATACCGGTATTGCGTTCGTTTCC
TTGAAGGACTGGGCCGATCGTCCGGGCGAAGAAAACAAAGTTGAAGCGATTACCATGCGTGCAACACGCGCTTTCTCGCAAATCAAAGAT
GCGATGGTTTTCGCCTTTAACCTGCCCGCAATCGTGGAACTGGGTACTGCAACCGGCTTTGACTTTGAGCTGATTGACCAGGCTGGCCTT
GGTCACGAAAAACTGACTCAGGCGCGTAACCAGTTGCTTGCAGAAGCAGCGAAGCACCCTGATATGTTGACCAGCGTACGTCCAAACGGT
CTGGAAGATACCCCGCAGTTTAAGATTGATATCGACCAGGAAAAAGCGCAGGCGCTGGGTGTTTCTATCAACGACATTAACACCACTCTG
GGCGCTGCATGGGGCGGCAGCTATGTGAACGACTTTATCGACCGCGGTCGTGTGAAGAAAGTTTATGTCATGTCAGAAGCGAAATACCGT
ATGCTGCCGGATGATATCGGCGACTGGTATGTTCGTGCTGCTGATGGTCAGATGGTGCCATTCTCGGCGTTCTCCTCTTCTCGTTGGGAG
TACGGTTCGCCGCGTCTGGAACGTTACAACGGCCTGCCATCCATGGAAATCTTAGGCCAGGCGGCACCGGGTAAAAGTACCGGTGAAGCA
ATGGAGCTGATGGAACAACTGGCGAGCAAACTGCCTACCGGTGTTGGCTATGACTGGACGGGGATGTCCTATCAGGAACGTCTCTCCGGC
AACCAGGCACCTTCACTGTACGCGATTTCGTTGATTGTCGTGTTCCTGTGTCTGGCGGCGCTGTACGAGAGCTGGTCGATTCCGTTCTCC
GTTATGCTGGTCGTTCCGCTGGGGGTTATCGGTGCGTTGCTGGCTGCCACCTTCCGTGGCCTGACCAATGACGTTTACTTCCAGGTAGGC
CTGCTCACAACCATTGGGTTGTCGGCGAAGAACGCGATCCTTATCGTCGAATTCGCCAAAGACTTGATGGATAAAGAAGGTAAAGGTCTG
ATTGAAGCGACGCTTGATGCGGTGCGGATGCGTTTACGTCCGATCCTGATGACCTCGCTGGCGTTTATCCTCGGCGTTATGCCGCTGGTT
ATCAGTACTGGTGCTGGTTCCGGCGCGCAGAACGCAGTAGGTACCGGTGTAATGGGCGGGATGGTGACCGCAACGGTACTGGCAATCTTC
TTCGTTCCGGTATTCTTTGTGGTGGTTCGCCGCCGCTTTAGCCGCAAGAATGAAGATATCGAGCACAGCCATACTGTCGATCATCATTGA