MexD

Accession ARO:3000801
CARD Short NameMexD
DefinitionMexD is the multidrug inner membrane transporter of the MexCD-OprJ complex.
AMR Gene Familyresistance-nodulation-cell division (RND) antibiotic efflux pump
Drug Classphenicol antibiotic, diaminopyrimidine antibiotic, aminocoumarin antibiotic, aminoglycoside antibiotic, tetracycline antibiotic, fluoroquinolone antibiotic, macrolide antibiotic, cephalosporin, penam
Resistance Mechanismantibiotic efflux
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
Resistomes with Sequence VariantsPseudomonas aeruginosag+p+wgs, Pseudomonas fluorescensg
Classification28 ontology terms | Show
Parent Term(s)4 ontology terms | Show
Publications

Srikumar R, et al. 1998. Antimicrob Agents Chemother 42(1): 65-71. Expression of Pseudomonas aeruginosa multidrug efflux pumps MexA-MexB-OprM and MexC-MexD-OprJ in a multidrug-sensitive Escherichia coli strain. (PMID 9449262)

Poole K, et al. 1996. Mol Microbiol 21(4): 713-724. Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. (PMID 8878035)

Resistomes

Prevalence of MexD among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 413 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein homolog model (view sequences)

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GI
Pseudomonas aeruginosa97.24%1.17%65.64%0%
Pseudomonas fluorescens2.78%0%0%0%
Show Perfect Only


Detection Models

Model Type: protein homolog model

Model Definition: Protein Homolog Models (PHM) detect protein sequences based on their similarity to a curated reference sequence, using curated BLASTP bitscore cut-offs. Protein Homolog Models apply to all genes that confer resistance through their presence in an organism, such as the presence of a beta-lactamase gene on a plasmid. PHMs include a reference sequence and a bitscore cut-off for detection using BLASTP. A Perfect RGI match is 100% identical to the reference protein sequence along its entire length, a Strict RGI match is not identical but the bit-score of the matched sequence is greater than the curated BLASTP bit-score cutoff, Loose RGI matches have a bit-score less than the curated BLASTP bit-score cut-off.

Bit-score Cut-off (blastP): 1800


>gb|AAB41957.1|+|MexD [Pseudomonas aeruginosa]
MSEFFIKRPNFAWVVALFISLGGLLVISKLPVAQYPNVAPPQITITATYPGASAKVLVDSVTSVLEESLNGAKGLLYFESTNNSNGTAEI
VVTFEPGTDPDLAQVDVQNRLKKAEARMPQAVLTQGLQVEQTSAGFLLIYALSYKEGAQRSDTTALGDYAARNINNELRRLPGVGKLQFF
SSEAAMRVWIDPQKLVGFGLSIDDVSNAIRGQNVQVPAGAFGSAPGSSAQELTATLAVKGTLDDPQEFGQVVLRANEDGSLVPARRCRAP
GTRQGELQHFLATERHAHRGRGYPAVARGQRDPDPTLVKQRLAELSAFFPEDMQYSVPYDTSRFVDVAIEKVIHTLIEAMVLVFLVMFLF
LENVRYTLIPSIVVPVCLLGTLMVMYLLGFSVNMMTMFGMVLAIGILVDDAIVVVENVERIMAEEGISPAEATVKAMKQVSGAIVGITLV
LSAVFLPLAFMAGSVGVIYQQFSVSLAVSILFSGFLALTFTPALCATLFKPIPEGHHEKRGFFGAFNRGFARVTERYSLLNSKLVARAGR
FMLVYAGLVAMLGYFYLRLPEAFVPAEDLGYMVVDVQLPPGASRVRTDATGEELERFLKSREAVASVFLISGFSFSGQGDNAALAFPTFK
DWSERGAEQSSAAEIAALNEHFALPDDGTVMAVSPPPINGLGNSGGFALRLMDRSGVGREALLQARDTLLGEIQTNPKFLYAMMEGLAEA
PQLRLLIDREKARALGVSFETISGTLSAAFGSEVINDFTNAGRQQRVVIQAEQGNRMTPESVLELYVPNAAGNLVPLSAFVSVKWEEGPV
QLVRYNGYPSIRIVGDAAPGFSTGEAMAEMERLASQLPAGIGYEWTGLSYQEKVSAGQATSLFALAILVVFLLLVALYESWSIPLSVMLI
VPIGAIGAVLAVMVSGMSNDVYFKVGLITIIGLSAKNAILIVEFAKELWEQGHSLRDAAIEAARLRFRPIIMTSMAFILGVIPLALASGA
GAASQRAIGTGVIGGMLSATFLGVLFVPICFVWLLSLLRSKPAPIEQAASAGE


