Salmonella enterica soxR with mutation conferring antibiotic resistance

Accession ARO:3003382
CARD Short NameSent_soxR_MULT
DefinitionSoxR is a sensory protein that upregulates soxS expression in the presence of redox-cycling drugs. This stress response leads to the expression of many multidrug efflux pumps.
AMR Gene Familyresistance-nodulation-cell division (RND) antibiotic efflux pump, major facilitator superfamily (MFS) antibiotic efflux pump, ATP-binding cassette (ABC) antibiotic efflux pump
Drug Classtetracycline antibiotic, penicillin beta-lactam, cephalosporin, disinfecting agents and antiseptics, phenicol antibiotic, rifamycin antibiotic, glycylcycline, fluoroquinolone antibiotic
Resistance Mechanismantibiotic efflux, antibiotic target alteration
Efflux Componentefflux pump complex or subunit conferring antibiotic resistance
Efflux Regulatorprotein(s) and two-component regulatory system modulating antibiotic efflux
Classification38 ontology terms | Show
Parent Term(s)2 ontology terms | Show
+ confers_resistance_to_antibiotic ciprofloxacin [Antibiotic]
+ soxR
Publications

Webber MA, et al. 2001. Antimicrob. Agents Chemother. 45(5):1550-2 Absence of mutations in marRAB or soxRS in acrB-overexpressing fluoroquinolone-resistant clinical and veterinary isolates of Escherichia coli. (PMID 11302826)

O'Regan E, et al. 2009. Antimicrob Agents Chemother 53(3): 1080-1087. Multiple regulatory pathways associated with high-level ciprofloxacin and multidrug resistance in Salmonella enterica serovar enteritidis: involvement of RamA and other global regulators. (PMID 19104017)

Resistomes

Prevalence of Salmonella enterica soxR with mutation conferring antibiotic resistance among the sequenced genomes, plasmids, and whole-genome shotgun assemblies available at NCBI or IslandViewer for 414 important pathogens (see methodological details and complete list of analyzed pathogens). Values reflect percentage of genomes, plasmids, genome islands, or whole-genome shotgun assemblies that have at least one hit to the AMR detection model. Default view includes percentages calculated based on Perfect plus Strict RGI hits. Select the checkbox to view percentages based on only Perfect matches to AMR reference sequences curated in CARD (note: this excludes resistance via mutation as references in protein variant models are often wild-type, sensitive sequences).

Prevalence: protein variant model

SpeciesNCBI ChromosomeNCBI PlasmidNCBI WGSNCBI GIGRDI-AMR2
No prevalence data


Detection Models

Model Type: protein variant model

Model Definition: Protein Variant Models (PVM) perform a similar search as Protein Homolog Models (PHM), i.e. detect protein sequences based on their similarity to a curated reference sequence, but secondarily screen query sequences for curated sets of mutations to differentiate them from antibiotic susceptible wild-type alleles. PVMs are designed to detect AMR acquired via mutation of house-keeping genes or antibiotic targets, e.g. a mutated gyrase resistant to aminocoumarin antibiotics. PVMs include a protein reference sequence (often from antibiotic susceptible wild-type alleles), a curated bit-score cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of single point mutations, insertions, or deletions curated from the scientific literature. A Strict RGI match has a BLASTP bit-score above the curated BLASTP cutoff value and contains at least one curated mutation from amongst the mapped resistance variants, while a Loose RGI match has a bit-score less than the curated BLASTP bit-score cut-off but still contains at least one curated mutation from amongst the mapped resistance variants.

Bit-score Cut-off (blastP): 300

PubMed: mutation data hand curated from the scientific literature, evaluated as conferring resistance (R). CRyPTIC: mutation data acquired from the CRyPTIC catalog, evaluated as resistant (R), susceptible (S), or undetermined (U). ReSeqTB: mutation data acquired from the ReSeqTB catalog, evaluated as conferring resistance (Minimal, Moderate, High), not conferring resistance (None), or Indeterminate. WHO: mutation data acquired from the WHO 2023 catalog, evaluated as resistant (R), susceptible (S), or undetermined (U).

MutationMutation typePubMed
R20Hsingle resistance variantPMID:19104017
G121Dsingle resistance variantPMID:11302826

>gb|CAD09250.1|+|Salmonella enterica soxR with mutation conferring antibiotic resistance [Salmonella enterica subsp. enterica serovar Typhi str. CT18]
MEKKSPRLKALLTPGEVAKRSGVAVSALHFYESKGLITSIRNSGNQRRYKRDVLRYVAII
KIAQRIGIPLATIGDAFGILPEGHTLSAKEWKQLSSQWREELDRRIHTLVALRDELDGCI
GCGCLSRSDCPLRNPGDRLGEHGTGARLLEDD



>gb|AL513382.1|+|4349505-4349963|Salmonella enterica soxR with mutation conferring antibiotic resistance [Salmonella enterica subsp. enterica serovar Typhi str. CT18]
ATGGAAAAAAAATCTCCCCGTTTAAAAGCCTTACTGACGCCGGGGGAAGTTGCGAAACGTAGCGGTGTTGCTGTGTCCGCCCTGCACTTC
TATGAAAGCAAAGGGCTAATTACCAGTATCCGTAATAGCGGTAACCAACGGCGATACAAGCGTGACGTGTTGCGTTATGTCGCGATTATC
AAGATTGCCCAGCGTATCGGCATCCCGCTGGCAACTATCGGCGACGCGTTTGGTATCTTGCCGGAAGGGCATACGTTAAGCGCGAAAGAG
TGGAAGCAGCTCTCCTCGCAGTGGCGCGAAGAGTTAGACCGACGTATTCATACGCTGGTGGCGTTGCGCGATGAGCTGGACGGTTGTATC
GGCTGCGGCTGTTTATCGCGTAGCGACTGTCCGCTGCGGAATCCAGGCGACAGGCTTGGCGAACACGGGACGGGCGCCCGGCTGCTTGAA
GATGATTAA

Curator Acknowledgements
Curator Description Most Recent Edit