>gb|U57969.1|+|1486-4617|MexD [Pseudomonas aeruginosa]
ATGTCCGAATTCTTCATCAAGCGGCCGAACTTCGCCTGGGTGGTGGCCCTGTTCATCTCCCTGGGCGGCCTGCTGGTCATTTCCAAATTG
CCGGTAGCGCAGTACCCCAATGTCGCGCCGCCACAGATCACCATCACCGCCACCTATCCCGGCGCCTCGGCGAAGGTGCTGGTGGACTCC
GTCACCAGTGTGCTCGAGGAGTCGCTGAACGGCGCCAAGGGCCTGCTCTACTTCGAGTCGACCAACAACTCCAACGGCACCGCCGAGATC
GTCGTCACCTTCGAGCCGGGCACCGATCCGGACCTGGCCCAGGTGGACGTGCAGAACCGCCTGAAGAAAGCCGAGGCGCGCATGCCGCAG
GCGGTGCTGACCCAGGGCCTGCAGGTCGAGCAGACCAGCGCCGGTTTCCTGCTGATCTATGCGCTCAGCTACAAGGAAGGCGCTCAGCGC
AGCGACACCACCGCCCTCGGCGACTACGCCGCGCGCAATATCAACAACGAGCTGCGGCGCCTGCCGGGCGTCGGCAAGCTGCAATTCTTC
TCTTCCGAGGCGGCCATGCGGGTCTGGATCGATCCGCAGAAGCTGGTGGGCTTCGGCCTCTCCATCGACGACGTGAGCAATGCCATCCGC
GGGCAGAACGTGCAGGTGCCGGCCGGCGCCTTCGGCAGCGCACCGGGCAGTTCCGCGCAGGAGCTGACGGCGACCCTGGCGGTGAAGGGC
ACCCTGGACGATCCGCAGGAGTTCGGCCAGGTAGTGCTGCGCGCCAACGAGGACGGCTCGCTGGTCCCGGCTCGCCGATGTCGCGCGCCT
GGAACTCGGCAAGGAGAGCTACAACATTTCCTCGCGACTGAACGGCACGCCCACCGTGGGCGGGGCTATCCAGCTGTCGCCCGGGGCCAA
CGCGATCCAGACCCTACCCTGGTGAAACAGCGTCTCGCCGAACTGTCGGCGTTCTTCCCCGAGGACATGCAGTACAGCGTGCCCTACGAC
ACCTCGCGCTTCGTCGACGTGGCCATCGAGAAGGTGATCCACACCCTGATCGAAGCGATGGTCCTGGTGTTCCTGGTGATGTTCCTGTTC
CTGGAGAACGTCCGCTACACCCTGATCCCGTCCATCGTGGTGCCGGTGTGCCTGCTGGGTACGCTGATGGTGATGTACCTGCTGGGGTTC
TCGGTGAACATGATGACCATGTTCGGCATGGTCCTGGCGATCGGCATCCTGGTGGACGACGCCATCGTGGTGGTGGAGAACGTCGAGCGG
ATCATGGCGGAGGAGGGGATTTCCCCGGCCGAGGCCACGGTCAAGGCGATGAAGCAGGTATCCGGCGCCATCGTCGGCATCACCCTGGTG
CTCTCGGCGGTGTTCCTGCCGCTGGCTTTCATGGCCGGTTCGGTGGGGGTGATCTACCAGCAGTTCTCGGTGTCGCTGGCGGTCTCGATC
CTGTTCTCCGGCTTCCTCGCCCTGACCTTCACCCCGGCGCTGTGCGCCACGCTGTTCAAGCCCATTCCCGAAGGGCACCACGAGAAGCGC
GGCTTCTTCGGCGCCTTCAACCGTGGCTTCGCCCGCGTCACCGAGCGCTATTCGCTGCTCAACTCGAAGCTGGTGGCGCGCGCCGGACGC
TTCATGCTGGTGTACGCCGGCCTGGTGGCCATGCTCGGCTACTTCTACCTGCGCCTGCCGGAAGCCTTCGTGCCGGCGGAAGACCTCGGC
TACATGGTGGTCGACGTGCAACTGCCGCCTGGCGCTTCGCGCGTGCGCACCGATGCCACCGGCGAGGAGCTCGAGCGCTTCCTCAAGTCC
CGCGAGGCGGTGGCTTCGGTGTTCCTGATCTCGGGCTTCAGCTTCTCCGGCCAGGGCGACAATGCCGCGCTGGCCTTCCCAACCTTCAAG
GACTGGTCCGAGCGAGGCGCCGAGCAGTCGTCCGCCGCCGAGATCGCCGCGCTGAACGAGCATTTCGCGCTGCCCGACGATGGCACGGTC
ATGGCCGTGTCGCCGCCACCGATCAACGGTCTGGGTAACTCCGGCGGCTTCGCATTGCGCCTGATGGACCGTAGCGGGGTCGGCCGCGAA
GCGCTGCTGCAGGCTCGCGATACTCTTCTTGGCGAGATCCAGACCAACCCGAAATTCCTTTACGCGATGATGGAAGGACTGGCCGAAGCG
CCGCAACTGCGCCTGTTGATCGACCGGGAGAAGGCCCGTGCCCTGGGGGTGAGCTTCGAGACCATCAGCGGCACGCTGTCCGCTGCCTTC
GGCTCGGAGGTGATCAACGACTTCACCAATGCGGGGCGCCAACAGCGGGTGGTGATCCAGGCCGAACAGGGCAACCGGATGACCCCGGAA
AGCGTGCTCGAGCTATACGTGCCTAACGCTGCTGGCAACCTGGTACCGCTCAGCGCCTTCGTCAGCGTGAAATGGGAAGAGGGACCGGTG
CAATTGGTGCGCTATAACGGCTACCCGTCGATCCGCATCGTCGGTGACGCCGCGCCCGGCTTCAGTACCGGCGAAGCCATGGCGGAAATG
GAGCGCCTGGCCTCGCAGCTGCCGGCCGGCATCGGCTACGAGTGGACCGGCCTGTCCTATCAGGAGAAGGTCTCCGCCGGGCAGGCCACC
AGCCTGTTCGCCCTCGCCATCCTGGTGGTGTTCCTGTTGCTGGTGGCGCTCTACGAGAGCTGGTCGATCCCGCTGTCGGTGATGCTGATC
GTGCCGATCGGCGCCATCGGCGCGGTGCTCGCGGTGATGGTCAGCGGTATGTCCAACGACGTGTATTTCAAGGTCGGCCTGATCACCATC
ATCGGTCTTTCGGCGAAGAACGCGATCCTCATCGTCGAGTTCGCCAAGGAACTCTGGGAACAGGGACATAGCCTGCGCGACGCCGCCATC
GAGGCCGCGCGCCTGCGCTTCCGGCCGATCATCATGACTTCCATGGCGTTCATCCTCGGCGTGATACCCCTGGCCCTGGCCAGCGGTGCC
GGCGCGGCGAGCCAGCGTGCCATCGGCACCGGAGTGATCGGCGGGATGCTCAGCGCCACCTTCCTCGGCGTGCTGTTCGTACCTATCTGT
TTCGTCTGGCTGCTGTCGCTGCTGCGCAGCAAGCCGGCACCCATCGAACAGGCCGCTTCGGCCGGGGAGTGA